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0. Abstract 13 

To properly account the subsurface heterogeneity, geostatistical inverse models 14 

usually permit enormous amount of spatial correlated parameters to interpret the 15 

collected states. Several reduced-order techniques for the brick domain are 16 

investigated to leverage the memory burden of parameter covariance. Their capability 17 

to irregular domain is limited. Furthermore, due to the over fitting of states, the 18 

estimated parameters usually diverge to unreasonable values. Although some 19 

propriate tolerances can be used to eliminate this problem, they are presumed and 20 

heavily rely on the personal judgement. To address these two issues, we present a 21 

model reduction technique to the irregular domain by singular value decomposition 22 

(SVD). Afterward, the state errors and parameters are sequentially updated to leverage 23 

the over fitting. The computational advantages of the proposed reduced-order dual 24 

state-parameter inverse algorithm are demonstrated through two numerical 25 

experiments and one case study in a catchment scale field site. The investigations 26 

suggest that the stability of convergence dramatically improves. The estimated 27 

parameter values stabilize to reasonable order of magnitude. In addition, the memory 28 

requirement significantly reduces while the resolution of estimate preserves. The 29 

proposed method benefits multi-discipline scientific problems, especially useful and 30 

convenient for assimilating different types of measurements. 31 

 32 
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1. Introduction 34 

 Groundwater is one of the necessary resources in many regions where the 35 

amount of rainfall and the capacity of reservoir is limited. To provide enough fresh 36 

water for the current and future uses in these areas, proper water resources 37 

management and contaminated site remediation strategies are required, which relies 38 

on the understanding of the site-specific spatial distribution of hydrological 39 

parameters (e.g., hydraulic conductivity and specific storage) in the prefer scale.  40 

Many covariance based geostatistical approaches have been widely employed for 41 

aquifer characterization. Several previous studies suggested that the geostatistical 42 

inversion is superior than many other subsurface inverse modeling because it 43 

estimates the uncertainty and has ability to assimilate different type of observed data 44 

sequentially (Vesselinov et al., 2001). However, as pointed out by Illman et al. (2015), 45 

when the number of observations and unknown parameters are huge, the primary 46 

drawbacks of geostatistical inversion are the computational and memory burdens.  47 

Several ensemble approaches have been proposed to handle the memory and 48 

large covariance matrices. For instance, Particle Filter or Sequential Monte Carlo 49 

method (SMC, Field et al., 2016; Zhang et al., 2017), iterative Ensemble Kalman 50 

Filter (EnKF, Schöniger et al., 2012; Ait-El-Fquih et al., 2016), iterative Ensemble 51 

Smoother (ES, Zhang et al., 2018), Extended Kalman Filter (EKF, Yeh and Huang 52 

2005; Leng and Yeh, 2003), and many other related methods construct the covariance 53 

between the parameter and state variable from a set of ensemble member. Since a 54 

bunch of realizations (usually several hundreds or thousands) are required to infer the 55 

population covariance from the sample covariance, the algorithm may not be 56 

computational affordable when the simulation time of single forward modeling is time 57 

consuming.  58 

On the other hand, Quasi-Linear Geostatistical Approach (QLGA, Kitanidis, 59 
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1995) and Successive Linear Estimator (SLE, Yeh et al., 1996) avoid generating a 60 

large set of ensemble realizations. They construct the parameter covariance by some 61 

prior knowledge of unknown parameter field (e.g., covariance function, variance, and 62 

correlation length). Afterward, the covariance between the parameter and state 63 

variable is estimated through the sensitivity of state variable with respect to parameter. 64 

This approach requires significant amount of memory resource when the number of 65 

unknown parameter and state variable are huge. Furthermore, evaluating the 66 

sensitivity efficiently may be a difficult task for some scientific problems. As a result, 67 

considerable efforts are devoted to improving the capability of the algorithm. For 68 

instance, Sun and Yeh (1990) employed the adjoint approach to evaluate the 69 

sensitivity. It reduces the cost of running forward model from the order of number of 70 

unknown parameters to the number of state measurements. Saibaba and Kitanidis 71 

(2012) incorporates the hierarchical matrices technique with a matrix-free Krylov 72 

subspace approach to improve the computational efficiency. Liu et al. (2014) avoids 73 

the direct solution of sensitivity matrix by the Krylov subspace method. Li et al. (2015) 74 

and Zha et al. (2018) project the covariance matrix on the orthonormal basis and 75 

evaluate the cross product of sensitivity and squared root covariance directly using 76 

finite differencing approach. This method eliminates the sensitivity evaluation and 77 

reduces the computational cost of running forward model to the order of number of 78 

leading modes. Li et al. (2014) take the advantage of hierarchical nature of matrices to 79 

accelerate the computation of dense matrix vector products and rewrite the Kalman 80 

filtering equations into a computational efficient manner. Ghorbanidehno et al. (2015) 81 

extend their approach to the general case of non-linear dynamic systems. Similarly, 82 

Lin et al. (2016) reduces the computational complexity by projecting the parameters 83 

to different hierarchies of Krylov subspace. Pagh (2013) use fast Fourier transform to 84 

speed up the computation of covariance matrix multiplication. In addition, many 85 
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approaches reduce the computational cost and memory requirement. For example, 86 

