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Key Points 6 

• Information Theory allows characterizing information content of permeability data related to 7 

differing measurement scales. 8 

• An increase of the measurement scale is associated with quantifiable loss of information about 9 

permeability. 10 

• Redundant, unique and synergetic contributions of information are evaluated for triplets of 11 

permeability datasets, each taken at a given scale. 12 

 13 

  14 
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Abstract 15 

We employ elements of Information Theory to quantify (i) the information content related to data 16 

collected at given measurement scales within the same porous medium domain, and (ii) the 17 

relationships among Information contents of datasets associated with differing scales. We focus on 18 

gas permeability data collected over a Berea Sandstone and a Topopah Spring Tuff blocks, 19 

considering four measurement scales. We quantify the way information is shared across these scales 20 

through (i) the Shannon entropy of the data associated with each support scale, (ii) mutual information 21 

shared between data taken at increasing support scales, and (iii) multivariate mutual information 22 

shared within triplets of datasets, each associated with a given scale. We also assess the level of 23 

uniqueness, redundancy and synergy (rendering, i.e., information partitioning) of information content 24 

that the data associated with the intermediate and largest scales provide with respect to the 25 

information embedded in the data collected at the smallest support scale in a triplet. 26 

Plain Language Summary  27 

Characterization of the permeability of a geophysical system, or part of it, is a key aspect in many 28 

environmental settings. Permeability of natural systems typically exhibits spatial variations and its 29 

spatially heterogeneous pattern is linked with the size of observation/measurement/support scale. As 30 

the latter becomes coarser, the system appearance is less heterogeneous. As such, sets of permeability 31 

data associated with differing support scales provide diverse amounts of information. In this 32 

contribution, we leverage on elements of Information Theory to quantify the information content of 33 

gas permeability datasets collected over a Berea Sandstone and a Topopah Spring Tuff blocks and 34 

associated with four measurement scales. We then characterize the nature of the information shared 35 

by the diverse datasets, in terms of redundant, unique and synergetic forms of information.  36 

1. Introduction 37 

Characterization of permeability of porous media plays a major role in a variety of hydrological 38 

settings. There are abundant studies documenting that permeability values and their associated 39 

statistics depend on a variety of scales, i.e., the measurement support (or data support), the sampling 40 

window (domain of investigation), the spatial correlation (degree of structural coherence) and the 41 

spatial resolution (rendering the degree of the descriptive detail associated with the characterization 42 

of a porous system) (see e.g., Brace 1984; Clauser, 1992; Neuman, 1994; Schad and Teutsch, 1994; 43 

Rovey and Cherkauer, 1995; Sanchez‐Villa et al., 1996; Schulze‐Makuch and Cherkauer, 1998; 44 

Schulze‐Makuch et al., 1999; Tidwell and Wilson, 1999a, b, 2000; Vesselinov et al., 2001a, b; Winter 45 

and Tartakovsky, 2001; Hyun et al., 2002; Neuman and Di Federico, 2003; Maréchal et al., 2004; 46 

Illman, 2004; Cintoli et al., 2005; Riva et al., 2013; Guadagnini et al., 2013, 2018 and references 47 

therein). Among these scales, we focus here on the characteristic length associated with data 48 

collection (i.e., support scale). 49 

In this context, experimental evidences at the laboratory scale (observation scale of the order 50 

0.1-1.0 m) suggest that the mean value and the correlation length of the permeability field tend to 51 

increase with the size of the data support, the opposite trend being documented for the variance (e.g., 52 

Tidwell and Wilson, 1999a, 1b, 2000). Similar observations, albeit with some discrepancies, are also 53 

tied to investigations at larger scales (i.e., 10-1000 m) (Andersson et al., 1988; Guzman et al., 1994, 54 

1996; Neumann, 1994; Schulze‐Makuch and Cherkauer, 1998; Zlotnik et al., 2000; Bulter and 55 

Healey, 1998a,b). We consider here laboratory scale permeability datasets which are associated with 56 

various measurement scales. 57 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0012
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0048
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0045
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0047
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0049
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0054
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0020
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0031
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0026
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005WR004166#wrcr10422-bib-0049
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The above mentioned documented pattern suggests that the spatial distribution of permeability 58 

tends to be characterized by an increased degree of homogeneity (as evidenced by a decreased 59 

variance and an increased spatial correlation) as the support/measurement scale increases. At the same 60 

time, increasing the measurement scale somehow hampers the ability to detect locally low 61 

permeability values, as reflected by the observed increased mean value of the data. As an example of 62 

the kind of data we consider in this study to clearly document these features, Figure 1 depicts the 63 

spatial distribution of the natural logarithm of (normalized) gas permeabilities, i.e., ln( / )
i

i i
rr rY k k=  64 

(where 
ir

k  is gas permeability and 
irk  is the mean value of the data), collected across two faces of a 65 

laboratory scale block of (i) a Berea Sandstone (Tidwell and Wilson, 1999a) and (ii) a Topopah Spring 66 

Tuff (Tidwell and Wilson, 1999b) at four support scales 
ir  (see Section 2 for a detailed description). 67 

As a preliminary observation, one can note that increasing the measurement scale 
ir  yields a 68 

decreased level of descriptive detail of the heterogeneous spatial distribution of the system properties. 69 

