
Response to Reviewer 11

Patrick Pieper, André Düsterhus, and Johanna Baehr2

June 15, 20203

We thank the reviewer for the effort of reviewing our work. His/Her com-4

ments have been very helpful in improving our manuscript. Below we answer5

point-by-point to each of the reviewer’s comments and explain how the respec-6

tive comment helped us to improve the manuscript. Reviewer’s comments are7

printed in black and our responses are printed in blue. Line numbers in our8

response refer to the initially submitted manuscript.9

One comment of the reviewer concerning the sample size in simulations10

caused us to perform a deeper sensitivity analysis on the ensemble size. In11

this process, a caveat to the drawn conclusions emerged. Therefore we include12

this sensitivity analysis to the results section and slightly adapted the drawn13

conclusions.14

General comments15

The SPI (Standardized Precipitation Index) is a commonly and widely used16

index to detect droughts based on precipitation data. It can be applied to sev-17

eral aggregation periods of precipitation, e.g.1 month, 3 months, 6 months etc.,18

tailored to the different drought impacts (meteorological drought, agricultural19

drought, hydrological drought, . . .). In doing so, a distribution function is fit-20

ted on the precipitation data and transformed to a standard distribution. This21

gives the possibility to detect and compare droughts over time and space. The22

curtail point is the reproduction of the standard distribution by the transformed23

original distribution. Here, the paper investigate the suitability of four distribu-24

tion functions with observed and forecasted precipitation data for the SPI. The25

goal of this paper is to propose one distribution function applicable to observed26

and forecasted precipitation totals globally for all useful aggregation periods.27

The paper is well and clear written and addresses the scientific question well.28

Thank you for these kind comments and the effort of acquiring an in-depth29

understanding of our work.30
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Specific comments31

You wrote in lines 164 to 167 that you use three different procedures to es-32

timate the parameters of the distribution function. Therefor I expect to get33

analyses of three procedures times four distributions equals to twelve analyses34

per observations and simulations. You showed only one per distribution. Which35

of the procedures did you used finally to fit the parameters of the distribution36

functions? This is also relevant as you wrote in section 3.1.3 that the procedure37

of estimation the distribution function parameters could have an impact on the38

usability of the derived parameters.39

Thank you for pointing out this unclear description of our methods. The40

three optimization methods referred to in lines 165 to 167 are used one after41

another. The goal is to find the most suitable parameters of the fit. To achieve42

this goal all available tools (all three optimization methods) are employed.43

To avoid misunderstandings we performed the following changes to lines 16144

to 170 in the manuscript: ”(...) and dealt with later specifically. We estimate45

the parameters of our candidate PDFs in SPI’s calculation algorithm with the46

maximum likelihood method [Nocedal and Wright, 1999] which is also the basis47

for the AIC computation.48

Our parameter estimation method first identifies starting values for the n pa-49

rameters of the candidate PDFs by roughly scanning the n-dimensional phase-50

space spanned by these parameters. The starting values identified from that51

scan are optimized with the simulated annealing method (SANN) [Bélisle, 1992].52

Subsequently, these by SANN optimized starting values are again further op-53

timized by a limited-memory modification of the Broyden-Fletcher-Goldfarb-54

Shanno (also known as BFGS) quasi-Newton method [Byrd et al., 1995]. If the55

BFGS quasi-Newton method leads to a convergence of the parameters of our56

candidate PDF, we achieve our goal and end the optimization here. If the57

BFGS quasi-Newton method does not lead to a convergence of the parameters58

of our candidate PDF, then we circle back to the starting values optimized by59

SANN and optimize them again further but this time with the Nelder-Mead60

method [Nelder and Mead, 1965]. After identifying converging parameters, the61

probabilities of encountering the given precipitation totals are computed and62

transformed into cumulative probabilities (G(x)).63

If neither the BFGS quasi-Newton nor the Nelder-Mead method leads to64

any convergence of the most suitable parameters of our candidate PDFs, then65

we omit these grid-points where convergence is not achieved. For the gamma,66

Weibull, and exponentiated Weibull distribution, non-converging parameters67

are rare exceptions and only occur in a few negligible grid-points. For the68

generalized gamma distribution, however, non-convergence appears to be a more69

common issue and occurs in observations as well as in simulations in roughly70

every fifth grid-point of the global land area. This shortcoming of the generalized71

gamma distribution needs to be kept in mind when concluding its adequacy in72

SPI’s calculation algorithm.73
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Since PDFs that describe the frequency distribution of precipitation totals74

are required to be only defined for the positive real axis, (...)”75

Do you exclude grids without converging parameter fits from the further76

analysis or to you use another procedure to estimate the parameters? Line77

167/16878

We excluded from our analysis those grid-points where we do not achieve79

any convergence. We also excluded grid-points where zero-precipitation events80

occurred more than one-third of the times in our time-period (see lines 188 to81

189). Grid-points excluded through both of these reasons are mainly located in82

the Sahara. In the process of checking grid-points excluded from the analysis,83

we realized a misleading description in the manuscript concerning the excess of84

zero-precipitation events. While the simulated precipitation time-series of all85

ensemble members (n=310) exhibits in 3.68% of the global land grid-points too86

often (more than 103 times) zero-precipitation events, only a single grid-point87

(located in the Sahara) exhibits zero-precipitation events too often (more than88

10 times) in observations (n=31). Barring one exception, all of the grid-points89

which exhibit zero-precipitation events too often in simulations are located in90

the Sahara and the Arabian Peninsula (9°N – 44°N; 16°E – 69°W). The only91

exception is one grid-point which is is located in the Nevada desert.92

We clarified this asymmetry between observations and simulations in lines93

189 to 191: ”This limitation restricts the SPI calculation in simulations over the94

Sahara and the Arabian Peninsula for accumulation periods of 1- and 3-months,95

(...)”96

Your sample sizes differ by a factor of ten between observations and forecasts97

(e.g. lines 198 or 277). In line 277, you wrote that the reliability of the param-98

eters depends on the sample size and is therefore better for the modelled than99

for the observed data. Nevertheless, if you analyse the usability of distribution100

functions for the SPI, you should have parameter estimations with the same101

reliability. I propose to repeat the analysis with only one ensemble member and102

add that to the paper and add a short analysis on the impact of the available103

amount of data to the reliability of the SPI.104

Thank you for this excellent idea. As a consequence of our focus on seasonal105

predictions (which heavily rely on the entire ensemble space), we did not rec-106

ognize the possibility to potentially widen our conclusions through a sensitivity107

analysis of the sample size. As it turns out, differences between observations and108

simulations mostly evaporate while their main distinction results from the sam-109

ple size. In contrast to observations, the sample size can easily be expanded or110

condensed in simulations through the employment of additional/fewer ensemble111

realizations.112

EWD3 outperforms GD2 for a sample size of 31 years in simulations and113

observations (Table I). The better performance of EWD3 relative to GD2 is114

particularly important in those grid-points where GD2 does not perform well115

(AIC-D ≥ 4). EWD3 displays such an erroneous performance in virtually no116
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Table I. As in Table 3, but the evaluation of simulations bases on a single ensemble
member. Observations are identical to Table 3.

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

3-Months

Observations

Ideal (AIC-D ≤ 2) 84 76 22 31

Well (AIC-D ≤ 4) 94 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No Skill (AIC-D > 10) 1 0 0 0

Single
Ensemble
Member

Ideal (AIC-D ≤ 2) 83 76 19 28

Well (AIC-D ≤ 4) 93 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No Skill (AIC-D > 10) 1 0 0 0

grid-point. While these results still support our overall conclusions, it is evident117

that 2-parameter distribution functions can perform distinctly better in simu-118

lation than initially expected. The 2-parameter PDFs perform equally between119

observations and simulations. However, the 2-parameter PDFs also perform still120

worse than the 3-parameter PDFs. Yet, the insights gained from Table I also121

expose the question concerning the sensitivity of candidate PDFs’ performances122

to the sample size.123
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Table II. As in Table 3, but with a focus on the sensitivity of the ensemble/sample
size in simulations.

