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We would like to thank the editor and the two anonymous reviewers, whose constructive comments
helped improve the manuscript. In the following pages, we provide detailed answers to each comment.
In summary, the following three main changes are applied to the manuscript:

1. We define the term ”acceptance ratio” better.

2. We describe the initial sampling.

3. We better explain the non-intuitive result concerning the higher P-value cases.

To aid the reading, the original comments by the reviewers are displayed in black, while our replies are
both indented and blue. Line numbers in the reviewers comments refers to the original submission, while
line numbers in our replies refers to the revised manuscript.
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Editor
The authors present a sampling method to select parameters leading to plausible model results. The
manuscript has been revised by 2 independent reviewers. All reviewers consider the study of (poten-
tial) interest for HESS after moderate revisions. All reviewers provide detailed comments and sug-
gestions on diverse aspects of the manuscript. One aspect that the authors should consider during the
revision of their work is to further elucidate the metric used for the global sensitivity analysis per-
formed, GSA. Although Sensitivity is an intuitive concept, a variety of approaches/metrics have been
proposed in the literature. Since each metric focuses on a different property of the model response(s),
diverse metrics may lead to different results (Razavi and Gupta 2016, Water Resources Research, 51, 5,
doi: 10.1002/2014WR016527; Dell’Oca et al. 2017, Hydrology and Earth System Science, 21,12, doi:
10.5194/hess-21-6219-2017).

We would like to thank the editor for taking time to handle our manuscript. As for our choice
of GSA-metric, the editor is right that we did not discuss this point in the manuscript. The
suggested articles are highly relevant for this purpose, and we have added them together with
a brief discussion on the definition of the used GSA-metric. However, the main purpose of this
manuscript is the development of the selection method within the sampling scheme, and in the
context of the paper the GSA-analysis itself is merely one way of comparing the results of the
sampling. The following text has been added (lines 50-57):
”It should be noted that there are different global sensitivity methods with different metrics that
may give different results (e.g. Razavi and Gupta, 2015; Dell’Oca et al., 2017). In principle,
nothing speaks against computing another global-sensitivity metric for the sample selected by
our active-subspace based sampling scheme, as long as computing the metric is based on a
random sample. For practical reasons and for a direct comparison with our previous work, we
use the activity score in the present study. For the interested reader, a longer discussion about
the current metric in relation to the specific application is given by Erdal and Cirpka (2019),
and more general discussions have been presented by Saltelli et al. (2008); Song et al. (2015);
Pianosi et al. (2016), among others.”
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Anonymous Referee #1
We thank the reviewer for taking the time to review our manuscript and providing constructive
comments. In the following we address all individual comments one-by-one.

Content Comments
1. Page 5, Figure 2 - Consider labeling the red line “Behavioral Limit Line” for clarity. Can one assume
the point has to be above the limit line to be considered acceptable behavior? Could Figure 2 be moved
so that it is after Line 115?

We use the improved label suggested by the reviewer. The figure is also moved as suggested,
but the final typesetting is not in our control. The reviewer is correct: a point has to be above
the limit line to be considered acceptable. This is also further highlighted in the figure caption.
Figure with new caption is found between lines 136-137 on page 6 in the revised manuscript.

2. Page 5, Line 105 – Where does the active subspace come from that the initial candidate parameter
sets (say, the first 1-99) are projected onto? Line 113 states that the active subspace is recalculated after
adding 100 state-1 accepted parameter sets– but, how do you start?

We thank the reviewer for highlighting this point, as the information is clearly missing. The
initial active subspace is created from a random set of 50 parameter sets drawn from the uncon-
ditional prior using Latin Hypercube sampling. The following text is added to the manuscript
(lines 115-117):
”As in the original sampling scheme, we start with a set of 50 candidate parameter sets, sam-
pled using a Latin Hypercube setup, which are per definition directly stage-1 accepted.”

3. Page 5, Line 106 – Can you provide any insight about how the values/criteria (e.g., 5 closest neighbors
plus 1% radius) were selected for this work that would be beneficial for another researcher trying to
implement this method?

As the reviewer correctly points out, this is an important aspect of the sampling scheme. In
our case, the values were chosen based on prior tests. However, the results were not highly
dependent on the choice. The 1% was chosen just to ensure that the 5 neighbors are not so
close to the candidate point that relevant uncertainties are neglected. We would consider both
values to be applicable also to other model setups.
In the text, the following is added (lines 123-125): ”The number of neighbors selected and the
radius of the ellipse are tuning parameters, here chosen based on a few prior tests. However,
we believe they are applicable also for other applications, at the very least as good starting
points.”

4. Page 6, Line 121 – Is the “acceptance ratio” the ratio of candidates that are stage-1 accepted to the total
number of candidate parameter sets (stage-1 accepted + rejected)? Or, is the “acceptance ratio” the ratio
of candidates that are stage-1 accepted to those that are stage-2 accepted (i.e., the amount of pre-accepted
candidates that become accepted). This clarification would also help interpret Figure 3.

A very relevant comment that was not clearly explained. Alternative number 2 is what we
meant (the ratio of candidates that are stage-1 accepted to those that are stage-2 accepted).
In the text, the following is added (new text within ”) (line 138): ”... shows the acceptance
ratios ’(number of stage-2 accepted samples divided by the number of stage-1 accepted sam-
ples)’ or the original sampling scheme ...”

