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Abstract. The Standardized Precipitation Index (SPI) is a widely accepted drought index. Its calculation algorithm normalizes

the index via a distribution function. Which distribution function to use is still disputed within literature. This study illuminates

the long-standing dispute and proposes a solution which ensures the normality of the index for all common accumulation

periods in observations and simulations.

We compare the normality of SPI time-series derived with the gamma, Weibull, generalized gamma, and the exponentiated5

Weibull distribution. Our normality comparison evaluates actual against theoretical occurrence probabilities of SPI categories,

and the quality of the fit of candidate distribution functions against their complexity with Akaike’s Information Criterion. SPI

time-series, spanning 1983–2013, are calculated from Global Precipitation Climatology Project’s monthly precipitation data-

set and seasonal precipitation hindcasts from the Max Planck Institute Earth System Model. We evaluate these SPI time-series

over the global land area and for each continent individually during winter and summer. While focusing on an accumulation10

period of 3-months, we additionally test the drawn conclusions for other common accumulation periods (1-, 6-, 9-, and 12-

months).

Our results suggest to exercise caution when using the gamma distribution to calculate SPI; especially in simulations or

their evaluation. Further, our analysis shows a distinctly improved normality for SPI time-series derived with the exponentiated

Weibull distribution relative to other distributions. The use of the exponentiated Weibull distribution maximizes the normality15

of SPI time-series in observations and simulations both individual as well as concurrent. Its use further maximizes the normality

of SPI time-series over each continent and for every investigated accumulation period. We, therefore, advocate to derive SPI

with the exponentiated Weibull distribution, irrespective of the heritage of the precipitation data or the length of analyzed

accumulation periods.

1 Introduction20

Drought intensity, onset, and duration are commonly assessed with the Standardized Precipitation Index (SPI). SPI was first

introduced by McKee et al. (1993) as a temporally and spatially invariant probability-based drought index. In 2011, the World

Meteorological Organization (WMO) endorsed the index and recommended its use to all meteorological and hydrological ser-

vices for classifying droughts (Hayes et al., 2011). Advantages of SPI are its standardization (Sienz et al., 2012), its simplicity,
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and its variable time scale which allows its application to assess meteorological, agricultural, and hydrological drought (Lloyd-25

Hughes and Saunders, 2002). In contrast, the index’s main disadvantage is the mean by which its standardization is realized

and concerns the identification of a suitable theoretical distribution function to describe and normalize highly non-normal pre-

cipitation distributions (Lloyd-Hughes and Saunders, 2002). The choice of that suitable theoretical distribution function is a

key decision in the index’s algorithm (Blain et al., 2018; Stagge et al., 2015; Sienz et al., 2012). This study illuminates reasons

for a missing consensus on this choice and attempts to establish such a consensus for both simulations and observations.30

SPI quantifies the standardized deficit (or surplus) of precipitation over any period of interest – also called accumulation

period. This is achieved by fitting a probability density function (PDF) to the frequency distribution of precipitation totals

of the accumulation period – which typically spans either 1-, 3-, 6-, or 12-months. SPI is then generated by applying a Z-

transformation to the probabilities and is standard normal distributed.

The choice of the PDF fitted to the frequency distribution of precipitation is essential because only a proper fit appropriately35

standardizes the index. While the standardization simplifies further analysis of the SPI, the missing physical understanding of

the distribution of precipitation leads to a questionable basis for the fit. Therefore, the choice of the PDF is to some extent

arbitrary and depicts the Achilles heel of the index.

Originally, McKee et al. (1993) proposed a simple gamma distribution – while Guttman (1999) identified the Pearson Type III

distribution – to best describe observed precipitation. Both of these distributions are nowadays mostly used in SPI’s calculation40

algorithms. As a result, many studies that use SPI directly fit the gamma (Mo and Lyon, 2015; Ma et al., 2015; Yuan and Wood,

2013; Quan et al., 2012; Yoon et al., 2012) or the Pearson type III distribution (Ribeiro and Pires, 2016) without assessing

the normality of SPI’s resulting distribution with goodness-of-fit tests or other statistical analyses beforehand. The selected

PDF, however, is of critical importance because the choice of this PDF is the key decision involved in the calculation of SPI

and indeed many authors have urged to investigate the adequacy of distribution functions for new data-sets and regions before45

applying them (Blain et al., 2018; Stagge et al., 2015; Touma et al., 2015; Sienz et al., 2012). Such a negligence has potentially

far-reaching consequences in terms of a biased drought description (Guenang et al., 2019; Sienz et al., 2012). A biased drought

description would result from an inadequacy of the fitted distribution function to describe precipitation. Such an inadequacy

has been identified for the gamma (Guenang et al., 2019; Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015;

Sienz et al., 2012; Touma et al., 2015; Naresh Kumar et al., 2009; Lloyd-Hughes and Saunders, 2002) as well as the Pearson50

type III distribution (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015) in many parts of the world. This lead to

the request for further investigations of candidate distribution functions (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge

et al., 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saunders, 2002; Guttman, 1999).

Several studies have investigated the adequacy of PDFs fitted onto observed precipitation while focusing on different can-

didate distribution functions (Blain and Meschiatti, 2015), different parameter estimation methods in the fitting procedure55

(Blain et al., 2018), different SPI time scales (Guenang et al., 2019), general drought climatology (Lloyd-Hughes and Saun-

ders, 2002), and even the most appropriate methodology to test different candidate distribution functions (Stagge et al., 2015).

As each of these investigations analyzed different regions, different PDFs or focused on different perspectives of this highly

multi-dimensional problem, they recommend different candidate PDF.
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Nevertheless, some common conclusions can be drawn. Most investigations only analyzed 2-parameter distribution functions60

(Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002). Among those, they agreed

depending on the accumulation period and/or the location either on the Weibull or the gamma distribution to be best suited in

most cases. However, Blain and Meschiatti (2015) also investigated 3-, 4- and 5-parameter distribution functions and concluded

that 3-parameter PDFs seem to be best suited to compute SPI in Pelotas, Brazil. Consequently, they advocated for a re-

evaluation of the widespread use of the 2-parameter gamma distribution (see also Wu et al., 2007). Moreover, a single candidate65

distribution function was neither suited in each location nor for each accumulation period to properly calculate SPI time series

(Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002). Further, at the accumulation

period of 3-months, a critical phase transition in precipitation totals seem to manifest which complicates the overall ranking of

candidate PDFs (Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015). Findings point at the Weibull distribution to be

best suited for short accumulation periods (smaller than 3 months) and the gamma distribution for long accumulation periods70

(larger than 3 months) (Stagge et al., 2015).

Two additional studies analyzed the adequacy of different candidate PDFs fitted onto simulated precipitation while focusing

on drought occurrence probabilities in climate projections (Touma et al., 2015; Sienz et al., 2012). Touma et al. (2015) is the

only study which tested candidate PDFs globally. However, they solely provided highly aggregated results which are globally

averaged for accumulation periods between 3- and 12-months and concluded that the gamma distribution is overall best suited75

to calculate SPI. In contrast, Sienz et al. (2012) is up to now the only study which tested candidate PDFs in simulations

as well as in observations and identified notable differences in their performance in both realizations. They focused on an

accumulation period of 1-month and their results also show that the Weibull distribution is well suited for SPI calculations

at short accumulation periods in observations but also in simulations. Moreover, their results also hint at the phase transition

mentioned above: for accumulation periods longer than 3 months their results indicate that the gamma distribution outperforms80

the Weibull distribution in observation as well as in simulations. More interestingly, Sienz et al. (2012) results indicate that two

3-parameter distributions (the generalized gamma and the exponentiated Weibull distribution) perform for short accumulation

periods as well as the Weibull distribution and for long accumulation periods similar to the gamma distribution; in observations

and simulations. Surprisingly, neither the exponentiated Weibull nor the generalized gamma distribution have been thoroughly

tested since.85

Testing the performance of 3-parameter distributions introduces the risk of overfitting (Stagge et al., 2015; Sienz et al., 2012)

which could explain the focus on 2-parameter distributions in recent studies. As a consequence of this focus in combination

with the inability of 2-parameter PDFs to perform sufficiently well in different locations and for different accumulation periods

concurrently, many studies have proposed a multi-distribution approach (Guenang et al., 2019; Blain and Meschiatti, 2015;

Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saunders, 2002). Such an approach recommends the use of the90

best-suited PDF for each accumulation period and in each location. In opposition, other studies have strongly emphasized

concern about this approach, because it adds complexity while reducing or even obliterating comparability across space and

time (Stagge et al., 2015; Guttman, 1999). The comparability across space and time is a main advantage of SPI. Guttman

(1999) even warns of using SPI widely until a single PDF is commonly accepted and established as the norm.
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Most studies test candidate distribution functions with goodness-of-fit tests (Guenang et al., 2019; Blain et al., 2018; Blain95

and Meschiatti, 2015; Stagge et al., 2015; Touma et al., 2015; Lloyd-Hughes and Saunders, 2002). In this process, some studies

heavily rely on the Kolmogorov-Smirnov test (Guenang et al., 2019; Touma et al., 2015). However, the Kolmogorov-Smirnov

test has an unacceptably high likelihood of erroneously accepting a non-normal distribution if the parameters of the candidate