SPI Period Ensemble Size AIC-D category GD2 WD2 GGD3 EWD3

3-Months

2

Ideal (AIC-D ≤ 2) 78 56 43 57

Well (AIC-D ≤ 4) 87 74 96 99

Sufficient (AIC-D ≤ 7) 94 90 98 100

No Skill (AIC-D > 10) 3 4 1 0

3

Ideal (AIC-D ≤ 2) 77 45 53 69

Well (AIC-D ≤ 4) 86 61 96 99

Sufficient (AIC-D ≤ 7) 93 79 99 100

No Skill (AIC-D > 10) 4 10 1 0

4

Ideal (AIC-D ≤ 2) 75 38 59 74

Well (AIC-D ≤ 4) 84 50 95 99

Sufficient (AIC-D ≤ 7) 90 67 98 100

No Skill (AIC-D > 10) 7 19 2 0

5

Ideal (AIC-D ≤ 2) 74 31 63 79

Well (AIC-D ≤ 4) 82 42 94 99

Sufficient (AIC-D ≤ 7) 89 57 97 99

No Skill (AIC-D > 10) 7 30 2 0

6

Ideal (AIC-D ≤ 2) 73 27 64 80

Well (AIC-D ≤ 4) 81 36 93 99

Sufficient (AIC-D ≤ 7) 88 50 96 99

No Skill (AIC-D > 10) 9 37 2 0

7

Ideal (AIC-D ≤ 2) 70 25 66 81

Well (AIC-D ≤ 4) 78 33 92 98

Sufficient (AIC-D ≤ 7) 86 45 96 99

No Skill (AIC-D > 10) 10 43 2 1

8

Ideal (AIC-D ≤ 2) 69 21 67 83

Well (AIC-D ≤ 4) 77 29 91 98

Sufficient (AIC-D ≤ 7) 85 39 95 99

No Skill (AIC-D > 10) 11 49 3 1

9

Ideal (AIC-D ≤ 2) 66 20 67 85

Well (AIC-D ≤ 4) 76 27 90 99

Sufficient (AIC-D ≤ 7) 84 36 95 99

No Skill (AIC-D > 10) 12 53 3 1
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3-parameter PDFs benefit because of their increased complexity more than124

2-parameter PDFs from an increased sample size which is realized by additional125

ensemble members (Table II). Consequently, reducing the ensemble size lev-126

els the playing field between 2- and 3-parameter PDFs. While a sample size127

of 31 years suffices EWD3 to outperform GD2, the margin by which EWD3128

outperforms GD2 increases with a further increase in sample size.129

Because of these insights, we rectified several statements in the manuscript130

which imply that 2-parameter PDFs are unable to sufficiently describe simu-131

lated precipitation. Instead, we emphasize that – despite the increased need of132

samples to fit 3 parameters – the 3-parameter distribution functions perform133

better than the 2-parameter PDFs among our candidate PDFs. This improved134

performance is already apparent for roughly 30 events and logically becomes135

more distinct with increasing sample size.136

In view of these insights, we created subsection 3.1.4 (in between lines 562137

and 563) in which we discuss Table I and Table II:138

139

”3.1.4 Sensitivity to Ensemble Size140

So far, we used all ensemble members at once to fit our candidate PDFs onto141

simulated precipitation. That improves the quality of the fit. In this section,142

we first analyze a single ensemble member and investigate subsequently the143

sensitivity of our candidate PDFs’ performance on the ensemble size. In doing144

so, we properly disentangle the difference between observations and simulations145

from the impact of the sample size.146

As before, 3-parameter candidate distribution functions also perform for a147

single ensemble simulation better than 2-parameter PDFs (Table I). For a sin-148

gle ensemble member, the difference by which 3-parameter PDFs out-perform149

2-parameter PDFs reduces considerably relative to the entire ensemble simu-150

lations (compare Table I against Table 3), though. In contrast to Table 3, all151

of our candidate distribution functions perform similarly between a single en-152

semble simulation and observations. In contrast to our previous results (e.g.153

when analyzing weighted sums of deviations from N0,1), modeled and observed154

precipitation distributions now seem sufficiently similar. Reducing the sample155

size for the fit by a factor of ten leads to more homogeneous performances of156

all candidate PDFs in simulations. As a reminder, AIC-D frequencies as de-157

picted in Table I measure only relative performance differences. Consequently,158

our 2-parameter candidate PDFs do not actually perform better with fewer159

data. Instead, limiting the input data to a single ensemble member impairs our160

3-parameter candidate PDFs stronger than our 2-parameter candidate PDFs.161

Irrespective of the realization, GD2 performs erroneously for 31 samples (ap-162

parent in grid-points which display AIC-D values beyond 4). Despite the need163

for more information, 31 samples suffice EWD3 to fix GD2’s erroneous perfor-164

mances in both analyzed realizations.165
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In a next step, we isolate and investigate the improvement of the fit by an166

increasing sample/ensemble size. As a consequence of limited observed global167

precipitation data, we neglect observations and their differences to simulations168

in this remaining section. During this investigation, we reanalyze Table I while169

iteratively increasing the ensemble (sample) size for the fit (and the AIC-D170

calculation). Irrespective of the ensemble size, EWD3 performs robustly with171

high proficiency (Table II). Further, the fraction of grid-points in which EWD3172

performs ideal increases constantly. This is a consequence of EWD3’s better173

performance relative to our 2-parameter candidate PDFs. Unfortunately, AIC-174

Ds can only compare models that base on an equal sample size without adhering175

to additional undesired assumptions. Thus, any direct analysis of each candi-176

date PDF’s improvement relative to its own performance for a single ensemble177

member is with AIC-D frequencies not feasible. Despite this caveat, Table II178

still indicates strongly that EWD3 benefits stronger from the increased sample179

size than any of our 2-parameter candidate distribution functions. The larger180

the sample size, the larger is the margin by which EWD3 outperforms GD2.181

Despite requiring more data, our 3-parameter candidate PDFs perform al-182

ready better for 31 samples. For 31 samples, we identify this better performance183

of 3-parameter candidate PDFs in observations and simulations. Further, since184

our 3-parameter candidate PDFs require more data to estimate optimal pa-185

rameters, they benefit in simulations stronger from additional samples than our186

2-parameter candidate PDFs. That benefit becomes apparent in a distinctly187

improved relative performance after multiplying the sample size through the188

use of additional ensemble members.”189

Moreover, we rewrote parts of section 3.1.1. In this process, we substituted190

lines 360 to 375 by: ”In simulations, the fit onto 3-months precipitation totals191

is performed on all ten ensemble members at once. This 10-folds the sample192

size in simulations relative to observations. Presuming an imperfect fit for the193

