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Abstract. Accurate, timely and reliable precipitation observations are mandatory for hydrological forecast and early warning 

systems. In the case of convective precipitation, traditional rain gauges networks often miss precipitation maxima, due to 

density limitations and high spatial variability of rainfall field. Despite several limitations like attenuation or partial beam-

blockings, the use of C-band weather radar has become operational in most of European weather services. Traditionally, 

weather radar-based quantitative precipitation estimation (QPE) are derived by horizontal reflectivity data. Nevertheless, dual-15 

polarization weather radar can overcome a number of shortcomings of the conventional horizontal reflectivity based 

estimation. As weather radar archives are growing they are becoming increasingly important for climatological purposes in 

addition to operational use. For the first time, the present study analyses one of the longest datasets from fully operational 

polarimetric C-band weather radars; those ones are located in Estonia and in Italy, in very different climate conditions and 

environments. The length of the datasets used in the study is 5 years for both Estonia and Italy. The study focuses on long-20 

term observations of summertime precipitation and their quantitative estimations by polarimetric observations. From such 

derived QPEs accumulations for 1 hour, 24 hours and one month durations are calculated and compared with reference rain 

gauges to quantify uncertainties and evaluate performances. Overall the radar products showed similar results in Estonia and 

Italy when compared to each other. The product where radar reflectivity and specific differential phase were combined based 

on a threshold exhibited the best agreement with gauge values on all accumulation periods. In both countries reflectivity based 25 

rainfall quantitative precipitation estimation underestimated and specific differential phase based product overestimated gauge 

measurements.  

1. Introduction 

Detailed surface rainfall information is of great importance in many fields not only for agricultural or hydrological applications 

but also for assimilation purposes within numerical weather models and climatologies. For decades gauge networks have 30 

provided the best reference datasets. E-OBS 50-years daily European gridded interpolated dataset has been widely used in 

climatological studies (Cornes et al., 2018). Gauge based datasets have well known shortcomings in their low spatial and to a 

lesser degree temporal resolution. Precipitation data from satellites provides good spatial coverage, but still not in very high 

temporal resolution, especially in higher latitudes (Sun et al., 2018). Polar orbiting satellites provide better spatial resolution 

data in higher latitudes, but they are very limited in temporal resolution (Tapiador et al., 2018). What is more, satellite-based 35 

precipitation estimates are limited by the accuracy of the estimates. The accuracy of the estimates has regional dependency 

and therefore can vary due to physiography of the study areas (e.g. precipitation climate, land use and geomorphology) 

(Petropoulos and Islam, 2017). Now that weather radars have been used already for decades in many countries their archives 

are getting long enough to use the data in climate studies (Saltikoff et al., 2019). In the last decade various studies have used 

multi-year single polarization weather radar data successfully in deriving rainfall climatology with high spatiotemporal 40 

resolution (Overeem et al., 2009; Goudenhoofdt et al., 2016). However, quantitative precipitation estimation (QPE) with single 

polarization C-band radar is strongly affected by attenuation of the electromagnetic wave in heavy precipitation or a wet 

radome, hail contamination, partial beam blockage and absolute radar calibration (Krajewski et al., 2010; Cifelli et al., 2011). 
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All prior shortcomings can be mitigated by the use of dual polarization weather radar data. A number of studies have shown 

that rainfall retrieved from dual polarimetric radar differential phase measurements outperforms rainfall estimated from 45 

horizontal reflectivity, especially in heavy precipitation (Wang and Chandrasekar, 2009; Vulpiani et al., 2012; Wang et al., 

2013; Crisologo et al., 2014). Because differential phase measurements tend to be noisy and less reliable in low intensity 

precipitation Crisologo et al. (2014) and Vulpiani and Baldini (2013) improved the robustness of their rainfall retrieval 

technique by employing a combination of horizontal radar reflectivity R(ZH) and specific differential phase R(KDP) where a 

threshold was set below which R(ZH) was used and over which R(KDP) was used. Bringi et al. (2011) also compared 50 

performances of R(ZH), R(KDP) and the combination product of the two on a relatively long set of data of four years. 

The main aim of this study is to evaluate the potential of using polarimetric weather radar QPE for climatological evaluation 

of precipitation regimes. Previous studies where the benefits of dual polarimetric radar QPE have been shown are mostly based 

on selected short time periods or only single events (Wang and Chandrasekar, 2010; Chang et al., 2016; Cao et al., 2018). The 

uniqueness of this paper is ensured by various features. First of all, we have a long multi-year dataset, starting already from 55 

2011, derived by operational dual polarimetric C-band weather radar made by different manufacturers. The dataset is gathered 

from the archive of weather radar scans set up for operational surveillance in the meteorological services. Secondly, the study 

areas are from heterogeneous climatologies being the weather radar located in Estonia and Italy. What is more, we will assess 

the effect of radar scan interval as the radar data scan frequency is 5 and 15 minutes from Italy and Estonia respectively. The 

study analyses results first at a few selected cases. The whole dataset is analysed at three accumulation intervals of 1 hour, 24 60 

hours and one month. This is also the first ever study evaluating weather radar QPE in Estonia. Automatic rain gauge data are 

used as reference of radar based products. Based on this dataset we investigate the performance of different rainfall retrieval 

methods. Horizontal reflectivity data are re-calibrated using a combined set of polarimetric self-consistency techniques 

(Gorgucci et al., 1992; Gorgucci et al., 1999; Gourley et al., 2009). Rainfall estimations based on KDP are derived from the 

unwrapped differential phase profile. As a third radar QPE product, an R(ZH) and R(KDP) combination is also generated. All 65 

these weather radar-based QPE products are then compared with gauge accumulations. 

The paper is organized as follows. Section 2 describes the rainfall estimation datasets from radar and rain gauges and methods 

used for comparisons. The results are discussed in Sect. 3. In Sect. 4 conclusions are provided.  

2. Data and methods 

2.1 Rain gauge measurements 70 

In Estonia major renewal and automation of the rain gauge network run by the Estonian Environment Agency (EstEA) started 

in 2003. Since 2003 to 2006 the network was updated to automatic tipping-bucket gauges. Starting from 2006 the tipping-

bucket gauges were progressively replaced by weighted gauges. This process was finished by the end of the year 2011. By that 

time there were 33 automatic weighted gauge stations and 27 stations with tipping-bucket gauges. According to the comparison 

study of parallel measurements of the tipping-bucket gauges and weighted gauges the latter exhibited much higher quality 75 

(Alber et al., 2015). From the end of 2010 the data has been recorded with 10 minute interval. Until 2010 the temporal 

resolution was one hour. Both 10-minutes and 1-hour data are being saved by EstEA since then, but only one hour data have 

been quality controlled by EstEA staff. Because the 10-minutes data are not quality controlled one hour gauge data was used 

in this study as a more reliable ground truth. The off-line manned data quality control includes using mainly weather sensor 

data as an additional source for comparisons but also neighbouring stations and weather radar data on some occasions. Only 80 

weighted gauge data was used because of the higher quality of these measurements and to ensure uniformness of the dataset. 