PDF have been estimated from the same data on which the tested distribution bases (which is in view of scarce precipitation

data availability usually always the case) (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015). Therefore, other100

studies tested the goodness-of-fit either with an adaptation of the Kolmogorov-Smirnov test, the Lillieforts test (Blain et al.,

2018; Blain and Meschiatti, 2015; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002), with the Anderson-Darling test

(Blain et al., 2018; Stagge et al., 2015) or with the Shapiro-Wilk test (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge

et al., 2015). Nevertheless, the Lillieforts and Anderson-Darling tests are inferior to the Shapiro-Wilk test (Blain et al., 2018;

Stagge et al., 2015) which in turn is unreliable to evaluate SPI normality (Naresh Kumar et al., 2009).105

Additionally, all three of these goodness-of-fit tests are unable to produce any relative ranking of the performance of dis-

tribution functions for a specific location and accumulation period. In consequence, they are ill-suited to discriminate the best

performing PDF out of a set of PDFs (Blain et al., 2018), because they are designed to deliver a binary answer. For SPI dis-

tributions, however, the question is not whether they are (or should be) normally distributed (for which goodness-of-fit tests

are well suited to provide the answer). The crucial question is rather which PDF maximizes the normality of the resulting SPI110

distribution. As a result, those studies that rigorously analyzed candidate distribution functions or investigate an appropriate

test methodology for evaluating SPI candidate PDFs advocate the use of relative assessments: mean absolute errors (Blain

et al., 2018), Akaike’s Information Criterion (AIC) (Stagge et al., 2015; Sienz et al., 2012), or deviations from expected SPI

categories (Sienz et al., 2012). These studies also emphasize the importance of quantifying the differences between theoretical

and calculated SPI values for different drought categories (Blain et al., 2018; Sienz et al., 2012). Stagge et al. (2015) who115

investigated appropriate methodologies to test different candidate PDFs even used AIC to discriminate the performance of

different goodness-of-fit tests.

In this study, we test the adequacy of the gamma, Weibull, generalized gamma, and exponentiated Weibull distribution in

SPI’s calculation algorithms. The evaluation of their performance depends on the normality of the resulting SPI time-series.

In this evaluation, we focus on an SPI accumulation period of 3-months (SPI3M ) during winter (DJF) and summer (JJA) and120

test the drawn conclusions for other common accumulation periods (1-, 6-, 9-, and 12-months). Our analysis conducts two

different evaluations of their normality: (i) it compares actual occurrence probabilities of SPI categories (as defined by WMO’s

SPI User Guide (Svoboda et al., 2012)) against well-known theoretically expected occurrence probabilities from the standard

normal distribution (N0,1), (ii) it analytically assesses with the Akaike’s Information Criterion (AIC) the optimal trade-off

between information gain against the complexity of the PDF to adhere to the risk of overfitting. During this analysis, we125

investigate observations and simulations, the latter are usually neglected but demand nowadays a similarly prominent role as

observations because of the increasing importance of drought predictions and their evaluation. Despite this importance, the

adequacy of different candidate distribution functions has to the authors’ best knowledge never been tested in the output of a

seasonal prediction system – although seasonal predictions constitute our most powerful tool to predict individual droughts. To
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close that gap, this study evaluates the performance of candidate distribution functions in an output of 10 ensemble members130

of initialized seasonal hindcast simulations. The monthly precipitation data-set of the Global Precipitation Climatology Project

(GPCP) serves as an observational product. We conduct our analysis for the period 1982 to 2013 with a global focus which

also highlights regional disparities on every inhabited continent (Africa, Asia, Australia, Europe, North America, and South

America).

2 Methods135

2.1 Model and Data

We employ a seasonal prediction system (Baehr et al., 2015; Bunzel et al., 2018) which bases on the Max-Planck-Institute

Earth System Model (MPI-ESM). MPI-ESM, also used in the Coupled Model Intercomparison Project 5 (CMIP5), consists

of an atmospheric (ECHAM6) (Stevens et al., 2013), and an oceanic (MPIOM) (Jungclaus et al., 2013) component. For this

study the model is initialized in May and November and runs with 10 ensemble members in the low-resolution version – MPI-140

ESM-LR: T63 (approx. 1.875°x1.875°) with 47 different vertical layers in the atmosphere between the surface and 0.01 hPa

and 40 different vertical layers in the ocean. Except for an extension of the simulation period by 3 years (extended to cover

the period 1982–2013), the investigated simulations are identical to the 10-member ensemble simulations analyzed by Bunzel

et al. (2018).

We obtain observed precipitation from the Global Precipitation Climatology Project (GPCP) which combines observations145

and satellite precipitation data into a monthly precipitation data-set on a 2.5°x2.5°global grid spanning 1979 to present (Adler

et al., 2003). To compare these observations against our hindcasts, the precipitation output of the model is interpolated to the

same grid as GPCP’s precipitation data-set from which we only use the simulated time-period (1982–2013).

Depending on the accumulation period (1-, 3-, 6-, 9-, or 12-months) we calculate the frequency distribution of modeled and

observed precipitation totals over 2 different seasons (August and February (1), JJA and DJF (3), MAMJJA and SONDJF (6),150

and so on). Because our results do not indicate major season-dependent differences in the performance of candidate PDFs for

SPI3M , we aggregate our results for the other accumulation periods over both seasons.

Our precipitation hindcasts are neither bias- nor drift-corrected and also not recalibrated. Such corrections usually adjust

the frequency distribution of modeled precipitation in each grid-point to agree better with the observed frequency distribution.

Here, we investigate the adequacy of different PDFs in describing the frequency distribution of modeled precipitation totals155

over each accumulation period without any correction. As a consequence, we require that SPI’s calculation algorithm deals

with such differing frequency distributions on its own. That requirement enables us to identify the worst possible miss-matches.

2.2 Standardized Precipitation Index

We calculate SPI (McKee et al., 1993) for our observed and modeled time-period by fitting a PDF onto sorted 3-months

precipitation totals in each grid-point during both seasons of interest and for each accumulation period. Zero-precipitation160
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events are excluded from the precipitation time-series before fitting the PDF and dealt with specifically later. We optimize

the parameters of our candidate PDFs in SPI’s calculation algorithm with the maximum likelihood method which is also the

basis for the AIC computation. Our parameter estimation method first identifies starting values for the n parameters of the

candidate PDFs by roughly scanning the n-dimensional phase-space spanned by these parameters. Those starting values are

then optimized (Nocedal and Wright, 1999) by three different methods: (i) a simulated annealing method (Bélisle, 1992), (ii)165

a limited-memory modification of the Broyden-Fletcher-Goldfarb-Shanno (also known as BFGS) quasi-Newton method (Byrd

et al., 1995), and (iii) the Nelder and Mead (1965) method. After checking the convergence of the most suitable parameters

of our candidate PDFs and omitting cases where convergence is not achieved, the probabilities of encountering the given

precipitation totals are computed and transformed to cumulative probabilities (G(x)).

Since PDFs which describe the frequency distribution of precipitation totals are required to be only defined for the posi-170

tive real axis, that cumulative probability (G(x)) is undefined for x= 0. Nevertheless, the time-series of precipitation totals

may contain events in which zero precipitation has occurred over the entire accumulation period. Therefore the cumulative

probability is adjusted:

H(x) = q+ (1− q)G(x) (1)

where q is the occurrence probability of zero-precipitation events in the time-series of precipitation totals. q is estimated by175

the fraction of the omitted zero-precipitation events in our time-series. Next, we calculate from the new cumulative probability

(H(x)) the likelihood of encountering each precipitation event of our time-series for every grid-point in each season of interest

and each accumulation period. In the final step, analog to McKee et al. (1993), a Z-transformation of that likelihood to the

standard normal (mean=0, variance=1) variable Z takes place which constitutes the time-series of SPI.

In very arid regions or those with a distinct dry season, SPI time-series are characterized by a lower bound (Pietzsch and180

Bissolli, 2011; Wu et al., 2007). That lower bound results from H(x) dependence on q and correctly ensures that short periods

without rain do not necessarily constitute a drought in these regions. Nevertheless, that lower bound also leads to non-normal

distributions of SPI time-series. The shorter the accumulation period, the more likely it is for zero-precipitation events to occur

– and the more likely it becomes for SPI time-series to be non-normally distributed. Stagge et al. (2015) proposed to use the

centre of mass instead of the fraction of zero-precipitation events to estimate q. Such an adaptation leads to a lower q than185

the fraction-approach which distinctly increases the normality of SPI time-series and their statistical interpretability if that

fraction becomes larger than approximately one third. As explained before, we want to investigate the worst possible case and,

therefore, conservatively estimate q. As a consequence, SPI time-series are calculated exclusively for grid-points exhibiting

zero-precipitation events in less than 34 % of the times in our time-period. This limitation restricts the SPI calculation over

the Sahara for accumulation periods of 1- and 3-months, only exceptionally occurs for an accumulation period of 6-months,190

and does not restrict accumulation periods longer than 6-months. Current complex climate models parameterize convection

and cloud micro-physics to simulate precipitation which leads to spurious precipitation amounts. Those spurious precipitation

amounts prevent us from directly identifying the probability of zero-precipitation events in modeled precipitation time-series.
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Analog to Sienz et al. (2012), we prescribe a threshold of 0.035 mm month−1 to differentiate between months with and without

precipitation in the hindcasts.195

To further optimize the fit of the PDF onto modeled precipitation, all hindcast ensemble members are fitted at once –

assuming that all ensemble members show in the long-term identical frequency distributions of precipitation in the same grid-

point. It is, therefore, reasonable to presume that a better fit is achievable for simulated rather than for observed precipitation.