31 samples in observations, deviations from N0,1 are expected to reduce along194

our four candidate distribution functions as a result of 10-folding the sample195

size of their fit. Yet, GD2 does not benefit from 10-folding the sample size.196

GD2 performs similarly in observations and simulations (Fig. 4 (a) and (e)). In197

contrast, our 3-parameter PDFs display considerably smaller deviations from198

N0,1 in ensemble simulations than in observations (compare Fig. 4 (c) and (d)199

against (g) and (h)). Consequently, both 3-parameter candidate PDFs excel200

during both seasons in ensemble simulations (Fig. 4, (g) and (h)), while any201

distinction between both 3-parameter candidate distribution functions is still202

difficult. On the one side, different frequency distributions between observed203

and modeled precipitation totals might be one reason for this difference. On204

the other side, the fit of three parameters also requires more data than the205

fit of two. It is therefore sensible to expect that 3-parameter PDFs benefit206

stronger than 2-parameter PDFs from an increase in sample size. Are our 3-207

parameter candidate PDFs are better suited than our 2-parameter PDFs to208

describe modeled precipitation distributions? Or benefit our 3-parameter PDFs209

just stronger than 2-parameter PDFs from an increasing sample size?210
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We attempt to disentangle both effects (analyzing modeled, instead of ob-211

served, precipitation distributions, and increasing the sample size) for our 2-212

parameter candidate PDFs, next. If the 2-parameter PDFs are suited to be213

applied to modeled precipitation data, they should at least benefit to some ex-214

tent from this multiplication of sample size. Despite expecting irregularities in215

the magnitude of these reductions, they should be notable for (...)”216

Further, we also changed parts of section 5. Here, we substituted lines 681217

to 692 by: ”Irrespective of the accumulation period or the data-set, GD2 seems218

sufficiently suited to be employed in SPI’s calculation algorithm in many grid-219

points of the globe. Yet, GD2 also performs erroneous in a non-negligible frac-220

tion of grid-points. These erroneous performances are apparent in observations221

and simulations for each accumulation period. More severely, GD2’s erroneous222

performances decline further in ensemble simulations. Here, GD2 performs in223

a non-negligible fraction of grid-points also insufficient or even without any224

skill. In contrast, EWD3 performs for all accumulation periods without any de-225

fects, irrespective of the data-set. Despite requiring more data than 2-parameter226

PDFs, we identify EWD3’s proficient performance for a sample size of 31 years227

in observations as well as in simulations. Further, ensemble simulations allow228

us to artificially increase the sample size for the fitting procedure by including229

additional ensemble members. Exploiting this possibility has a major impact230

on the performance of candidate PDFs. The margin, by which EWD3 outper-231

forms GD2, further increases with additional ensemble members. Furthermore,232

EWD3 demonstrates proficiency also for every analyzed accumulation period233

around the globe. The accumulation period of 12-months poses in simulations234

the only exception. Here, EWD3 and GD2 both perform similarly well around235

the globe. Still, we find that 3-parameter PDFs are generally better suited in236

SPI’s calculation algorithm than 2-parameter PDFs.237

Given all the dimensions (locations, realizations, accumulation periods) of238

the task, our results suggest that the risk of underfitting by using 2-parameter239

PDFs is larger than the risk of overfitting by employing 3-parameter PDFs. We240

strongly advocate adapting the calculation algorithm of SPI and the therein use241

of 2-parameter distribution functions in favor of 3-parameter PDFs. Such an242

adaptation is (...)”243

Aside, we clarified the following statements of the manuscript:244

We changed the wording from ”simulations” to ”ensemble simulations” in245

the following lines: 13, 362, 432, 450, 458, 495, 513, 569, 590, 665, 669, 693246

We substituted the sentence in lines 462 to 464 by: ”(...) However, the results247

justify the necessity for this increased complexity – GD2 performs erroneously in248

26% (6%), insufficiently in 18% (2%), and without any skill in 12% (1%) of the249

global land area in ensemble simulations (observations). The risk of underfitting250

(...)”251

We included the following paragraph in between lines 622 and 623: ”Overall252

our 3-parameter candidate PDFs perform better than investigated 2-parameter253
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candidate PDFs. Despite requiring more data, a sample size of 31 years suf-254

fices our 3-parameter candidate PDFs to outperform our 2-parameter candidate255

PDFs in simulations and observations. Further, our 3-parameter candidate256

PDFs greatly benefit from an increase in the sample size in simulations. In257

simulations, such a sample size sensitivity analysis is feasible by exploiting dif-258

ferent counts of ensemble members. Whether 3-parameter PDFs would benefit259

similarly from an increased sample size in observations is likely but ultimately260

remains speculative because trustworthy global observations of precipitation are261

temporally too constrained for such a sensitivity analysis.”262

We recalculated the counts in lines 656 to 659. They now read as follows:263

”Moreover, these thresholds show a robust statistical basis in terms of being264

equally represented over all 320 analyzed evaluations in this study (all entries of265

Table 3, Table 4. Table 5, and Table 6). Across all 80 analyses (all rows of Table266

3, Table 4, Table 5, and Table 6), the four candidate PDFs perform insufficiently267

132 times, while they perform with substantial (average) confidence 130 (58)268

times.”269

Lines 282 to 285: In this paragraph is no transition from absolute to relative270

AIC, which need to be improved. In addition, the index i is not well described.271

Thank you for revealing this unclear description.272

We changed lines 280 to 287 to: ”(...) penalizes candidate PDFs based on273

their parameter-count. The best-performing distribution function attains the274

smallest AIC value because the first term is negative and the second one is275

positive.276

Further, the absolute AIC value is often of little information – especially277

in contrast to relative differences between AIC values derived from different278

distribution functions. Thus, we use relative AIC differences (AIC-D) in our279

analysis. We calculate these AIC-D values for each PDF by computing the280

difference between its AIC value to the lowest AIC value of all four distribution281

functions. AIC-D values inform us about superiority in the optimal trade-off282

between bias and variance and are calculated as follows:283

AIC-Di = AICi −AICmin (1)

The index i indicates different distribution functions. AICmin denotes the AIC284

value of the best-performing distribution function.285

For our analysis, AIC-D values are well suited (...)”286

Lines 224 to 226: Do you avoid parameters in the GGD3 to become GD2 or287

WB2?288

We estimate the parameters of all PDFs independently by fitting the re-289

spective PDF to the precipitation data. Consequently, the two parameters that290

GGD3 share with GD2 (WD2) can differ. This is important because the third291

parameter of GGD3 (and EWD3) extends the phase-space spanned by the 2 pa-292

rameters of GD2 (and WD2) into a third dimension. This third dimension pro-293

vides opportunities for further optimizations – also for the first two parameters.294
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Thus, the new optimum for GGD3 in the three-dimensional phase-space does295

not need to be located along the normal above the optimal parameter-values of296

GD2 (or WD2) in the two-dimensional phase-space. The same is true in the297

other direction. The optimum location of parameters in the three-dimensional298

phase-space cannot simply be projected onto any two-dimensional phase-space.299

Instead, the location in the two-dimensional phase-space needs to be identified300

by properly optimizing the estimated fitting parameters independently.301

To avoid misunderstandings, we clarified this point by inserting the following302

description at the end of the second paragraph of that section at line 211: ”The303

optimization of this second shape parameter also requires the re-optimization304

of the first two parameters. The fitting procedure of 3-parameter PDFs needs305

therefore considerable more computational resources than the fitting procedure306

of 2-parameter distribution functions.”307

Section 2.7: Your region are large enough to cover several precipitation308

regimes in one region. I propose to reduce the size of the regions and select309

regions with known good/bad model performance and different precipitation310

regimes.311

As of yet, the analysis is condensed enough to display the regional results312

in Figures 6-8 in single plots. Such a visualization helps to convey the results313

of our analysis. Until now, we presumed our results to be sufficiently robust so314

that the exact borders of our regions would neither distinctly alter our results315

nor our conclusions. Aside, the analyzed regions need to encompass several grid-316

points as explained in lines 322 to 327. Adhering to the law of large numbers is317

crucial for the statistical analysis performed for reach region. That being said,318

one can still argue for smaller regions. However, such a dispute is subjective as319

described in lines 330 to 324. Resolving this dispute would lead to an entirely320

new analysis which is beyond the scope of this investigation.321

Irrespective of resolving this dispute in general, your proposal also triggered322

our curiosity concerning our presumption about the spatial robustness of our323

results and conclusions. Therefore, we tested the analysis for a region with324

exceptionally good performance of MPI-ESM-LR in predicting precipitation and325

SPI: the North Region of Brazil (0°– 8°S; 40°W – 60°W). As a side note, examples326

of poor model performance are already included in the results (e.g. the entire327

European continent). For the North Region of Brazil, we repeated Figure 4 and328

Table 3 of our analysis and display these results in Figure I and Table III.329

10



Table III. As in Table 3, but solely for the North Region of Brazil (0°– 8°S; 40°W
– 60°W).