It is important to note that a reduced level of details in the description of the system properties (e.g., 70 

ir
Y ) could hinder reliability and accuracy of further predictions of system behavior (in terms of, e.g., 71 

flow and solute transport patterns). It is therefore relevant to quantify the amount of loss (or of 72 

preservation) of the information about the system properties associated with a fine scale(s) of 73 

reference as the data support increases. 74 

Our study aims at providing an assessment and a firm quantification of these aspects upon 75 

relying on Information Theory (IT) (e.g., Stone, 2015) and the multiscale collection of data described 76 

above. We consider such a framework of analysis as it provides the elements to quantify (i) the 77 

information content associated with a dataset collected at a given scale as well as (ii) the information 78 

shared between pairs or triplets of data, each associated with a unique scale (while preserving the 79 

design of the measurement device). In this context, IT represents a convenient theoretical framework 80 

to properly assist the characterization of the way the information content is distributed across sets of 81 

measurements, without being confined to a linear analysis (relying, e.g., on analyses of linear 82 

correlation coefficients) or invoking some tailored assumption(s) about the nature of the 83 

heterogeneity of permeability (e.g., the characterization of the datasets through a Gaussian model).  84 

To the best of our knowledge, as compared to surface hydrology systems only a limited set of 85 

works consider relying on IT concepts to analyze scenarios related to processes taking place in 86 

subsurface porous media. Nevertheless, we note a great variety in the topics covered in these works, 87 

reflecting the broad potential for applicability of IT concepts. These studies include, e.g., the works 88 

of Woodbury and Ulrych (1993, 1996, 2000) who apply the principle of minimum relative entropy 89 

to tackle uncertainty propagation and inverse modeling in a groundwater system. The principle of 90 

maximum entropy is employed by Gotovac et al. (2010) to characterize the probability distribution 91 

function of travel time of a solute migrating across a heterogeneous porous formation. Within the 92 

same context, Kitanidis (1994) leverages on the definition of entropy and introduces the concept of 93 

dilution index to quantify the dilution state of a solute cloud migrating within an aquifer. Mishra et 94 

al. (2009) and Zeng et al. (2012) evaluate the mutual information shared between pairs of (uncertain) 95 

model input(s) and output(s) of interest, and view this metric as a measure of global sensitivity. 96 

Nowak and Guthke (2016) focus on sorption of metals onto soil and the identification of an optimal 97 

experimental design procedure in the presence of multiple models to describe sorption. Boso and 98 

Tartakovsky (2018) illustrate an IT approach to upscale/downscale equations of flow in synthetic 99 

settings mimicking heterogeneous porous media. Relaying on IT metrics, Butera et al. (2018) assess 100 

the relevance of non-linear effects for the characterization of the spatial dependence of flow and solute 101 
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transport related observables. Bianchi and Pedretti (2017, 2018) developed novel concepts, mutuated 102 

by IT, for the characterization of heterogeneity within a porous system and its links to salient solute 103 

transport features. Wellman and Regenaur-Lieb (2012) and Wellman (2013) leverage on IT concepts 104 

to quantify uncertainty, and its reduction, about the spatial arrangement of geological units of a 105 

subsurface formation. Recently, Mälicke et al. (2019) combine geostatistic and IT to analyze soil 106 

moisture data (representative of a given measurement scale) to assess the persistence over time of the 107 

spatial organization the soil moisture, under diverse hydrological regimes. 108 

Here, we focus on the aforementioned datasets of Tidwell and Wilson (1999a, b) who conducted 109 

extensive measurement campaigns collecting air permeability data across the faces of a Berea 110 

Sandstone and a Topopah Spring Tuff blocks, considering four different support/measurement scales 111 

(see Section 2 for details). While our study does not tackle directly issues associated with the way 112 

one can upscale (flow or transport) attributes of porous media, we leverage on such a unique and truly 113 

multiscale datasets to address research questions such as “How much information about the natural 114 

logarithm of (normalized) gas permeabilities is lost as the support scale increases?” and “How 115 

informative are data taken at a coarser support scale(s) with respect to those associated with a finer 116 

support scale?” (see Section 3). In this sense, our study yields a unique perspective of the assessment 117 

of the value of hydrogeological information collected at differing scales. 118 

2. Dataset 119 

We consider the datasets provided by Tidwell and Wilson (1999a, b), who rely on a 120 

multisupport permeameter (MSP) to evaluate spatial distributions of air permeabilities across the 121 

faces of a cubic block of Berea Sandstone (hereafter denoted as Berea) and Topopah Spring Tuff 122 

(hereafter denoted as Topopah). Data are collected at uniform intervals with spacing = 0.85 cm 123 

across a grid of 24 × 24 and 36 × 36 nodes along each face (of uniform side equal to 19.5 cm and 124 

29.75 cm, to avoid boundary effects) of the Berea and the Topopah blocks, respectively. Four 125 

measurement campaigns are conducted, each characterized by the use of a MSP with a tip-seal of 126 

inner radius ir  (i = 1, 2, 3, 4) = (0.15, 0.31, 0.63,1.27) cm and outer radius 2 ir  (interested readers can 127 

find additional details about the MSP design and functioning in Tidwell and Wilson, 1997). While 128 

the precise nature and size of the support/measurement scale associated with a MSP is still under 129 

study for heterogeneous media (e.g., Goggin et al., 1988; Molz et al., 2003; Tartakovsky et al., 2000), 130 

hereafter we denote data associated with a given support/measurement scale by referring these to the 131 

associated value of ir . The ensuing dataset is then composed by 3456 and 6480 data points for each 132 

measurement scale, ir , for the Berea and the Topopah block, respectively (we exclude data for one 133 

of the faces of the Topopah block, due to some anomalies with respect to the other faces). We consider 134 

here the quantity ln( / )
i

i i
rr rY k k= , i.e., the natural logarithm of the air permeability normalized by the 135 

mean value (i.e., 
irk ) of the data of the corresponding sample.  136 

The two types of rocks analyzed display distinct features. The Berea sample may be classified 137 

as a very fine-grained, well-sorted quartz sandstone. Following Tidwell and Wilson (1999a), visual 138 