2.3 Candidate Distribution Functions

Cumulative precipitation sums are described by skewed distribution functions which are only defined for the positive real200

axis. We test four different distribution functions and evaluate their performance based on the normality of their resulting

SPI frequency distributions. The four candidate PDFs either consist of a single shape (σ) and scale (γ) parameter or include

(in the case of the two 3-parameter distributions) a second shape parameter (α). Figure 1 displays examples of those four

candidate PDFs and their 95 % quantiles for 3-months precipitation totals idealized to be distributed according to the respective

distribution function with σ = γ = (α) = 2. Table 1 lists the abbreviations used for the four candidate distribution functions.205

Instead of investigating the Pearson Type III distribution, which is already widely used, we analyze the simple gamma

distribution. They differ by an additional location parameter which does not change the here presented results (Sienz et al.,

2012). Moreover, other studies have demonstrated that the Pearson type III distribution delivers results which are virtually

identical to the 2-parameter gamma distribution (Pearson’s r = 0.999) (Giddings et al., 2005) and argued that the inclusion of

a location parameter unnecessarily complicates the SPI algorithm (Stagge et al., 2015). Therefore, our 3-parameter candidate210

PDFs comprise a second shape parameter instead.

1. Gamma distribution

f(x) =
1

σΓ(γ)

(x
σ

)γ−1

exp(−x
σ

) (2)

The gamma distribution (Γ being the gamma-function) is typically used for SPI calculations directly or in its location

parameter extended version: the Pearson Type III distribution (Guttman, 1999). The results of the gamma distribution215

also serve as proxy for the performance of the Pearson Type III distribution.

2. Weibull distribution

f(x) =
γ

σ

(x
σ

)γ−1

exp(−
(x
σ

)γ
) (3)

The Weibull distribution is usually used to characterize wind speed. Several studies identified the Weibull distribution,

however, to perform well in SPI’s calculation algorithm for short accumulation periods (Guenang et al., 2019; Blain220

et al., 2018; Stagge et al., 2015; Sienz et al., 2012).

3. Generalized gamma distribution

f(x) =
α

σΓ(γ)

(x
σ

)αγ−1

exp(−
(x
σ

)α
) (4)
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The generalized gamma distribution extends the gamma distribution by another shape-parameter (α). In the special case

of α= 1 the generalized gamma distribution becomes the gamma distribution and for the other special case of γ = 1 the225

generalized gamma distribution becomes the Weibull distribution. Sienz et al. (2012) identified the generalized gamma

distribution as promising candidate distribution function for SPI’s calculation algorithm.

4. Exponentiated Weibull distribution

f(x) =
αγ

σ

(x
σ

)γ−1 [
1− exp(−

(x
σ

)γ
)
]α−1

(5)

The exponentiated Weibull distribution extends the Weibull distribution by a second shape parameter (α). For α= 1 the230

exponentiated Weibull distribution becomes the Weibull distribution. Sienz et al. (2012) revealed that the exponentiated

Weibull distribution performs well in SPI’s calculation algorithm.

2.4 Deviations from the Standard Normal Distribution

SPI time-series are supposed to be standard normally distributed (µ= 0 and σ = 1). Thus, we evaluate the performance of

each candidate distribution function (in describing precipitation totals) based on the normality of their resulting SPI frequency235

distributions. In this analysis, we calculate actual occurrence probabilities for certain ranges of events in our SPI frequency

distributions and compare those actual against well-known theoretical occurrence probabilities for the same range of events.

We then evaluate the performance of each candidate distribution function and their resulting SPI time-series based on the

magnitude of deviations from the standard normal distribution (N0,1). These deviations are henceforth referred to as deviations

from N0,1.240

According to WMO’s SPI User Guide (Svoboda et al., 2012) (see Table 2), SPI distinguishes between seven different SPI

categories. These seven different categories with their pre-defined SPI intervals serve as analyzed ranges of possible events in

our analysis. It is noteworthy here, that these seven SPI categories differ in their occurrence probabilities. The occurrence of

normal conditions (N0) is more than twice as likely than all other six conditions put together. Therefore, any strict normality

analysis of SPI time-series would weight each classes’ identified deviation from N0,1 with the occurrence probability of the245

respective class. However, when analyzing droughts with SPI, one is usually interested in extreme precipitation events. Thus,

it seems less important for the center of SPI’s distribution to be normally distributed. Instead, it is intuitively particularly

important for the tails (especially the left-hand tail) of the distribution to adhere to the normal-distribution. The better the tails

of our candidate PDF’s SPI distributions agree with N0,1, the better is our candidate PDF’s theoretical description of extreme

precipitation events. For this reason, we treat all seven SPI categories equally, irrespective of their theoretical occurrence250

probability.

The 3-parameter candidate distribution functions contain the 2-parameter candidate distribution functions for special cases.

Given those special cases, the 3-parameter candidate distribution functions will in theory never be inferior to the 2-parameter

candidate distribution functions they contain when analyzing deviations from N0,1 – assuming a sufficient quantity of input

data which would lead to a sufficient quality of our fit. Thus, the question is rather whether deviations fromN0,1 reduce enough255

to justify the 3-parameter candidate distribution functions’ requirement of an additional parameter. An additional parameter
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which needs to be fitted increases the risk of overfitting (Stagge et al., 2015; Sienz et al., 2012). On the one hand, the final

decision on this trade-off might be subjective and influenced by computational resources available or by the length of the time-

series which is to be analyzed because fitting more parameters requires more information. Moreover, it might well be wiser

to employ scarce computational resources in optimizing the fit rather than increasing the complexity of the PDF. On the other260

hand, assuming computational resources and data availability to be of minor concern, there exists an analytical way to tackle

this trade-off: Akaike’s Information Criterion (Akaike, 1974).

2.5 Akaike’s Information Criterion

Our aim is twofold. First, we want to maximize the normality of our SPI time-series by choosing an appropriate distribution

function. Second, we simultaneously aspire to minimize the parameter-count of the distribution function to avoid unnecessary265

complexity which decreases the risk of overfitting. The objective is to identify the necessary (minimal) complexity of the PDF

which prevents the PDF from being too simple and lose explanatory power. Or in other words: we are interested in the so-called

optimal trade-off between bias (model too simple) and variance (model too complex). Akaike’s information criterion (AIC)

performs this trade-off analytically (Akaike, 1974). AIC estimates the value of information gain (acquiring an improved fit)

and penalizes complexity (the parameter count) directly by estimating the Kullback-Leibler information (Kullback and Leibler,270

1951):

AIC =−2lnL(θ̂|y) + 2k (6)

L(θ̂|y) describes the likelihood of specific model-parameters (θ̂) with given data from which these parameters were estimated

(y). k describes the degrees of freedom of the candidate PDF (the parameter-count which equates dependent on the candidate

PDF either to 2 or 3). Analogue to Burnham and Anderson (2002), we modified the last term from 2k to 2k+(2k(k+1))/(n−275

k− 1) in order to improve the AIC calculation for small sample sizes (n/k < 40), whereas in our case n corresponds to

the sample size of the examined period (31 for observations and 310 for simulations). The modified version approaches the

standard version for large n.

In our case, AIC’s first term evaluates the performance of candidate PDFs in describing the given frequency distributions of

precipitation totals. The second term penalizes candidate PDFs based on their parameter-count. The best performing distribu-280

tion function attains a minimum AIC value (AICmin) because the first term is negative and the second one is positive.

Further, the absolute AIC value is often of little information – especially in contrast to relative differences between AIC

values derived from different distribution functions (henceforth we index different distribution functions with an i and name

the corresponding AIC values AICi accordingly). These relative differences inform us about superiority in the optimal trade-off

between bias and variance. Thus, we use AIC differences (AIC-D) in our further assessment:285

AIC-Di =AICi−AICmin (7)

For our analysis, AIC-D are well suited to compare and rank different candidate PDFs based on their trade-off between bias

and variance. The best performing distribution function is characterized by a minimum AIC value (AICmin) which translates
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to an AIC-D value of 0. It seems noteworthy here that any evaluation of (or even any discrimination between) candidate

distribution functions which exhibit a sufficiently small AIC-D is unfeasible as a consequence of our rather small sample size290

(particularly in observations, but also in simulations). AIC-D values below two should be in general interpreted as an indicator

of substantial confidence in the performance of the model (here, the PDF). In contrast, AIC-D values between four and seven

indicate considerable less confidence and values beyond ten essentially none (Burnham and Anderson, 2002).

2.6 Aggregation of Results over Domains

For each candidate distribution function, accumulation period, domain, and during both seasons, we compute deviations from295

N0,1 separately for observations and simulations as schematically depicted on the left-hand side in Fig. 2. First, we count the

events of each SPI category in every land grid-point globally. For each category, we then sum the category counts over all

grid-points which belong to the domain of interest. Next, we calculate actual occurrence probabilities through dividing that

sum by the sum over the counts of all seven SPI categories (per grid-point there are 31 total events in observations and 310 in

simulations). In a final step, we compute the difference to theoretical occurrence probabilities ofN0,1 (provided in Table 2) for300

each SPI category and normalize that difference – expressing the deviation from N0,1 as percent of the theoretically expected

occurrence probability.