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

3-Months

Observations

Ideal (AIC-D ≤ 2) 69 76 12 35

Well (AIC-D ≤ 4) 84 89 92 100

Sufficient (AIC-D ≤ 7) 100 97 100 100

No Skill (AIC-D > 10) 0 0 0 0

Simulations

Ideal (AIC-D ≤ 2) 13 50 70 93

Well (AIC-D ≤ 4) 13 53 84 100

Sufficient (AIC-D ≤ 7) 16 77 87 100

No Skill (AIC-D > 10) 78 21 8 0
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Figure I. As in Figure 4, but solely for the North Region of Brazil (0°– 8°S; 40°W
– 60°W).
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On the one hand, these results further corroborate our conclusions. EWD3 is330

distinctly better suited than the other candidate PDFs to describe precipitation;331

also when analyzed over such a small region (see Table III). On the other hand,332

the results also exemplify the importance of adhering to the law of large numbers333

in our analysis and its sensibility in terms of the extend of analyzed regions;334

specifically when evaluating deviations from N0,1 (see Figure I).335

Line 355: How do you calculate the “weighted sum”? Please add a descrip-336

tion.337

Thank you for pointing out this lack of clarity.338

We changed the sentence to: ”Therefore, the weighted sum (weighted by339

the theoretical occurrence probability of the respective SPI class (Table 2)) over340

the absolute values of deviations from N0,1 along all SPI categories is lowest for341

GD2 in both analyzed seasons (see legend in Fig. 4, (a)–(d)).”342

We also added another description in line 377: ”Therefore, we weigh each343

class’ deviation from N0,1 by the theoretical occurrence probability (see Table344

2) of the respective class and analyze weighted deviations from N0,1.”345

Line 574: You stated a phase transition of the SPI at 3 months precipitation346

accumulation. However, I cannot see it in Figure 4. What do you mean with347

phase transition?348

Thank you for calling the misleading phrasing to our attention. In Table349

4, WD2 performs better than GD2 in observation for an accumulation period350

of 1-month. For accumulation periods of 6-months and longer GD2 performs351

better than WD2 in observations.352

We see how referring to this behavior as phase transition might be misleading353

and changed the paragraph to: ”In agreement with prior studies [Stagge et al., 2015,354

Sienz et al., 2012], we also identify the apparent performance shift between short355

(less than 3-months) and long (more than 3-months) accumulation periods for356

the 2-parameter candidate PDFs. While WD2 performs well for short accumu-357

lation periods (only in observations though), GD2 performs better than WD2358

for longer accumulation periods. Nevertheless, neither 3-parameter candidate359

PDF displays such a shift in its performance. Both 3-parameter PDFs perform360

for accumulation periods shorter and longer than 3-months similarly well.”361

We also changed the sentence from line 600 to 602 in which we also used362

the wording phase transition. The reworded sentence reads as follows: ”The363

emergence of this proposal stems from a focus on 2-parameter PDFs that exhibit364

a shift in their performance which depends on the scrutinized accumulation365

period.”366

Section 4: Do you compare the same number of grid cells for observations367

and forecasts? In addition, do you compare the same grid cells? I assume368
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Table IV. Percent of covered global land grid-points for each PDF in each realiza-
tion and for each investigated season. Main differences between observations and
simulations result from the Sahara and the Arabian Peninsula not being covered in
simulations.

GD2 WD2 GGD3 EWD3

DJF
Simulations 96.27 96.27 82.69 95.23
Observations 100.00 100.00 82.33 97.16

Ratio: Sim./Obs. 0.9627 0.9627 1.0043 0.9801

JJA
Simulations 96.33 96.33 77.9 95.55
Observations 99.97 99.97 84.79 96.87

Ratio: Sim./Obs. 0.9636 0.9636 0.9187 0.9864

different sets of selected grid cells for your analyses can have an impact on the369

results.370

Thank you for this well-founded remark. Because of this comment and an371

earlier comment of yours, we double-checked the omitted grid-points again. We372

omit grid-points because of excessive zero-precipitation events and as a result373

of not achieved convergences. Consequently, the analyzed grid-points differ.374

They differ between simulations and observations because both realizations ex-375

hibit a different count of grid-points which exhibited too many (more than376

one-third) zero-precipitation events. Additionally, the analyzed grid-points also377

differ across the analyzed PDFs because the count of grid-points in which con-378

vergence is not achieved varies PDF-dependent. It is noteworthy, that (for GD2,379

WD2, and EWD3) the variations in analyzed grid-points are dominated by ex-380

cessive zero-precipitation events; rather than being caused by non-converging381

parameters. Averaged over both seasons, 3.68% (0%) of land grid-points are382

PDF-independently excluded through an excessive count of zero-precipitation383

events in simulations (observations). In contrast, the total percentage of omit-384

ted grid-points per PDF (as a result of non-convergence and excessive zero-385

precipitation events) are displayed in Table IV.386

We excluded non-converging grid-points only for the specific PDF, the spe-387

cific season, and only in the specific realization (observation or simulation). This388

results in slightly different coverages for each PDF and each realization (see Ta-389

ble IV). Admittedly, GGD3’s coverage can be described as inferior compared to390

the other candidate PDFs. However, this inferior performance does not impact391

our conclusions, but rather affirms the conclusion that EWD3 is better suited392

than GGD3. Additionally, the similar coverages of the other three candidate393

PDFs support the claim of a leveled playing field in our analysis. Thus, repeat-394

ing the analysis for those grid-points where the fits of GD2, WD2, and EWD3395

mutually converge is highly unlikely to change the result. Moreover, limiting396

the analyzed grid-points to those grid-points in which GGD3’s calculation algo-397

rithm finds converging parameters would artificially reduce the reliability of the398

comparison between GD2, WD2, and EWD3. This impact would be similarly399

undesirable.400
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Yet, we do agree that different sets of grid-points can principally impact our401

analysis. Therefore, we analyzed Table 3 again to ascertain our assumption of402

a negligible impact on our analysis:403

Table V. As in Table 3, but only for those grid-points which are mutually covered
in simulations and observations by each PDF. Note: Grid-point coverage still differs
between DJF and JJA. Depicted is the mean over both seasons.

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

3-Months

Observations

Ideal (AIC-D ≤ 2) 84 74 19 30

Well (AIC-D ≤ 4) 94 90 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No Skill (AIC-D > 10) 0 0 0 0

Simulations

Ideal (AIC-D ≤ 2) 64 18 68 86

Well (AIC-D ≤ 4) 73 24 89 99

Sufficient (AIC-D ≤ 7) 82 34 94 99

No Skill (AIC-D > 10) 12 56 4 1

Table VI. As in Table 3, but only for those grid-points which are mutually covered in
simulations and observations by GD2, WD2, and EWD3. Note: Grid-point coverage
still differs between DJF and JJA. Depicted is the mean over both seasons. Remark:
Grid-points analyzed for GGD3 are the ones from Table 3 minus those grid-points
which are not mutually covered by GD2, WD2, and EWD3.