inspection of the spatial distributions of 
ir

Y  (see, e.g., Figure 1) shows that the Berea sample exhibits 139 

a generally uniform spatial organization of permeabilities, devoid of particular features, with the 140 

exception of a mild stratification, thus allowing to consider this sample as a fairly homogenous 141 

system. Otherwise, the Topopah rock sample clearly exhibits a heterogenous structure whereas 142 

pumice fragments ( 23%  of the sample) are embedded in the surrounding matrix (see Figure 1). In 143 
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general, the pumice is characterized by higher permeability values than the surrounding matrix. As 144 

such, the Topopah sample can be considered as a fairly heterogenous system, with a tendency to 145 

display a bimodal distribution of permeability values (see also Section 4.2). In this sense, the two 146 

rock samples analyzed provide two clearly distinct scenarios for the analysis of the interplay of the 147 

information contained in datasets collected at diverse measurement scales. 148 

We note that the IT elements described in Section 3 refer to discrete variables. While 149 

corresponding definitions are available also for continuous variables (i.e., summation(s) and 150 

probability mass function(s) are replaced by integral(s) and probability density function(s), 151 

respectively), these are characterized by a less intuitive and immediate interpretation (e.g., Entropy 152 

could be negative, infinite or could not be evaluated in case of probability density function(s) 153 

involving a Dirac’s delta; see, e.g., Kaiser and Schreiber, 2002; Cover and Thomas, 2006). Moreover, 154 

in case the probability density functions of the analyzed continuous variables cannot be associated 155 

with an analytical expression, it is necessary to subject these variables to quantization and the IT 156 

metrics related to the continuous variables are estimated through their quantized counterparts (see 157 

Cover and Thomas, 2006). In general, the quality of these estimates increases (in a way which 158 

depends on the specific metric) with the level of quantization of the continuous variables (see, e.g., 159 

Kaiser and Schreiber, 2002). This leads us to treat 
ir

Y  as a discrete variable, a modeling choice which 160 

is consistent with several previous studies (see, e.g., Ruddell and Kumar, 2009; Goodwell et al., 2017; 161 

Nearing et al., 2018 and references therein). 162 

3. Methodology 163 

3.1 Information Theory 164 

Considering a discrete random variable, X, one can quantify the associated uncertainty through 165 

the Shannon entropy 166 

1

2

1

( ) log ( )
N

i i

i

H X p p −

=

=  (1) 167 

where N  is the number of bins used to analyze the outcomes of X; and ip  is the probability mass 168 

function and 
1ln( )ip −

 is the (so-called) Information (or degree of surprise) associated with the i-th 169 

bin (see, e.g., Shannon, 1948). We employ base two logarithms in (1), thus leading to bits as unit of 170 

measure for entropy and for the IT metrics we describe in the following. While other choices (relying, 171 

e.g., on the natural logarithm) are admissible, the nature and meaning of the metrics we illustrate 172 

remain unaffected. The Shannon entropy can be interpreted as a measure of the uncertainty associated 173 

with X, i.e., ( )H X  is largest and equal to 2log ( )N  in case ip  is uniform across all bins (i.e., 1/ip N=174 

), while it is zero when outcomes of X reside only within a single bin. Moreover, one can note that 175 

Shannon entropy in (1) is directly linked to the average number of binary questions (i.e., questions 176 

with a yes or no answer) one needs to ask to infer the state in which X is. In our study, samples drawn 177 

from the population of the random variable X are identified with values 
ir

Y  and Shannon entropy can 178 

also be interpreted as a measure of the degree of heterogeneity of the system. In this sense, considering 179 

a support scale ir , if the collected data (which are spatially distributed over the system) would cluster 180 

into one (or only a few) bin(s), one could interpret the system as homogeneous (or nearly 181 

homogeneous) at such a scale. 182 
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The information content shared by two random variables, i.e., 
1X  and 

2X , is termed bivariate 183 

mutual information and is defined as 184 

,

1 2 ,

1 1

( ; ) ln
N M

i j

i j

i j i j

p
I X X p

p p= =

 
=   

 
  (2) 185 

where N  and M  represent the number of bins associated with 1X  and 2X , respectively; ip  and jp  186 

are marginal probability mass functions associated with 1X  and 2X , respectively; and ,i jp  is the joint 187 

probability mass function of 
1X  and 

2X . The bivariate mutual information measures the average 188 

reduction in the uncertainty (as quantified through the Shannon entropy) about one random variable 189 

that one can obtain by knowledge on the other variable (Gong et al., 2013 and references therein). As 190 

such, the bivariate mutual information (a) vanishes for two independent variables and (b) coincides 191 

with the entropy of either of the two variables when one variable fully explains the other one, i.e., 192 

2 1 1 2( ) ( ) ( ; )H X H X I X X= = . In light of the latter observations, it is clear that the bivariate mutual 193 

information can be also interpreted as a measure of the degree of dependence between 1X  and 2X . 194 

When considering three discrete random variables, it is possible to quantify the amount of 195 

information that two of these (termed as sources, i.e., 
1SX  and 

2SX ) share with the third one (termed 196 

as target variable, i.e., TX ) upon evaluating the following multivariate mutual information 197 

1 2

, ,

, ,

1 1 1 ,

( , ; ) ln
N M W

i j k

S S T i j k

i j k i j k

p
I X X X p

p p= = =

 
=   

 
  (3) 198 

Here, N , M , and W  represent the number of bins associated with 
1SX , 

2SX  and TX , respectively; 199 

kp  is the probability mass function of TX ; ,i jp  is the joint probability mass function of 
1SX  and

2SX200 

; and , ,i j kp  is the joint probability mass function of 
1SX ¸ 

2SX , and TX . Relying on the partial 201 

information decomposition or information partitioning (Williams and Beer, 2010;), the multivariate 202 

mutual information in (3) can be partitioned into unique, redundant, and synergetic contributions, i.e., 203 