Again for each candidate distribution function, accumulation period, domain, and both seasons, we aggregate AIC-Ds over

several grid-points into a single graph separately for observations and simulations as depicted on the right-hand side of the flow

chart in Fig. 2. For each domain, we compute the fraction of total grid-points of that domain for which each candidate PDF305

displays an AIC-D value equal to or below a specific AIC-Dmax value. That calculation is iteratively repeated for infinitesimally

increasing AIC-Dmax values. In this representation, the probabilities of all PDFs at the specific AIC-Dmax value of 0 sum up

to 100 % because only one candidate PDF can perform best in each grid-point. Thus, we arrive at a summarized AIC-D

presentation in which those candidate distribution functions which approach 100 % the fastest (preferably before the specific

AIC-Dmax value of 4; ideally even before the AIC-Dmax value of 2) are better suited than the others.310

2.7 Regions

We investigate the normality of SPI time-series derived from each candidate PDF first for the entire global land area and

analyze subsequently region-specific disparities. For this analysis we focus on the land area over six regions scattered over

all six inhabited continents: Africa (0°–30°S; 10°E–40°E), Asia (63°N–31°N; 86°E–141°E), Australia (16°S–38°S; 111°E–

153°E), Europe (72°N–36°N; 10°W–50°E), North America (50°N–30°N; 130°W–70°W), and South America (10°N–30°S;315

80°W–35°E) (Fig. 3).

Examining frequency distributions of precipitation totals over smaller domains than the entire globe reduces the risk of en-

countering opposite deviations from N0,1 for the same category which then balance each other in different grid-points. This

statement is based on either one of the following two assumptions. First, the sum over less grid-points is less likely to produce

deviations which balance each other. Second, the frequency distribution of precipitation totals is likely to be more uniform320

for grid-points that belong to the same region (and therefore exhibit similar climatic conditions) than when they are scattered
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around the entire globe. One could continue along this line of reasoning because the smaller the area of the analyzed regions,

the more impactful are both of these assumptions. However, comparing actual against theoretically expected occurrence proba-

bilities with a scarce database (31 events in observations) will inevitably produce deviations. In observations, we would expect

in each grid-point that 0.7 extremely wet/dry and 1.4 severely wet/dry events occur during 31 years. Thus, deviations in differ-325

ent grid-points need to balance each other to some extent, to statistically evaluate and properly compare candidate PDFs. The

crucial performance requirement demands that they balance each other also when averaged over sufficiently small domains

with similar climatic conditions.

For a first overview, it is beneficial to cluster as many similar results as possible together to minimize the level of complexity

of the regional dimension. The choice of sufficiently large/small domains is still rather subjective. Which size of regions is330

most appropriate? This subjective nature becomes apparent in studies which identify differing borders for regions which are

supposed to exhibit rather uniform climatic conditions (Giorgi and Francisco, 2000; Field et al., 2012). Instead of using Giorgi-

Regions (Giorgi and Francisco, 2000) or SREX-Regions (Field et al., 2012), we opt here for a broader and more continental

picture.

3 Results335

3.1 SPI Accumulation Period of 3-Month

3.1.1 Global

In agreement with prior studies (Blain et al., 2018; Lloyd-Hughes and Saunders, 2002; McKee et al., 1993), the 2-parameter

gamma distribution (GD2) describes on global average the observed frequency distribution of SPI3M rather well during the

boreal winter (DJF) and summer (JJA) (Fig. 4, (a)). Contrary to Sienz et al. (2012), who investigated SPI1M time-series, the340

2-parameter Weibull distribution (WD2) delivers a poor frequency distribution of SPI3M during both seasons (Fig. 4, (b)).

Further, GD2 leads to a better agreement between the frequency distribution of SPI3M time-series and N0,1 than any of the

here investigated 3-parameter PDFs over both seasons of interest. Still, GD2 represents the especially important left-hand tail of

SPI3M time-series’ frequency distribution (D3) in JJA relatively poor. Here, the investigated 3-parameter distributions, GGD3

and the exponentiated Weibull distribution (EWD3), perform better (Fig. 4, (c) and (d)). Despite these minor differences, and345

in agreement with Sienz et al. (2012), GGD3 and EWD3 perform overall similar to GD2 (compare Fig. 4, (a) against (c) and

(d)).

In theory, since the 3-parameter generalized gamma distribution (GGD3) encompasses GD2 as a special case, GGD3 should

not be inferior to GD2. In reality, however, the applied optimization methods appear to be too coarse for GGD3 to lead to

an identical or better optimum than the one identified for GD2 with the given length of the time-series. When optimizing350

3 parameters it is more likely to miss a specific constellation which would further optimize the fit; especially when limited

computational resources impede the identification of the actual optimal fitting parameters. Additionally, a limited database

(our database spans 31 years) obscures the frequency distribution of precipitation totals which poses another obstacle to the
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fitting methods. This results in missed optimizations opportunities which impact GGD3 stronger than GD2 because of GGD3’s

complexity. As a result, the weighted sum over the absolute values of deviations from N0,1 along all SPI categories weighted355

by their theoretical occurrence probability (see Table 2) is lowest for GD2 in both analyzed seasons (see legend in Fig. 4,

(a)–(d)).

In agreement with Sienz et al. (2012), who identified notable differences in the performance of candidate PDFs between

observations and simulations, this general ranking changes when we consider modeled instead of observed SPI3M time-series

(Fig. 4, (e)–(h)). While GD2, GGD3, and EWD3 perform similar in their representation of the observed frequency distribution360

of SPI3M time-series (Fig. 4 (a), (c), and (d)), a noticeable difference emerges in simulations (Fig. 4 (e), (g), and (h)). GD2’s

performance distinctly deteriorates in simulations (Fig. 4, (e)) relative to observations. In contrast, both 3-parameter candidate

PDFs excel in describing the frequency distribution of 3-months precipitation totals in both seasons (Fig. 4, (g) and (h)).

Any distinction between both 3-parameter candidate distribution functions is still difficult (Fig. 4, (g) and (h)), Given the

absolute deviations of GD2, one might most likely dismiss the need for any adjustment in SPI3M ’s calculation algorithm as365

of yet. However, since Fig. 4 shows the sum of deviations from N0,1 over all land grid-points of the entire globe, distribution

functions might be oppositely wrong for the same SPI category in different grid-points resulting in deviations which balance

each other across different grid-points.

In simulations, the fit onto 3-months precipitation totals is performed on all ten ensemble members at once. This leads to

unequal databases (i.e. lengths of time-series) between observations and simulations. These unequal databases obscure any370

direct comparison between observed and modeled SPI3M deviations. Therefore, deviations from N0,1 derived by different

PDFs were compared separately for observations and simulations up to now. Such separate comparisons base on equally long

time-series. Yet, deviations reduce non-identically along our four candidate distribution functions as a result of 10-folding

the database of their fit. These irregular reductions provide us with the opportunity to analytically compare by how much

deviations decrease for the same PDF as a result of 10-folding their database. The magnitude of this reduction should be375

notable for candidate distribution functions which are adequately suited to describe modeled 3-months precipitation totals –

assuming an imperfect fit for the 31 events spanning our observational time-series.

For the 2-parameter PDFs, the weighted deviations fromN0,1 either stay constant (for GD2 in DJF) or increase in simulations

relative to observations (shown in the legend of Fig. 4, compare the left against the right column). GD2’s weighted deviations

increase by more than 120 % in JJA, while WD2’s increase by more than 25 % in JJA and 80 % in DJF. The most plausible380

explanation for these weighted deviations to increase when 10-folding the database are different frequency distributions be-

tween observed and modeled 3-months precipitation totals. The 2-parameter PDFs are better suited to describe observed than

modeled 3-months precipitation totals. In contrast, the 3-parameter candidate distribution functions benefit strongly from the

artificial increase of our time-series. Their weighted deviations from N0,1 are substantially larger in observations than in sim-

ulations. GGD3’s (EWD3’s) are larger by 210 % (500 %) and 58 % (200 %) during DJF and JJA, respectively. These findings385

strongly hint at the presence of different frequency distributions between observed and modeled 3-months precipitation totals.

Both 2-parameter candidate PDFs seem inadequately suited for describing modeled 3-months precipitation totals. In contrast,
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the 3-parameter candidate distribution functions perform distinctly better in describing modeled 3-months precipitation totals

than the 2-parameter candidate PDFs in both of our investigated seasons.

In this section, we have analyzed global deviations from N0,1 thus far and identified:390

– GD2, GGD3, and EWD3 describe similarly well the overall frequency distribution of observed 3-months precipitation

totals.

– WD2 performs overall poorly and is in every regard inferior to any other candidate distribution function.

– GGD3 and EWD3 describe the frequency distribution of modeled 3-months precipitation totals distinctly better than any

2-parameter candidate distribution.395

– GD2 still describes the frequency distribution of modeled 3-months precipitation totals sufficiently well on global aver-

age.

– Both 2-parameter candidate distribution functions are unable to benefit from the increased length of the database in

simulations relative to observations, while both 3-parameter PDFs strongly benefit from that increase.

