
Dear authors, 

I read with interest your submission to HESS. The work can potentially make 

significant advances in solving inverse problems in hydrogeology and its topic is 

relevant to the readership of HESS. A robust inversion algorithm is developed to 

automatically account for data errors by reducing the number of parameters (and 

therefore avoid over-fitting) using SVD. The new approach is also efficient enough so 

that the derivation of adjoint equations no longer necessary for large highly 

parameterized inverse models. 

Reply: We are glad to receive your constructive comments. They improve the 

organization and presentation of manuscript. We have revised the manuscript, 

especially the abstract and conclusion sections. 

 

The presentation of this work (esp. the abstract and conclusion) needs considerable 

improvement. There are too many obvious English errors and illogical sentences (see 

partial list below). I recommend having someone editing the paper before the next 

submission. I agree with RC1 that the abstract needs to be rewritten and have key terms 

defined. 

Reply: Thanks. We have revised the manuscript and had a native speaker editing the 

paper. 

 

Key findings such as computational savings should be quantified in the abstract.  

Reply: Thanks. They are included based on your specific suggestion for L326-327, 335-

336, section 2.5. The revised abstract is: 

“Geostatistical inverse methods usually permit numerous spatial correlated 

parameters to account for subsurface heterogeneity and predict state variability 

properly. However, a large number of unknown parameters (nf) causes considerable 

storage burden and computational complexity (e.g., evaluating the sensitivity efficiently) 

that challenge the application of classical inverse modeling techniques. In addition, the 

convergence criteria based on relative changes in parameter variance or fitness of 

observed and simulated states usually lead to under- or over-calibration. The best 

estimate, which is commonly selected manually, heavily relies on personal judgment. 

Accordingly, singular value decomposition (SVD) is employed, and the state error is 

estimated to reduce memory usage, improve computational efficiency, and stabilize the 

estimate. Specifically, the parameter covariance matrix is projected to the orthonormal 

basis (nr) through an analytical solution, and only the components that explain most of 

the original matrix structure are retained. The matrix size decreased from nf× nf to 

nf× nr. The covariance on the orthonormal basis is further evaluated directly through 

the finite difference scheme, and the sensitivity calculation is omitted. This approach 



only requires performing the forward model run in the order of nr times. Finally, the 

parameters and errors of states are sequentially updated to leverage the over-fitting 

problem and accelerate the convergence by eliminating the unnecessary iteration. The 

computational advantages of the proposed reduced-order inverse algorithm are 

demonstrated through numerical and field case studies. Analysis suggests that the 

stability of model convergence dramatically improves. The estimated parameter values 

also stabilize to a reasonable order of magnitude. The memory requirement 

considerably diminishes, while the spatial resolution of the estimate is maintained. The 

proposed method benefits multi-discipline scientific problems and is especially useful 

and convenient for assimilating different types of measurements.” 

 

The conclusion section failed to highlight its major contribution (e.g. the main 

contribution of this paper is not to account for subsurface heterogeneity!).  

Reply: Thanks. We have revised the conclusion based on your specific suggestion for 

L326-327, 335-336, section 2.5. The revised conclusion is: 

“A reduced-order geostatistical model is developed in this study to leverage the 

stability of model convergence, storage burden, and computational complexity. The 

robustness of model convergence is considerably improved by estimating the state 

errors in the inverse modeling process. The final estimated parameter values stabilized 

to a reasonable order of magnitude. The memory burden (i.e., high dimensional 

parameter covariance) and the computational complexity of sensitivity are also 

relieved by approximating the parameter covariance matrix through a limited number 

of leading eigenvalues and eigenvectors. The matrix storage is reduced from nf× nf 

(number of unknown parameters) to nf× nsvd (number of retained eigens). The 

sensitivity is no longer evaluated and replaced by the direct evaluation of cross-

covariance through the finite differencing method. The additional computational cost 

involved performing the forward model nsvd (number of stored eigens) ×  nevent 

(number of pumping or injection events) times. Finally, the proposed algorithm will be 

valuable and attractive for multi-discipline scientific problems due to the stable and 

robust convergence of the proposed method and the efficient evaluation of cross-

covariance. Particularly, the proposed algorithm is beneficial for assimilating different 

types of state measurements.” 