Nowak and Litvinenko (2013) combine low rank approximations to the covariance 87 

matrices with fast Fourier transform; Kitanidis (2015) decomposes the covariance 88 

matrix by some orthonormal basis and shows that the choice of basis can be tailored 89 

to the problem of interest to improve estimation accuracy; Li et al. (2015) use discrete 90 

cosine transform to compress the data covariance matrix of a 1-D state variable series; 91 

Zha et al. (2018) use Karhunen-Loeve Expansion to compress the parameter 92 

covariance matrix of a 3-D parameter field. Other useful reduced order models are 93 

Galerkin projection (Liu et al., 2013), principal component (Kitanidis and Lee, 2014), 94 

randomized algorithm (Lin et al., 2017), Whittaker-Shannon interpolation (Horning et 95 

al., 2019), and Kronecker product decomposition (Zunino and Mosegaard, 2019).  96 

In addition to reformulate the covariance matrix, the temporal moments 97 

eliminate the temporal derivative term in the governing equation. Thus, it is another 98 

potential method to reduce the data size and computational cost (Cirpka and Kitanidis, 99 

2000; Nowak and Cirpka, 2006; Yin and Illman, 2009). 100 

There are several limitations exist in the previous geostatistical inverse 101 

algorithms. The first issue is over calibration or over fitting. During the inverse 102 

process, the calibration terminates when the difference between the observed and 103 

simulated states reduces to the value smaller than the given tolerance, an arbitrary 104 

value based on user’s personal judgement. In practical, the tolerance is determined by 105 

the expected numeric and measurement errors. Since its true order of magnitude is 106 

unknow, the estimated parameter field sometimes diverges if the tolerance is 107 

underestimated. To be specific, the estimated parameters will first converge to the best 108 

values accompanied with the successive assimilation of the information about the 109 

subsurface heterogeneity embedded in the observed state variables. The values of 110 

parameter then diverge to the unreasonable huge or small values to compensate the 111 
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numeric and measurement errors. This instability is not user friendly because the 112 

reasonable (i.e., converged) estimate needs to be selected manually. Furthermore, 113 

when different types of measurement (e.g., water level, flux, temperature, gravity, etc.) 114 

are available, it is suggested that assimilate these data sequentially is a more robust 115 

approach than the simultaneous assimilation (Tsai et al., 2017). Accordingly, the 116 

manually determination of convergence prohibits the automatic sequential 117 

assimilation. 118 

 Second, when dealing with a 2-D or 3-D parameter or state variable fields, a 119 

specific matrix structures are required to efficiently decompose the unconditional 120 

covariance matrix to the orthonormal basis. For instance, a regular grid spacing is 121 

required to efficiently perform the fast Fourier transform (Nowak and Litvinenko, 122 

2013) and discrete cosine transform (Li et al., 2015). Similarly, Karhunen-Loeve 123 

Expansion (Zha et al., 2018) requires a brick or rectangle shape domain and grid. This 124 

requirement comes from the derivation of analytic eigenvalue and eigenvector of a 125 

separable exponential function. 126 

To overcome these two existing limitations, we first introduce an additional step 127 

to estimate the error of state variables based on the error covariance matrices. Next, 128 

we derive a reduced order model using singular value decomposition. Afterward, we 129 

present a matrix manipulation method to eliminate the requirement of brick or 130 

rectangle domain during constructing the eigenvalue and eigenvector of unconditional 131 

covariance matrix.  132 

This paper is arranged as follows. We first revisit the SLE that forms the 133 

geostatistical inversion approach (section 2.2). Thereafter, the algorithm is 134 

reformulated by collaborating with the data error, reduced order approach (i.e. 135 

singular value decomposition, SVD), and irregular domain (section 2.3). Furthermore, 136 

a perturbation method is proposed to improve the efficiency of covariance evaluation 137 
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process (section 2.4). In section 3, we test the proposed dual state-parameter 138 

estimation algorithm with two synthetic examples and a tomographic survey at the 139 

field site to demonstrate the superiority of the proposed method. Lastly, summary and 140 

conclusions are presented. 141 

 142 

2.1. Groundwater Flow Model.  143 

 The 2-D groundwater flow in heterogeneous confined aquifer can be described 144 

as 145 

( , )
[ ( ) ( , )] ( )

h t
T h t S

t


  =



x
x x x  (1) 146 

where h is the head responses (m), T is hydraulic transmissivity (m2/day), S is storage 147 

coefficient (-), x  is the vector in x and y directions, and t represents time (day). 148 

 149 

2.2. Reduced order successive linear estimator 150 

The singular value decomposition (SVD) is employed to reduce the order of the 151 

parameter covariance, leading to less memory requirement and more computational 152 

efficiency inverse exercise. Afterward, the data error is considered to improve the 153 

stability of convergence. 154 

(1) Hard Data 155 

 When the hard data are available, kringing is used to estimate the conditional 156 

parameter field and the corresponding conditional covariance matrix from the 157 

measured parameters. It is expressed as 158 

 * *

(1) (0) (0) 1 * (0)ˆ ˆ ˆ[ ]ff f f

−= + −f f ε CR f f  (3) 159 

and 160 

 * *

(1) (0) (0) 1 (0)T

ff ff ff fff f

−= −ε ε ε CR C ε  (4) 161 

https://doi.org/10.5194/hess-2019-622
Preprint. Discussion started: 3 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 
 

8 
 

in which *
f  (nm×1) is the measured parameters, 

(0)
f̂  (nf×1) is the unconditional 162 

parameter field, (1)
f̂  (nf×1) is the conditional parameter field. nf represents the 163 

number of unknown parameters and nm represents the number of measured parameters. 164 