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

3-Months

Observations

Ideal (AIC-D ≤ 2) 84 75 20 30

Well (AIC-D ≤ 4) 94 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No Skill (AIC-D > 10) 0 0 0 0

Simulations

Ideal (AIC-D ≤ 2) 65 18 68 86

Well (AIC-D ≤ 4) 74 24 89 99

Sufficient (AIC-D ≤ 7) 82 34 94 99

No Skill (AIC-D > 10) 12 57 4 1
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Averaged over all 32 entries, Table VI (Table V) differs on average by just404

0.16 (0.34) percentage points from Table 3. The largest difference emerges in405

observations for GGD3 in the ideal category which deviates in Table VI (Table406

V) by 2 (3) percentage points from Table 3. In conclusion, we consider our407

assumption of a negligible impact on our analysis ascertained.408

Lines 604/605: I think the investigations to the empirical cumulative dis-409

tribution functions are very relevant for this topic and should be added to the410

paper or, at least, add a reference to the paper where you want to describe it.411

We tried the empirical cumulative density function (ECDF) but quickly real-412

ized its shortcoming: Its discrete nature is too coarse for the task at hand which413

results in a massive dependence of possible SPI-values on the sample size. As414

explained in lines 323 to 328, the crucial performance requirement demands415

that deviations from N0,1 spatially balance each other sufficiently quickly. For416

SPI time-series derived with an ECDF, however, these deviations will never bal-417

ance each other but aggregate with each additional grid-point. In the example418

from line 325, SPI time-series derived with an ECDF would not lead in a single419

grid-point to an extremely dry/wet event and would lead in each grid-point to420

exactly one severely dry/wet event during a 31-year time-series. Thus, for each421

grid-point over which we aggregate, we would add 0.7 missing extreme events422

and 0.4 missing severe events on both tails of the distribution.423

To prevent any confusion, we adjusted the ending of the sentence in line424

607 and included another explanation: ”(...) We checked this approach which425

proved to be too coarse because of its discretized nature (not shown). As a result426

of its discretized nature, the analyzed sample size prescribes the magnitude of427

deviations from N0,1. Consequently, these deviations are spatially invariant and428

aggregate with each additional grid-point. Thus, deviations from N0,1 will not429

spatially balance each other.”430

Section 5: The base problem, from my point of view is, that the models431

are not able to reproduce the observed precipitation distribution function and432

procedures developed on observed data need to be adapted to be applied to433

model data (the GD2 performs well on the observed data). That is the base of434

your research and you should comment on this here or in the introduction.435

Thank you for pin-pointing this motivation. This is exactly the motivation436

we had in mind which triggered us to conduct this analysis. We thought that437

we sufficiently pointed that out. However, after re-reading the respective para-438

graphs, we also realized that it comes a bit short. Therefore, we adjusted the439

Introduction and Section 5 and address this motivation in separate, stand-alone440

paragraphs:441

To adjust the Introduction, we split the paragraph from lines 118 to 134.442

The changes read as follows: ”SPI calculation procedures were developed for ob-443

served precipitation data. Since models do not exactly reproduce the observed444

precipitation distribution, these procedures need to be tested and eventually445
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adapted before being applied to modeled data. Here, we aspire to identify an446

SPI calculation algorithm that coherently describes modeled and observed pre-447

cipitation (i.e. describes both modeled and observed precipitation distributions448

individually and concurrently). While testing SPI’s calculation algorithm on449

modeled precipitation data is usually neglected, such a test demands nowadays450

a similarly prominent role as the one for observations because of the increasing451

importance of drought predictions and their evaluation. Despite this impor-452

tance, the adequacy of different candidate distribution functions has to the453

authors’ best knowledge never been tested in the output of a seasonal predic-454

tion system – although seasonal predictions constitute our most powerful tool to455

predict individual droughts. To close that gap, this study evaluates the perfor-456

mance of candidate distribution functions in an output of 10 ensemble members457

of initialized seasonal hindcast simulations.458

In this study, we test the adequacy of the gamma, Weibull, generalized459

gamma, and exponentiated Weibull distribution in SPI’s calculation algorithm.460

The evaluation of their performance depends on the normality of the result-461

ing SPI time-series. In this evaluation, we focus on an SPI accumulation pe-462

riod of 3-months (SPI3M ) during winter (DJF) and summer (JJA) and test463

the drawn conclusions for other common accumulation periods (1-, 6-, 9-, and464

12-months). Our analysis conducts two complementary evaluations of their465

normality: (i) evaluating their normality in absolute terms by comparing ac-466

tual occurrence probabilities of SPI categories (as defined by WMO’s SPI User467

Guide [Svoboda et al., 2012]) against well-known theoretically expected occur-468

rence probabilities from the standard normal distribution (N0,1), (ii) evaluating469

their normality relative to each other with Akaike’s information criterion (AIC)470

which analytically assesses of the optimal trade-off between information gain471

against the complexity of the PDF to adhere to the risk of overfitting. Dur-472

ing this analysis, we investigate observations and simulations. Observed and473

simulated precipitation is obtained from the monthly precipitation data-set of474

the Global Precipitation Climatology Project (GPCP) and the above mentioned475

initialized seasonal hindcast simulations, respectively. We conduct our analysis476

for the period 1982 to 2013 with a global focus which also highlights regional477

disparities on every inhabited continent (Africa, Asia, Australia, Europe, North478

America, and South America).”479

To adjust Section 5, we inserted in between Lines 672 and 673 (at the start480

of the section) the following paragraph: ”Current SPI calculation algorithms are481

tailored to describe observed precipitation distributions. Consequently, current482

SPI calculation algorithms are ineptly suited to describe precipitation distribu-483

tions obtained from ensemble simulations. Also in observations, erroneous per-484

formances are apparent and well-known, but less conspicuous than in ensemble485

simulations. We propose a solution that rectifies these issues and improves the486

description of modeled and observed precipitation distributions individually as487

well as concurrently. The performance of 2-parameter candidate distribution488

functions is inadequate for this task. By increasing the parameter count of the489

candidate distribution function (and thereby also its complexity) a distinctly490

17



better description of precipitation distributions can be achieved. In simulations491

and observation, the here identified best-performing candidate distribution func-492

tion – the exponentiated Weibull distribution (EWD3) – performs proficiently493

for every common accumulation period (1-, 3-, 6-, 9-, and 12-months) virtu-494

ally everywhere around the globe. Additionally, EWD3 excels when analyzing495

ensemble simulations. Its increased complexity (relative to GD2) leads to an496

outstanding performance of EWD3 when an available ensemble multiplies the497

sample size.”498

Figure 6: Can you add the global average, as for Figure 4, as an additional499

domain to this figure?500

We agree that the global average belongs in this Figure. To avoid any501

confusion, we decided to prominently label the global average in the caption of502

the figure.503

The caption now reads as follows: ”Mean deviations from N0,1 per SPI504

category for the entire global land area and each investigated region. Results505

are depicted for observations (left) and simulations (right) during DJF (top)506

and JJA (bottom).”507

Technical corrections508

Lines 379/380: It was not clear what was set in relation to what. Please reword509

this part.510

Corrected.511

Reworded to: ”Relative to observations, GD2’s weighted deviations increase512

in simulations by more than 120% in JJA, while WD2’s increase by more than513

25% in JJA and 80% in DJF.”514

Line 527: I think you to refer to Figure 8 and not to Figure 7.515

We do mean Figure 7.516

To clarify this misunderstanding, we reworded the sentence to: ”The com-517

parison between the performance of our baseline against GD2’s performance518

(compare Fig. 8 against Fig. 7) thus also indicates the impact of the meticu-519

lousness applied to the optimization of the same parameter estimation method.”520

Line 583: I think you want to refer to “GD2” instead of “GGD2” (typo).521

We want to refer to GGD3. We corrected that typo and changed ”GGD2”522

to ”GGD3”.523

Figure 4: Add to the caption that it is for global average.524

Added.525
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Response to Reviewer 21

Patrick Pieper, André Düsterhus, and Johanna Baehr2

June 15, 20203

We thank Gabriel Blain for the effort of reviewing our work. Your comments4

have been very helpful in improving our manuscript. Below we answer point-5

by-point to each of your comments and explain how the respective comment6

helped us to improve the manuscript. Your comments are printed in black and7

our responses are printed in blue. Line numbers in our response refer to the8

initially submitted manuscript.9

One of your comments concerning the complexity punishment by our em-10

ployed information criterion caused us to reconsider our storyline. This recon-11

sideration does not alter our conclusions. Yet, it simplifies for us to conclude12

which helps readers to follow our conclusions.13

General comments14

The manuscript ”Global and regional performances of SPI candidate distribu-15

tion functions in observations and simulations” proposes and new methodology16

to select candidates distributions for calculating the SPI; a widely used standard-17

ized drought index. The study is interesting and adds important information18

to the SPI literature because it evaluates the advantages and shortcomings of19

previous methodologies designed for the same purpose. It is also well written.20

So, it should be considered for publication.21

Thank you for these kind comments and your endorsement.22

Specific comments23

L.105 The Shapiro-Wilk [...] ”is unreliable to evaluate SPI normality (Naresh24

Kumar et al., 2009)”. This is a very important statement, which now I tend to25

agree with. Please, provide further information regarding it.26

First, we are pleased that we were able to convince you. Second, we thank27

you for pointing out this lack of depth in our introduction.28

Goodness-of-Fit (GoF) tests are ill-suited to assess the normality of SPI29

time-series, because of their spatial aggregation in combination with their binary30

convention. To fully understand this interplay we start with SPI’s calculation31
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procedure: (i) fit a candidate PDF onto precipitation, then (ii) Z-transform the32

fitted probabilities to SPI values. Because the choice of an appropriate candidate33