 

 

 

 

 

 



Lastly, perhaps some flowchart summarizing the method will be helpful.  

Reply: Thanks for your suggestion. A flowchart is included in the revised manuscript. 
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I will be pleased to see this work published in HESS but some major revisions are 

needed to improve its presentation. 

Reply: Thanks for the recommendation. We have rewritten and reorganized the 

manuscript based on your suggestions and comments.  

 

Overall assessment: 

The methods section is difficult to follow. A better approach would be, without losing 

generality, introduce hydraulic tomography and SSLE first and then go into the SVD 

of error covariances. 

Reply: Thanks. We have revised the method section and add a flowchart to compare 

the previous and proposed algorithm. The section is organized as SLE inverse 

algorithm, data error and its covariance, and covariance matrix reduction using SVD. 

 

In the results section, there is no mention of how many leading eigenvalues (or. 

Reply: Thanks. The leading eigenvalues used in both synthetic and field cases are 250. 

These eigenvalues and eigenvectors explain 84 % of original matrix structure. They are 

included in line. 

 

The issue with brick/regular/rectangular domain mentioned in the abstract and L119-

126 doesn’t seem to be entirely justified. Is the matrix manipulation method shown here 

applied to hydrology problems the first time? Can they be readily applied to existing 

methods listed in the above lines?  

Reply: Thanks for the suggestion. SVD is not a computational affordable method to 

evaluate the eigenvalue and eigenvector of covariance matrix utilized in the highly 

parameterized inverse problem (the number of unknowns may be more than ten 

thousand). Thus, we need to utilize the analytical solution for SVD decomposition. The 

analytical method is derived based on two assumptions. One is the brick grid and the 

other is the brick domain. We have revised the abstract and introduction to clarify this 

issue. 

 

How useful is the matrix manipulation to eliminate cells compared with more pragmatic 

approaches such as using a larger domain and then set inactive cells in a flow problem? 

Reply: They are mathematically identical. We just create a larger domain and remove 

the inactive cells out of the matrix. 

 

Please use the HESS template without any modification for resubmission.  

Reply: Thanks for your comment, we will use the HESS template in our revised 

manuscript. 



 

Pay attention to these errors, e.g.: + "approach stable" or "approach steady" or "are 

steady" + "unknow" + "as the result" + "numeric errors" + "a bunch of realizations"  

Reply: Thanks. We have corrected these errors in the revised manuscript. 

 

I can’t follow these sentences: e.g. most of the abstract, L153, 222 

Reply: We have revised these sentences as the following: 

Abstract: Please refer to the revised abstract above. 

L153: The singular value decomposition (SVD) is employed to reduce the order of the 

parameter covariance, leading to less memory requirement and more computational 

efficiency in inverse exercise. In addition, the algorithm estimates the data error, which 

stabilized the estimated parameter field and improves the convergence stability. 

L222: After the model structure (i.e., updated parameter field) improves, the 

uncertainty of simulated head ( ( )r

hhR ) reduces and the algorithm trusts the observation 

(
*

h ) less than the prediction ( ( )r
h ). 

 

Consider putting some lengthy derivation in the appendix  

Reply: Thanks for your suggestion. We have reorganized the method section. Some of 

the derivations are moved to the appendix. 

 

Title, L339: the entire article has no mention of dual state-parameter, revise 

Reply: Thanks for your comments. We have removed dual state-parameter from the 

manuscript, and the title has been also revised. 

 

L40: what does "prefer scale" mean? I also find this paragraph quite ambiguous and not 

justifying high-resolution subsurface characterization 

Reply: We have modified the paragraph as following:” Understanding the spatial 

distribution of the site-specific hydrological parameters (e.g., hydraulic conductivity 

and specific storage) is one of the important foundations to design a successful 

management strategy.” 

 

L92-96: it’s not good enough to just list the existing methods. an assessment of their 

characteristics/strengths/ weaknesses is needed. A table may be helpful. 