(0)

ffε C  and (0)T

ffC ε  (nm×nf) are the unconditional parameter covariance matrices 165 

depicting the spatial correlation between the measured parameters and all parameters. 166 

(0)

ffε  (nf×nf) is the unconditional parameter covariance matrix depicting the spatial 167 

correlation between all parameters ( f̂ ). C  (nf×nm) is a matrix eliminating the column 168 

in (0)

ffε  when the corresponding measured parameter is absent. (1)

ffε  (nf×nf) is the 169 

conditional covariance marix of all parameters. The diagonal term of the matrix (i.e., 170 

residual variance) represents the remaining uncertainty of the estimated parameter 171 

after the information (measurements) is included. A small residual variance indicates 172 

the spatial trend of estimated parameter is close to the true, while a large value 173 

indicates the estimate is close to the initial guessed value (i.e. heterogeneity is not 174 

resolved). * *f f
R  (nm×nm) is the covariance matrix depicting the correlation between 175 

measured parameters. Notice that Cholesky and QR decompositions are utilized to 176 

solve the matrix multiplication of inverse * *f f
R  when it is and is not a positive 177 

definite matrix. 178 

Since nf is usually huge, storage demand of (0)

ffε  and (1)

ffε  may not be always 179 

affordable. Thus, singular value decomposition (SVD) is utilized to relieve this 180 

memory burden by keeping the leading eigenvalues and eigenvectors. The SVD of 181 

ffε  is expressed as 182 

  T

ff =ε g λ g  (5) 183 

where λ  (nsvd×nsvd) is eigenvalues, g  (nf×nsvd) is eigenvectors, and nsvd is number 184 
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of leading eigenvalues. Substitute eq. (5) into eqs. (3) and (4), we have 185 

  (1) (0) (0) (0) (0) 1 * (0)ˆ ˆ ˆ[ ]T

ff

−= + −f f g λ g CR f f  (6) 186 

and 187 

  (1) (1) (1) (0) (0) (0) (0) (0) (0) 1 (0) (0) (0)T T T T T

ff

−= −g λ g g λ g g λ g CR C g λ g  (7) 188 

Since (1)
g  is always a function of (0)

g , it can be expressed as 189 

  (1) (0) (0)=g g u  (8) 190 

where is (0)
u  (nsvd×nsvd) is the matrix transferring the information of spatial 191 

correlation of parameters to the next iteration. Accordingly, eq. (7) can reduce to 192 

  * *

(0) (1) (0) (0) (0) (0) 1 (0) (0) (0)( )T T T

f f

−= −u λ u λ I λ g CR C g λ λ  (9) 193 

in which I  is an identity matrix. By decomposing eq. (9) with SVD, we obtain the 194 

updated eigenvalue (1)
λ  and (0)

u . The updated eigenvector (1)
g  can be evaluated 195 

by eq. (8). 196 

(2) Error of Soft Data 197 

After considering the hard data, the inherently presented data errors (e.g., 198 

measurement, numeric, round-off, truncation errors, etc.) are included prior to the 199 

parameter estimation. The estimated data error and the corresponding covariance 200 

matrix are expressed as 201 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) * ( )ˆ ˆ ˆ[ ] [ ( )]r r r r T r r r r r

hh fh ff fh hh

+ −= + + − +e e ε J ε J ε h h e  (10) 202 

and 203 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )[ ]r r r r T r r r r

hh hh hh fh ff fh hh hh

+ −= − +ε ε ε J ε J ε ε  (11) 204 

in which *
h  (nd×1) is the observed head and ( )r

h  (nd×1) is the simulated head 205 

based on the estimated parameters from the rth iteration. nd represents the number of 206 

measured state variables. The superscript r is the iteration index starting from one. 207 
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(1)

hhε  (nd×nd) is the unconditional covariance matrix of the observed head. The 208 

diagonal terms represent the uncertainty of the measurement and the off diagonal 209 

terms represent the correlation between errors. ( )r

hhε  and ( 1)r

hh

+
ε  (nd×nd) are the 210 

conditional covariance matrices. 
(1)

ê  (nd×1) is the initial data error. 
( )ˆ r

e  and 
( 1)ˆ r+

e  211 

(nd×1) are the estimated data error. ( )r

fhJ  (nf×nd) is the sensitivity of observed head 212 

with respect to the estimated parameters during the rth iteration. 213 

 The weight (i.e., ( ) ( ) ( ) ( ) ( ) ( ) 1[ ]r r r T r r r

hh fh ff fh hh

−= +W ε J ε J ε ) is a combination of observed 214 

head covariance matrix ( ( )r

hhε ) and simulated head covariance matrix 215 

( ( ) ( ) ( ) ( )r r T r r

hh fh ff fh=R J ε J ). It represents the ratio of data error ( ( )r

hhε , including numeric and 216 

measurement errors) to the total error ( ( ) ( )r r

hh hh+R ε , including model structure, 217 

parameter, numeric, and measurement errors). When the model is poorly calibrated, 218 

the simulated head based on the current model structure and parameter values is much 219 

uncertain than that of observed head (i.e. ( )r

hhR >> ( )r

hhε ). Thus, the weight ( ( )r
W ) is 220 

small and the algorithm trusts the observation ( *
h ) more than the prediction ( ( )r