PDF is the key decision in this process, the initial fit of the candidate PDF onto34

precipitation should be scrutinized. GoF tests, however, measure the normality35

of the resulting SPI values. In theory, this switch of focus in the analysis only36

complicates its structure but should not impact its outcome: if the candidate37

PDF’s fit is appropriate, then its estimated probabilities are appropriate. Thus,38

their exact equiprobability transformations to the standard normal variable Z39

are also appropriate.40

Anyhow, this complicated structure blurs the view on the measure of interest:41

the fit of the candidate PDF (onto precipitation). Therefore, the following42

caveat easily arises unnoticed and is, thus, not properly dealt with. After losing43

sight of the actual measure of interest (the fit of the candidate PDF), the focus44

lays on the normality of SPI time-series. The intuitive tool to assess normality45

leads to GoF tests. The drawback of GoF test is the biased discrimination46

between the tails and the center of the distribution. GoF tests equally evaluate47

each value that contributes to the distribution. Such an evaluation assigns more48

weight to the center and almost no weight to the tails of the distribution. Yet,49

appropriately fitting the tails of precipitation distributions should logically be50

of paramount importance to any sensible candidate PDF employed in SPI’s51

calculation algorithm (see also our argument against weighting deviations from52

N0,1 by the theoretical occurrence probability of the respective class in lines 24453

to 251). But the complicated structure blurs the view from this consideration.54

Instead, GoF tests conveniently present an allegedly easy solution.55

As seen in Fig. 1, deviations from N0,1 are smallest in the center and largest56

in the tails of the distribution. Candidate PDFs typically fit precipitation bet-57

ter for the center than for the tails of the distribution: its center counts more58

samples which translates to more weight in the optimization (e.g. by the max-59

imum likelihood estimation). This behavior deludes GoF tests in the analysis60

of SPI normality. That delusion obscures the tails of the distribution from GoF61

tests. Nevertheless this delusion, despite this obscurity surfacing skepticism62

about the proper depiction of the tails of the distribution can still aggregate63

over many grid-points. This aggregated skepticism can still lead to a robust64

analysis if evaluated relative to the similarly obscured performance of other65

candidate PDFs (as shown by metrics such as AIC-D, and BIC-D). Anyhow,66

additionally aggravating for GoF tests is their convention to be interpreted bi-67

narily. As a consequence of this convention, SPI literature typically aggregates68

results of GoF tests over domains by counting rejections. This typical aggrega-69

tion prevents surfaced skepticism to fully aggregate over many grid-points. The70

interplay of both caveats, the blurred tails of the distribution and the preven-71

tion of remaining skepticism to fully aggregate, leads to the conclusion that GoF72

tests are ill-suited to assess SPI normality. I.e. it is (admittedly more obvious73

but) similarly inept to round normally distributed (N0.1±ε,0.1) variables to their74

nearest integer before calculating their mean to estimate ε.75

This full explanation is too extensive for the scope of the introduction of76

2



our publication. However, we do admit that only indicating problems with the77

binary nature of GoF tests and hinting at issues with their spatial aggregation78

might cut the story too short. To rectify this shortcoming, we split the para-79

graph (lines 106 -117). This allows us to elaborate on GoF tests (in)ability to80

evaluate SPI candidate distribution functions: ”(...) which in turn is unreliable81

to evaluate SPI normality [Naresh Kumar et al., 2009].82

The above-mentioned goodness-of-fit tests equally evaluate each value of83

SPI’s distribution. Such an evaluation focuses on the center of the distribu-84

tion because the center of any distribution contains per definition more samples85

than the tails. In contrast, SPI usually analyzes (and thus depends on a proper86

depiction of) the distribution’s tails. Therefore, a blurred focus manifests in87

these goodness-of-fit tests. Moreover, the convention to binarily interpret the88

above-mentioned goodness-of-fit tests aggravates this blurred focus. Because of89

this convention, these goodness-of-fit tests are unable to produce any relative90

ranking of the performance of distribution functions for a specific location (and91

accumulation period). This inability prevents any reasonable aggregation of92

limitations that surface despite the blurred focus. Thus, they are ill-suited to93

discriminate the best performing PDF out of a set of PDFs [Blain et al., 2018].94

For SPI distributions the question is not whether they are (or should be) nor-95

mally distributed (for which goodness-of-fit tests are well suited to provide the96

answer). The crucial question is rather which PDF maximizes the normality97

of the resulting SPI distribution. Because of the ill-fitting focus and the ill-98

suited convention of these goodness-of-fit tests, they are inept to identify SPI’s99

best-performing candidate distribution function out of a set of PDFs.100

In agreement with this insight, those studies, that rigorously analyzed can-101

didate distribution functions, or investigate an appropriate test methodology102

for evaluating SPI candidate PDFs, consequently advocate the use of relative103

assessments: (...)”104

While elaborating on the methodology to test the normality of SPI time-105

series, we realized a missing differentiation between the analysis of AIC-D fre-106

quencies and the analysis of deviations from N0,1 in the initial submission. The107

fact that both analyses complement each other comes a bit too short. Thus, we108

also rectified this shortcoming through the following changes to the manuscript:109

We substituted a sentence from the abstract in lines 6 to 7 by: ”Our normal-110

ity comparison bases on a complementary evaluation. Actual against theoretical111

occurrence probabilities of SPI categories evaluate the absolute performance of112

candidate distribution functions. In contrast, Akaike’s information criterion113

evaluates candidate distribution functions relative to each other while analyti-114

cally punishing complexity. SPI time-series (...)”115

We added another paragraph at the end of section 2.5 in between lines 293116

and 294 which reads as follows: ”The analysis of deviations from N0,1 assesses117

performances of candidate PDFs in absolute terms irrespective of the candidate118

PDF’s complexity. In contrast, the AIC-D analysis evaluates the performance of119

candidate PDFs relative to each other while analytically punishing complexity.120
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Consequently, the AIC-D analysis cannot evaluate whether the best-performing121

candidate distribution function also performs adequately in absolute terms. In122

opposition, deviations from N0,1 encounter difficulties when evaluating whether123

an increased complexity from one PDF to another justifies any given improve-124

ment. Both analyses together, however, augment each other complementary.125

This enables us to conclusively investigate: (i) which candidate PDF performs126

best while (ii) ensuring adequate absolute performance and while (iii) constrain-127

ing the risk of over-fitting.”128

We substituted three sentences in a paragraph of section 3.1.1 (lines 401 to129

405) by: ”It is noteworthy, that investigating deviations from N0,1 over the en-130

tire globe contains the risk of encountering deviations that balance each other131

in different grid-points with unrelated climatic characteristics. Until dealing132

with this risk, our analysis of deviations from N0,1 only indicates that three133

candidate PDFs (GD2, GGD3, and EWD3) display an adequate absolute per-134

formance. On the one hand, we can reduce that risk by analyzing deviations135

from N0,1 only over specific regions. This analysis safeguards our investigation136