5. Page 6, Line 121 and 136 – Intuitively, I am struggling to understand why P=0.75 is the fastest when
it should, in my mind, be the most difficult to achieve. And, along those lines, why P=0.75 sampling
results in a significantly different distribution from the unbiased pure Monte-Carlo scheme. Do you have
any insight into why this is occurring?
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We understand the reviewers difficulty, indeed one would think that the sampling scheme
which requires the highest number of correct neighbours would be most difficult and therefore
most correct. This is also true when we look at stage-1 acceptances only. Here, P=.75 results
in many more discharged candidate points, and of the stage-1 accepted ones, many are also
stage-2 accepted (high ratio in Figure 3). The drawback, however, is that this sampling be-
havior effectively avoids sampling the boundaries between the behavioral and non-behavioral
parameter space (it samples only ”safe” parameter sets). This leads to a poor match when
comparing to the pure Monte Carlo sampling (which samples everything and one uses stage-2
acceptance).
In the text, the following is added (lines 164-168): ”While it may seem counter-intuitive that
the highest P-values gets the highest acceptance ratio and the poorest match of the marginal
distributions, it is worth noting that a higher P-value means that the requirement for stage-1
acceptance is higher. Hence, at high P-values we only sample the interior of the behavioral
parameter space and avoid the boundaries where the behavioral status of a candidate parameter
set is more uncertain. This results in the bias clearly seen in Figure 4.”

5a.Furthermore, do you think the P value selected is dependent on the model/application? Based on
your experience, is the exercise of comparing different P values and selecting one necessary for another
researcher trying to implement this method, or do you think the P=0.55 scheme is broadly applicable?

In this work, =0.55 has been shown to be the best comprise between efficiency and accuracy,
while also the P=0.15 case could be considered a good choice. We believe that either of these
two, or a value in between is a generally applicably good for any sampling scheme, at least as
a starting point.
The following text is added to the text (new text within ”) (lines 176-177): ”... captured
by the faster sampling schemes may be an acceptable trade-off between speed and accuracy,
depending on the individual application. ’Based on the experience gained within this project,
a recommended starting P-value for our presented sampling scheme is P=0.55.’”

Grammar Comments
1. Page 4, Line 67 – Line states that the model considers 6 observations, but there are only 5 listed below
this sentence. Should 6 be changed to 5?
2. Page 4, Line 67 – Consider revising the sentence to state “...observations that define acceptable behav-
ioral performance...”
3. Page 4, Lines 69-73 – Make the list style consistent in regard to the period placement at the end of
each list item (or remove them all).
4. Page 4-5, Lines 87-93 – Add period after list item number 4.
5. Page 6, Lines 109 and 111 – Remove hyphen between “parameter-set”.
6. Page 6, Line 125 – Present the acceptance ratio at 0.005 (not a percent) since the acceptance ratios are
shown as decimal values on the y-axis of Figure 3.

We thank the reviewer for carefully reading our manuscript and suggesting grammatical cor-
rection. All suggestions are followed in the revised manuscript.
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Anonymous Referee #2
The current work presents a sampling strategy for those cases when some values of the investigated model
output(s) are classified as unfeasible/unacceptable and the corresponding parameters sets are labelled as
non-behavioral.A key step is the transformation from the original N-parameters space into the space
spanned by the n-most relevant eigenvectors (here two are considered, i.e., n = 2).Then, in this reduced
dimensional space an active region is identified (i.e., the active subspace) is identified (see Fig. 2 where
all the space above the red line is the active subspace). Then a set of parameters is chosen to be behavioral
or not (i.e., the associated output(s) belongs to the active subspace o not) in a two stages approach: (1)
a surrogate model of dimension n in the space spanned by the n-most influential eigenvector is built and
then used to check if a parameter set is behavioral or not, as a ‘first approximation’; (2) if a parameters
set passes stage-1 the full model is run for that parameters set a second check on being or not behavioral
is done. Then only stage-2 parameter sets are retained for successive analysis. The main gains here are
due to the reduction of the dimension (from N to n) and the use of a surrogate model in the n-dimensional
space to skim those parameters sets that are not behavioral. The improvement/modifications proposed
in the current work are during stage-1, where an additional constrain is added: a parameters set passes
stage-1, if in its neighbor-hood there is a certain fraction P of parameter sets that have already passed
stage-2. The paper is of interest and well written. There are some unclear (at least to me) points which
I would like to be addressed before publication, hoping for a more clear and more accessible work after
revision.

We would like to thank the reviewer for her/his positive view on our work. All comments are
addressed below.

Comment 1. In both approaches, after 100 parameters sets passed stage-1 the eigen-vector decomposition
is re-done, and so the surrogate in the n-space dimensions is built again. My understanding is that the out-
put(s) values associated with these 100 samples are obtained through the n-dimensional surrogate model
(before adding the 100 samples), right? If this is the case, isn’t there the risk of ‘guiding’/’move’/’bias’
the active subspace toward the results of the surrogate model? For example, in Fig. 2 the new extra 100
stage-1 accepted points will all falls along the purple curve (along its branch above the red line). This
could be an issue if the surrogate is doing a poor job. Am I wrong? Why not use stage-2 accepted sample
(even though they require full model runs) to update the eigenvectors/eigenvalues? This will avoid the
issues associated with a possibly poor surrogate modelling.

There seems to be a slight misunderstanding which may require a better explanation from our
side. The reviewer is right that all surrogate-model samples will lie on the purple line in Fig.2
(or, in reality a surface in 2-D). However, this information is only used to compare against the
user defined limit (red line in Fig.2) to decide if the parameter set is to be run in the full model
or not. If the surrogate model is not doing a good job, the new points will be far away from
the purple line. 100 of these full flow model runs are required before the update is performed.
Hence, all samples used to train the active subspace and the surrogate model are full model
runs. We think this might be part of the confusion and we stress this point much clearer in the
revised manuscript (see changes applied below).
Using just the stage-2 accepted samples would not be very beneficial for our purpose, which
is to explore the full behavioral parameter space, since the surrogate model would only be
good within the behavioral space, but rather poor at the boundary. This point, however, has
well been discussed in our preceding HESS publication (Erdal & Cirpka, 2019), on which the
present technical note is based. In order to keep the technical note brief, we avoid to discuss it
here again.
To increase the clarity of the manuscript we add the following:
Description of surrogate model (lines 92-94): ”Also, as the surrogate model is only used as
a preselection filter, all results and the training of the surrogate model are based exclusively
on full-flow model simulations.” Sampling scheme point 4 (line 106): ”Hence, the surrogate-
model is based on all currently available full-flow model simulations. ”
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Comment 2. How is the algorithm initialized? Which is the size of the sample to build the first n-
dimensional subspace? How is relevant? For example, in Fig. 2 there are previously analyzed parameters
samples/output, they should come from a set of full model runs (then they are updated after 100-samples
pass stage-1t, see the previous comment).