h ). 221 

After assimilating the subsurface characteristic casted in the observation, the 222 

uncertainty of simulated head ( ( )r

hhR ) reduces and the algorithm trusts the observation 223 

( *
h ) less than the prediction (

( )r
h ). Therefore, dismiss between *

h  and ( )r
h  are 224 

reflected into 
( )ˆ r

e . This data error calibration step is similar to the Kalman filter, but 225 

instead of using the observation from previous time step only, we consider all of the 226 

available observation simultaneously. 227 

Again, substitute eigenvalue λ  and eigenvector g  of ( )r

ffε  expressed in eq. 228 

(5), the reduced order formulations of eqs. (10) and (11) are 229 
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( 1) ( ) ( ) ( ) ( ) ( ) 1 ( ) * ( )ˆ ˆ ˆ[ ] [ ( )]r r r r r T r r r

hh fh fh hh

+ −= + + − +e e ε H H ε h h e  (12) 230 

and 231 

( 1) ( ) ( ) ( ) ( ) ( ) 1 ( )[ ]r r r r r T r r

hh hh hh fh fh hh hh

+ −= − +ε ε ε H H ε ε  (13) 232 

where ( )r

fhH  (nd×nsvd) is 233 

  
( ) ( ) ( ) ( )r r T r r

fh fh=H J g λ  (14) 234 

Notice that if the number of state (nd) is huge, SVD can potentially be used to 235 

decompose ( )r

hhε  (eq. 5) and reduce the storage requirement. 236 

(3) Soft Data.  237 

After estimating the data error, the measured state variables and data errors are 238 

substituted into successive linear estimator (SLE) (Yeh et al., 1996) to estimate the 239 

conditional parameter fields and the corresponding residual covariance matrix:  240 

  ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) 1 * ( 1) ( )ˆ ˆ ˆ[ ] [( ) ]r r r r r T r r r r r

ff fh fh ff fh hh

+ + − += + + + −f f ε J J ε J ε h e h  (15) 241 

and 242 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) 1 ( ) ( )[ ]r r r r r T r r r r T r

ff ff ff fh fh ff fh hh fh ff

+ + −= − +ε ε ε J J ε J ε J ε  (16) 243 

 The reduced order version of SLE can be derived by substitute eq. (5) into eqs. 244 

(15) and (16). That is, 245 

  ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) 1 * ( 1) ( )ˆ ˆ ˆ[ ] [( ) ]r r r r r T r r T r r r

fh fh fh hh

+ + − += + + + −f f g λ H H H ε h e h  (17) 246 

and 247 

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) 1 ( ) ( ) ( )[ ]r r r T r r r T r r r T r r T r r r r T

fh fh fh hh fh

+ + + + −= − +g λ g g λ g g λ H H H ε H λ g  (18) 248 

Using eq. (8), eq. (18) further reduces to 249 

( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( 1) 1 ( ) ( )( [ ] )r r r T r r T r r T r r r

fh fh fh hh fh

+ + −= − +u λ u λ I H H H ε H λ  (19) 250 

By decomposing eq. (19) with SVD, we can evaluate the updated eigenvalue ( 1)r+
λ  251 
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and ( )r
u . The updated eigenvector ( 1)r+

g  then can be calculated by eq. (8). 252 

(4) Convergence Criterion 253 

The estimated field is considered as the converge one when the spatial variance 254 

of the estimated parameter duing several iterations are steady. The tolarence using 255 

mean squared error between the observed and simulated states is no longer necessary. 256 

 257 

2.3. Required Inputs 258 

To initiate the algorithm, the initial guess of parameter field 
(0)

f̂  and data error 259 

(0)
ê , as well as the unconditional covariance matrix of the parameters 

(0)

ffε  and 260 

observed data (0)

hhε
 

are required. The details are explained as followings: 261 

Parameter Field: The initial parameter field 
(0)

f̂  can be any reasonable values 262 

based on the prior knowledge. 263 

Parameter Covariance: We assume the unconditional parameter covariance 264 

matrix is defined by an exponential covariance function 265 

  (0) expff

x y

Var
 

 − −
 =  +
 
 

x yd d
ε  (20) 266 

where Var  represents the unconditional spatial variance of the parameter; 
x

d  (nf×1) 267 

and 
y

d  (nf×1) are the distance between two parameters in x and y directions; 
x  268 

and 
y  are the correlation lengths (m) in x and y directions. 269 

 The reduced order algorithm requires the evaluation of unconditional parameter 270 

covariance matrix (0)

ffε  in terms of eigenvalue (0)
λ  and eigenvector (0)

g . In the 271 

real-world problem, the number of parameters nf is usually in the order of 103 to 105, 272 

and the computational cost of conducting full SVD is 
3

fn  ( 3( )fO n ). Alternately, 273 
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truncated SVD with the complexity in 2( )ft fO n n  can be used to approximate the 274 

original eigenvalue and eigenvector. nft is the number of randomly chose column in 275 

(0)

ffε . 276 

In addition to the numeric approach, the analytical solution of eigenvalues 
nλ  277 

and eigenvectors 
ng  with brick grid and domain (Ghanem and Spanos, 2003; Zhang 278 

and Lu, 2004) is also available. In 2-D domain, they are analytically express as 279 

2 2 2 2

, ,

22

1 1

yx
n

x n x y n y

Var
w w



 
=

+ +
λ  (21) 280 

, , ,, , ,

2 2 2 2

, ,

cos( ) sin( )cos( ) sin( )