by ensuring (rather than just indicating) an adequate absolute performance137

around the globe and is performed later. On the other hand, we first com-138

pletely eliminate this risk by examining AIC-D frequencies: aggregating AIC-D139

values over the entire globe evaluates the performance of PDFs in each grid-140

point and normalizes these evaluations by (rather than adding them over) the141

total number of grid-points of the entire globe. We investigate AIC-D frequen-142

cies first to evaluate whether GGD3 and/or EWD3 perform sufficiently better143

than GD2 to justify their increased complexities.”144

We added another paragraph at the end of section 3.1.1 (in between lines 475145

and 476): ”Among our candidate PDFs, EWD3 is obviously the best-suited PDF146

for SPI. Yet, we still need to confirm whether also EWD3’s absolute performance147

is adequate. While the global analysis indicated EWD3’s adequateness, the148

ultimate validation of this claim is incumbent upon the regional analysis.”149

We added another paragraph at the end of section 3.1.2 (in between lines 514150

and 515): ”The analysis of AIC-D frequencies proves that EWD3 is SPI’s best151

distribution function among our candidate PDFs. Additionally, the regional152

investigation confirms the global analysis: the absolute performance of EWD3153

is at minimum adequate in observations and ensemble simulations.”154

The Bayesian information criterion (BIC) is similar to the AIC. However,155

the BIC uses a different penalty for the number of parameters [ln(n) k]. Can156

the authors verify if the BIC leads to similar results as those of the AIC.157

We thank you for this exciting idea. Whether we use AIC or BIC to punish158

candidate PDFs for their complexity does not change our conclusions. Most of159

our drawn conclusions from AIC-D frequencies bases on the behavior of candi-160

date PDFs’ coverages for AIC-Dmax values larger than 10 (right edge of Figure161

5). These conclusions are then substantiated by candidate PDFs’ coverages162

for AIC-Dmax values larger than 7. These coverages (for AIC-Dmax/BIC-Dmax163
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Table I. Complexity penalty of candidate PDFs assessed with AIC and BIC.

Information
Criterion

AIC BIC
Difference

BIC-AIC

Realization
Obs. Sim. Obs. Sim. Obs. Sim.

(N=31) (N=310) (N=31) (N=310) (N=31) (N=310)
2-param. PDFs 4.43 4.04 6.87 11.47 2.44 7.43
3-param. PDFs 6.89 6.08 10.3 17.21 3.41 11.13

Difference
3-2 param.

2.46 2.04 3.43 5.74 0.97 3.7

values ≤ 7) are insensitive to the magnitude of changes caused by altered com-164

plexity penalties (Table I)165

What impacts our analysis is not the absolute, parameter- and sample size-166

dependent punishment of candidate PDFs (values in the center of Table I).167

Instead, only the penalty difference between 2- and 3-parameter PDFs that168

base on the same sample size matters (evaluate observations and simulations169

isolated in the last row of Table I).170

Similar, altering the information criterion (from AIC to BIC) impacts our171

analysis through the penalty difference between BIC and AIC (last column of172

Table I). Here, the difference between 2- and 3-parameter PDFs that base on the173

same sample size matters again (evaluate observations and simulations isolated174

in the bottom- and rightmost cell of Table I). I.e. the additional margin by which175

3-parameter PDFs need to further outperform 2-parameter PDFs in order to176

still be considered as better by the new information criterion. This margin177

(bottom- and rightmost cell in Table I) increases in observations (simulations)178

by 0.97 (3.7) when using BIC instead of AIC.179

The robustness of our conclusions stems from the robustness of the can-180

didate’s coverages for large AIC-Dmax/BIC-Dmax values (≥ 7). In this AIC-181

Dmax regime, the candidate PDFs’ coverages are sufficiently robust concerning182

changes caused by altered complexity penalties (Fig. I). Comparing 2- against183

3-parameter in Fig. 5 with AIC-D or BIC-D does not substantially change the184

evaluation of large AIC-Dmax/BIC-Dmax values (≥ 7). As a first-order approx-185

imation, we can compare in observations the coverages of 2-parameter PDFs186

at the AIC-Dmax value of 7 against the coverages of 3-parameter PDFs at the187

AIC-Dmax value 7.97 (we shift the line indicating the coverages of 3-parameter188

PDFs by 0.97 units to the right). Since the slope of that line is sufficiently flat,189

this shift does not impact the conclusions for large AIC-Dmax values (≥ 7).190

In observations (simulations), coverages of 3-parameter PDFs are highly sen-191

sitive to the change of the information criterion at AIC-Dmax/BIC-Dmax values192

smaller than approximately 4 (6) (compare in Fig I the top row against the193

bottom row). The first-order approximation outlined before (shifting the cov-194

erages of 3-parameter PDFs by 0.97 (3.7) units to the right in observations195

(simulations)), describes the changes caused by using BIC (instead of AIC)196

quite well. The shifted coverages of 3-parameter PDFs exhibit slope-dependent197
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Figure I. AIC-D (top) and BIC-D (bottom) frequencies: percentage of global grid-
points during both seasons in which each PDF yields AIC-D/BIC-D values that are
smaller than or equal to a given AIC-Dmax/BIC-Dmax value. The vertical black line
indicates the different complexity penalties between 3- and 2-parameter PDFs (see
bottom row of Table I). AIC-D/BIC-D frequencies are displayed for each candidate
PDF for observations (left) and simulations (right).

changes at all AIC-Dmax/BIC-Dmax values. That causes 3-parameter PDFs to198

be best-suited (AIC-Dmax/BIC-Dmax value of 0) in fewer grid-points. In each199

grid-point, a single PDF must still be best-suited. In a second-order approxi-200

mation, the coverages of 2-parameter PDFs, thus, slightly adjust for small AIC-201

Dmax/BIC-Dmax values to the changes of 3-parameter PDFs’ coverages at the202

AIC-Dmax/BIC-Dmax value of 0. Consequently, the coverages of 2-parameter203

PDFs are overall fairly insensitive to the change of the information criterion204

because they only adjust slightly. The coverages of 3-parameter PDFs are more205

sensitive to the changed information criterion because they universally exhibit206

a horizontal shift.207

This shift, however, does not result in a universally uniform sensitivity.208

The sensitivity of the coverages of 3-parameter PDFs depends on their slope.209

Because their slope is in both realizations flat for AIC-Dmax values beyond210

2.5, the coverages of 3-parameter PDFs are insensitive beyond AIC-Dmax/BIC-211
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Dmax values of 2.5 plus 0.97 (3.7) in observations (simulations). Therefore,212

the coverages of the AIC-D/BIC-D category ”no skill” (AIC-D/BIC-D > 10)213

and ”sufficient” (AIC-D/BIC-D ≤ 7) are robust concerning a change of the214

information criterion from AIC to BIC in both realizations. In observations,215

the AIC-D/BIC-D category ”well” (AIC-D/BIC-D ≤ 4) is also robust to the216

change of the information criterion (because 2.5 + 0.97 ≤ 4). Further, the slope217

of coverages of both 3-parameter PDFs is rather flat between AIC-Dmax val-218

ues of 1 and 2, in observations. In observations, the AIC-D/BIC-D category219

”ideal” (AIC-D/BIC-D ≤ 2) is, therefore, also rather robust to the change of220

the information criterion. Ergo, all AIC-D/BIC-D categories are in observa-221

tions sufficiently robust to the change of the information criterion. We identify222

sensitive performances to the change of the information criterion only in sim-223

ulations for the AIC-D/BIC-D categories ”ideal” and ”well”. This sensitivity224

does not affect the main argument against GD2 in simulations. GD2 displays225

a worthless (insufficient) performance in 12% (18%) of grid-points. Also for226

BIC-D frequencies, GD2 displays a worthless (insufficient) performance in more227

than 10% (14%) of grid-points in simulations. In contrast, EWD3 displays,228

irrespective of the employed information criterion, a worthless or insufficient229

performance only in 1% of grid-points – EWD3 reduces the count of grid-point230

characterized by this highly undesirable performance by over one magnitude.231

We extensively draw our conclusion from erroneous performances of our can-232

didate PDFs. Irrespective of the information criterion, erroneous performances233

are for EWD3 virtually non-existent, but manifest for GD2 in a non-negligible234

percentage of grid-points in both realizations. Thus, as also discussed in the235

initial submission (e.g. when introducing AIC-D in the results, and when elabo-236

rating on them in the discussion), the risk of underfitting by using 2-parameter237