As also pointed out in comment 2 from reviewer 1, this information was clearly missing. The
first 50 parameter sets, which are also the fist 50 full model runs, are sampled randomly from
the unconditional prior using Latin Hypercube sampling. After the first 50 parameter sets are
run, the first active subspace/surrogate model is built based on these runs, and then subse-
quently updated in 100 full model run intervals. In principle, we do not think that the method
of initialization is that relevant, just as long as a reasonable coverage of the parameter space is
achieved.
We have improved the manuscript by the following addition (lines 116-119): ”As in the origi-
nal sampling scheme, we start with a set of 50 candidate parameter sets, sampled using a Latin
Hypercube setup, which are per definition directly stage-1 accepted. Hence we run the full
flow model 50 times to initialize the sampling scheme. The actual number is not critical, and
should be chosen with consideration to the number of unknown parameters.”

Comment 3. Acceptance ratio: this the ratio between the stage-2 accepted sample and the drawn samples,
right? Why is it a function of the stage-2 accepted samples (see Fig. 3)? I don’t see this aspect being used
in the algorithm (both previous and current versions) at any step. I would have expected a dependence
on the stage-1 accepted samples. Moreover, as P (i.e., the fractions of neighborhood accepted, at least at
stage-1, samples) increases I would expect lower acceptance ratios, i.e., it becomes harder for a sample
set to be accepted as a larger fraction of its neighbors have to be in the active subspace (i.e., P increases).
(see also lines 116-117 that go along this line of reasoning). Please clarify.

We see the reviewers confusion, as this was probably not explained in the manuscript (see
also comment 4 from reviewer 1). The acceptance ratio is the ratio between the number of
full model runs that are stage-2 accepted, and the total number of full model runs (which is
the same as the number of stage-1 accepted model runs). In the manuscript we did not report
about the total number of drawn parameters-sets, but this number is much (much!) higher than
the number of stage-1 accepted samples. Further, the number of stage-1 rejected parameter-
sets is by far the largest in the high P case. This results in a collection of stage-1 accepted
samples that poorly explores the behavioral parameter space, but where a majority of the them
are stage-2 accepted. Hence, the high-P case has a high acceptance ratio.
The difference between rejected and stage-1 accepted samples and their influence on the result
has been clarified in the manuscript:
1) See answers to comments 4 and 5 from reviewer 1
2) Added in the introduction of the sampling scheme (lines 91-92): ”Hence, one of the beauties
of the surrogate-assisted sampling is its ability to quickly discharge large quantities of non-
behavioral parameter-set without running the full flow model for each one (i.e. stage-1 rejected
samples).”
and
3) Added to the results section (lines 142-147): ”It should be noted here that the acceptance-
ratio as a statistic only shows the ratio between the runs that are behavioral after running
the full-flow model (stage-2 accepted) versus the number of full-flow model runs (stage-1
accepted). This, however, does not reflect the number of stage-1 rejected parameter sets,
which is not reported in this work, but is by far the largest for the higher P-values. Hence,
the acceptance-ratio is a measure of computational efficiency rather than a measure of search
efficiency (which here is simple Monte Carlo and, hence, comparably inefficient).”

Comment 4. Isn’t that, since P is the exact fraction (not an exceedance fraction) of good neighbors, as
P increases the active subspace is updated (on top of 100 samples that pass stage-1) by favoring those
regions of the active subspace that are the most distant from the threshold condition (e.g., upper left part
of Fig. 3a) where it is more easy to have P high than low? Then, the n-dimensional surrogate will be
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update by favoring these far-from threshold condition regions leading to a poor behavior (due to its global
character) in those regions close to the threshold conditions (e.g., lower right region in Fig. 3). This is
then reflected in the decreased quality of the behavioral parameters pdfs as shown in Fig. 4. Or maybe, I
am just speculating too much here. It could be of interest to see how the n-dimensional surrogates evolve
as a function of P, for example after some updates are conducted to see if there is this tendency or not.

We are not quite sure we fully understand what the reviewer means here. The P-value states
the minimum fraction of neighbours that has to be behavioral, and is hence in our view an
exceedance number. We do, however, agree with the reviewer that the higher-P cases (i.e.
requiring more neighbors to become stage-1 accepted) leads to a sampling that poorly samples
the boundary regions (e.g. around the reg line in fig. 2). This is, as the reviewer also points out,
clear from the results in figure 4, where the P = 0.75 case does not sample the margins of the
histogram particularly well. However, we do not find any intuitive and easily understandable
way of showing how the surrogate evolves, other than the clear results in Figure 4. Hence,
based on this comment, no changes will be applied to the manuscript. However, if the reviewer
has a clear suggestion we happy to learn about it!

Comment 5. Since a surrogate model is used to mimic also the full model response (see Sec. 2.2) I would
suggest to refer to this as ‘full-model-surrogate’ in order to mark the distinction with the surrogate model
build in the n-dimensional space.