( 1) ( 1)

2 2

y n y n y n yx n x n x n x

n

x n x x y n y y

x y

w w y w yw w x w x

w L w L



 
 

++
=

+ +
+ +

g  (22) 281 

where 
,n xw  and 

,n yw  are the positive roots of the characteristic equations 282 

2 2

, , , ,( 1)sin( ) 2 cos( )x n x n x x x n x n x xw w L w w L − =  (23) 283 

and 284 

2 2

, , , ,( 1)sin( ) 2 cos( )y n y n y y y n y n y yw w L w w L − =  (24) 285 

where xL  and 
yL  are the width of model domain in x and y directions. 286 

 Notice that if the model domain is irregular (i.e., not a line, squared, or brick 287 

shape), one can first construct the eigenvalue and eigenvector for a regular domain 288 

whose size is greater than the irregular one. Afterward, the eigenvector of the irregular 289 

domain can be evaluated by 290 

  
2irreg reg=g C g  (25) 291 

in which 2C  (nf,irreg×nf,reg) is a matrix to eliminate the rows of 
regg  if the 292 

corresponding grids are outside the model domain; nf,reg is the number of parameter of 293 
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the regular line, squared, or brick domain; nf,irreg is the number of parameter of the 294 

irregular domain. 
regg  and 

irregg  are the eigenvectors of regular and irregular 295 

domains. 296 

Data Error: The initial data error 
(0)

ê  can set as zero. 297 

 Data Covariance: The unconditional covariance matrix of the observed data 298 

(0)

hhε  is a diagonal matrix if the data error are mutually independent. Otherwise, a 299 

covariance function (e.g., eq. (20)) can be utilized to describe the unconditional 300 

correlation. 301 

 302 

2.4. Evaluation of Covariance 303 

The algorithm also requires the evaluation of squared root of cross-covariance 304 

( )r

fhH . One can evaluate the sensitivity by adjoint approach (e.g., Sykes et al., 1985; 305 

Sun and Yeh, 1990) first and substitute it into eq. (14) to derive ( )r

fhH . The 306 

computational cost of the adjoint approach is to run the linear adjoint forward model 307 

nw (number of observation wells) to nd (number of states) times, depending on the 308 

model configurations (e.g., confined, unconfined, saturated, unsaturated, and the types 309 

of boundary condition, etc.). 310 

On the other hand, a perturbation approach (e.g., forward, backward, central 311 

differences, etc.) can be utilized to directly evaluate ( )r

fhH  so that the computation of 312 

sensitivity is eliminated. Let ( )G   represent the groundwater flow governing 313 

equation and its Taylor expansion evaluated on 
( ) ( )ˆ r r +f g  is 314 

( ) 2 ( ) 3
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )ˆ ˆ ˆ ˆ ˆ( ) ( ) '( ) ''( ) '''( ) ...

2 3!

r r
r r r r r r rG G G G G

 
 + = + + + +

g g
f g f f g f f  (26) 315 

δ is an arbitrary value controlling the accuracy of approximation. Manipulating eq. 316 
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(26) yields 317 

( ) ( ) ( ) ( ) 2 ( ) 3 2
( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )ˆ ˆ ˆ'( ) ''( ) '''( ) ...
2 3!

r r r r r
r r r T r r r

fh

G G
G G G

  



+ −
= = − − −

f g f g g
f g J g f f318 

 (27) 319 

Multiplying both sides with 
( )r
λ , eq. (27) becomes 320 

( ) ( ) ( ) ( ) 2 ( ) 3 2
( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )ˆ ˆ''( ) '''( ) ...
2 3!

r r r r r
r r r r

fh

G G
G G

  



 + −
= − − − 
 

f g f g g
H f f λ  (28) 321 

Accordingly, ( )r

fhH  can be approximated by 322 

  
( ) ( ) ( )

( ) ( )
ˆ ˆ( ) ( )r r r

r r

fh

G G



+ −


f g f
H λ  (29) 323 

and the corresponding error is 324 

  
( ) 2

( ) ( ) ( )ˆ''( ) ...
2

r
r rerr G


= +

g
λ f  (30) 325 

To evaluate ( )r

fhH , we need to run the forward model nsvd (number of kept eigens) × 326 

nevent (number of pumping or injection events) times. 327 

If we further evaluate ( )G   on 
( ) ( )ˆ r r −f g  and combine it with 

( ) ( )ˆ( )r rG +f g , 328 

we have 329 

 
( ) 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ( ) ( ) 2 '( ) '''( ) ...
3!

r
r r r r r r rG G G G


  

 
+ − − = + + 

 

g
f g f g f g f  (31) 330 

Multiplying both sides with 
( )r
λ  and ( )r

fhH  can be approximated by 331 

  
( ) ( ) ( ) ( )

( ) ( )
ˆ ˆ( ) ( )

2

r r r r
r r

fh

G G 



+ − −


f g f g
H λ  (32) 332 

The corresponding error is 333 

( ) 3 2
( ) ( ) ( )ˆ'''( ) ...