Reply: Thanks for the suggestion. We have included the assessment and a table. The 

revised assessment is: 

“Sun and Yeh (1990) employed the adjoint approach to evaluate sensitivity. This 

approach reduces the cost of running the forward model to less than nd times. Liu et al. 



(2014), Kitanidis and Lee (2014), Li et al. (2015), and Zha et al. (2018) projected the 

parameter covariance matrix on the orthonormal basis and directly evaluated the 

covariance between parameter and state. The computational cost of running the 

forward model is reduced to the order of the number of basis (nr) by using the adjoint 

(Liu et al., 2014) and finite differencing (Kitanidis and Lee, 2014; Li et al., 2015; and 

Zha et al., 2018) approach. 

Besides, Saibaba and Kitanidis (2012) used the hierarchical nature of matrices to 

accelerate the computation of dense matrix–vector products. Similarly, Li et al. (2014) 

used the hierarchical matrix technique to rewrite the Kalman filtering equations into a 

computationally efficient counterpart, and Ghorbanidehno et al. (2015) extended the 

hierarchical matrix technique to the general case of non-linear dynamic systems. The 

hierarchical technique reduces the computational complexity from O(nf× nf× nd) to 

O(nf× nd× lognf) when constructing the covariance matrix between parameter and state. 

In addition, many approaches relieve the memory requirement by reformulating 

the covariance matrix. For example, Nowak and Litvinenko (2013) combined low-rank 

approximations to the covariance matrices with fast Fourier transform; Kitanidis (2015) 

decomposed the covariance matrix through some orthonormal basis and suggested that 

the choice of basis can be tailored to the problem of interest to improve the estimation 

accuracy; Li et al. (2015) used discrete cosine transform to compress the model 

covariance matrix; Zha et al. (2018) employed the Karhunen–Loeve expansion and 

Kitanidis and Lee (2014) applied low-rank factorization to compress the parameter 

covariance matrix. These methods reduce the storage cost from nf× nf to nf× nr. Zunino 

and Mosegaard (2019) utilized the Kronecker product decomposition to reduce the 

storage of cross-covariance between state and parameter. 

Performing the inverse operation efficiently is problematic when the number of 

state nd is large. Saibaba and Kitanidis (2012) and Liu et al. (2014) used a matrix-free 

Krylov subspace approach (e.g., restarted GMRES[50] and MINRES) to reduce the 

storage and computational cost. Specifically, this method uses a predefined low-rank 

representation of the prior covariance matrix to establish a close approximation of the 

inverse state covariance matrix and eliminates the storage of state covariance matrix. 

However, additional forward model runs are required. A randomized algorithm is 

another tool used to reduce the size of the state covariance matrix (Lin et al., 2017). 

This algorithm projects the state and governing equations to several subspaces through 

a sketch matrix. The size of the state covariance matrix reduces to nr× nr. 

In addition to reformulating the covariance matrix, several methods reduce the 

computational complexity of the governing equation. For instance, the temporal 

moment eliminates the temporal derivative term in the governing equation (Cirpka and 

Kitanidis, 2000; Nowak and Cirpka, 2006; Yin and Illman, 2009). Galerkin projection 



reduces the matrix size (i.e., A and B matrices) of a sparse linear system equation AX 

= B by projecting the state variable to the orthonormal basis (Liu et al., 2013). Lin et 

al. (2016) also projected the sparse linear system equation to the Krylov subspace with 

the Golub–Kahan–Lanczos bidiagonalization technique and reduced its matrix size. 

The combination of random mixing with the Whittaker–Shannon interpolation also 

reduces the computational cost of forward modeling (Horning et al., 2019). 

The storage and computational complexity of the aforementioned methods are 

summarized in Table 1.” 

Table 1.  
 