In this work 8 rain gauges close to Sürgavere, Estonia are included (Fig. 1). Data is with 0.1 mm resolution. 
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Since 1987, Arpa Piemonte, the regional agency for environment protection in Piemonte, Italy, operates the regional automatic 

gauges network made by about 380 tipping-bucket gauges. Most of the gauges are heated to avoid solid precipitation 

accumulation during the cold season. The temporal resolution of the gauges network is 1-minute. The Arpa Piemonte weather 85 

stations are equipped with CAE PMB2 tipping-bucket rain gauges. Their resolution (0.2 mm) is the amount of precipitation 

for one tip of the bucket. The working range of measures is from zero mm to 300 mm/h with underestimation for high 

precipitation intensities. Such errors are corrected according to results of WMO Field Intercomparison of Rainfall Intensity 

Gauges (Vuerich et al., 2009). Automatic data quality check is run on real time data, followed by off-line manned data 

validation. In this study a network subset made of 42 rain gauges close to Torino, Italy, have been considered (Fig. 1). 90 

Precipitation measurements range from 2012 to 2016.  

2.2 Weather radar precipitation estimation  

Data from C-band dual polarization Doppler weather radars in Estonia and Italy were used in this study. The weather radars 

considered in this study are from different manufacturers, in Estonia Vaisala WRM200 and in Italy Leonardo Germany Gmbh 

METEOR 700C  radar. Figure 1 illustrates the location of Estonian radar (Sürgavere) and Italian radar (Bric della Croce) 95 

together with the locations of available rain gauges.  

Sürgavere radar, located in central Estonia at altitude 128 m a.s.l., has been operational since May 2008 but for this study data 

starting from 2011 was used because the gauge network was updated by that time. The radar performs a surveillance volume 

scan at 8 elevation angles (0.5°, 1.5°, 3.0°, 5.0°, 7.0°, 9.0°, 11.0° and 15.0°) every 15 min starting each scan from the lowest 

elevation angle. Only the lowest elevation angle data were used. The resolution of the raw radar data is 300 m in range and 1° 100 

in azimuth. Data up to 10 km from radar were discarded because of the ground clutter and unreliable KDP estimation. Close to 

the radar stable and reliable differential phase observations are not available due to both the antenna itself and the TR-limiters 

response time or the dual-pol switch in case of alternate transmission. Doppler filter was used to eliminate residual non-

meteorological fixed clutter. In addition to speckle and clutter to signal ratio filtering at the signal processor level polarimetric 

hydrometeor classification was used to filter non-meteorological targets from the display (Chandrasekar et al., 2013). After 105 

careful analysis some of the data from Sürgavere radar had to be omitted completely. Years 2014 and 2015 were excluded 

because of gradually decreasing polarimetric data quality caused by a broken limiter which was replaced in March 2016. Data 

from 2017 was discarded because the quality was inconsistent as a result of a broken stable local oscillator (STALO) which 

was replaced in May 2018. From Estonia the investigated period ranges then from 2011-2018 and includes 5 years of data. 
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Figure 1. Study areas (shaded) located in Estonia (upper left zoomed area) and in Piemonte, Italy (lower right zoomed area). 

Grey dots denote gauge locations of Estonian and Piemonte region respectively and blue dots gauges inside the study area. 

Blue stars reveal radar locations. 

 

On the Torino hill, at altitude 770 m a.s.l., the operational dual-polarization Doppler C-band weather radar Bric della Croce is 115 

located. The radar site is in the central part of Piemonte region: toward west and north at about 20 km Alps start with peaks 

2,500 - 3,000 meters above sea level. The radar performs a fully polarimetric volume scans, made by eleven elevations up to 

170 km range, with 340 meters range bin resolution. Bric della Croce observations used in the study range from 2012 to 2016 

whereas observations from 2012 to 2013 are with ten-minutes interval and from 2013 to 2016 with five minutes interval time 

resolution. As can be seen from Fig. 1 circular area around the radar is used in Estonia but in Italy rectangular area is used. 120 

The reason for this is that orography in Piemonte is very complex ranging from flat plains in the Po valley (about 100 m a.s.l.) 

to the Alps up to more than 4,000 m a.s.l. The Bric della Croce weather radar is located on Torino hill that is about 30 km from 

the Alps. Therefore, the elegant and simple limitation in range by some kilometres from the radar site does not work. To avoid 

mountainous areas, where partial and total beam-blocking, heavy ground contamination increases, a rectangle area, that extends 

towards flat grounds, has been preferred. 125 

QPEs, based on horizontal reflectivity, are extensively described by Cremonini and Bechini (2010) and by Cremonini and 

Tiranti (2018), meanwhile KDP precipitation estimates are derived according to Wang et al. (2009). When KDP was equal to or 

less than zero, then R(KDP) was set to zero. The area close to the weather radar up to eight kilometres has been left out due to 

heavy ground clutter contamination and unreliable estimations of KDP.  

Sürgavere radar specific differential phase (KDP) and differential propagation phase (ⲪDP) were recalculated from raw ⲪDP 130 

data using Py-ART function phase_proc_lp (Giangrande et al., 2013) with carefully tuned parameter values according to data 

specifics. With default parameter values the rays where differential propagation phase folding occurred did not unfold correctly 
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and thus the function did not produce correct specific differential phase values. In order to fix the folding issue function 

parameters self_const (self-consistency factor) and low_z (low limit for reflectivity – reflectivity below this value is set to this 

limit) had to be tuned. The default values were 60000.0 and 10.0 respectively and after testing with various combinations of 135 

various values the values 12000.0 and 0.0 were found to produce optimal results and therefore were chosen for final 

calculations. Horizontal reflectivity (ZH) was re-calibrated using a method that utilizes the knowledge that ZH, ZDR (differential 

reflectivity) and KDP are self-consistent with one another and one can be computed from two of the others. ZDR is not suitable 

for QPE on C-band radars, but it can be used in this calibration methodology after applying strict restrictions on the data used 

for this purpose. The calibration was carried out using the self-consistency theory set down in Gorgucci et al. (1992) and 140 

Gourley et al. (2009) where the methodology is described in detail. The method essentially compares the observed  differential 

propagation phase (ⲪDP
obs) to a calculated theoretical differential propagation phase (ⲪDP

th). The data used for calibration had 

to be filtered using a number of restrictions: only data from June to September was allowed; data from 0.5° elevation and 10-

70 km range only used; only bins where horizontal and vertical polarization channel correlation coefficient was over 0.92 were 

used; any bins where ⲪDP was greater than 12° were removed; whole ray where reflectivity was greater than 50 dBZ was 145 

removed; whole ray where ZDR was greater than 3.5 dB was rejected; only rays where ΔⲪDP
obs was greater than 8° and where 

the consecutive rain path was at least 10 km were used; any scans in which precipitation occurred on top of the radome were 

removed. As a result ZH bias values from the range of -2.0 to -5.0 dB were obtained depending on date. The bias values were 

used to correct the corresponding observed ZH prior to rain rate estimation. 