As mentioned before, investigating deviations from N0,1 over the entire globe contains the risk of encountering deviations400

which balance each other in different grid-points. On the one hand, we can reduce that risk by analyzing these deviations only

over specific regions, which is done later. On the other hand, we eliminate this risk next by examining AIC-D frequencies:

aggregating AIC-D values over the entire globe evaluates the performance of PDFs in each grid-point and normalizes these

evaluations by (rather than adding them over) the total number of grid-points of the entire globe.

In general, each of the candidate distribution functions perform similarly well in winter and summer in their depiction of405

the frequency distribution of observed 3-months precipitation totals (compare Fig. 5, (a) against (b)). In agreement with our

previous results and prior studies (Blain et al., 2018; Lloyd-Hughes and Saunders, 2002; McKee et al., 1993), GD2 is in most

grid-points of the global land area best suited to describe observed 3-months precipitation totals in DJF and JJA (Fig. 5, (a) and

(b)). GD2 displays AIC-D values of less than 2 in approximately 84.5 % of the global land area in DJF and 83.5 % in JJA. That

should be interpreted as substantial confidence in GD2’s performance in these grid-points. However, beyond an AIC-Dmax410

value of 2, EWD3 and GGD3 approach 100 % coverage considerably faster than GD2. The 3-parameter candidate distribution

functions compensate rather quickly for their increased penalty imposed by AIC through a distinctly better performance in

virtually every global land grid-point. GGD3 and EWD3 both show in more grid-points than GD2 an AIC-Dmax value of

approximately 2.5 (exactly 2.47 for EWD3 in both seasons and 2.51 (2.58) for GGD3 in DJF (JJA)) (see intersect between the

yellowish and the bluish as well as the yellowish and black lines in Fig. 5, (a) and (b)). Further, once they compensate their415

penalty, they quickly approach 100 % coverage for the entire globe. For EWD3 more than 98 % of the land area is characterized

in both seasons by an AIC-Dmax value of less than 3 (98 % coverage is exactly fulfilled for an AIC-Dmax value of 2.65 (2.95)

in DJF (JJA)).

Contrarily, both 2-parameter candidate distribution functions display considerably less confidence in their description of

observed 3-months precipitation totals in more than 10 % of the global land grid-points (apparent by AIC-D values beyond 4 in420
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these grid-points). In consequence, they need considerably longer to reach 98 % coverages – even allowing AIC-Dmax values

as high as 6 does not lead to 98 % coverage for neither one of our 2-parameter candidate PDFs in any season (98 % coverage is

for GD2 (WD2) exactly fulfilled for an AIC-Dmax value of 6.39 (6.46) in JJA and 6.68 (6.66) in DJF). As a reminder: AIC-D

values between 4 and 7 indicate already considerably less confidence in the distribution function’s performance. As a side

note, EWD3 performs better than GGD3 but only by a few grid-points increased coverage for each AIC-Dmax value. Each425

candidate distribution function exhibits only in a minor fraction of grid-points essentially no confidence (AIC-D values of 10

and beyond) in their description of observed 3-months precipitation totals. GD2 (WD2) fails in its description in 0,41 % (0,49

%) and 0.59 % (0.26 %) of grid-points of the global land area in DJF and JJA, respectively. GGD2 only fails in 0.08 % (0.26

%) of grid-points of the global land area in DJF (JJA), while EWD3 does not fail in a single grid-point during both investigated

seasons.430

The confidence in GD2 drastically diminishes further when we analyze the performance of the four candidate PDFs in

describing the frequency distribution of modeled 3-month precipitation totals. EWD3 is superior to any other distribution

function in JJA and DJF for each AIC-Dmax value beyond 1.52 in DJF and 0.73 in JJA (see intersect between yellowish

and blueish lines in Fig. 5, (c) and (d)). Assuming those AIC-Dmax values to be sufficiently small (AIC-D values of less

than 2 are practically indistinguishable from each other in their performance), EWD3 performs best among all candidate435

PDFs in general. We interpret EWD3’s description of the frequency distribution of modeled 3-months precipitation totals with

substantial confidence in approximately 84.8 % of the global land area in DJF and 86.4 % in JJA. For AIC-Dmax values beyond

2, EWD3 again quickly approaches 100 % coverage in both seasons. Our results are again rather stable for all investigated

distribution functions between summer and winter (compare Fig. 5, (c) against (d)). All distribution functions display in both

seasons the same distinct ranking of their performance for AIC-Dmax values of 2 and beyond. EWD3 outperforms GGD3440

which is better than GD2, while WD2 performs especially poor. In winter GGD3 performs better than GD2 for AIC-Dmax

values beyond 1.99 (See intersect between blueish and black lines in Fig. 5, (c)). Here, both distributions functions performance

should be interpreted with substantial confidence in almost 70 % (exactly 68.45 % for GD2 and 69.04 % for GGD3) of the

global land area. However, for an AIC-Dmax value of just 2.1, GGD3 already out-performs GD2 in 7.92 % (11.75 %) of the

global land area during winter (summer).445

While EWD3 does not display a deteriorating performance in simulations in more than 1 % of grid-points, there is season-

dependent considerably less confidence in GD2’s performance in about one-third to one-fourth of the global land grid-points

(apparent by AIC-D values beyond 4 in these grid-points). Most telling might be the fraction of grid-points in which the can-

didate PDFs display AIC-D values of 10 and beyond and thus show no confidence in their depiction of 3-months precipitation

totals. GD2 and WD2 fail in their description during DJF (JJA) in 9.87 % (14.95 %) and 57.84 % (56.57 %) of the global450

land area, respectively. While GGD3 still fails in 3.61 % (4.23 %) of grid-points, EWD3 only fails in 0.59 % (0.71 %) during

DJF (JJA). Ergo, EWD3 reduces the count of grid-points in which it’s description of modeled 3-months precipitation totals is

without any skill by over one magnitude (by a factor of roughly 20) relative to GD2.

Table 3 summarizes our findings from the investigation of AIC-D values over the entire global land area. While not even

a single candidate PDF performs ideally with substantial confidence around the globe (AIC-D ≤ 2 in 95 or more % of land455
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grid-points) in either realization, EWD3 performs well with substantial confidence around the globe (AIC-D ≤ 4 in 95 or

more % of land grid-points) in both realizations. The other analyzed candidate PDFs perform substantially worse than EWD3

in simulations and slightly worse in observations. It seems worth elaborating on the combination between EWD3’s increased

penalty relative to our 2-parameter candidate PDFs and the fact that EWD3 does not perform ideally with substantial confidence

around the globe. On the one side, EWD3’s increased complexity justifies the increased penalty when evaluating whether460

that increased complexity is necessary. However, the results justify the necessity for this increased complexity. The risk of

underfitting by using 2-parameter PDFs is higher than the risk of overfitting by using 3-parameter PDFs. In particular, when

we demand that a single candidate PDF should be suited for observations and simulations concurrently, 2-parameter candidate

PDFs seem ill-posed for the task at hand. On the other side, once the need for 3-parameter candidate PDFs is established,

their remaining competition against 2-parameter PDFs biases the analysis; especially for the ideal AIC-D category. EWD3’s465

increased penalty relative to 2-parameter candidate PDFs depends on the sample size and amounts to 2.46 in observations and

2.04 in simulations. This penalty is also approximately the AIC-Dmax value where EWD3 reaches a coverage close to 100

% (Fig. 5 (a)–(d)). Indeed, if EWD3 solely competes with GGD3, EWD3 performs ideally (AIC-D ≤ 2) over both seasons in

observations (simulations) in 99 % (100 %) of the global land grid-points (not shown). Thus, EWD3 already performs at least

on par with the best-performing candidate PDF in both realizations at virtually every grid-point.470

These characteristics stay valid in all investigated regions except Australia. Here, GD2 performs better than any other ana-

lyzed PDF during DJF in observations. In contrast during JJA-observations, GD2 performs worse than any other investigated

candidate PDFs (even WD2). Additionally, WD2 and the other candidate PDFs also out-perform GD2 during DJF in simula-

tions. Since these are the only minor regional particularities evident in regional AIC-D frequencies, we will during the regional

focus in the remaining analysis of SPI3M solely display, explain, and concentrate on deviations from N0,1.475

3.1.2 Regional Deviations from N0,1

We investigated thus far deviations from N0,1 for the entire global land area. That analysis might be blurred by deviations

which balance each other over totally different regions with unrelated climatic characteristics. Thus, we will reduce the area

analyzed in this subsection and perform a further aggregated investigation for each continental region individually. That further

aggregation of results dismisses the dimension of different SPI categories because their analysis revealed a rather uniform480

relation over each region: extreme SPI categories show the largest deviations, while normal conditions exhibit the smallest.

As a consequence, we display from now on only unweighted sums over the absolute values of these deviations from all SPI

categories. To provide a more intuitive number for these unweighted sums, we normalize them by our SPI category count (7).

Consequently, our analysis will investigate mean deviations per SPI category, henceforth.