We see the reviewer’s point, however, we rather like to avoid confusion by not naming the
GPE-surrogate-model used as our virtual truth a surrogate. We will add this information to
Section 2.2 and hope it makes the nomenclature clearer (lines 73-75):
”In order to avoid confusion we would like to point out that, in this paper, the term full-flow
model means the GPE-model, while the term surrogate model is, outside of this paragraph,
exclusively used for the surrogate model used to improve the sampling schemes.”
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Abstract. In global sensitivity analysis and ensemble-based model calibration it is essential to create a large enough sample of

model simulations with different parameters, which all yield plausible model results. This can be difficult if a-priori plausible

parameter combinations frequently yield non-behavioral model results. In a previous study (Erdal and Cirpka, 2019), we

developed and tested a parameter-sampling scheme based on active subspace decomposition. While in principle this scheme

worked well, it still implied testing a substantial fraction of parameter combinations that ultimately had to be discarded because5

of implausible model results. This technical note presents an improved sampling scheme and illustrates its simplicity and

efficiency by a small test case. The new sampling scheme can be tuned to either outperform the original implementation by

improving the sampling efficiency while maintaining the accuracy of the result, or by improving the accuracy of the result

while maintaining the sampling efficiency.

1 Introduction10

Global sensitivity analysis (e.g., Saltelli et al., 2004, 2008) is an established technique for quantifying the importance of

uncertain parameters of a model. It has also gained popularity within hydrological sciences, with many different methods

to choose from (e.g., Mishra et al., 2009; Song et al., 2015; Pianosi et al., 2016). An increasingly popular global-sensitivity

approach is the method of active subspaces (e.g. Constantine et al., 2014; Constantine and Diaz, 2017). While been designed for

engineering applications (e.g. Constantine et al., 2015a, b; Hu et al., 2016; Glaws et al., 2017; Constantine and Doostan, 2017;15

Hu et al., 2017; Grey and Constantine, 2018; Li et al., 2019), it has recently been used with good performance in hydrology

(e.g., Gilbert et al., 2016; Jefferson et al., 2015, 2017; Teixeira Parente et al., 2019), including a recent study of ourselves (Erdal

and Cirpka, 2019).

A key issue when conducting a global sensitivity analysis, is the requirement of a large enough sample of model simulations

with parameters ranging over the full parameter space. Simulations showing unrealistic behavior (e.g., wells or rivers running20

dry in the model, while they in reality always have water) should be removed from the sample. Already in moderately complex

models this may result in many model trials that must be discarded on the level of a plausibility check. This leads to the

contradictory requirements of sampling the entire space of parameters defined by preset wide margins to capture the entire

distribution while exploring only the part of the parameter space yielding plausible results. One way of easing the computational
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burden, is to make use of a simpler model (i.e. surrogate/proxy/emulator model), discussed, e.g., in the comprehensive reviews25

of Ratto et al. (2012), Razavi et al. (2012), Asher et al. (2015), and Rajabi (2019). A common sampling approach is to use a

two-stage acceptance sampling scheme, in which a candidate parameter set is first tested with the surrogate model, and only if

the surrogate model predicts the parameter set to be behavioral, it is applied in the full model. This idea has been applied to

groundwater modelling by Cui et al. (2011), Laloy et al. (2013), and the authors of the current study (Erdal and Cirpka, 2019).

In the latter study, we used a response surface fitted to the first two active subspaces as the surrogate model in a sampling30

scheme for a subsurface catchment-scale flow model. The scope of the current technical note is to present an improvement of

this scheme and compare it to the original one.

2 Methods

In the following subsections we briefly describe the active-subspace method and the base flow model. More details are given

by Erdal and Cirpka (2019).35

2.1 Active Subspaces

In this section we briefly repeat the basic derivation of active subspaces for a generic function f(x̃), in which x̃ is the vector

of scaled parameters x with a scaling to the range between 0 and 1. An active subspace is defined by the eigenvectors of the

following matrix C, computed from the partial derivatives of f with respect to x̃i, evaluated over the entire parameter space

(Constantine et al., 2014), here shown with its eigen-decomposition and Monte Carlo approximation (Constantine et al., 2016;40

Constantine and Diaz, 2017):

WΛW−1 = C =

∫
∇f(x̃)⊗∇f(x̃)ρ(x̃)dx̃≈ 1

M

M∑
i=1

∇f(x̃i)⊗∇f(x̃i) (1)

in which⊗ denotes the matrix product, ρ is a probability density function, the integration is performed over the entire parameter

space, W is the matrix of eigenvectors, Λ is the diagonal matrix of the corresponding eigenvalues, and M is the number

of samples used. The n-dimensional active subspace is spanned by the eigenvectors with the n highest eigenvalues. In our45

application, we use n= 2 as we could detect very little improvement with higher numbers.

In a global sensitivity analysis using active subspaces, the activity score ai of parameter i is defined by:

ai =

n∑
j=1

λjw
2
i,j . (2)

in which λj is the j-th eigenvalue and wi,j the element relating to parameter i in the j-th eigenvector. In the following,

we consider the square root of the activity score to obtain a quantity that has the same unit as the target variable f .
:
It50

:::::
should

:::
be

:::::
noted

::::
that

:::::
there

:::
are

::::::::
different

::::::
global

:::::::::
sensitivity

::::::::
methods

::::
with

::::::::
different

:::::::
metrics

:::
that

:::::
may

::::
give

::::::::
different

::::::
results
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::::::::::::::::::::::::::::::::::::::::::
(e.g. Razavi and Gupta, 2015; Dell’Oca et al., 2017).