In order to convert reflectivity ZH to rainfall rate R (mm/h) the following relation was used: 150 

𝑍𝐻 = 300𝑅1.5.           (1) 

Specific differential phase KDP  was converted to rainfall rate using the expression suggested by Leinonen et al. (2012): 

𝑅 = 21.0𝐾𝐷𝑃
0.720.           (2) 

The QPE of R(ZH) can be affected by attenuation on C-band radars especially in heavy precipitation and at long distances. 

While this can be corrected using ⲪDP in our study it was not applied to the reflectivity data in order to not introduce another 155 

possible source of error between the results of Estonia and Italy that could not be easily quantified. Effectiveness of attenuation 

correction using ⲪDP is hampered by its temperature, shape and size distribution dependence which affect the accompanying 

error (Vulpiani et al., 2008). The QPE of R(ZH) can also be affected by the effect of non-uniform vertical profile of reflectivity 

(VPR). In the current study the effect of VPR will be limited because only data from warm season was used and distance limits 

to the radar data were set (70 km for Estonia and 30 km for Italy, respectively). 160 

A number of studies have shown that R(KDP) provides much more reliable intensity estimates in heavy rainfall (Vulpiani et al., 

2012; Wang et al., 2013; Chen and Chandrasekar, 2015). On the other hand it has been indicated that KDP retrieval itself is less 

reliable in light precipitation conditions (Giangrande and Ryzhkov, 2008; Ryzhkov et al., 2014). Thus combining the two 

methods has the potential to be superior to using each method separately. For example Vulpiani et al. (2013) used a weighted 

combination of R(ZH) and R(KDP) where only reflectivity data was used for bins with KDP less than or equal to 0.5 °/km and 165 

KDP was used additionally with increasing weight over that value up to 1 °/km over which it was solely used. Cifelli et al. 

(2011) used simple threshold method where R(KDP) was used when R(ZH) was exceeding 50 mm/h intensity. Several authors 

have successfully added R(ZDR) based intensity estimation to the combination on S-band weather radars (e.g. Ryzhkov and 

Zrnic, 1995; Ryzhkov et al., 2005; Chandrasekar and Cifelli, 2012). Due to residual effects such as resonance, noise and 

attenuation R(ZDR) should not be used at C-band (Ryzhkov and Zrnic, 2019).  170 

In our study rainfall from a combined threshold approach was used for both weather radars as a third product R(ZH,KDP). In 

the combined product R(ZH) was used in areas with ZH less than or equal to 25 dBZ and R(KDP) otherwise if available. The ZH 
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threshold value was selected after testing with various reflectivity levels. The threshold level is considerably lower than some 

of the thresholds used in the literature but on our datasets it performed the best.  

2.3 Comparison framework 175 

In order to estimate the performance of the radar rainfall products they were compared with gauge accumulations. The study 

period was limited to the warm season (May - September for Estonia and April - October for Italy). In Estonia, the mean annual 

precipitation is 649 mm. Precipitation climatology has distinct seasonality with maxima in summer (215 mm) followed by 

autumn (198 mm), winter (128 mm) and spring (108 mm). The summer maxima of seasonal mean precipitation is especially 

pronounced in the continental part of Estonia (246 mm in Mauri, South-East Estonia), Tammets et al. (2013). 180 

In Piemonte, close to the radar, the mean annual precipitation is 870 mm having bimodal distribution with peaks in spring (266 

mm) and in autumn (255 mm), Devoli et al. (2018).  

Maximum distance of the gauges to be included in the comparison was limited to 70 km radius from radar location in case of 

Estonia and up to 30 km distance in Italy. Thus, in Estonia and in Italy rainfall data were from 8 and 42 gauges respectively. 

By limiting data analysis to warm season and constraining the maximum radar range, we were able to ensure that radar data 185 

were originating mainly from liquid precipitation (hail can also occur) which is required for more reliable rainfall intensity 

estimation. Possible occurrence of hail was not removed from the data because of the intention to keep additional data 

processing minimal and allow level comparison of the various QPE methods. 

In the case of Italy, the applied range limit is also aimed at eliminating uncertainties due to complex orography, like shielding 

by the mountains, overshooting, bright band contamination.  Up to 30 km from Bric della Croce, terrain is relatively flat, while 190 

beyond that mountains block most of the radar signal for lowest elevations.  

Radar-based QPEs have been accumulated to 1-hour duration and longer durations have been calculated based on these 

accumulations. Accumulations were calculated by adding subsequent instantaneous radar QPE values without any space-time 

interpolation. No missing data for radar or gauges was tolerated to prevent underestimation. A threshold of 0.1 mm was set 

and applied such that both gauge and radar QPE values must exceed this value to make the pair valid. 195 

The quality of the rainfall estimates was estimated by the following verification measures (where 𝑟𝑖 is the 𝑖-th out of 𝑛 radar 

precipitation estimates, 𝑔𝑖 the 𝑖-th out of 𝑛 gauge observations, 𝑟𝑚 the mean of all 𝑛 radar precipitation estimates, and 𝑔𝑚 the 

mean of all 𝑛 gauge observations): 

Pearson’s correlation coefficient: 𝐶𝐶 =
∑ (𝑟𝑖−𝑟𝑚)𝑛
𝑖=1 ⋅(𝑔𝑖−𝑔𝑚)

√∑ (𝑟𝑖−𝑟𝑚)2𝑛
𝑖=1 ⋅√∑ (𝑔𝑖−𝑔𝑚)2𝑛

𝑖=1

,    (3) 

Normalized Mean Absolute Error: 𝑁𝑀𝐴𝐸 =
∑ |𝑟𝑖−𝑔𝑖|
𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

,     (4) 200 

Normalized Mean Bias: 𝑁𝑀𝐵 =
∑ (𝑟𝑖−𝑔𝑖)
𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

,       (5) 