Method Storage Comp. Cost 
 

Parameter/Model Covariance Matrix ffε  

 
Full matrix nf×nf - 

 

 Any orthonormal basis nf×nr - Kitanidis (2015)  
Low rank factorization nf×nr - Kitanidis and Lee (2014) 

 Discrete cosine 

transform 

nf×nr+nr - Li et al. (2015) 

 
Karhunen-Loeve 

expansion 

nf×nr+nr - Zha et al. (2018) 

State Covariance Matrix 
hhR  

 Full matrix nd×nd -  

 Randomize algorithm nr×nr - Lin et al. (2017) 

Sensitivity fhJ  and Covariance T

fh ffJ ε  

 
Finite difference nf×nf nf +1 

 

 
Adjoint (linear diff. 

eq.) 

nf×nd nw Sun and Yeh (1990) 

 
Adjoint (nonlinear diff 

eq.) 

nf×nd nd Sun and Yeh (1990) 

 Adjoint on 

orthonormal basis 

nd×nr nr Liu et al. (2014) 

 Finite difference on 

orthonormal basis 

nd×nr nr×nevent Kitanidis and Lee (2014) 

Li et al. (2015) 

Zha et al. (2018) 

Forward Modeling 

 Galerkin projection - Size of AX=B Liu et al. (2013) 



 Golub-Kahan-Lanczos 

bidiagonalization 

- Size of AX=B Lin et al. (2016) 

 Temporal moment - Steady state Cirpka and Kitanidis (2000) 

Nowak and Cirpka (2006) 

Yin and Illman (2009) 

Matrix Multiplication 

 T

fh ffJ ε  
- O(nf×nf×nd)  

 Hierarchical matrix - O(nf×nd×lognf) Saibaba and Kitanidis (2012) 

Li et al. (2014) 

Ghorbanidehno et al. (2015) 

Inverse Matrix 1

hh

−
R  

 
Cholesky 

decomposition 

nd×nd 
O(0.33 3

dn ) 

 

 QR decomposition nd×nd 
O(1.33 3

dn ) 
 

 Krylov subspace 

(MINRES, 

GMRES50) 

0 2ns+nr+3 Saibaba and Kitanidis (2012) 

Liu et al. (2014) 

1. nr is the reduced dimension. It could be the number of frequencies (Li et al., 2015), 

orthonormal basis (Liu et al., 2014; Kitanidis 2015; Zha et al., 2018), ranks 

(Saibaba and Kitanidis, 2012; Kitanidis and Lee, 2014), or the size of sketch 

matrix (Lin et al., 2017). 

2. Comp. Cost represents the computational cost. It could be either number of 

forward model runs or computational complexity. 

3. ns is the number of iterations in MINRES or GMRES50. nf is the number of 

unknown parameters. nd is the number of states. nw is the number of wells or 

unique measurement locations. nevent is the number of pumping test. 

 

L110-L118: Do you think modelling the measurement errors (as in ERT literature) is a 

more straightforward way to solve the problem? also, check out "Robust inversion in 

ERT" 

Reply: We can remove the outlier from dataset or take more measurement to eliminate 

the effects of outlier. However, as demonstrated in the measurement-error free 

synthetic example, the estimate is still over-calibrated. We have checked some papers 

related to the robust inversion in ERT. These papers gradually eliminated the outlier 

of the observation data and did not directly consider the state error. 



Morelli, G., & LaBrecque, D. J. (1996). Advances in ERT inverse modelling. European 

Journal of Environmental and Engineering Geophysics, 1(2), 171-186. 

Morelli, G., & LaBrecque, D. J. (1996, April). Robust scheme for ERT inverse modeling. 

In 9th EEGS Symposium on the Application of Geophysics to Engineering and 

Environmental Problems (pp. cp-205). European Association of Geoscientists & 

Engineers. 

 

L142: Add a method overview 

Reply: Thanks. The overview is added. “In this study, we adopt the subsurface 

characterization technique (successive linear estimator, SLE) developed by Yeh et al. 

(1996). This algorithm conceptualizes the hydraulic parameters and state variables as 

the spatial stochastic process and assumed that they can be characterized by some 

statistical information (e.g., mean, variance, and spatial correlation function). 

Thereafter, we improve the algorithm stability by modeling the measurement error. We 

further reduce the computation complexity (e.g., sensitivity) and storage burden by 

singular value decomposition (SVD). A flowchart summarizing the differences between 

the old and new algorithms is presented in figure 1.” 