1 2 1 2 1 2 1 2
( , ; ) ( ; ) ( ; ) ( , ; ) ( , ; )S S T S T S T S S T S S TI X X X U X X U X X R X X X S X X X= + + +  (4) 204 

Here, 
1

( ; )S TU X X  and 
2

( ; )S TU X X  represent the amount of information that is uniquely provided to 205 

the target TX  by 
1SX  and 

2SX , respectively (i.e., the information 
1

( ; )S TU X X  cannot be provided to 206 

TX  by knowledge on 
2SX , a corresponding observation holding for 

2
( ; )S TU X X ); the redundant 207 

contribution 
1 2

( , ; )S S TR X X X  is the information that both source variables provide to the target (i.e., 208 

it is the amount of information transferable to TX  that is contained in both 
1SX  and 

2SX ); and the 209 

synergetic contribution
1 2

( , ; )S S TS X X X  is the information about TX  that knowledge on 
1SX  and 

2SX  210 

brings in a synergic way. Note that the latter contribution corresponds to the amount of information 211 

that (possibly) emerges by simultaneous knowledge of the two sources and through an analysis of 212 

their joint relationship with TX , i.e., it would not appear by knowing both 
1SX  and 

2SX  while 213 

analyzing their individual relationship with TX  separately. All components in (4) are positive 214 

(Williams and Beer, 2010). Figure 2 provides a graphical depiction in terms of Venn diagrams of the 215 

above information components in a system characterized by two sources and a target variable. 216 
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The bivariate mutual information shared by the target and each source can be written as 217 

1 1 1 2

2 2 1 2

( ; ) ( ; ) ( , ; )

( ; ) ( ; ) ( , ; )

S T S T S S T

S T S T S S T

I X X U X X R X X X

I X X U X X R X X X

= +

= +
 (5) 218 

Note that (5) reflects the nature of the information that is shared by the target and each of the sources, 219 

when these are taken separately, i.e., no synergy can be detected here. We also remark that one should 220 

expect the emergence of some redundancy of information when the two sources are correlated. 221 

An additional element of relevance for the aim of our study is the interaction information 222 

1 2 1 2 1

2 1 2

( ; ; ) ( ; | ) ( ; )

( ; | ) ( ; )

S S T S T S S T

S T S S T

I X X X I X X X I X X

I X X X I X X

= − =

= −
 (6) 223 

Here, ( ; | )
i jS T SI X X X  is the bivariate mutual information shared by source 

iSX  (i =1, 2) and the 224 

target, conditional to the knowledge of source 
jSX  (j = 2, 1). Note that ( ; | )

i jS T SI X X X  can be 225 

evaluated in a way similar to (2) upon relying on the conditional probability for TX . Williams and 226 

Beer (2011) show that 227 

1 2 1 2 1 2
( ; ; ) ( , ; ) ( , ; )S S T S S T S S TI X X X S X X X R X X X= −  (7) 228 

According to (7), the bivariate interaction information could be either positive, i.e., when synergetic 229 

interactions prevail over redundant contribution, or negative, i.e., when the degree of redundancy 230 

overcomes the synergetic effects. 231 

Inspection of (4)-(7) reveals that an additional equation is required to evaluate all components 232 

in (4). Various strategies have been proposed in this context (e.g., Williams and Beer, 2010; Harder 233 

et al., 2013; Bertschinger et al., 2014; Griffith and Koch, 2014; Olbrich et al., 2015; Griffith and Ho, 234 

2015). We rest here on the recent partitioning strategy formalized by Goodwell and Kumar (2017), 235 

due to its capability of accounting for the (possible) dependences between sources when evaluating 236 

the unique and redundant contributions. The rationale underpinning this strategy is that (i) each of the 237 

two sources can provide a unique contribution of information to the target even as these are correlated, 238 

and (ii) redundancy should be lowest in case of independent sources. The redundant contribution can 239 

then be evaluated as (Goodwell and Kumar, 2017) 240 

1 2 1 2 1 2 1 2min min( , ; ) ( , ; ) ( ( , ; ) ( , ; ))S S T S S T s MMI S S T S S TR X X X R X X X I R X X X R X X X= + −   (8a) 241 

with 242 

1 2 1 2

1 2 2 1

1 2

1 2

min ( , ; ) max(0, ( ; ; ));

( , ; ) min( ( ; ), ( ; ));

( ; )
;

min( ( ), ( ))

S S T S S T

MMI S S T S T S T

S S

s

S S

R X X X I X X X

R X X X I X X I X X

I X X
I

H X H X

= −

=

=

   (8b) 243 

Goodwell and Kumar (2017) termed (8) as a rescaled measure of redundancy whereas (a) 244 

1 2min ( , ; )S S TR X X X  represents the lowest bound for redundancy, which is set on the basis of the 245 

rationale that the minimum value of redundancy must at least be equal to 
1 2

( ; ; )S S TI X X X−  in case 246 

1 2
( ; ; )S S TI X X X  < 0 (thus also ensuring positiveness of the synergy; see (7)); (b) 

1 2
( , ; )MMI S S TR X X X  247 



8 
 

is an upper bound, consistent with the rationale that all information from the weakest source is 248 

redundant; and (c) 
sI  accounts for the degree of dependence between the sources, i.e., 0sI =  and 249 