Root Mean Squared Error: 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑟𝑖 − 𝑔𝑖)

2𝑛
𝑖=1  ,     (6) 

Nash-Sutcliffe Efficiency: 𝑁𝐴𝑆𝐻 = 1 −
∑ (𝑟𝑖−𝑔𝑖)

2𝑛
𝑖=1

∑ (𝑔𝑖−𝑔𝑚)2𝑛
𝑖=1

.      (7) 

The Nash coefficient is typically used to assess accuracy of hydrological predictions, but it has also been used for weather 

radar-based rain rates and gauges comparisons (Nash and Sutcliffe, 1970). 205 
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 3. Results and discussion 

3.1 Case comparisons 

In this section radar QPE products are compared with single location gauge measurements of selected short periods from 

Estonia and Italy.. This allows to evaluate the performance of the radar QPE against gauge measurements from timeseries 

viewpoint. 210 

Figure 2 shows one month of precipitation on Jõgeva station location (60 km away from the radar site) in Estonia with one 

hour temporal resolution. Overall radar products follow the gauge measurements well but there are considerable differences 

among them. Reflectivity based product R(ZH) is not affected by noise and clutter in clear weather or in light rain cases but on 

the other hand it is underestimating rainfall amounts particularly in medium to heavy precipitation cases. By the end of the 

month its sum of 40.5 mm was 19.6 mm less than gauge measured accumulation (70.1 mm). R(KDP) then again is heavily 215 

overestimating precipitation amounts especially during light rain cases. By the end of the month the accumulated amount of 

150.2 mm was more than double of the gauge sum. Third product, R(ZH,KDP), was showing the best performance of all the 

three compared and it was correlating well with gauge accumulation time series and one month accumulation of 69.5 mm was 

just 0.6 mm lower than rain gauge sum. 

 220 

Figure 2. One month 1-hour rainfall cumulative accumulations, Sürgavere radar data, Jõgeva station gauge data. 

 

Gauge and radar accumulations are not always so well correlated as Fig. 3 demonstrates. In this accumulation period there are 

rainfall events which show that gauge values can be both under- and overestimated by radar products. Rainfall around 11th of 

June 2016 is overestimated by all radar QPE products with the smallest overestimation by R(ZH) and greatest by R(KDP) which 225 

overestimated the gauge by more than double in this event. In the following days until 21st of June 2016 light to medium 

precipitation was recorded by the gauge and during this time R(KDP) mostly overestimated the gauge accumulations while 

R(ZH) underestimated rainfall. On 21st of June 2016 a convective rainfall event occurred during which 51 mm of rainfall was 

measured in 2 hours with gauge. All radar QPE products underestimated the rainfall amount during this event. By the end of 

the month-long accumulation period R(ZH,KDP) was closest to the gauge value (underestimation by 16.6 mm) while R(ZH) 230 

underestimated even more and R(KDP) again overestimated gauge measurements. 
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Figure 3. One month 1-hour rainfall cumulative accumulations, Sürgavere radar data, Tartu-Tõravere station gauge data. 

 

Figure 4 illustrates a case from Italy, comparison of a gauge located within 30 km distance from radar to Bric della Croce radar 235 

precipitation estimation products. In the end of the 34-hour period the specific differential phase based product R(KDP) has the 

smallest error compared to gauge as it overestimates the gauge measurement of 40.6 mm by 2.0 mm. On the other hand in 

light rain R(KDP) is overestimating significantly - in the first 13 hours when gauge measured 3.4 mm of accumulated rainfall it 

already estimated 12.2 mm. R(ZH) was underestimating even in light rain and in heavy rain the difference compared to gauge 

measurement increased further. In the end of the period the underestimation was nearly threefold (15.6 mm compared to gauge 240 

accumulation of 40.6 mm). R(ZH,KDP) product showed good correlation with gauge in light precipitation as it was mostly based 

on reflectivity data, but in more intense precipitation it was still underestimating compared to gauge data. In the end of the 

period the accumulated value for R(ZH,KDP) was 26.7 mm.  

 

Figure 4. 1-hour rainfall cumulative accumulations from Verolengo gauge, located at 29 km from the radar, and co-located 245 

Bric della Croce radar QPE. 

 

In all selected cases the general behaviour of QPEs is similar. Weather radar estimations, even when sampled by 15-minutes 

interval observations, follow gauge measurements with good agreement. Although the second case from Estonia illustrated 
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well that longer scan interval increases the scatter and particularly with small scale convective precipitation for which minimal 250 

sampling interval is the most beneficial. From Italy the example case was much shorter, but the precipitation intensity was 

higher. On both cases R(KDP) generally overestimates precipitation amounts, especially in light rain cases. In Italy the R(KDP) 

overestimation is smaller. One of the causes of this behaviour might be more intense precipitation in Italy where KDP 

measurement became more accurate. More intense rainfall on the other hand caused greater underestimation of R(ZH) based 

precipitation accumulation from gauge values compared to Estonia. Another cause of differences between the two countries 255 

might be differences in the drop size distribution climatologies. Rainfall retrieval relations also entail errors and to keep the 

comparison as uniform as possible we decided to use the same relations for both Italy and Estonia. These example cases 

demonstrated that radar can be used for 1-hour accumulations, but systematic errors cannot be excluded. In order to find out 

errors and uncertainties and to see how QPEs compare to gauge measurements on longer scale will be looked at in the next 

sections. 260 

3.2 Comparison of one hour accumulations 

The quality of the rainfall estimates is compared at various accumulation intervals. Comparing different intervals can also be 

useful to point out representativeness issues caused by low radar scan rates. Investigated period covers the years 2011-2018 in 

Estonia and 2012-2016 in Italy. 

First, in this section hourly accumulations are analysed. Hourly accumulations are especially important for small basins and in 265 

extreme precipitation climatology analysis. Hourly rainfall maxima can provide valuable data for flash flood nowcasting and 

other hydrological applications.  

 

Table 1. Verification of the radar-based rainfall 1-hour accumulation products of Estonia. 

 R(ZH) R(KDP) R(ZH,KDP) 

CC 0.679 0.674 0.697 

NMAE 0.537 0.868 0.594 

NMB -0.143 1.861 0.298 

RMSE(mm) 1.615 2.131 1.677 

NASH 0.214 -0.037 0.184 

 270 

 

 
Figure 5. Scatter plots of radar-based rainfall estimates against rain gauge observations for 1-hour accumulation intervals in 

Estonia 2011-2018. The corresponding verification measures are presented in Table 1. Number of radar-gauge data pairs with 

8 gauges and accumulations > 0.1 mm is 7,019. 275 

 

Table 1 presents the verification results for the hourly accumulation interval in Estonia. Figure 5 shows the corresponding 

scatter plots. As can be seen, the R(ZH) estimation generally underestimates rainfall, especially heavy events while it has the 
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best error verification values (Nash-Sutcliffe Efficiency 0.214, NMAE 0.537, NMB -0.143 and RMSE 1.615 mm). R(KDP) on 

the other hand overestimates accumulations for low intensity events as could be presumed. R(ZH,KDP) shows considerable 280 

improvement by combining strong aspects of the two methods. It has the highest correlation coefficient (0.697) of all the 

products. 