3!

r
r rerr G


= +

g
λ f  (33) 334 

The evaluation of more accurate ( )r

fhH  requires the exercise of forward model 2nsvd × 335 

nevent times. 336 
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 337 

2.5. Computational Advantages 338 

The proposed reduced-order dual state-parameter inverse algorithm is efficient 339 

when the number of kept leading eigens (nsvd) is less than 1500. If the ratio of domain 340 

size and correlation length is huge, large nsvd value increase the computational cost of 341 

SVD ( 3( )klO n ). Furthermore, evaluating ( )r

fhH  through the forward or backward finite 342 

difference approach is efficient for many types of forward models (e.g., variable 343 

saturated diffusion equation, advection diffusion equation). It only requires executing 344 

the forward model for nsvd×nevent (number of pumping events) times. On the contrary, 345 

when the forward model is elegant (e.g., fully saturated diffusion equation), it is 346 

cost-effective to evaluate the sensitivity of state with respect to unknown parameter 347 

(eq. 14, ( )r

fhJ ) through the adjoint method. Only nw (number of observation wells) 348 

forward runs is required. In addition, updating state variable errors is efficient when 349 

nd (number of state variable) is less than 10000. The most expensive additional 350 

computational cost is to solve the inverse nd×nd matrix (eqs. 12 and 13) through either 351 

Cholesky or QR decompositions (matrix multiplication is an easy task under the 352 

parallel computing scheme). 353 

 354 

3. Algorithm Verification 355 

In this section, three cases are used to examine the robustness of the proposed 356 

algorithm. The first and second cases involve hydraulic tomographic surveys in a 357 

synthetic aquifer without and with observation error, respectively. The third case is a 358 

2-D application of tomography experiment in the field site. 359 

 The coefficient of determination ( 2R ) and the mean squared error (i.e., L2 norm), 360 

defined as 361 
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and 363 

* (0) * (0)

2

ˆ ˆ( ) ( )T

f

L
n

− −
=

f f f f
 (35) 364 

are utilized to evaluate the similarity between the reference and estimated parameter 365 

fields. Overbar represents the average. ( )std   stands for the standard deviation. 366 

 367 

3.1. Observation-Error Free Synthetic Case 368 

 The observation-error free synthetic case considers transient state HT in a 369 

two-dimensional horizontal confined aquifer of 30×30 square elements (figure 1). 370 

Each element is 1 (m)×1 (m). The aquifer is bounded by the constant head boundary 371 

(30 m). The initial head is uniform (30 m) everywhere. 372 

(a) Forward Model 373 

The reference field (figure 1) is generated using a spectral method (Gutjahr, 1989; 374 

Robin et al., 1993) with mean geometric T of one (m2/day), variance of lnT of one (-), 375 

and correlation scales of 10 (m) at both x and y directions. Eight wells (white dots) 376 

are evenly installed in the aquifer to collect the aquifer responses induced by three 377 

sequential pumping tests from early time till the system reaches steady state. The 378 

pumping wells are labeled with squares. The noise free observed heads only contain 379 

the numerical error (e.g., round-off and truncation errors), and its value is smaller than 380 

10-7 (m). The S is a constant value of 0.001 (-). The initial time step is 0.001 (day) and 381 

the maximum time step is 1 (day). 382 

(b) Inverse Model 383 

Assume S is known and we would like to estimate the spatial T distribution. The 384 
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initial mean T (
(0)

f̂ ) is one (m2/day), variance of lnT ( (0)

ffε ) is one (-), variance of 385 

observed head ( (0)

hhε ) is 10-4 (m2), and the correlation lengths x  and y  are 10 (m). 386 

(c) Results of Estimate 387 

Figure 2 shows the performances of the estimated T value using old algorithm 388 

(SLE) and figure 3 presents the performances using the new algorithm. Figure 2a 389 

presents the evolutions of mean squared error between the observed and simulated 390 

heads (L2 norm) and the spatial variance of lnT (Var lnT) during the calibration 391 

process. Figure 2b is the calibrated head at the final iteration. Figures 2c and 2d are 392 

the final and best estimated T field, respectively. Figure 2e and f are the scatter plots 393 

of the estimated T verses reference T corresponding to the final (figure 2c) and best 394 

(figure 2d) estimated T fields. As displayed in figure 2a, after L2 norm approaches 395 

steady, the spatial variance of estimated T (pink line) still increases with a constant 396 

rate. The gaining of spatial variation of estimated T values comes from the over 397 

calibrated observed head. Due to the natural of least squared algorithm (e.g., 398 

minimizing the mean squared error of state variables), the algorithm compensates the 399 

numeric errors by adjusting the estimated T to unreasonably high and low values, 400 

although the general spatial trend of the estimated T fields remains similar. As the 401 

result, compare to the best estimate of T field (figure 2d and f), the final estimate 402 

diverges (figure 2c and e). 403 

On the contrary, estimate using the new algorithm does not encounter the 404 

divergence issue. As shown in the calibration process (figure 3a), the spatial variance 405 

of estimated T (pink line) reaches steady after L2 decays to the value of 10-10 (i.e., 406 

magnitude of numeric error). The final estimated field (figure 3c) converges and the 407 

performances in terms of the statistical indices (figure 3d), namely L2, R2 408 

(determination coefficient), or the slope and intercept of the fitted linear relationship 409 
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between the estimates and the true values, are equally good as the best estimate by the 410 

previous algorithm (figure 2c). In other word, the new algorithm eliminates the over 411 

fitting issue. 412 

 413 

3.2. Noisy Synthetic Case 414 

This example aims to reveal the advantages of the algorithm when the 415 

measurement errors are presented. To accomplish this goal, the Gaussian noises with 416 

standard deviation of 10-3 (m) are superimposed on the observed heads discussed in 417 

section 3.1. The design of inverse model is identical with those explained in section 418 