1 2 1 2min( , ; ) ( , ; )S S T S S TR X X X R X X X=  for independent sources, while 1sI =  and redundancy in (8) 250 

attains its upper limit value, 
1 2

( , ; )MMI S S TR X X X , in case of a complete dependency (i.e., 251 

1 2
( )S SX f X=  or vice versa) between the sources. Once the redundancy has been evaluated, all of the 252 

other components in (4) can be determined. 253 

We emphasize that, despite some additional complexities, analyzing the partitioning of the 254 

multivariate mutual information provides valuable insights on the way information is shared across 255 

three variables, these being here permeability data associated with three diverse support scales. In 256 

summary, addressing information partitioning enables us to (i) quantify and (ii) characterize the 257 

nature of the information that two variables (sources) provide to a third one (target) as a whole, i.e., 258 

considering the entire triplet. Doing so overcomes the limitation of depicting the system as a simple 259 

sum of parts, as based on solely inspecting the corresponding pairwise bivariate mutual information, 260 

which allows quantifying just the amount of information that pairs of variables (i.e., the first source 261 

and the target; and the second source and the target) share (without being able to define redundant or 262 

unique contributions, see Eq. (9)). In the context of our work, this implies that information 263 

partitioning enables us to characterize the nature of the information that permeability data collected 264 

at two support scales provide to /share with permeability data taken at a third one. 265 

3.2 Implementation Aspects 266 

Evaluation of the quantities introduced in Section 3.1 is accomplished according to three main 267 

steps. We employ the Kernel Density Estimator (KDE) routines in Matlab2018© to estimate the 268 

continuous counterparts of the probability mass functions 
ip , jp , ,i jp , and , ,i j kp  and assess the 269 

associated probability density functions, i.e., pdfs. This step enables us to smooth and regularize the 270 

available finite datasets. We then discretize the ensuing pdfs to evaluate the associated probability 271 

mass functions. Note that this two-step procedure allows us to obtain results that are more stable (with 272 

respect to the number of bins employed) than those that one could obtain upon discretizing directly 273 

the available finite datasets. As a final step, we evaluate the metrics detailed in Section 3 by treating 274 

separately the multi-scale measurements on each face and then averaging the ensuing face-related 275 

results for each of the two rock samples. The benefit of resting on this approach is especially critical 276 

when considering the Topopah rock, whereas pooling the data of all faces as a unique sample hindered 277 

the emergence of the bimodal behavior (i.e., the permeability values corresponding to the peaks of 278 

the bimodal distributions are slightly different depending on the face considered and the joint 279 

treatment of the data from all faces yielded a nearly unimodal distribution). We employ a binning 280 

scheme corresponding to a uniform discretization of the range delimited by the lowest and largest 281 

values detected considering all datasets associated with both rocks (i.e., we employ the same specific 282 

binning for the Berea and the Topopah rock samples to assist quantitative comparison of the results). 283 

We observe that within an IT approach the selection of a bin size is an a priori choice (see, e.g., Gong 284 

et al., 2014; Loritz et al., 2018) the influence of which should be properly assessed (see Section 4 and 285 

Supplementary Materia1). We inspect how the IT metrics described in Section 2 vary as a function 286 

of (i) the number of bins (i.e., we consider a number of 50, 75, 100, and 125 bins for the discretization 287 

of the range of data variability) and (ii) the size of the kernel bandwidth (which is varied within the 288 

range 0.1 - 0.4) employed in the KDE routine (see Supplementary Material, Figures SM1-3, for 289 

additional details). This analysis highlights a weak dependence of the values of the investigate IT 290 

metrics on the number of bins and on the size of the bandwidth employed in the Kernel Density 291 
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Estimator (KDE) procedure, the overall patterns of these metrics remaining substantially unaffected. 292 

This leads us to use 100 bins and a kernel bandwidth equal to 0.3. Note that we consistently employ 293 

this binning for the evaluation of all metrics introduced in Section 2. 294 

We remark that the bivariate and multivariate mutual information metrics are evaluated by 295 

focusing on the joint probability mass function grounded on the multi-scale data collected at the same 296 

location on the sampling grids. 297 

4. Results 298 

Figure 3 depicts the probability mass function ( )
ir

p Y  for i = 1 ( 1r ; black symbols), 2 ( 2r ; red 299 

symbols), 3 ( 3r ; blue symbols), and 4 ( 4r ; green symbols) for the (a) Berea and (b) the Topopah rock 300 

samples. For both rocks the ( )
ir

p Y  associated with only one face is depicted (similar patterns are 301 

noted for all of the remaining faces). Figure 3c depicts the Shannon entropy ( )
ir

H Y  as a function of 302 

the MSP support scale ir  for the Berea (diamonds) and the Topopah (circles) samples. Figure 3d 303 

depicts the bivariate mutual information between data collected at two distinct support scales. This 304 

metric is normalized by the entropy of the data associated with the smaller support scale, i.e., 305 
*( ; ) ( ; ) / ( )

i j i j ir r r r rI Y Y I Y Y H Y=  with j > i, for i = 1 (blue diamonds) and 2 (green diamonds), results for 306 

the Berea (diamonds) and the Topopah (circles) samples are reported. 307 

Inspection of Figure 3a-b reveals that distributions related to increasing values of ir  tend not to 308 

encompass extreme values (in particular the low ones) of Y. This observation supports the fact that 309 

increasing ir  favors a homogenization of the permeability values and suggests that the response of 310 

the MSP tends to be only weakly sensitive to the less permeable portions of the rock that are 311 

encompassed within a given measurement scale. As a consequence, the ( )
ir

p Y  associated with 312 

increasing ir  are characterized by a reduced number of populated bins, this feature being in turn 313 

reflected in the observed reduction of ( )
ir

H Y  with increasing ir  (Figure 3c) for both rock samples. 314 

This result can be interpreted as a signature (see also the discussion about (1) in Section 3.1) of the 315 

effect of increasing ir , which yields a decrease of (i) the uncertainty about the spatial distribution of 316 

the values of 
ir

Y  and (ii) the ability of capturing the degree of spatial heterogeneity of Y. Note that 317 