Nevertheless, it can be seen from the scatterplots that there is a lot of scatter in the hourly radar accumulations with all products. 

Mostly, it can be linked to the low spatial representativeness of the point measurements of rain gauges. This effect is more 

pronounced on a short time scale and it originates from scarce gauge network and insufficient radar scan rate. Small scale 285 

effects like wind drift might also be more influential on shorter accumulation period (Lauri et al., 2012). The reason why R(ZH) 

might have the best performances when NMAE and RMSE are considered is because there are not very many heavy rainfall 

cases in Estonia and this tends to favour R(ZH) in the verification comparisons. 

From Italian hourly accumulation scatterplots in Fig. 6, it can be seen that the overall behaviour of the radar products is similar 

to Estonia. Although from Fig. 6 it can be noticed that of the four highest 1-hour accumulations measured by the gauge, three 290 

of them have significantly higher radar estimates for R(ZH,KDP) than either R(ZH) or R(KDP). This could be explained by 

precipitation that was very variable in intensity and also in spatial coverage in these three cases which in turn caused unsteady 

behaviour of the precipitation estimates. ZH underestimates high intensities, but with low intensities KDP becomes noisy and 

the rainfall intensity estimation is not feasible. Finally, to reduce KDP uncertainties range averaging is mandatory, leading to 

underestimation in case of very localized showers. By blending both R(ZH) and R(KDP), a better rainfall estimation is expected. 295 

Table 2 presents the corresponding verification results. R(ZH) underestimates particularly at intense precipitation events. 

R(KDP) generally overestimates hourly accumulations especially at low intensity cases: as stated by Wang et al. (2013), R(KDP) 

generates noisier estimations at low rain rates. R(ZH,KDP) outperforms both other products in Italy which is confirmed by 

verification metrics as it overcomes the shortcomings of the other estimations. 

Less random scatter is visible in Italian hourly data due to more frequent scan strategy. R(ZH) is underestimating more than in 300 

Estonia as expected because in Italy intense rainfall is more frequent - it has larger RMSE and even more negative NMB. 

Probably for the same reason R(KDP) is more accurate in Italy than in Estonia as it has smaller NMAE and NMB while having 

larger RMSE due to higher rainfall intensities recorded in Italy.  

 

Table 2. Verification of the radar-based rainfall 1-hour accumulation products of Italy. 305 

 R(ZH) R(KDP) R(ZH,KDP) 

CC 0.843 0.808 0.870 

NMAE 0.531 0.514 0.423 

NMB -0.296 0.678 0.120 

RMSE(mm) 3.136 3.037 2.750 

NASH 0.364 0.385 0.443 
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Figure 6. Italy 1-hour accumulations 2012-2016. The corresponding verification measures are presented in Table 2. Number 

of radar-gauge data pairs with 42 gauges and accumulations > 0.1 mm is 1,233. 310 

3.3 Comparison of 24-hours accumulations 

Table 3 shows the verification results for the daily accumulation interval in Estonia, while Fig. 7 presents the corresponding 

scatter plots. As expected, much less scatter can be seen than on the daily level but overall the results are consistent with the 

hourly interval verification outcomes. Using longer accumulation intervals leads to less severe errors as the longer period 

compensates for both underestimates and overestimates. Reflectivity based product, R(ZH), is still underestimating rain depths 315 

while the negative bias is considerably smaller than in hourly interval data. By looking at the definition of NMB in Eq. (5) it 

can be seen that in case the same underlying samples are used NMB should be equal on all accumulation lengths. In our study 

the underlying samples were different as the 0.1 mm threshold was applied after the accumulation as a last step before 

calculating the verification metrics. This emphasizes the importance of low-intensity precipitation for total accumulations. 

R(KDP) is the least accurate of the three products also on daily accumulation level with the lowest correlation and highest error 320 

scores. The combined product, R(ZH,KDP), removes the negative bias of R(ZH) and shows better correlation and substantial 

improvement in terms of both the systematic error and the overall error compared to R(KDP). R(ZH,KDP) has the smallest NMAE 

of 0.438, RMSE of 3.992 mm and highest Nash-Sutcliffe Efficiency equal to 0.392. Overall there is noticeably less scatter in 

the daily radar accumulations compared to 1-hour interval. 

 325 

Table 3. Verification of the radar-based rainfall 24-hours accumulation products of Estonia. 

 R(ZH) R(KDP) R(ZH,KDP) 

CC 0.831 0.792 0.827 

NMAE 0.475 0.845 0.438 

NMB -0.050 2.290 0.343 

RMSE(mm) 4.366 7.195 3.992 

NASH 0.335 -0.097 0.392 
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Figure 7. Estonia 24-hours accumulations 2011-2018. The corresponding verification measures are presented in Table 3. 330 

Number of radar-gauge data pairs with 8 gauges and accumulations > 0.1 mm is 2,148. 

 

Table 4 shows the verification results for the daily accumulation interval in Italy, while Fig. 8 presents the corresponding 

scatter plots. R(ZH) is slightly underestimating compared to gauge results and surprisingly it outperforms other competing 

products in all metrics except Pearson’s correlation coefficient. R(KDP) is again overestimating the most and has the lowest 335 

correlation with gauge data. R(ZH,KDP) notably improves the R(KDP) on all verification metrics but does not exceed R(ZH) 

except for correlation coefficient which is the highest of all three products with r of 0.708. In Italy the decrease in scatter of 

radar accumulations cannot be observed compared to 1-hour level. On Fig 7. two regimes can be observed and we assume that 

VPR correction leads to these regimes. Bric della Croce weather radar is located on a top of hill at 770 m a.s.l. and during the 

winter season a vertical profile reflectivity correction (VPR) is applied (Koistinen, 1991). This correction is manually switched 340 

on at the beginning of the cold season and it is switched off at the end. In case of convective precipitation, this correction may 

lead to rainfall overestimation. On the other hand, stratiform cold precipitation is heavily underestimated when VPR correction 

is switched off. 