3.1. 419 

Figure 4 shows the performances (evolution of calibration process, head fitting, 420 

contour of the estimate field, and the scatter plot between the estimate and reference 421 

fields) of the estimated T value using original algorithm, and figure 5 presents the 422 

performances using the new one. By comparing the final estimate with the manually 423 

selected best estimate of original SLE (figure 4d and f), the final estimated T field 424 

diverges as indicated by the increase in variance of lnT (pink line in figure 4a), 425 

unreasonable high and low values (red and blue spots in figure 4c) of the final 426 

estimated T fields, and the uncorrelated estimate and reference lnT values (figure 4e). 427 

On the contrary, the final estimate using the proposed algorithm shows that the 428 

estimated field converges to the reasonable spatial pattern and values. The variance of 429 

lnT (pink line in figure 5a) approaches stable and the simulated heads reproduce the 430 

adjusted observed heads (sum of observed heads and estimated head errors, figure 5b). 431 

Furthermore, the contour map and scatterplot of the final estimate (figure 5c and d) 432 

suggest the estimated field is close to the manually selected best estimate of original 433 

SLE (figure 4d and f) and the reference (figure 1). This means the new method no 434 

longer overestimate the parameter fields and can automatically converge to an optimal 435 
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estimate under the given constrains. 436 

 437 

3.3. Field Data 438 

The proposed algorithm is applied to a river stage tomographic survey conducted 439 

in Pingtun Plain, Taiwan. It is a 1200 km2 catchment with three major rivers 440 

penetrating from the north to south (figure 6). The plain is bound by foothills and 441 

river valleys at the north, faults at the west and east, and the shoreline at the south. As 442 

illustrated in figure 6b, the geology inferred from well logs shows that the upstream 443 

subsurface is consist of gravel. Follows by the layered sand and clay structure at 444 

middle and down streams. The regions with unconsolidated coarse sediments (gravel 445 

and sand) are aquifer and with fine sediments (silt and clay) are aquitard. The aquitard 446 

is characterized as marine deposition because abundant fossils such as shells and 447 

foraminifera live in the shallow marine and lagoon are discovered. The aquifer is 448 

characterized as non-marine deposition. Figure 6c presents the stream stage and 449 

groundwater level variations during 2006. The average annual rainfall is 2500 mm, 450 

with most of the precipitation happen between May and September. 451 

We focus on characterizing the heterogeneity of shallow aquifer because it is the 452 

major water source of agriculture, industrial, and municipal water supply. The average 453 

aquifer thickness is 40 m. This catchment is discretized into a two-dimensional 454 

horizontal confined aquifer with 5619 elements. Each element is 0.5 (km)×0.5 (km). 455 

There are 36 monitoring wells evenly placed across the catchment and measuring the 456 

hourly groundwater level variation of the aquifer since 1998. The aquifer is bounded 457 

by the time varying head boundary. The time varying heads along the boundary are 458 

extrapolated by kriging using the observed head collected from all of the monitoring 459 

wells. Water levels collected from stream gauges are incorporated into the diffusion 460 

wave equation to estimate the stream stages along the river. These estimated stages 461 
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are then treated as the prescribed head in the groundwater model. The initial 462 

groundwater level is estimated by spinning up the model for 6 years prior to June 463 

2006 utilizing the effective T (1 (m2/day)), effective S (10-5 (-)), time varying head 464 

boundary, and stream stage variations. 465 

The denoised groundwater levels from June to September 2006 are selected 466 

using the strategy (i.e., wavelet) discussed in Wang et al. (2017). There is a total of 467 

1440 measured heads selected for river stage tomographic survey. The initial mean T 468 

(
(0)

f̂ ) is 1 (m2/day), variance of lnT ( (0)

ffε ) is one (-), variance of observed head ( (0)

hhε ) 469 

is 10-4 (m2), and the correlation lengths 
x  and y  are 15 (km). For simplicity, we 470 

assume S is uniform and focus on estimating the spatial T distribution. The patterns of 471 

estimated T fields should be consistent with the hydraulic diffusivity field. 472 

 Figure 7 presents the calibration using the original SLE algorithm. The 473 

increasing of variance of lnT (figure 7a) near the end of iteration (iteration 100) 474 

suggests the estimate diverges, although the parameter field reproduces the observed 475 

drawdowns (figure 7b). The unreasonable huge spatial T variation corresponds to the 476 

significantly low and high values on the contour map of the final estimate field (figure 477 

7c). The contour map of manually selected best estimate is shown in figure 7d and the 478 

calibrated heads are similar with those in figure 7b. 479 

Figure 8 shows the estimate using the new algorithm. The performance clearly 480 

demonstrates the robustness and usefulness of the new algorithm on characterizing the 481 

subsurface heterogeneity. Compared with the variance of lnT in figure 7a, it stabilizes 482 

at the end of iteration (figure 8a) while still reproduces the adjusted observed heads 483 

(figure 8b). The estimated field (figure 8c) shares the similar spatial patterns with the 484 

manually selected one (figure 7d).  485 

To further examine the reliability of the estimate, the estimated T field is 486 
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compared with the map of geological sensitivity regions (figure 9) delineated by the 487 