In observations (Fig 6. (a) and (b)), WD2 performs in all analyzed regions again worst of all candidate PDFs in describing485

a proper frequency distribution of SPI3M during both investigated seasons. Over all analyzed regions and seasons, EWD3

displays the smallest deviations fromN0,1, while GD2 and GGD3 perform only slightly worse. Some minor region-dependent

differences emerge. E.g. in Africa, a distinct ranking of the performance of all four candidate distribution functions emerges
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during JJA – EWD3 outperforms GGD3 which performs better than GD2. Aside, all candidate PDFs perform almost identical

in their attempt to describe observed precipitation over Australia during DJF.490

In simulations (Fig 6. (c) and (d)), the ranking of the performance of different PDFs becomes more distinct than it is in

observations during both analyzed seasons and investigated domains, except Australia. This compared to observations easier

distinction over almost every region of the globe results from increased mean deviations for GD2, while they stay comparable

low for GGD3 and EWD3, relative to the global analysis. As showed before, 2-parameter PDFs are inadequately suited to

properly describe modeled precipitation totals. In consequence, during both seasons, GGD3 and EWD3 perform in each region495

exceptionally well, while GD2 performs overall average at best, whereas WD2 performs still poor in general. The performances

of GD2 and WD2 are only in Africa during DJF equally poor which impedes any clear ranking. Similar difficult is any

distinction of their performance in North America during JJA as a consequence of one of WD2’s best performances (as also

identified by Sienz et al. (2012) for SPI1M ). Furthermore poses Australia an exception to the identified ranking pattern of

candidate PDFs for simulations. During the austral summer (DJF), WD2 distinctly outperforms GD2 which exhibits the largest500

mean deviations. Interestingly, analog to the performance of candidate PDFs over Australia in observations during DJF, we

identify over Australia also in simulations a season when the performance of all four candidate distribution functions is rather

similar. However, this occurs in simulations during JJA.

These insights about the candidate PDFs performance in observations and simulations are even more obvious at first glance

when displayed in an image plot (Fig. 7 (a) and (b)). The poor performance of WD2 in observations and simulations is obvious505

over all domains and in both investigated seasons. Also, the exception to this pattern for Australia during the austral summer

(Fig. 7 (a)) in simulations is distinctly visible. Evident are further the overall similar performances of GD2, GGD3 and EWD3 in

observations over all domains and both analyzed seasons. Further, the general improved performance of 3-parameter candidate

distribution functions (GGD3 and EWD3) relative to 2-parameter candidate PDFs in simulations is distinctly palpable. Aside,

even the better performance of EWD3 relative to GGD3 in Africa generally or in observations over Europe is easily discernible.510

The regional analysis confirms the overall insights from the global analysis in observations for each region. In simulations,

the regional analysis additionally corroborates the finding of the AIC-D analysis that our 3-parameter candidate distribution

functions perform in simulations noticeably better than our 2-parameter PDFs. The corroboration of this finding substantiates

support for the 3-parameter candidate PDFs.

3.1.3 Improvement relative to a multi-PDF Approach and a Baseline515

In the following, we investigate deviations from N0,1 for a multi-PDF SPI calculation algorithm which uses in each grid-point

that distribution function which yields for this respective grid-point the minimum AIC value (whose AIC-D value equates to

0). An analog SPI calculation algorithm has been repeatedly proposed in literature (Guenang et al., 2019; Blain and Meschiatti,

2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saunders, 2002). We analyze the impact of such an SPI calcu-

lation algorithm and compare those results against a baseline comparison and against the most suitable calculation algorithm520

identified in this study which uses EWD3 as PDF. We label the results obtained from the multi-distribution function calcula-

tion algorithm AICmin-analysis. As a baseline comparison, we choose the calculation algorithm and optimization method of
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the frequently used R-package from Beguería and Vicente-Serrano (2017) and refer to these results as baseline. To maximize

comparability of SPI time-series calculated with our baseline, we employ the simple 2-parameter gamma distribution as a

calculation algorithm and estimate the parameters of the PDF again with the maximum-likelihood method. It seems noteworthy525

that our parameter estimation method takes about 60 times longer to find optimal parameters of GD2 than the baseline. The

comparison between the performance of our baseline against GD2’s performance (see Fig. 7 (a) and (b)) thus also serves as an

indicator for the impact of very similar parameter estimation methods which only differ by their optimization procedure.

The AICmin-analysis performs generally almost identical to EWD3 over each domain and in both realizations (observations

and simulations). Further, deviations are not necessarily minimal when computing SPI with the AICmin-analysis (Fig. 8, (a)530

and (b)). This results from the dependence of AIC’s punishment on the parameter count of the distribution function. It is simply

not sufficient for EWD3 to perform best by a small margin in order to yield a lower AIC value than GD2/WD2. EWD3 needs

to perform sufficiently better to over-compensate its by AIC imposed punishment. Or in other words, EWD3 is expected to

perform distinctly better than GD2/WD2 because of its increased complexity. As a consequence, EWD3 is only selected by

AIC as best performing distribution function if it fulfills that expectation.535

In contrast to previous results (Stagge et al., 2015), which showed no seasonal differences in the performance of candidate

PDFs, our baseline performs overall better in JJA than in DJF (compare in Fig. 8, (a) against (b)). Relative to our findings in

the previous subsection (Fig 7.), our baseline performs similar to GD2 in JJA but worse than WD2 in DJF (compare Fig. 7

against Fig. 8,). This reveals a substantial impact of the optimization method, at least for DJF-precipitation totals. Further, our

baseline performs especially poor in describing the frequency distribution of SPI3M in simulations during the austral summer.540

It is important to note that our baseline over-estimates modeled extreme droughts during DJF over Australia by more than 240

% (not shown). That is by a huge margin the largest deviation we encountered during our analysis and highly undesirable when

analyzing droughts. Contrary to Blain et al. (2018), who investigated the influence of different parameter estimation methods

on SPI’s normality and identified only barely visible effects, the massive difference between our baseline and GD2 in DJF is

severely concerning; especially given that the here used parameter estimation methods are almost identical and only differ by545

their optimization procedure. Since GD2 and our baseline both use the maximum likelihood method to estimate the PDF’s

parameters, main differences do not only emerge when using different estimation methods but rather manifest already in the

applied procedure by which these methods are optimized.

Unsurprisingly the same deficit as identified before for both 2-parameter candidate PDFs also emerges in our baseline’s

performance: the by each classes’ likelihood of occurrence weighted sum over the absolute values of deviations from N0,1550

increases as a result of 10-folding our database (not shown). Although our baseline already performs especially poor when

analyzing weighted deviations during DJF in observations, it performs even worse in simulations; although the performance

deteriorates only marginally. Such an increase of weighted deviations is a strong indicator of our baseline’s inability to suffi-

ciently describe the frequency distribution of modeled SPI3M . In our baseline, these weighted deviations increase globally by

2 % in DJF and 40 % in JJA (as a reminder: the weighted deviations stay constant for GD2 in DJF and increase by more than555

120 % in JJA). In contrast, these weighted deviations decrease for the AICmin-analysis by 70 % in DJF and by 60 % in JJA

around the entire globe (not shown).
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Moreover, identifying the maximum deviation from N0,1 for 196 different analyses which range along each SPI category

(7), region (7), both seasons (2), as well as differentiating between observation and simulation (2) (not shown), our baseline

performs worst in 79 out of those 196 analyses, while WD2 performs worst in 103 of these analyses. It is noteworthy that out560

of those 79 analyses in which our baseline performs worst, 63 analyses occur during DJF. As a side note, GD2 performs with

our optimization overall worst six times, while GGD3 and EWD3 each perform worst four times.

3.2 Other SPI Accumulation Periods

A similar pattern as identified for SPI3M also emerges in the evaluation of AIC-D-based performances of our candidate PDFs

for accumulation periods of 1-, 6-, 9-, and 12-months (Table 4). No candidate PDF performs ideally (AIC-D values below 2)565

with substantial confidence around the globe. The reasons for this shortcoming are distribution-dependent. GD2 performs too

poor in too many grid-points (e.g. apparent by too low percentages for covering AIC-D values even below 4) and EWD3 excels

only for AIC-D values beyond 2 because it first needs to over-compensate its AIC-imposed complexity-penalty (as explained

before). Equally apparent is the striking inability of the 2-parameter candidate PDFs to adequately perform in simulations for

all analyzed accumulation periods which we have also seen for SPI3M before.570

In agreement with prior studies (Stagge et al., 2015; Sienz et al., 2012), we also identify the apparent phase transition between

short (less than 3-months) and long (more than 3-months) accumulation periods for the 2-parameter candidate PDFs. While

WD2 performs well for short accumulation periods (only in observations though), GD2 performs better than WD2 for longer

accumulation periods. Nevertheless, the results for the 3-parameter candidate PDFs do not display such a phase transition.

Most interesting, EWD3 performs well almost everywhere around the entire globe for each accumulation period and in both575

realizations. EWD3 shows the highest percentages of all candidate PDFs for each analysis (each row of Table 4) beyond AIC-D

values of 2; except for an accumulation period of 12-months in simulations. While there is not even a single candidate PDF that

seems sufficiently well suited for an accumulation period of 12-months in simulations, GD2 and EWD3 both perform equally

adequate; despite EWD3’s higher AIC-penalty compared to GD2. If EWD3 only competes against GGD3, EWD3 performs

ideal (AIC-D ≤ 2) in 88 % and shows no skill (AIC-D > 10) in less than 5 % of the global land grid-points. Moreover, EWD3580

performs best in 32 out of all 40 analyses (all rows of Table 3 and Table 4), and in 30 of those 32 analyses, we consider EWD3’s

performance to display at least average confidence (indicated by a yellow or green background color in the table). In contrast,

GD2 (WD2) only performs 2 (1) times best while also performing with at least average confidence and GGD2 never performs

best.