 

Table 4. Verification of the radar-based rainfall 24-hours accumulation products of Italy. 345 

 R(ZH) R(KDP) R(ZH,KDP) 

CC 0.692 0.661 0.708 

NMAE 0.504 0.636 0.553 

NMB -0.01 0.789 0.459 

RMSE(mm) 8.909 11.071 10.552 

NASH 0.238 0.054 0.098 

 

 

 
Figure 8. Italy 24-hours accumulations 2012-2016. The corresponding verification measures are presented in Table 4. Number 

of radar-gauge data pairs with 42 gauges and accumulations > 0.1 mm is 3,010. 350 
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3.4 Comparison of monthly accumulations 

Table 5 shows the verification results for the monthly accumulation interval in Estonia, while Fig. 9 presents the corresponding 

scatter plots. Compared to shorter time scales overall on monthly scale the correlation of all the products with gauge 

accumulations is higher. R(ZH) is underestimating with larger mean bias (-0.284) than on daily level but with smaller 

normalized mean absolute error (0.360). R(KDP) is showing less scatter than on shorter time scales like other products while 355 

still heavily overestimating accumulations (NMB equal to 1.042 with RMSE equal to 62.466 mm). On monthly accumulation 

level R(ZH, KDP) outperforms the two other products to a great extent. It is well correlated to gauge values with small scatter 

as it is performing great both in low and high accumulation cases. The correlation coefficient is nearly identical to R(ZH), but 

it removes the systematic underestimation of R(ZH) and overestimation of R(KDP) and exceeds them in all other verification 

metrics. 360 

 

Table 5. Verification of the radar-based rainfall monthly accumulation products of Estonia. 

 R(ZH) R(KDP) R(ZH,KDP) 

CC 0.877 0.789 0.875 

NMAE 0.360 0.822 0.214 

NMB -0.284 1.042 0.109 

RMSE(mm) 27.448 62.466 16.704 

NASH 0.155 -0.924 0.486 

 

 

 365 
Figure 9. Estonia monthly accumulations 2011-2018. The corresponding verification measures are presented in Table 5. 

Number of radar-gauge data pairs with 8 gauges is 179. 

 

Table 6 shows the verification results for the monthly accumulation interval in Italy, while Fig. 10 presents the corresponding 

scatter plots. Scatterplots reveal similar characteristics to the daily level accumulations of the products. R(ZH) is 370 

underestimating rainfall also on monthly scale and R(KDP) overestimating. R(ZH, KDP) is still overestimating but with a 

decreased RMSE compared to R(KDP) product. It also exhibits the highest correlation coefficient of the three. According to the 

verification results most of the metrics indicate better performance of the radar products on monthly scale compared to daily 

intervals. Correlation coefficient is higher and NMAE is lower on all the products when the two timescales are compared. 

 375 

Table 6. Verification of the radar-based rainfall monthly accumulation products of Italy. 

 R(ZH) R(KDP) R(ZH,KDP) 

CC 0.776 0.726 0.799 
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NMAE 0.375 0.488 0.408 

NMB -0.128 0.310 0.337 

RMSE(mm) 23.737 30.802 24.914 

NASH 0.288 0.076 0.253 

 

 

 

Figure 10. Italy monthly accumulations 2012-2016. The corresponding verification measures are presented in Table 6. Number 380 

of radar-gauge data pairs with 42 gauges is 675. 

4. Conclusions 

In the present study polarimetric rainfall retrieval methods for the fully operational C-Band radars in Sürgavere, Estonia and 

Bric della Croce, Italy have been analysed. The study focuses on the warm period of the year and long period of multi-year 

data is used. From Estonia five years data from 2011 to 2018 has been included, from Italy the data interval ranges from 2012 385 

to 2016. Reflectivity data were calibrated following a self-consistency theory and  measured horizontal reflectivity (ZH) was 

corrected accordingly. In order to calculate rainfall from polarimetric variables, differential propagation phase (ⲪDP) was 

reconstructed and based on that specific differential phase (KDP) retrieved. To achieve this the transparently implemented 

algorithm phase_proc_lp (Giangrande et al., 2013) in the open source toolkit Py-ART was used for Estonian data. For Italian 

data, KDP precipitation estimates were obtained following the theory set down in Wang et al. (2009).  390 

Three radar rainfall estimation products were computed: horizontal reflectivity based product R(ZH), specific differential phase 

based product R(KDP) and a combined product based on the previous two R(ZH,KDP). Rain gauge network data of Italy and 

Estonia were used as ground truth. 1-hour, 24-hours and monthly accumulations were derived from the radar products and 

gauge data.  

Time series comparison revealed that even with 15-minute scan interval radar is suitable for QPE, at least with more widespread 395 

precipitation like stratiform rain. Still on the shortest accumulation period of 1-hour the more scarce radar data from Estonia 

had more scatter than data from Italy where the scan interval was 10 minutes on older data and 5 minutes since 2013. As an 

overall trend, the longer the accumulation period the less scattering was visible. 

When the three products are compared to each other in case of Estonia the R(ZH,KDP) was clearly superior to R(ZH) and R(KDP) 

on all accumulation periods. Especially on monthly accumulation scale it was performing distinctly better as it had RMSE 400 

39% lower than the nearest competitor, the R(ZH) product and even 73% lower than R(KDP). In Italy the R(ZH,KDP) product was 

exceeding the two others clearly on hourly level. On 24-hours and monthly accumulation scale it had the highest correlation 

with gauge measurements but the error verification measures were slightly higher than those of the R(ZH). Nevertheless it 

outperformed R(KDP) on all timescales. 

Overall the results show that the combined product R(ZH,KDP) performs better on almost all of the verification measures in 405 

both countries compared to R(ZH) and R(KDP) as it uses successfully the benefits of each other product and eliminates the 
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weaknesses. R(ZH) was good at low precipitation intensities but in general it was underestimating precipitation. It had an 

average NMB of -0.159 over all the accumulation lengths in case of Estonia and -0.145 in Italy. R(KDP) was performing well 

at higher intensities but in general was overestimating precipitation. It had an average NMB of 1.731 over all the accumulation 

lengths in case of Estonia and 0.592 in Italy. While the combined product R(ZH,KDP) was slightly overestimating precipitation 410 

with an average NMB of 0.250 over all the accumulation lengths in case of Estonia and 0.305 in Italy. In both countries the 

R(ZH,KDP) product also had the highest average CC over all the accumulation lengths with CC of 0.800 in Estonia and 0.792 

in Italy. Generally the CC was higher the longer the accumulation period was with the highest CC in monthly accumulations 

(R(ZH,KDP) CC of 0.875 in Estonia and 0.799 in Italy). 