Figure 3c suggests that the value of ( )
ir

H Y , given ir , associated with the Topopah sample is always 318 

higher than its counterpart associated with the Berea rock. This outcome is consistent with the higher 319 

heterogeneity displayed by the former sample, where the spatial distribution of 
ir

Y  is affected by an 320 

increased level of uncertainty as compared to its Berea-based counterpart. 321 

Otherwise, two distinct behaviors emerge with regard to the location of the peak(s) of the 322 

distributions: (i) the location of the peak of the distributions is virtually insensitive to ir  for the Berea; 323 

while (ii) the two peaks of the bimodal distributions of the Topopah sample display a clear tendency 324 

to migrate towards higher permeability values as ir  increases. These observations are consistent with 325 

the homogeneous nature of the Berea and the two-material (pumice and matrix being high and low 326 

permeable, respectively) type of heterogeneity displayed by the Topopah sample. It is also in line 327 

with the previously noted weak sensitivity of the MSP measurements to region of low permeability. 328 

With reference to the Berea sample, if a measurement taken at a given location with a small ir  is close 329 
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to the average value (i.e., 
ir

Y  is close to zero in our setting), it is likely that the same behavior is 330 

observed also for larger 
ir  due to the homogeneity of the sample. Otherwise, in the case of the 331 

Topopah sample there are more chances that increasing 
ir  (hence involving larger volumes of the 332 

rock) yields a shift of the ensuing measurements toward higher values. 333 

Inspection of Figure 3d reveals that, given a reference support scale 
ir , the mutual information 334 

shared with measurements taken at larger support scales jr  decreases with increasing jr  for both 335 

rock samples. In other words, the representativeness for system characterization of the sets of data 336 

associated with increasingly coarse support scale diminishes, as compared to the data collected at the 337 

given reference scale. At the same time, we note that the way in which *( ; )
i jr rI Y Y  decreases with jr  338 

is very similar for (i) the two analyzed reference support scales, i.e., 
1r  and 

2r , and (ii) for the two 339 

considered rock types. We interpret this result as a sign of (at least qualitative) consistency in the way 340 

information is shared between datasets of measurements associated with increasing size of ir , despite 341 

the different geological nature of the two types of samples analyzed. Otherwise, Figure 3d indicates 342 

that the (normalized) mutual information *( ; )
i jr rI Y Y  is always lower in the Topopah than in the Berea 343 

system. This result provides a quantification of the qualitative observation that there is an overall 344 

decrease of the representativeness of the datasets associated with increasing data support (with respect 345 

to data collected with smaller ir ) as the system heterogeneity becomes stronger. 346 

Figure 4 depicts the results of the information partitioning procedure detailed in Section 2.3 347 

considering the Berea sample and two triplets of datasets 
1 2

( , ; )
i i ir r rY Y Y
+ +

, with ir =  (a) 1r  and (b) 2r . 348 

Corresponding results for the Topopah sample are depicted in (c) for 1ir r=  and (d) for 2ir r= . For 349 

ease of comparison between the results, we normalize the unique, synergetic and redundant 350 

contributions in (4) by the multivariate mutual information of the corresponding triplet, e.g., 351 

1 1 1 2

*( ; ) ( ; ) / ( , ; )
i i i i i i ir r r r r r rU Y Y U Y Y I Y Y Y
+ + + +

= , 
2 2 1 2

*( ; ) ( ; ) / ( , ; )
i i i i i i ir r r r r r rU Y Y U Y Y I Y Y Y
+ + + +

= ; 352 

1 2 1 2 1 2

*( , ; ) ( , ; ) / ( , ; )
i i i i i i i i ir r r r r r r r rR Y Y Y R Y Y Y I Y Y Y
+ + + + + +

= , 
1 2 1 2 1 2

*( , ; ) ( , ; ) / ( , ; )
i i i i i i i i ir r r r r r r r rS Y Y Y S Y Y Y I Y Y Y
+ + + + + +

= . 353 

Results in Figure 4a-b suggest that for the Berea sample: (i) most of the multivariate information is 354 

redundant, a finding that can be linked to the dependence detected between the sets of data associated 355 

with the two coarser support scales (see, e.g., Figure 3d); (ii) the synergetic information is practically 356 

zero for both triplets considered, i.e., the simultaneous knowledge of the system at two coarser scales 357 

does not provide any additional information; (iii) data associated with the middle (in the triplets) 358 

support scale provides a non-negligible unique information content, the latter being less pronounced 359 

for the data referring to the most coarse support (in the triples). These results (i.e., high redundancy 360 

and high/low uniqueness for the middle/largest support scale) suggest that, considering the depiction 361 

of the system rendered at the finest support scale, the information provided by the investigations at 362 

the coarsest support scale is mostly contained by the information provided by the data collected at the 363 

intermediate scale. This element suggests a nested nature of the information linked to data collected 364 

at progressively increasing scales with respect to the information contained in the data associated 365 

with the smallest support scale. This finding can be linked to the homogeneous nature of the Berea 366 

sample, whereas the characterization at diverse scales does not change dramatically (e.g., note the 367 

similarities in the spatial patterns of 
ir

Y  in Figure 1 for the Berea sample as a function of ir ), thus 368 
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promoting (a) the redundancy of information associated with measurements at the intermediate and 369 

lager scales and (b) the uniqueness of information revealed for the intermediate scale. 370 