::
In

::::::::
principle,

:::::::
nothing

::::::
speaks

::::::
against

:::::::::
computing

::::::
another

:::::::::::::::
global-sensitivity

:::::
metric

:::
for

:::
the

::::::
sample

::::::::
selected

::
by

::::
our

:::::::::::::
active-subspace

:::::
based

::::::::
sampling

:::::::
scheme,

::
as

:::::
long

::
as

:::::::::
computing

:::
the

::::::
metric

::
is

:::::
based

:::
on

:
a
:::::::
random

::::::
sample.

::::
For

:::::::
practical

:::::::
reasons

:::
and

:::
for

::
a
:::::
direct

::::::::::
comparison

::::
with

:::
our

::::::::
previous

:::::
work,

:::
we

:::
use

:::
the

:::::::
activity

:::::
score

::
in

:::
the

::::::
present

:::::
study.

:::
For

::::
the

::::::::
interested

::::::
reader,

:
a
::::::

longer
:::::::::
discussion

:::::
about

:::
the

:::::::
current

:::::
metric

:::
in

::::::
relation

::
to
::::

the
::::::
specific

::::::::::
application

::
is55

::::
given

:::
by

::::::::::::::::::::
Erdal and Cirpka (2019),

:::
and

:::::
more

::::::
general

::::::::::
discussions

::::
have

::::
been

::::::::
presented

::
by

:::::::::::::::::::::::::::::::::::::::::::::::::
Saltelli et al. (2008); Song et al. (2015); Pianosi et al. (2016)

:
,
:::::
among

::::::
others.

:

2.2 Model Application

In our application we consider a model of the small Käsbach catchment in south-west Germany. The model has 32 unknown

parameters, including material properties, boundary-condition values, and geometrical parameters of subsurface zones. Origi-60

nally, Erdal and Cirpka (2019) simulated subsurface flow in the domain using the model-software HydroGeoSphere (Aquanty

Inc., 2015), which solves the 3-D Richards-equation, here using the Mualem-van-Genuchten (Van Genuchten, 1980) parame-

terization for unsaturated flow. Figure 1 illustrates the model domain. Details, including the governing equations, are given by

in Erdal and Cirpka (2019).

Figure 1. Illustration of the model domain. Left: shape of the domain and topography; right: example of a geological realization.
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In a related study, we constructed a surrogate model using Gaussian Process Emulation (GPE) from roughly 4,000 parameter65

sets. In the GPE model, the model response f(x̃i) at the scaled parameter location xi is constructed by interpolation from the

existing set of parameter realizations using kriging in parameter space with optimized statistical parameters. The GPE-model

is constructed with the Small Toolbox for Kriging (Bect et al., 2017). In the present work, we use the GPE-model instead of

the full HydroGeoSphere flow model as our virtually true model response. The prime reason for this is that we can perform

pure Monte Carlo sampling of behavioral parameter sets with the GPE model, requiring about 600,000 model evaluations to70

create a set of 3,000 behavioral parameter-sets, which would be unfeasible with the original HydroGeoSphere model. That

is, we use a surrogate model (the GPE model) to judge the performance of other surrogate models (based on active-subspace

decomposition) in creating ensembles of plausible parameter sets.
::
In

:::::
order

::
to

:::::
avoid

::::::::
confusion

:::
we

:::::
would

::::
like

::
to

:::::
point

:::
out

::::
that,

::
in

:::
this

::::::
paper,

:::
the

::::
term

::::::::
full-flow

:::::
model

::::::
means

:::
the

:::::::::::
GPE-model,

:::::
while

:::
the

::::
term

::::::::
surrogate

::::::
model

::
is,

:::::::
outside

::
of

::::
this

:::::::::
paragraph,

:::::::::
exclusively

:::::
used

:::
for

:::
the

::::::::
surrogate

:::::
model

:::::
used

::
to

:::::::
improve

:::
the

:::::::
sampling

::::::::
schemes.

:
75

Like in our prior work (Erdal and Cirpka, 2019), the model considers 6 observations defining a
:
5
:::::::::::
observations

:::
that

::::::
define

::::::::
acceptable

:
behavioral performance (for locations see Figure 1):

– Limited Flooding: maximum of 2× 10−3 m3/s of water leaving the domain on the top but outside of the streams.
:

– Division of water: between 25-60% of incoming recharge leaves the domain via the streams.

– Gage C: minimum flow of 5× 10−3 m3/s.80

– Stream A: maximum flow 3× 10−3 m3/s.
:

– Stream B: minimum flow 5× 10−6 m3/s.

With the aim of keeping this technical note rather concise, we will not discuss individual parameters or their meaning in the

model. To this end, we address all parameters by a parameter index (1-32) instead of a name, and the resulting histograms refer

to the the scaled parameters, ranging from 0 to 1.85

2.3 Sampling Schemes using Active-Subspace Decomposition

The basic idea of using a surrogate-assisted sampling scheme is to use the (very fast) surrogate model to first evaluate a

candidate parameter-set. If the surrogate model predicts the parameter set to be behavioral, it is stage-1 accepted and will be

ran with the full model. If accepted also after running the full model, a parameter-set is stage-2 accepted. Only the stage-2

accepted parameter sets are used in the global sensitivity analysis, whereas the stage-1 accepted ones are used to improve the90

surrogate model.
:::::
Hence,

::::
one

::
of

:::
the

:::::::
beauties

::
of

:::
the

::::::::::::::
surrogate-assisted

::::::::
sampling

::
is

::
its

::::::
ability

::
to

::::::
quickly

::::::::
discharge

:::::
large

::::::::
quantities

::
of

::::::::::::
non-behavioral

::::::::::::
parameter-set

::::::
without

:::::::
running

:::
the

:::
full

:::::
flow

:::::
model

:::
for

::::
each

::::
one

:::
(i.e.

:::::::
stage-1

:::::::
rejected

::::::::
samples).