Department of Central Geology Survey, Taiwan. The geological sensitivity regions 488 

represent the major areas water recharges the aquifer. They are categorized by core 489 

samples, geophysics (e.g., electric resistivity), and geochemical survey. In general, the 490 

deposition of geological sensitivity region is gravel and the aquifer thickness is 491 

greater than 100 m (blue areas in figure 6b). Compared figure 9 with figure 7d and 8c, 492 

the high T regions located near the upper streams (red areas) are in parallel with the 493 

geological sensitivity regions. 494 

 495 

4. Conclusion 496 

In this paper, a reduced order geostatistical model is developed to account for the 497 

subsurface heterogeneity. This method includes the evaluation of the errors of state 498 

variables and unknown parameters to improve the robustness of convergence. The 499 

over fitting problem (i.e., diverged estimated parameter fields) is leveraged by 500 

considering these errors into the calibration process. The memory burden (i.e. high 501 

dimensional parameter covariance) and requirement of domain shape (e.g., brick or 502 

rectangle) are also relieved by approximating the parameter covariance matrix 503 

through limited number of leading eigenvalues and eigenvectors using SVD. 504 

Meanwhile, the computation of sensitivity is replaced by the direct evaluation of 505 

cross-covariance through the finite differencing method. The modification relaxes 506 

barrier of implementing this inverse algorithm to different disciplines because the 507 

derivation of adjoint state method is no longer necessary. Lastly, as the stability of 508 

convergence is robust and the evaluation of cross-covariance (sensitivity) is efficient, 509 

the proposed algorithm is valuable and attractive for multi-discipline scientific 510 

problems, especially useful and convenient for assimilating different types of 511 

measurements. 512 
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 669 

Figure 1. Reference hydraulic transimissivity T (m2/day) field. The white dots 670 

represent monitoring wells and the squared are pumping wells. Four boundaries are 671 

the constant head. 672 
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  674 

 675 

 676 

Figure 2. The estimated hydraulic transmissivity T (m2/day) field using noise free 677 

observed head and old algorithm. a) The evolutions of mean squared error between 678 

the observed and simulated heads (L2 norm) and the spatial variance of lnT (Var lnT) 679 

during the calibration process. b) The calibrated head of the final iteration. c) The 680 

final estimated T field. d) The best estimated T field. e) The scatter plots of final 681 

estimated verses reference lnT. f) The scatter plots of best estimated verses reference 682 

lnT. 683 
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  685 

  686 

Figure 3. The estimated hydraulic transmissivity T (m2/day) field using noise free 687 

observed head and new algorithm. a) The evolutions of mean squared error between 688 

the observed and simulated heads (L2 norm) and the spatial variance of lnT (Var lnT) 689 

during the calibration process. b) The calibrated head of the final iteration. c) The 690 

final estimated T field. d) The scatter plots of final estimated verses reference lnT. 691 
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 694 

 695 

 696 
Figure 4. The estimated hydraulic transmissivity T (m2/day) field using noisy 697 

observed head and old algorithm. a) The evolutions of mean squared error between 698 

the observed and simulated heads (L2 norm) and the spatial variance of lnT (Var lnT) 699 

during the calibration process. b) The calibrated head of the final iteration. c) The 700 

final estimated T field. d) The best estimated T field. e) The scatter plots of final 701 

estimated verses reference lnT. f) The scatter plots of best estimated verses reference 702 

lnT. 703 
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 705 

 706 

Figure 5. The estimated hydraulic transmissivity T (m2/day) field using noisy 707 

observed head and new algorithm. a) The evolutions of mean squared error between 708 

the observed and simulated heads (L2 norm) and the spatial variance of lnT (Var lnT) 709 

during the calibration process. b) The calibrated heads verse adjusted observed heads 710 

(observed head + estimated error) of the final iteration. c) The final estimated T field. 711 

d) The scatter plots of final estimated verses reference lnT. 712 
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Figure 6. a) Topography of the study plain. The blue lines represent rivers and the 717 

black rectangles are groundwater monitoring wells. The black line is geological cross 718 

section. b) Geological cross section. c) Stream stage and groundwater level variations 719 

during 2006. a) and b) are modified from the website of Water Resources Agency, the 720 

administrative agency of the Ministry of Economic Affairs in Taiwan. 721 
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 726 

 727 

Figure 7. The estimated hydraulic transmissivity T (m2/day) field using observed head 728 

in the field and old algorithm. a) The evolutions of mean squared error between the 729 

observed and simulated heads (L2 norm) and the spatial variance of lnT (Var lnT) 730 

during the calibration process. b) The calibrated head of the final iteration. c) The 731 

final estimated T field. d) The best estimated T field. The white squares represent 732 

wells, the blue lines are rivers, and the black line is shoreline. 733 
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 736 

 737 

Figure 8. The estimated hydraulic transmissivity T (m2/day) field using observed head 738 

in the field and new algorithm. a) The evolutions of mean squared error between the 739 

observed and simulated heads (L2 norm) and the spatial variance of lnT (Var lnT) 740 

during the calibration process. b) The calibrated heads verse adjusted observed heads 741 

(observed head + estimated error) of the final iteration. c) The final estimated T field. 742 

The white squares represent wells, the blue lines are rivers, and the black line is 743 

shoreline. 744 
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 746 
Figure 9. Geological sensitivity regions delineated by the Department of Central 747 

Geology Survey, Taiwan. 748 
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