 

L197 onwards: needs to introduce the error formulation... consider using curly brackets 

under parts of the equation to introduce terms such as W and Rhh 

Reply: The error formulation is introduced in the required input section (section 2.3). 

 

L280: Did you use the analytical solutions here? 

Reply: Yes, we use the analytical solution for SVD decomposition. 

 

L309: should specify which computation time refers to which regime 

Reply: Thanks for your comment, and they are included in the revised manuscript. “For 

instance, if the parameters are independent with state variable (e.g., saturated flow 

equation in a confined aquifer) and the boundary conditions are identical between 

different pumping tests, only nw times of adjoint forward model is required. If the 

boundary conditions vary between different pumping tests, we need to run the forward 

model nw ×  nevent (number of pumping or injection events) times. If the parameters 

dependent on the state variable (e.g., unsaturated flow equation or flow through an 

unconfined aquifer), nd times of forward modeling are necessary.” 

 

L311: Is it just a differencing scheme, why call it a perturbation approach?  

Reply: Thanks for your comment. We have modified it to finite differencing scheme. 

 



L314 g(r) : confusing symbol, used g as eigenvectors before. Use another symbol or 

Font  

Reply: g refers to the eigenvector. We evaluate the covariance on the orthonormal basis 

and skip the sensitivity evaluation. 

 

L326-327, 335-336, section 2.5: This needs to be highlighted somehow! e.g. in a table 

and recapped in conclusions/abstracts 

Reply: They are included in the abstract and conclusion. 

Abstract: The covariance on the orthonormal basis is further evaluated directly 

through the finite difference scheme, and the sensitivity calculation is omitted. This 

approach only requires performing the forward model run in the order of nr times. 

Conclusion: The sensitivity is no longer evaluated and replaced by the direct 

evaluation of cross-covariance through the finite differencing method. The additional 

computational cost involved performing the forward model nsvd (number of stored 

eigens) ×  nevent (number of pumping or injection events) times. 

 

L328-336: Did you use this more accurate version here? 

Reply: Yes, we have included the following description. “Although using the adjoint 

approach is more computational efficient in our example (i.e., linear diffusion 

equation), for demonstration purpose, we use the central difference scheme to evaluate 

the squared root of cross-covariance ( )r

fhH .” 

 

L340: how do you get this number? 

Reply: We have included the following citation: “S. Lahabar and P. J. Narayanan, 

"Singular value decomposition on GPU using CUDA," 2009 IEEE International 

Symposium on Parallel & Distributed Processing, Rome, 2009, pp. 1-10.” 

 

L346: elegant?? do you mean the governing equation is linear or K does not depend on 

H? 

Reply: We have changed the elegant to linear. 

 

L352: straightforward instead of easy 

Reply: We have corrected it. 

 

L488: cite map – so that readers can know how the map is derived 

Reply: The map is derived from the following paper: Tsai, J. P., Chen, Y. W., Chang, 

L. C., Chen, W. F., Chiang, C. J., Chen, Y. C.: The assessment of high recharge areas 



using DO indicators and recharge potential analysis: a case study of Taiwan’s 

Pingtung plain. Stoch. Env. Res. Risk A., 29(3), 815-832, 2015. 

 

L491: you mean deposits? 

Reply: We have modified it. 

 

L493: you mean "collocated" instead of "in parallel"? 

Reply: We have modified it. 

 

Fig 2 and 4: please mark which iteration is the used for the "best" iteration (in the 

caption or a vertical line in (a)) 

Reply: We have modified it. 

 

Fig 2 and 3, 4 and 5: Can’t the modeller just saves all the outputs from the old algorithm 

and pick the best one? 

Reply: Fig 3 and 5: These figures are from the new algorithm. The final iteration is the 

best estimate field. No need to manually pick the best one. 

Fig 2 and 4: Please be aware that without knowing the true field, it is impossible to 

select the best estimate. One can only subjectively choose a reasonable estimate based 

on the personal judgement. 

 

Fig 8: R2=1.0 and y=X trendline– too good to be true? Please double-check or add 

digits 

Reply: It is the correct trendline. 

 

 