:::::
Also,

::
as

:::
the

:::::::
surrogate

::::::
model

::
is

::::
only

::::
used

::
as

:
a
:::::::::::
preselection

::::
filter,

:::
all

:::::
results

::::
and

:::
the

::::::
training

:::
of

::
the

::::::::
surrogate

::::::
model

:::
are

:::::
based

:::::::::
exclusively

:::
on

:::::::
full-flow

:::::
model

:::::::::::
simulations.

For each observation considered, we need to perform an active-subspace decomposition. In our our previous work (Erdal95

and Cirpka, 2019), a decision on whether to accept or reject a parameter set is made in the following way:
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1.

1. A third-order polynomial surface is fitted in the active subspace spanned by the two major active variables.

2.

2. These polynomial surfaces are used to predict the observations of a candidate parameter-set.100

3a If all predicted observations are acceptable, the candidate is stage-1 accepted.

3b If any predicted observation is between the acceptance point and a user-defined outer point, we assign a probability of

being stage-1 accepted by linear interpolation between 0 (at the outer point) and 1 (at the acceptance point), draw a

random number from a uniform distribution, and stage-1 accept the parameter set if the assigned probability is larger

than the random number.105

3c If any predicted observation is outside of the outer point, we reject the sample, draw a new candidate, and return to (2).

4

4. After adding 100 stage-1 accepted parameter sets, we recalculate the active subspace using all stage-1 accepted parameter

sets collected to this point.
:::::
Hence,

:::
the

::::::::::::::
surrogate-model

::
is

:::::
based

::
on

:::
all

::::::::
currently

:::::::
available

::::::::
full-flow

:::::
model

::::::::::
simulations.

:

Two critical points can be seen with this scheme. First, the polynomial surface is fitted through all stage-1 accepted points110

across the entire parameter space. However, locally, where we wish to make a prediction, it could still be strongly biased.

Second, the user needs to prescribe the outer-points, which should not only cover our uncertainty about the acceptance point,

but also implicitly addresses the error by using the active-subspace decomposition. As we project 32 dimensions to two,

the potential for an imperfect decomposition is rather high (that is, two close points in active subspace may have different

behavioral status). As we have no rigorous and yet simple method to address this uncertainty, the choice of the outer point115

becomes fairly subjective.

Illustration of the two active-subspace sampling schemes, shown for a 1-D test. The right plot shows a zoom-in into the

left plot. Blue dots: previously analyzed points; magenta line: fitted polynomial surrogate model; red dot: candidate parameter

in active subspace (x-value) with the assigned polynomial prediction (y-value) of the original sampling scheme; green dots:

neighbors considered in the new scheme, which are chosen exclusively by the active-variable value; red line: acceptance120

criterion.

To overcome these these issues, we here suggest a modified sampling scheme, with fewer tuning parameters and less sensi-

tivity to local biases. As with the original scheme, we require one active subspace decomposition per observation and use the

first two active variables to create the two-dimensional active subspace. The process is
::
As

:::
in

:::
the

:::::::
original

::::::::
sampling

:::::::
scheme,

::
we

::::
start

:::::
with

:
a
:::
set

::
of

:::
50

::::::::
candidate

:::::::::
parameter

::::
sets,

:::::::
sampled

:::::
using

:
a
:::::

Latin
::::::::::
Hypercube

:::::
setup,

::::::
which

:::
are

:::
per

::::::::
definition

:::::::
directly125

::::::
stage-1

::::::::
accepted.

:::::
Hence

:::
we

:::
run

:::
the

:::
full

::::
flow

:::::
model

:::
50

::::
times

::
to
::::::::
initialize

:::
the

:::::::
sampling

:::::::
scheme.

::::
The

:::::
actual

:::::::
number

:
is
:::
not

:::::::
critical,

:::
and

::::::
should

::
be

::::::
chosen

:::::
with

:::::::::::
consideration

::
to

:::
the

:::::::
number

::
of

::::::::
unknown

::::::::::
parameters.

:::
The

::::
new

::::::::
sampling

:::::::
scheme

::::
then

:::::::
proceeds

:
as

follows:
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1. The candidate parameter set is projected into the active subspace.

2. The closest neighbors in the active subspace are sought. In this work we use the 5 closest neighbors plus all neighbors130

that fall within an ellipse around the candidate point that has a radius of 1% of the total range of each active subspace, in

each of the two dimensions.
:::
The

:::::::
number

::
of

::::::::
neighbors

:::::::
selected

::::
and

:::
the

:::::
radius

:::
of

:::
the

:::::
ellipse

:::
are

::::::
tuning

::::::::::
parameters,

::::
here

::::::
chosen

:::::
based

::
on

::
a

:::
few

:::::
prior

::::
tests.

::::::::
However,

:::
we

:::::::
believe

::::
they

:::
are

::::::::
applicable

::::
also

:::
for

:::::
other

::::::::::
applications,

::
at
:::
the

::::
very

:::::
least

::
as

::::
good

:::::::
starting

::::::
points.

3. For each observation, a candidate parameter-set
::::::::
parameter

::
set

:
is pre-accepted if a certain ratio (P ) of its neighbours are135

behavioral (i.e., stage-2 accepted).

4. The candidate parameter-set
::::::::
parameter

:::
set is stage-1 accepted if it was pre-accepted for all observations, otherwise it is

rejected.

5. If rejected, draw a new candidate parameter set and return to (1).

Like before, we recalculate the active subspace after adding 100 stage-1 accepted parameter sets. The two approaches are140

illustrated in Figure 2, although just for a 1-D illustrative example. As can be seen in the figure, the original sampling scheme

suggests that the candidate is behavioral (red dot is above the red line). With the new sampling scheme, on the other hand, it

becomes a matter of the P -value chosen. At P = 0.15 and P = 0.55, the candidate would have been stage-1 accepted (60% of

the green dots are behavioral), while at P = 0.75 the candidate would have been rejected. In this work, we consider the ratios

P = 0.15, P = 0.55 and P = 0.75, and compare the performance of the sampling scheme with that used in the previous study145

(Erdal and Cirpka, 2019).