Otherwise, inspection of Figure 4c-d reveals that for the Topopah rock sample: (i) most of the 371 

multivariate information coincides with the unique information associated with the intermediate 372 

scale; (ii) the redundant and unique contribution associated with the largest scale are still non-373 

negligible, yet being substantially smaller than the uniqueness contribution provided by the 374 

intermediate scale; (iii) there is practically no synergetic information. This set of results descends 375 

from the moderate or marked discrepancies displayed by 
ir

Y  data as 
ir  increases by one or two sizes, 376 

respectively (e.g., see the faces depicted in Figure 1 for the Topopah sample). In other words, relying 377 

on a device such as the MSP to obtain permeability data enables sampling a volume of the rock 378 

according to which the majority of the multivariate information in a triplet is associated with a 379 

significant unique contribution of the intermediate scale, the information related to the largest scale 380 

still being weakly unique and weakly redundant. 381 

5. Discussion 382 

We recall that the focus of the present study is the quantification of the information content and 383 

information shared between pairs and triplets of datasets of air permeability observations associated 384 

with diverse sizes of the measurement/support scale. We exemplify our analysis upon relying on data 385 

collected across two different types of rocks, i.e., a Berea and a Topopah sample, that are 386 

characterized by different degrees of heterogeneity. 387 

These datasets (or part of these) have been considered in some prior studies. Tidwell and Wilson 388 

(1999a, b) and Lowry and Tidwell (2005) assess the impact of the size of the support/measurement 389 

scale on key summary one-point (i.e., mean and variance) and two-points (i.e., variogram) statistics 390 

within the context of classical geostatistical methods and evaluate kriging-based estimates of the 391 

underlying random fields. Siena et al. (2012) and Riva et al. (2013) analyze the scaling behavior of 392 

the main statistics of the log permeability data and of their increments (i.e., sample structure functions 393 

of various orders), with emphasis on the assessment of power-law scaling behavior. On these bases, 394 

Riva et al. (2013) conclude that the data related to the Berea sample can be interpreted as observations 395 

from a sub-Gaussian random field subordinated to truncated fractional Brownian motion or Gaussian 396 

noise. All of these studies focus on (a) the geostatistical interpretation of the behavior displayed by 397 

the probability density function (and key moments) of the data and their spatial increments and (b) 398 

the analysis of the skill of selected models to interpret the observed behavior of the main statistical 399 

descriptors evaluated upon considering separately data associated with diverse measurement/support 400 

scale. Furthermore, Tidwell and Wilson (2002) analyzed the Berea and Topopah datasets (considering 401 

separately data characterized by diverse support scales) to assess possible correspondences between 402 

the permeability field and some attributes of the rock samples determined visually through digital 403 

imaging and conclude that image analysis can assist delineation of spatial patterns of permeability. 404 

We remark that in all of the studies mentioned above the datasets associated with a given 405 

support (or measurement) scale are analyzed separately. Otherwise, we leverage on elements of IT, 406 

which allow a unique opportunity to circumvent limitations of linear metrics (e.g., Pearson 407 

correlation) and analyze the relationships (in terms of shared amount of information) between pairs 408 

(i.e., bivariate mutual information) or triplets (i.e., multivariate mutual information) of variables. We 409 

also note that, even as visual inspection of ( )
ir

p Y  associated with diverse sizes of the support scale ir  410 

(see Figure 3a and Figure 3b for the Berea and Topopah, respectively) can show that these probability 411 

densities can be intuitively linked to the documented decrease of the corresponding Shannon entropies 412 
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with increasing 
ir  (see Figure 3c and Section 4), it would be hard to readily infer from such a visual 413 

comparative inspection the behavior of the bivariate (see Figure 3d) and multivariate (see Figure 4) 414 

mutual information because these require (see Eq.s (2)-(8)) the evaluation of the joint probability 415 

mass functions. 416 

Considering an operational context, including, e.g., groundwater resource management or 417 

(conventional/unconventional) oil recovery, we observe that it is common to have at our disposal 418 

permeability data associated with diverse support scales. These can be inferred from, e.g., large scale 419 

pumping tests, downhole impeller flowmeter measurements, core flood experiments at the laboratory 420 

scale, geophysical investigations, or particle-size curves (see e.g., Paillet, 1989; Oliver, 1990; Dykaar 421 

and Kitanidis, 1992; Harvey, 1992; Deutsch and Journel, 1994; Day-Lewis et al., 2000; Zhang and 422 

Winter, 2000; Attinger, 2003; Pavelic et al., 2006; Neuman et al., 2008; Riva et al., 2099; Barahona-423 

Palomo et al., 2011; Quinn et al., 2012; Shapiro et al., 2015; Galvão et al., 2016; Menafoglio et al., 424 

2016; Medici et al., 2017; Dausse et al., 2019, and reference therein). Assessing (i) the information 425 

content and (ii) the amount of information shared between permeability data associated with differing 426 

support scales (and/or diverse measuring devices/techniques) along the lines illustrated in the present 427 

study can be beneficial to obtain a quantitative appraisal of possible feedbacks among diverse 428 

approaches employed for aquifer/reservoir characterization. Results of such an analysis can 429 

potentially serve as a guidance for the screening of datasets which are most informative to provide a 430 

comprehensive description of the spatially heterogeneous distribution of permeability. While the 431 

methodology detailed in Section 3 is readily transferable to scenarios where multi-scale permeability 432 

are available, the appraisal of the general nature of some specific findings of the present study (e.g., 433 

decrease of the Shannon entropy as the support scale increases, regularity in the trends displayed by 434 

the normalized bivariate mutual information) still remains an open issue which will be the subject of 435 

future works. 436 

6. Conclusions 437 

We rely on elements of Information Theory to interpret multi-scale permeability data collected 438 

over blocks of Berea Sandstone and a Topopah Spring Tuff, representing a nearly homogeneous and 439 

a heterogeneous porous medium composed of a two-material mixture, respectively. The unique multi-440 

scale nature of the data enables us to quantify the way information is shared across measurement 441 

scales, clearly identifying information losses and/or redundancies that can be associated with the joint 442 

use of permeability data collected at differing scales. Our study leads to the following major 443 

conclusions: 444 

1. An increase in the characteristic length associated with the scale at which the laboratory scale 445 

(normalized) gas permeability data are collected corresponds to a quantifiable decrease in the 446 