4 Discussion585

Previous studies have emphasized the importance of using a single PDF to calculate SPI for each accumulation period and

location (Stagge et al., 2015; Guttman, 1999) to ensure comparability across space and time which is one of the index’s main

advantages (Lloyd-Hughes and Saunders, 2002). However, any 2-parameter distribution function seems in observations al-

ready ill-suited to deliver adequately normally distributed SPI time-series for both short (less than 3-months) and long (more
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than 3-months) accumulation periods (Stagge et al., 2015; Sienz et al., 2012). Introducing simulations as another level of590

complexity exacerbates the problem additionally. Yet, the importance of accepting and solving this problem becomes increas-

ingly pressing as a result of a growing interest in dynamical drought predictions and their evaluation against observations. To

properly evaluate drought predictability of precipitation hindcasts against observations, the distribution function used in SPI’s

calculation algorithm needs to capture sufficiently well both frequency distributions mutually: those of observed and modeled

precipitation totals. In this study, we show that the 3-parameter exponentiated Weibull distribution (EWD3) is very promising595

in solving this problem virtually everywhere on the entire globe in both realizations (observations and simulations) for all

common accumulation periods (1-, 3-, 6-, 9-, and 12-months).

Other studies have pessimistically dismissed the possibility of such a solution to this problem and proposed instead a multi-

PDF approach (Guenang et al., 2019; Blain and Meschiatti, 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and

Saunders, 2002) which selects different PDFs depending on the location and accumulation period of interest. The emergence600

of this approach stems from a phase transition in the relative performance of 2-parameter PDFs, which we also identify in

this study. While WD2 performs better for an accumulation period of 1-month, GD2 is better suited for longer accumulation

periods. However, any multi-PDF approach would partly sacrifice the aforementioned index’s pivotal advantage of compara-

bility across space and time. Our results suggest that such a multi-PDF approach does not improve the normality of calculated

SPI time-series relative to a calculation algorithm that uses EWD3 as PDF everywhere. Furthermore, the use of an empirical605

cumulative distribution function has been proposed (Sienz et al., 2012). We also checked this approach which proved to be too

coarse as a result of its discretized description (not shown).

Yet, in agreement with those other studies (Guenang et al., 2019; Blain and Meschiatti, 2015; Touma et al., 2015; Sienz et al.,

2012; Lloyd-Hughes and Saunders, 2002), our results also suggest that 2-parameter PDFs are not able to produce sufficiently

normally distributed SPI time-series for all accumulation periods, locations, and realizations. Yet, EWD3 competed against610

2-parameter PDFs in our analysis. This competition unnecessarily (given the inadequacy of 2-parameter PDFs) exacerbates

EWD3’s performance assessed with AIC-D because AIC punishes complexity. As a consequence of EWD3’s increased com-

plexity, AIC imposes a larger penalty on EWD3 than on the 2-parameter candidate PDFs which are anyhow ill-suited to solve

the outlined problem (because they are most likely too simple). Still, EWD3 conclusively out-performs any other candidate

PDF without performing ideally. However, accepting the need for a 3-parameter PDF in SPI’s calculation algorithm a priori615

levels the playing field in our AIC-D analysis and leads to an ideal performance of EWD3 globally.

The findings sketched above stay valid on every continent in both realizations with a few exceptions. It seems noteworthy,

that Australia’s observed DJF- and modeled JJA-precipitation totals are generally poorly described by any of our candidate

distribution functions. Since the performance of all investigated distribution functions deteriorate to a similar level, it is difficult,

however, to discern any new ranking. Even more troublesome is the proper description of simulated 12-months precipitation620

totals. Here, our candidate PDFs perform only sufficiently. Yet, despite its increased AIC-penalty, EWD3 performs still best

along the 2-parameter gamma distribution.

In contrast to Blain et al. (2018), who investigated the influence of different parameter estimation methods on the normality

of the resulting SPI time-series and only found minuscule effects, our results show a substantial impact. Despite using the same
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parameter estimation methods and the same candidate PDF, the baseline investigated here enlarges deviations from N0,1 by625

roughly half a magnitude compared to GD2 in DJF. This result is concerning because it indicates that main differences do not

only emerge when using different parameter estimation methods but rather manifest already in the applied procedure by which

these methods are optimized. In our analysis, not different PDFs but different optimizations of the same parameter estimation

method impact normality most profoundly.

Other consequences of this finding are apparent major season-dependent differences in the performance of the investigated630

baseline. This finding contradicts the results of Stagge et al. (2015) in which no seasonal differences in the performance of

candidate PDFs emerged. While the baseline performs similar to GD2 during JJA, its performance severely deteriorates during

DJF in our analysis. While this deterioration is overall more apparent in observations than in simulations, its most obvious

instance occurs in simulations. The investigated baseline over-estimates modeled extreme droughts in Australia during DJF by

more than 240 %. Therefore we urge to exercise substantial caution while analyzing SPIDJF time-series with the investigated635

baseline’s R-package irrespective of the heritage of input data. In our analysis, we encounter the largest mean deviations in the

baseline. These deviations occur during DJF in Australia, but the baseline performs particularly poor during DJF in general.

During DJF, the examined baseline displays larger deviations fromN0,1 than any other of the here analyzed 6 SPI calculations

(GD2, WD2, GGD3, EWD3, baseline, and AICmin-analysis) in 63 out of 98 different analyses, which range along all seven

SPI categories, all seven regions, and along observations as well as simulations. Aside from the investigated baseline and in640

agreement with (Stagge et al., 2015), we find no seasonal differences in the performance of our candidate PDFs.

To aggregate our AIC-D-analysis over the globe and visualize this aggregation in tables, we need to evaluate the aggregated

performance of candidate PDFs for certain AIC-D categories (Burnham and Anderson, 2002). Their aggregation over all land

grid-points of the globe demands the introduction of two further performance criteria which require interpretation. These

criteria inform whether the candidate PDFs conform the respective AIC-D categories in sufficient grid-points globally and,645

therefore, need to interpret which fraction of the global grid-points can be considered sufficient. For this fraction of global

land grid-points, we select 85 % and 95 % as thresholds. In consequence, we categorize our candidate PDFs for each AIC-D

category into three different classes of possible performances. We consider the confirmation of the respective AIC-D category

in 95 % or more grid-points globally as an indicator of substantial confidence in the candidate PDF to perform according to the

respective AIC-D category globally. Confirmation of the respective AIC-D category in less than 85 % of grid-points globally650

is considered as an indicator of insufficient confidence in the candidate PDF. Finally, we consider it to be an indicator of

average confidence in candidate PDFs when they conform to the respective AIC-D category in between 85 % and 95 % of grid-

points globally. One might criticize that these thresholds lack a scientific foundation or that they are to some extent arbitrary.

However, they seem adequately reasonable and agree with analog evaluations of such fractions derived by rejection frequencies

from goodness-of-fit tests in previous studies (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015; Lloyd-Hughes655

and Saunders, 2002). Moreover, these thresholds show a robust statistical basis in terms of being equally represented over all

160 analyzed evaluations in this study (all entries of Table 3 and Table 4). Across all 40 analyses (all rows of Table 3 and Table

4), the four candidate PDFs perform insufficiently 65 times, while they perform with substantial (average) confidence 64 (31)

times.
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There is scope to further test the robustness of our derived conclusions in different models with different time horizons and660

accumulation periods other than 3-months (e.g. 12-months). Of additional interest would be insights about the distribution of

precipitation. Such insights would enable SPI’s calculation algorithm to physically base its key decision.

The results presented here further imply that the evaluated predictive skill of drought predictions assessed with SPI should be

treated with caution because it is likely biased by SPI’s current calculation algorithms. This bias in SPI’s common calculation

algorithms obscures the evaluation of predictive skill of simulations by inducing a blurred representation of the frequency665

distribution of modeled precipitation totals. That blurred representation translates to the simulated drought index which impedes

the evaluation process. Drought predictions often try to correctly predict the drought intensity. The evaluation process usually

considers this to be successfully achieved if the same SPI category as the observed one is predicted. This evaluation is quite

sensitive to the thresholds used when classifying SPI categories. The bias identified here blurs these categories for the model

but not for observations against which the model’s predictability is customarily evaluated. As a consequence of these sensitive670

thresholds, such a one-sided bias potentially undermines current evaluation processes.