In case of Estonia the overestimation of R(KDP) was noticeably higher than in Italy. We hypothesize that this is mostly due to  415 

different climatological regimes  between Italy and Estonia as higher intensity rainfalls occur more frequently in Italy. 

Although one has to keep in mind that the radars were from different manufacturers and thus also the used KDP retrieval 

algorithms were different which might be the cause of some discrepancy. Another source of error might originate from the 

implemented ZH-R and KDP-R relations which might not perform equally in different climates. Overall the results of the study 

showed that dual polarimetric radar QPE and especially the combined product R(ZH,KDP) show good potential to be used in 420 

climate studies if certain limitations are considered. 

Synoptic patterns could be used as an additional source for classifying the radar accumulations. This would enable to verify 

the performance of each radar product on stratiform and convective events. Moreover, it could be used to investigate if frequent 

scans play bigger role in convective events than stratiform as could be hypothesized and to quantify the effect. 

For future studies, it would also be useful to calculate probabilities and return periods of extreme rainfall for weather radar-425 

based rainfall climatology .  

 

Code and data availability. The code used to conduct all analyses in this paper is available by contacting the authors. Gauge 

and radar data used in this study are available by contacting the authors. 

 430 

Author contributions. TV, RC, PP and DM directly contributed to the conception and design of the work. TV and RC collected 

and processed the various datasets and wrote the original draft with input from PP and DM. All authors reviewed and edited 

the final draft. 

 

Competing interests. The authors declare that they have no conflict of interest. 435 

 

Acknowledgements. This work was partly supported by the project IUT20-11 of the Estonian Ministry of Education and 

Research, the Estonian Research Council grant PSG202 and by the European Regional Development Fund within National 

Programme for Addressing Socio-Economic Challenges through R&D (RITA1/02-52-07). 

  440 



16 

References 

Alber, R., Jaagus, J., and Oja, P.: Diurnal cycle of precipitation in Estonia, Estonian J. of Earth Sci., 64, 305-313, 

https://doi.org/10.3176/earth.2015.36, 2015. 

Bringi, V.N., Rico-Ramirez, M.A., and Thurai, M.: Rainfall estimation with an operational polarimetric C-band radar in the 

United Kingdom: comparison with a gauge network and error analysis, J.  Hydrometeorol., 12, 935-954, 445 

https://doi.org/10.1175/JHM-D-10-05013.1, 2011. 

Cao, Q., Knight, M. and Qi, Y.: Dual-pol radar measurements of Hurricane Irma and comparison of radar QPE to rain gauge 

data, In Proceed. of the 2018 IEEE Radar Conference, Oklahoma City, OK, USA, 23-27 April 2018, 0496-0501, 

https://doi.org/10.1109/RADAR.2018.8378609, 2018 

Chandrasekar, V. and Cifelli, R.: Concepts and principles of rainfall estimation from radar: Multi sensor environment and data 450 

fusion, Indian J. Radio Space Phys., 41, 389-402, 2012. 

Chandrasekar, V., Keränen, R., Lim, S. and Moisseev, D.: Recent advances in classification of observations from dual 

polarization weather radars, Atmos. Res., 119, 97-111, https://doi.org/10.1016/j.atmosres.2011.08.014, 2013 

Chang, W.Y., Vivekanandan, J., Ikeda, K. and Lin, P.L.: Quantitative precipitation estimation of the epic 2013 Colorado flood 

event: Polarization radar-based variational scheme, J. Appl. Meteorol. Climatol., 55, 1477-1495, 455 

https://doi.org/10.1175/JAMC-D-15-0222.1, 2016 

Chen, H. and Chandrasekar, V.: The quantitative precipitation estimation system for Dallas–Fort Worth (DFW) urban remote 

sensing network, J. Hydrol., 531, 259-271, https://doi.org/10.1016/j.jhydrol.2015.05.040, 2015. 

Cifelli, R., Chandrasekar, V., Lim, S., Kennedy, P.C., Wang, Y., and Rutledge, S.A.: A new dual-polarization radar rainfall 

algorithm: Application in Colorado precipitation events, J. Atmos. Ocean. Technol., 28, 352-364, 460 

https://doi.org/10.1175/2010JTECHA1488.1, 2011. 

Cornes, R.C., van der Schrier, G., van den Besselaar, E.J. and Jones, P.D.: An Ensemble Version of the E‐OBS Temperature 

and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391-9409, https://doi.org/10.1029/2017JD028200, 2018. 

Cremonini, R. and Bechini, R.: Heavy rainfall monitoring by polarimetric C-band weather radars, Water, 2, 838–848, 

https://doi.org/10.3390/w2040838, 2010. 465 

Cremonini, R. and Tiranti, D.: The Weather Radar Observations Applied to Shallow Landslides Prediction: A Case Study 

From North-Western Italy, Front. Earth Sci., 6, 134, https://doi.org/10.3389/feart.2018.00134, 2018. 

Crisologo, I., Vulpiani, G., Abon, C.C., David, C.P.C., Bronstert, A., and Heistermann, M.: Polarimetric rainfall retrieval from 

a C-Band weather radar in a tropical environment (The Philippines), Asia-Pac. J. Atmos. Sci., 50, 595-607, 

https://doi.org/10.1007/s13143-014-0049-y,  2014. 470 

Devoli, G., Tiranti, D., Cremonini, R., Sund, M., and Boje, S.: Comparison of landslide forecasting services in Piedmont (Italy) 

and Norway, illustrated by events in late spring 2013, Nat. Hazards Earth Syst. Sci., 18, 1351–1372, 

https://doi.org/10.5194/nhess-18-1351-2018, 2018. 

Giangrande, S.E., McGraw, R., and Lei, L.: An application of linear programming to polarimetric radar differential phase 

processing, J. Atmos. Ocean. Technol., 30, 1716-1729, https://doi.org/10.1175/JTECH-D-12-00147.1, 2013. 475 

Giangrande, S.E. and Ryzhkov, A.V.: Estimation of rainfall based on the results of polarimetric echo classification, J. Appl. 

Meteorol. Climatol., 47, 2445-2462, https://doi.org/10.1175/2008JAMC1753.1, 2008. 

Gorgucci, E., Scarchilli, G., and Chandrasekar, V.: Calibration of radars using polarimetric techniques, IEEE Trans. Geosci. 

Remote Sens., 30, 853-858, http://doi.org/10.1109/36.175319, 1992. 

Gorgucci, E., Scarchilli, G., and Chandrasekar, V.: A procedure to calibrate multiparameter weather radar using properties of 480 

the rain medium, IEEE Trans. Geosci. Remote Sens., 37, 269-276, https://doi.org/10.1109/36.739161, 1999. 