3 Results and Discussion

Figure 3 shows the acceptance ratios
::::::
(number

::
of

:::::::
stage-2

:::::::
accepted

:::::::
samples

::::::
divided

:::
by

:::
the

::::::
number

::
of
:::::::
stage-1

:::::::
accepted

::::::::
samples)

for the original sampling scheme and the new sampling scheme with three different P -values, together with a pure Monte-

Carlo sampler without preselection, applied to the Käsbach GPE-model with 32 parameters. As can be seen, the new scheme150

with P = 0.75 is the fastest, while the original scheme and the new scheme with P = 0.15 show rather comparable behavior

with lower acceptance rates. For comparison, the pure Monte Carlo sampling has an acceptance ratio of≈0.5%
:::::
0.005.

::
It

::::::
should

::
be

:::::
noted

::::
here

::::
that

:::
the

::::::::::::::
acceptance-ratio

::
as

:
a
:::::::

statistic
::::
only

::::::
shows

:::
the

::::
ratio

::::::::
between

:::
the

::::
runs

:::
that

::::
are

:::::::::
behavioral

::::
after

:::::::
running

::
the

::::::::
full-flow

::::::
model

:::::::
(stage-2

::::::::
accepted)

:::::
versus

:::
the

:::::::
number

::
of

::::::::
full-flow

:::::
model

::::
runs

:::::::
(stage-1

:::::::::
accepted).

:::::
This,

:::::::
however,

:::::
does

:::
not

:::::
reflect

:::
the

:::::::
number

::
of

::::::
stage-1

:::::::
rejected

::::::::
parameter

::::
sets,

::::::
which

::
is

:::
not

:::::::
reported

::
in

:::
this

:::::
work,

:::
but

::
is
:::
by

:::
far

::
the

::::::
largest

:::
for

:::
the

::::::
higher155

::::::::
P -values.

::::::
Hence,

:::
the

::::::::::::::
acceptance-ratio

::
is
::
a
:::::::
measure

:::
of

::::::::::::
computational

::::::::
efficiency

::::::
rather

::::
than

::
a

:::::::
measure

::
of

::::::
search

:::::::::
efficiency

::::::
(which

:::
here

::
is
::::::
simple

::::::
Monte

:::::
Carlo

::::
and,

:::::
hence,

::::::::::
comparably

::::::::::
inefficient).

While high acceptance rates are favorable in light of computational efficiency, we also want to avoid introducing a bias by

the preselection scheme. We evaluate such bias, by considering the marginal parameter distributions of the stage-2 accepted

6



Figure 2.
::::::::
Illustration

::
of

:::
the

:::
two

::::::::::::
active-subspace

:::::::
sampling

:::::::
schemes,

:::::
shown

:::
for

:
a
:::
1-D

::::
test.

:::
The

::::
right

:::
plot

:::::
shows

::
a
::::::
zoom-in

:::
into

:::
the

:::
left

::::
plot.

:::
Blue

:::::
dots:

::::::::
previously

:::::::
analyzed

:::::
points;

:::::::
magenta

::::
line:

::::
fitted

:::::::::
polynomial

:::::::
surrogate

::::::
model;

:::
red

:::
dot:

::::::::
candidate

::::::::
parameter

::
in

:::::
active

:::::::
subspace

:::::::
(x-value)

:::
with

:::
the

:::::::
assigned

:::::::::
polynomial

:::::::
prediction

:::::::
(y-value)

:::
of

::
the

::::::
original

::::::::
sampling

::::::
scheme;

:::::
green

::::
dots:

:::::::
neighbors

:::::::::
considered

:
in
:::

the
::::
new

::::::
scheme,

:::::
which

:::
are

:::::
chosen

:::::::::
exclusively

:::
by

::
the

::::::::::::
active-variable

:::::
value;

:::
red

::::
line:

::::::::
Behavioral

:::::
Limit

::::
Line.

:::::
Here,

:::::
points

:::::
above

:::
the

:::
red

:::
line

:::
are

::::::::
considered

::
to

:::
have

::::::::
acceptable

::::::::
behavior.

Figure 3. Acceptance ratios of the different sampling schemes, plotted as a function of the number of stage-2 accepted samples.
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samples, which should agree with the distribution obtained by the (inefficient) pure Monte-Carlo sampler. Figure 4 shows the160

resulting histograms for the three parameters with the most complex marginal distributions. We quantified the agreement of

the marginal distributions of the sampling schemes with preselection and the pure Monte-Carlo sampling by the Cramér–von

Mises metric ω2:

ω2 =

1∫
0

(
P̂ss(x̃i)− P̂MC(x̃i)

)2
dx̃i (3)

in which P̂ss(x̃i) is the marginal cumulative probability of the scaled parameter x̃i for a tested sampling scheme and P̂MC(x̃i)165

is the same quantity for pure Monte-Carlo sampling. The corresponding values of ω2 are reported in the subplots of Figure 4.

Figure 4. Histograms of the three parameters with the most complicated posterior marginal distributions. Each row shows a parameter

and each column a sampling scheme. Blue bars: histograms from pure Monte Carlo sampling (i.e. true distribution); brown bars: sampling

schemes with preselection; numbers: Cramér–von Mises metric ω2 for the distance between the two distributions, here shown multiplied

with 1000 for increased readability.