5 Summary and Conclusions

We investigate different candidate distribution functions (gamma (GD2), Weibull (WD2), generalized gamma (GGD3), and

exponentiated Weibull distribution (EWD3)) in SPI’s calculation algorithm concerning their adequacy in meeting SPI’s nor-

mality requirement. We conduct this investigation for observations and simulations during summer (JJA) and winter (DJF). Our675

analysis evaluates globally and over each continent individually the resulting SPI3M time-series based on their normality while

focusing on an accumulation period of 3-months and testing the conclusions drawn from that focus for the most common other

accumulation periods (1-, 6-, 9-, and 12-months). Normality of SPI is assessed by comparing actual occurrence probabilities

of SPI categories (as defined by WMO’s SPI User Guide (Svoboda et al., 2012)) against well-known theoretical occurrence

probabilities of N0,1. To penalize unnecessary complexity we employ Akaike’s Information Criterion (AIC).680

Our results show that GD2 is sufficiently suited to calculate SPI derived from observations for all accumulation periods

analyzed. WD2 performs in observations better for an accumulation period of 1-months but worse for longer accumulation

periods. Based on our analysis of AIC-D values and deviations from N0,1, EWD3 performs exceptionally well and better than

any 2-parameter candidate PDF in observations for all accumulation periods. Further, we identify considerable differences

between observations and simulations. For all accumulation periods analyzed in simulations, both 2-parameter candidate PDFs685

perform inadequately (WD2) or sufficiently but only with average confidence around the globe (GD2). In contrast, EWD3

performs particularly well with substantial confidence around the entire globe in simulations and for every accumulation period

analyzed. The accumulation period of 12-months poses in simulations the only exception. Here, EWD3 still performs well but

only with average confidence around the globe. We find that 3-parameter PDFs are generally better suited in SPI’s calculation

algorithm than 2-parameter PDFs. Our results show that the risk of overfitting 3-parameter PDFs is overcompensated by the690

risk of underfitting 2-parameter PDFs. We strongly advocate to adapt and use 3-parameter distribution functions instead of

2-parameter PDFs for the calculation algorithm of SPI. Such an adaptation is particularly important for the proper evaluation
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and interpretation of drought predictions and simulations. For this adaptation, we propose the employment of EWD3 as new

standard PDF for SPI’s calculation algorithm, irrespective of the heritage of input data or the length of scrutinized accumulation

periods. Despite the issues discussed here, SPI remains a valuable tool for analyzing droughts. This study might contribute to695

the value of this tool by illuminating and resolving the discussed long-standing issue concerning the proper calculation of the

index.
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Table 1. Abbreviations used for candidate distribution functions.

Distribution function Parameter count Abbreviation

Gamma distribution 2 GD2

Weibull distribution 2 WD2

Generalized gamma distribution 3 GGD3

Exponentiated Weibull distribution 3 EWD3

Table 2. Standardized Precipitation Index (SPI) classes with their corresponding definition and occurrence probabilities (according to WMO’s

SPI User Guide (Svoboda et al., 2012)).

SPI interval SPI class Probability [%]

SPI ≥ 2 W3: extremely wet 2.3

2> SPI ≥ 1.5 W2: severely wet 4.4

1.5> SPI ≥ 1 W1: moderately wet 9.2

1> SPI >−1 N0: normal 68.2

−1≥ SPI >−1.5 D1: moderately dry 9.2

−1.5≥ SPI >−2 D2: severely dry 4.4

SPI ≤−2 D3: extremely dry 2.3

Table 3. Percent of grid-points which are classified according to Burnham and Anderson (2002) depending on whether they display AIC-D

values lower than specific thresholds or higher than 10 for each candidate PDF over both seasons. Percentages of grid-points indicate the

confidence in candidate PDFs to overall perform according to the respective AIC-D category. We consider percentages that exceed (subceed

in case of AIC-D values beyond 10) 95 % (5 %) as sign of substantial confidence in the candidate PDF (green) to overall perform according

to the respective AIC-D category. In contrast, we consider those candidate PDFs which exceed/subceed in 85/15 % of the grid-points as sign

of average confidence in the candidate PDF (yellow) to overall perform according to the respective AIC-D category. Percentages which fall

short of 85 % (or which show no skill in more than 15 %) are considered as overall sign of insufficient confidence in the candidate PDF (red).

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

3-Months

Observations

Ideal (AIC-D ≤ 2) 84 76 22 31

Well (AIC-D ≤ 4) 94 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No Skill (AIC-D > 10) 1 0 0 0

Simulations

Ideal (AIC-D ≤ 2) 65 18 68 86

Well (AIC-D ≤ 4) 74 24 89 99

Sufficient (AIC-D ≤ 7) 82 34 94 99

No Skill (AIC-D > 10) 12 57 4 1
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Table 4. Percent of grid-points which are classified according to Burnham and Anderson (2002) depending on whether they display AIC-D

values lower than specific thresholds or higher than 10 for each candidate PDF over both seasons. Percentages of grid-points indicate the

confidence in candidate PDFs to overall perform according to the respective AIC-D category. We consider percentages that exceed (subceed

in case of AIC-D values beyond 10) 95 % (5 %) as sign of substantial confidence in the candidate PDF (green) to overall perform according

to the respective AIC-D category. In contrast, we consider those candidate PDFs which exceed/subceed in 85/15 % of the grid-points as sign

of average confidence in the candidate PDF (yellow) to overall perform according to the respective AIC-D category. Percentages which fall

short of 85 % (or which show no skill in more than 15 %) are considered as overall sign of insufficient confidence in the candidate PDF (red).

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

1-Month

Observations

Ideal (AIC-D ≤ 2) 84 86 30 33

Well (AIC-D ≤ 4) 94 97 100 100

Sufficient (AIC-D ≤ 7) 98 99 100 100

No Skill (AIC-D > 10) 0 0 0 0

Simulations

Ideal (AIC-D ≤ 2) 55 43 81 87

Well (AIC-D ≤ 4) 64 54 96 100

Sufficient (AIC-D ≤ 7) 73 66 98 100

No Skill (AIC-D > 10) 21 26 1 0

6-Months

Observations

Ideal (AIC-D ≤ 2) 82 67 16 30

Well (AIC-D ≤ 4) 93 86 96 99

Sufficient (AIC-D ≤ 7) 99 98 99 100

No Skill (AIC-D > 10) 0 0 0 0

Simulations

Ideal (AIC-D ≤ 2) 75 11 49 77

Well (AIC-D ≤ 4) 82 15 82 95

Sufficient (AIC-D ≤ 7) 88 22 90 97

No Skill (AIC-D > 10) 8 71 7 2

9-Months

Observations

Ideal (AIC-D ≤ 2) 83 64 13 28

Well (AIC-D ≤ 4) 93 84 93 98

Sufficient (AIC-D ≤ 7) 99 97 98 99

No Skill (AIC-D > 10) 0 1 1 0

Simulations

Ideal (AIC-D ≤ 2) 75 10 40 76

Well (AIC-D ≤ 4) 82 13 76 93

Sufficient (AIC-D ≤ 7) 89 18 85 95

No Skill (AIC-D > 10) 7 76 12 3

12-Month

Observations

Ideal (AIC-D ≤ 2) 82 61 13 29

Well (AIC-D ≤ 4) 92 81 91 96

Sufficient (AIC-D ≤ 7) 98 96 97 98

No Skill (AIC-D > 10) 1 1 1 1

Simulations

Ideal (AIC-D ≤ 2) 79 9 34 69

Well (AIC-D ≤ 4) 86 11 75 87

Sufficient (AIC-D ≤ 7) 91 15 83 90

No Skill (AIC-D > 10) 6 80 14 7
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Figure 1. Candidate Distribution functions whose performance is investigated in this study: the 2-parameter gamma distribution (GD2),

the 2-parameter Weibull distribution (WD2), the 3-parameter generalized gamma distribution (GGD3) and the 3-parameter exponentiated

Weibull distribution (EWD3). Displayed are examples of those PDFs for σ = γ(= α) = 2 and their corresponding 95 % quantiles.
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Figure 2. Flow chart of methods to aggregate deviations fromN0,1 (left) and AIC-D frequencies (right) over domains.

Figure 3. Borders of regions examined in this study.
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Figure 4. Deviations from N0,1 for observed (left) and modeled (right) SPI time-series. SPI time-series are derived by using the simple 2-

parameter gamma distribution (GD2, top row), the simple 2-parameter Weibull distribution (WD2, second row), the 3-parameter generalized

gamma distribution (GGD3, third row), and the 3-parameter exponentiated Weibull distribution (EWD3, bottom row). The legends depict

the weighted sum (WS) of deviations fromN0,1 over all SPI categories weighted by their respective theoretical occurrence probability.
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Figure 5. AIC-D frequencies: percentages of global land grid-points in which each distribution function yields AIC-D values that are smaller

than or equal to a given AIC-Dmax value. AIC-D frequencies are displayed for each candidate PDF for observations (left) and simulations

(right) during DJF (top) and JJA (bottom).

30

https://doi.org/10.5194/hess-2019-614
Preprint. Discussion started: 2 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 6. Mean deviations from N0,1 per SPI category for each investigated domain for observations (left) and simulations (right) during

DJF (top) and JJA (bottom).
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Figure 7. Mean deviations from N0,1 per SPI category during DJF (a) and JJA (b). Mean deviations are displayed for each investigated

domain and each analyzed PDF for observations and simulations.
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Figure 8. As in Fig. 7 but for the 3-parameter exponentiated Weibull distribution (EWD3) – the best performing candidate distribution

function in this study –, a baseline which uses the 2-parameter gamma distribution (BL2) with a simpler parameter optimization than

employed in our previous analysis, and a frequently proposed multi-PDF SPI calculation algorithm which uses in each grid-point that

distribution function which yields in this respective grid-point the minimum AIC value (AICmin-analysis which is denoted as AICmin in

this figure).
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