Shannon entropy of the associated probability mass function. This result is consistent with 447 

the qualitative observation that the ability of capturing the degree of spatial heterogeneity of 448 

the system decreases as the data support scale increases. 449 

2. The (normalized) bivariate mutual information shared between pairs of permeability datasets 450 

collected at (i) a fixed fine scale (taken as reference) and (ii) larger scales decreases in a 451 

mostly regular fashion independent from the size of the reference scale, once the bivariate 452 

mutual information is normalized by the Shannon entropy of the data taken at the reference 453 

scale. This result highlights a consistency in the way information associated with data at 454 

diverse scales is shared for the instrument and the porous systems here analyzed. 455 

3. As the degree of heterogeneity of the system increases, we document a corresponding 456 

increase in the Shannon entropy (given a support scale) and a decrease in the values of the 457 
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normalized bivariate mutual information (given two support scales) between permeability 458 

data collected at the differing measurement scales. 459 

4. Results of the information partitioning of the multivariate mutual information shared by 460 

permeability data collected at three increasing support scales for the Berea sandstone sample 461 

exhibit a marked level of redundancy and high/low uniqueness for the data collected at the 462 

intermediate/coarser scale in the triplets with respect to the data associated with the finest 463 

scale. This result can be linked to the fairly homogeneous nature of the sample, that is also 464 

reflected in the moderate variation of the observed (normalized) gas permeability values with 465 

increasing size of the support scale. 466 

5. Information partitioning for the Topopah tuff sample indicates the occurrence of a still 467 

significant amount of unique information associated with the data collected at the 468 

intermediate scale, while the redundant portion and the unique contribution linked to the 469 

largest scale in a triplet are clearly diminished. This result descends from the heterogeneous 470 

structure of the Topopah porous system, where the recorded (normalized) gas permeabilities 471 

display moderate or marked discrepancies as ir  increases by one or two sizes, respectively. 472 

6. For both rock samples considered, the simultaneous knowledge of permeability data taken at 473 

the intermediate and coarser support scales in a triplet does not provide significant additional 474 

information with respect to that already contained in the data taken at the fine scale, i.e., the 475 

synergic contribution in the resulting datasets is virtually zero. 476 

Given the nature of the approach we employ, the latter is potentially amenable to be transferred to 477 

analyze settings involving other kinds of datasets associated with diverse hydrogeological quantities 478 

(including, e.g., porosity or sorption/desorption parameters) or considering measurement/sampling 479 

devices of a diverse design. Future developments could also include exploring the possibility of 480 

embedding the approach within the workflow of optimal experimental design and/or data-worth 481 

analysis strategies. 482 
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Figures 754 

 755 

Figure 1. Examples of spatial distributions of the natural logarithm of normalized gas permeability, 756 

ir
Y , for two faces of a cubic block of Berea Sandstone (first and second rows) and Topopah Spring 757 

Tuff (third and fourth rows) taken with four increasing support scales (columns, left to right). 758 

  759 
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 760 

Figure 2. Venn diagram representation of the Information Theory concepts considering two sources, 761 

i.e., 
1SX  and 

2SX , and a target variable, TX . Areas of the circles are proportional to Shannon entropy 762 

(i.e., 
1

( )SH X , 
2

( )SH X  and ( )TH X ); overlaps of pairs of circles reflect bivariate mutual information 763 

(i.e., 
1

( ; )S TI X X , 
2

( ; )S TI X X , and 
1 2

( ; )S SI X X ); and the strength of the multivariate mutual 764 

information (i.e., 
1 2

( , ; )S S TI X X X ) corresponds to the region delimited by the thick black curve. 765 

Unique (i.e., 
1

( ; )S TU X X  and 
2

( ; )S TU X X ), synergetic (i.e., 
1 2

( , ; )S S TS X X X ), and redundant (i.e., 766 

1 2
( , ; )S S TR X X X ) components are also highlighted, as well as the interaction information (i.e., 767 

1 2
( ; ; )S S TI X X X ). 768 
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 770 

 771 

Figure 3. Probability mass function of the logarithm of normalized gas permeability, ( )
ir

p Y , for 772 

various support scale, ir  (i = 1 (black), 2 (red), 3 (blue), 4 (green)) for (a) the Berea and (b) the 773 

Topopah samples; (c) Shannon entropy ( )
ir

H Y  versus ir  for the Topopah (circles) and the Berea 774 

(diamonds) samples; (d) bivariate normalized mutual information *( ; ) ( ; ) / ( )
i j i j ir r r r rI Y Y I Y Y H Y=  775 

between data at a reference support scale, 
ir

Y , and data at larger support scales, 
jrY , for i = 1 (blue 776 

symbols), 2 (green simbols), considering the Berea (diamonds) and the Topopah (circles) rock 777 

samples. 778 

  779 



23 
 

 780 

Figure 4. Information Partitioning of the multivariate mutual information, 
1 2

( , ; )
i i ir r rI Y Y Y
+ +

, considering 781 

two triplets of data and 
ir =  (a) 

1r  and (b) 2r  for the Berea sample and 
ir =  (c) 

1r  and (d) 2r  for the 782 

Topopah sample. For ease of comparison, we show the redundant, unique, and synergetic, 783 

contributions normalized by 
1 2

( , ; )
i i ir r rI Y Y Y
+ +

.  784 
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