From the histograms in Figure 4 and the values of the Cramér–von Mises metric ω2 it becomes obvious that the fast new

sampling with P = 0.75 results in marginal distributions that significantly differ from those of the unbiased pure Monte-Carlo

scheme. The new scheme with P = 0.55 results in marginal distributions that are comparable to those of the original scheme,

8



but that have been achieved by a sampling scheme with twice the acceptance rate and thus half the computational effort.170

By contrast, the new scheme with P = 0.15, which caused a computational effort similar to the original scheme, resulted in a

marginal posterior distribution that is very similar to that obtained by pure Monte-Carlo sampling. Hence, we can conclude that

the proposed sampling scheme is superior to the old one: either it has much better sampling accuracy for the same efficiency

(P = 0.15), or it has a much better efficiency with a very comparable accuracy (P = 0.55).
:::::
While

::
it

::::
may

::::
seem

::::::::::::::
counter-intuitive

:::
that

:::
the

::::::
highest

:::::::
P-values

::::
gets

:::
the

::::::
highest

:::::::::
acceptance

::::
ratio

::::
and

:::
the

::::::
poorest

:::::
match

::
of

:::
the

::::::::
marginal

:::::::::::
distributions,

:
it
::
is

:::::
worth

::::::
noting175

:::
that

:
a
::::::
higher

:::::::
P-value

:::::
means

::::
that

:::
the

::::::::::
requirement

:::
for

::::::
stage-1

:::::::::
acceptance

::
is
::::::
higher.

::::::
Hence,

::
at
::::
high

::::::::
P-values

:::
we

::::
only

::::::
sample

:::
the

::::::
interior

::
of

:::
the

:::::::::
behavioral

::::::::
parameter

:::::
space

::::
and

:::::
avoid

::
the

::::::::::
boundaries

:::::
where

:::
the

:::::::::
behavioral

:::::
status

::
of

::
a

::::::::
candidate

::::::::
parameter

:::
set

::
is

::::
more

:::::::::
uncertain.

::::
This

:::::
results

::
in
:::
the

::::
bias

::::::
clearly

::::
seen

::
in

::::::
Figure

::
4.

Figure 5. Square-root of activity scores of the 10 most influential parameters for the target variable stream flow at gage C resulting from

applying the active-subspace based global sensitivity analysis to the posterior distributions using the different sampling schemes.

Figure 5 shows the square-root of the activity score for a selected target variable, computed by the active-subspace based

global sensitivity analysis and using the different sampling schemes, which confirms the impression of the histograms shown180

in Figure 4. The pure-MC scheme and the new scheme with P = 0.15 show almost identical activity scores, while the score-

patterns increasingly differ with increasing P -values. Similarly, the original sampling scheme differed in the activity scores

compared to the pure-MC scheme. Nonetheless, all sampling schemes correctly identified the two most important parameters

and the correct set of the ten most important parameters. That the order of the parameters within the set of the most important

parameters is not captured by the faster sampling schemes may be an acceptable trade-off between speed and accuracy, de-185
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pending on the individual application.
:::::
Based

::
on

:::
the

:::::::::
experience

::::::
gained

::::::
within

:::
this

:::::::
project,

:
a
::::::::::::
recommended

::::::
starting

:::::::
P-value

:::
for

:::
our

::::::::
presented

::::::::
sampling

::::::
scheme

::
is

:::::::
P=0.55.

In the current study, we have used Gaussian process emulation (GPE) as a proxy of the full HydroGeoSphere model, putting

the question forward whether a GPE model could not also be used as surrogate model for preselection in an advanced sampling

scheme. This is indeed possible, and we are currently developing such schemes, achieving acceptance ratios between 70-90%.190

Hence, GPE-based sampling schemes can be notably more efficient than the new scheme presented in this work. Nonethe-

less, we see a clear value in using the less efficient active-subspace based sampling schemes. The key word is simplicity.

The full active subspace-sampling scheme is implemented in-house, and the most complicated step is likely the eigenvalue

decomposition, which is a standard tool in any programming environment. Hence, we have full control over the entire selec-

tion procedure. Further, the active-subspace based sampling scheme presented here has a single tuning coefficient P with an195

easily comprehensible meaning, and the resulting active subspace can easily be visualized for an intuitive understanding of the

method. This is quite different with GPE-based methods which require choosing a covariance function in parameter space with

coefficients that needs to be estimated from the current set of training data. In our application, we have 32 original parameters,

requiring one variance and 32 integral scales as covariance coefficients to be estimated every time the GPE-model is re-trained.

Estimating 33 covariance parameters from O(1000) parameter sets is time consuming, and the integral scales in non-sensitive200

parameter directions are not well constrained by the data at all. Finally, to train a GPE model we need to rely on third-party

codes which remain black boxes to a large extent, and usually involve a rather decent amount of work until they do what they

are supposed to do. Hence, we clearly see a benefit of using the simpler active-subspace based sampling schemes even if they

are computationally less efficient.

4 Conclusions205

In this work we have presented an improved sampling scheme to obtain ensembles of parameter sets that lead to plausible

model results. Like in the preceding study of Erdal and Cirpka (2019), the sampling scheme makes use of an active-subspace

based preselection scheme that reduces the number of full model runs that need to be discarded. In contrast to the preceding

method, we don’t perform a polynomial fit over the entire parameter space anymore, neither do we have to set fuzzy boundaries

of the target variables to define the behavioral status. Instead, the preselection of a parameter set is simply based on the behavior210

of surrounding trial solutions. The new scheme outperforms the preceding one by either achieving a higher accuracy in the

resulting posterior parameter distributions for the same sampling efficiency, or by having a much higher sampling efficiency

for a comparable accuracy. We hence conclude that the new scheme presented here should be used instead of the original one.

Code availability. All own-developed codes necessary to run the Stochastic Engine used in this work are available via http://hdl.handle.net/10900.1/6a66361b-

b713-4312-819b-18f82f27aa18215
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