Goudenhoofdt, E. and Delobbe, L.: Generation and verification of rainfall estimates from 10-yr volumetric weather radar 

measurements, J. Hydrometeorol., 17, 1223-1242, https://doi.org/10.1175/JHM-D-15-0166.1, 2016. 



17 

Gourley, J.J., Illingworth, A.J., and Tabary, P.: Absolute calibration of radar reflectivity using redundancy of the polarization 

observations and implied constraints on drop shapes, J. Atmos. Ocean. Technol., 26, 689-703, 485 

https://doi.org/10.1175/2008JTECHA1152.1, 2009. 

Koistinen, J.: Operational correction of radar rainfall errors due to the vertical reflectivity profile, in: Proceedings of the 25th 

Radar Meteorology Conference, American Meteorological Society, Paris, France, 91–96, 1991.Krajewski, W.F., Villarini, 

G., and Smith, J.A.: Radar-Rainfall Uncertainties: Where are We after Thirty Years of Effort?, Bull. Am. Meteorol. Soc.,  

91, 87–94, https://doi.org/10.1175/2009BAMS2747.1, 2010. 490 

Lauri, T., Koistinen, J., and Moisseev, D.: Advection-Based Adjustment of Radar Measurements, Mon. Wea. Rev., 140, 1014–

1022, https://doi.org/10.1175/MWR-D-11-00045.1, 2012. 

Leinonen, J., Moisseev, D., Leskinen, M., and Petersen, W.A.: A climatology of disdrometer measurements of rainfall in 

Finland over five years with implications for global radar observations, J. Appl. Meteorol. Climatol., 51, 392-404, 

https://doi.org/10.1175/JAMC-D-11-056.1, 2012. 495 

Nash, J.E. and Sutcliffe, J.V.: River flow forecasting through conceptual models part I: A discussion of principles, J. Hydrol., 

10, 282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. 

Overeem, A., Holleman, I., and Buishand, A.: Derivation of a 10-year radar-based climatology of rainfall, J. Appl. Meteorol. 

Climatol., 48, 1448-1463, https://doi.org/10.1175/2009JAMC1954.1, 2009. 

Petropoulos, G.P. and Islam, T.: Remote Sensing of Hydrometeorological Hazards. CRC Press, Boca Raton FL, USA, 2017. 500 

Ryzhkov, A.V., Diederich, M., Zhang, P., and Simmer, C.: Potential utilization of specific attenuation for rainfall estimation, 

mitigation of partial beam blockage, and radar networking, J. Atmos. Ocean. Technol., 31, 599-619, 

https://doi.org/10.1175/JTECH-D-13-00038.1, 2014. 

Ryzhkov, A.V., Schuur, T.J., Burgess, D.W., Heinselman, P.L., Giangrande, S.E., and Zrnic, D.S.: The Joint Polarization 

Experiment: Polarimetric rainfall measurements and hydrometeor classification, Bull. Am. Meteorol. Soc., 86, 809-824, 505 

https://doi.org/10.1175/BAMS-86-6-809, 2005. 

Ryzhkov, A.V. and Zrnić, D.S.: Comparison of dual-polarization radar estimators of rain, J. Atmos. Ocean. Technol., 12, 249-

256, https://doi.org/10.1175/1520-0426(1995)012%3C0249:CODPRE%3E2.0.CO;2, 1995. 

Ryzhkov, A.V. and Zrnic, D.S.: Radar Polarimetry for Weather Observations. Springer, Cham, Switzerland, 2019. 

Saltikoff, E., Friedrich, K., Soderholm, J., Lengfeld, K., Nelson, B., Becker, A., Hollmann, R., Urban, B., Heistermann, M. 510 

and Tassone, C.: An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential, 

Bull. Am. Meteorol. Soc., 100, 1739-1752, https://doi.org/10.1175/BAMS-D-18-0166.1, 2019 

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.L.: A review of global precipitation data sets: data 

sources, estimation, and intercomparisons, Rev. Geophys., 56, 79-107, https://doi.org/10.1002/2017RG000574, 2018.. 

Tammets, T. and Jaagus, J.: Climatology of precipitation extremes in Estonia using the method of moving precipitation totals, 515 

Theor. Appl. Climatol., 111, 623-639, https://doi.org/10.1007/s00704-012-0691-1, 2013. 

Tapiador, F., Marcos, C., Navarro, A., Jiménez-Alcázar, A., Moreno Galdón, R., and Sanz, J.: Decorrelation of satellite 

precipitation estimates in space and time, Remote Sens., 10, 752, https://doi.org/10.3390/rs10050752, 2018. 

Vuerich, E., Monesi, C., Lanza, L., Stagi, L., Lanzinger, E.: WMO Field Intercomparison of Rainfall Intensity Gauges, Vigna 

di Valle, Italy, October 2007 - April 2009, WMO/TD- No. 1504; IOM Report- No. 99, 2009. 520 

Vulpiani, G. and Baldini, L.: Observations of a severe hail-bearing storm by an operational X-band polarimetric radar in the 

Mediterranean area, In Proceed. of the 36th AMS Conference on Radar Meteorology, Breckenridge, CO, USA, 16-20 

September 2013, 7208, 2013. 

Vulpiani, G., Tabary, P., Parent du Chatelet, J. and Marzano, F.S.: Comparison of advanced radar polarimetric techniques for 

operational attenuation correction at C band, J. Atmos. Ocean. Technol., 25, 1118-1135, 525 

https://doi.org/10.1175/2007JTECHA936.1, 2008. 



18 

Vulpiani, G., Montopoli, M., Passeri, L.D., Gioia, A.G., Giordano, P., and Marzano, F.S.: On the use of dual-polarized C-band 

radar for operational rainfall retrieval in mountainous areas, J. Appl. Meteorol. Climatol., 51, 405-425, 

https://doi.org/10.1175/JAMC-D-10-05024.1, 2012. 

Wang, Y. and Chandrasekar, V.: Algorithm for estimation of the specific differential phase, J. Atmos. Ocean. Technol., 26, 530 

2565-2578, https://doi.org/10.1175/2009JTECHA1358.1, 2009. 

Wang, Y. and Chandrasekar, V.: Quantitative precipitation estimation in the CASA X-band dual-polarization radar network, 

J. Atmos. Ocean. Technol., 27, 1665-1676, https://doi.org/10.1175/2010JTECHA1419.1, 2010. 

Wang, Y., Zhang, J., Ryzhkov, A.V., and Tang, L.: C-band polarimetric radar QPE based on specific differential propagation 

phase for extreme typhoon rainfall, J. Atmos. Ocean. Technol., 30, 1354-1370, https://doi.org/10.1175/JTECH-D-12-535 

00083.1, 2013. 