PDFs seems larger than the risk of overfitting by using 3-parameter PDFs.238

Consequently, once the need for 3-parameter candidate PDFs is established,239

their remaining punishment relative to 2-parameter PDFs biases the analy-240

sis; particularly for small AIC-D values. Because of the complexity penalty241

in the information criterion, our 3-parameter candidate PDFs outperform our242

2-parameter candidate PDF only for AIC-Dmax values beyond their increased243

complexity penalty (black vertical line in Fig I). We argue that maintaining the244

complexity penalty (beyond the proven inability of 2-parameter distributions)245

causes an artificial disadvantage for 3-parameter PDFs for small AIC-D values.246

Therefore, the complexity penalty biases and obscures our analysis for small247

AIC-Dmax values. We interpret the results from this BIC-D analysis as another248

confirmation of our line of argumentation. Anyhow, this discussion (and our249

interpretation of a confirmation of our line of argumentation) only underlines250

our conclusion that EWD3 is better suited than GD2. In contrast, we draw251

that conclusion from erroneous performances of GD2 that manifest irrespective252

of the employed information criterion.253

The above-conducted analysis helped us to streamline our reasoning. In254

consequence, we slightly altered several lines of the manuscript to simplify our255
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line of argumentation. This helps us to convey, and readers to intuitively un-256

derstand our conclusions. In this process, we conducted two different types of257

changes. Firstly, changes concerning the proper communication of AIC’s pun-258

ishment (including the above-mentioned bias). Secondly, changes that focus our259

analysis on GD2 and EWD3, instead of highlighting all four candidate PDFs260

almost equally prominent.261

In the thorough analysis of AIC’s and BIC’s complexity penalties, we iden-262

tified an intuitive way to visualize the penalty difference between 2- and 3-263

parameter PDFs. The black vertical line in Fig. I. Including this black line also264

in Fig. 5 enables us to elaborate more precise on the impact of that penalty265

difference. Therefore, we adapted Fig. 5 and discuss the adaptation in the text.266

This simplifies our line of argumentation.267

We changed a paragraph in Section 3.1.1 (lines 458 to 470) to: ”It seems268

worth elaborating on the insufficient (only average) confidence in EWD3 to269

perform ideally in observations (ensemble simulations) around the globe. The270

complexity penalty of AIC correctly punishes EWD3 stronger than GD2 be-271

cause AIC evaluates whether EWD3’s increased complexity (relative to GD2) is272

necessary. However, the results justify the necessity for this increased complex-273

ity – GD2 performs erroneously in 26% (6%), insufficiently in 18% (2%), and274

without any skill in 12% (1%) of the global land area in ensemble simulations275

(observations). The risk of underfitting by using 2-parameter PDFs seems larger276

than the risk of overfitting by using 3-parameter PDFs. Once the need for 3-277

parameter candidate PDFs is established, their remaining punishment relative278

to 2-parameter PDFs biases the analysis; particularly for the ideal AIC-D cat-279

egory. EWD3’s increased complexity penalty relative to 2-parameter candidate280

PDFs depends on the sample size and amounts to 2.46 in observations and 2.04281

in ensemble simulations (see black vertical lines in Fig. 5 (a)–(d)). The AIC-282

Dmax value beyond which EWD3 reaches coverages close to 100% approximately283

amounts to EWD3’s increased penalty (see Fig. 5 (a)–(d)). Correcting EWD3’s284

coverages for this bias would affect our evaluation of EWD3’s performance only285

for the ideal AIC-D category. To illustrate this effect, we only consider AIC’s286

estimated likelihood (without its penalty). Such a consideration corrects this287

complexity bias in EWD3’s performance. While we analytically analyzed this288

consideration, a first-order approximation suffices for the scope of this publica-289

tion. In that first-order approximation of this consideration, we simply shift the290

curve of EWD3 by 2.46 units leftwards in observations (Fig. 5 (a) and (b)))291

and by 2.04 units leftwards in ensemble simulations (Fig. 5 (c) and (d)). After292

this shift, EWD3 would also perform ideal with substantial confidence.”293

We substituted a sentence in Section 3.3 (lines 579 to 580) by the following294

elaboration: ”(...) higher AIC-penalty compared to GD2. As a reminder, AIC295

punishes EWD3 stronger than GD2. Nevertheless this complexity punishment,296

it is obvious by now that our 2-parameter PDFs are inept to universally deliver297

normal distributed SPI time-series; particularly if one considers all depicted298

dimensions of the task at hand. As it turns out, this punishment is the sole299
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reason for both performance limitations that EWD3 displays in Table 6: (i) for300

the ideal AIC-D category and (ii) EWD3’s tied performance with GD2 for an301

accumulation period of 12-months in ensemble simulations. As shown before,302

AIC’s punishment is particularly noticeable in the ideal category. Further, this303

punishment also affects the tied performance ranking for the accumulation pe-304

riod of 12-months. To illustrate this effect, we again consider AIC’s estimated305

likelihood (without its penalty) to correct EWD3’s performance for the com-306

plexity punishment. While we again analytically analyzed this consideration,307

for the scope of this publication a first-order approximation suffices also here. In308

that first-order approximation of this consideration, EWD3’s coverages of Table309

6 shift again by 2.46 (2.04) AIC units in observations (ensemble simulations).310

Since neighboring AIC-D categories differ by 2-3 AIC units, this approximation311

shifts EWD3’s coverages of Table 6 by roughly one category. Such a shift would312

solve EWD3’s limitation in the ideal AIC-D category. Further, EWD3 would313

also perform best across all AIC-D categories in ensemble simulations; including314

the accumulation period of 12-months.315

Despite the inclusion of the complexity penalty, EWD3 performs (...)”316

Answering this question helped us to further streamline the conclusions we317

would like to convey. We realized that the manuscript highlights all four candi-318

date PDFs almost equally for too long. Dismissing WD2 and GGD3 earlier helps319

us in telling the story. To focus our story on GD2 and EWD3, we conducted320

the following changes to the manuscript:321

We substituted lines 342 to 345 in Section 3.1.1 by: ”(...) during both seasons322

(Fig. 4, (b)). Aside from GD2, GGD3 and EWD3 also perform adequately in323

absolute terms for observations. Discriminating their deviations from N0,1 is324

difficult. On the one hand, GD2 represents the especially important left-hand325

tail of SPI3M time-series’ frequency distribution (D3) in JJA worse than our326

3-parameter candidate PDFs (compare Fig. 4, (a) against (c) and (d)). On the327

other hand, GD2 displays smaller deviations from N0,1 than our 3-parameter328

candidate PDFs in the center of the SPI’s distribution. Despite these minor329

differences (...)”330

We substituted lines 411 to 431 in Section 3.1.1 by: ”(...) considerably331

faster than GD2. EWD3 quickly compensates for AIC’s complexity punishment332

(which is 2.46 units larger for EWD3 than for GD2 (indicated by the vertical333

black line in Fig. 5)). Beyond this vertical black line, EWD3 conclusively334

outperforms GD2 (the only intersection of the yellowish, and the bluish lines335

coincide with the intersection of that vertical black line in Fig. 5, (a) and336

(b)). EWD3 performs well (AIC-Dmax ¡ 4) in virtually every global land grid-337

point. During DJF (JJA), EWD3 displays globally (in all land grid-points)338

AIC-D values of less than 5.03 (7.03). In contrast, GD2 performs erroneously339

(apparent by AIC-Dmax values in excess of 4) in approximately 7% (6%) of the340

global land grid-points during DJF (JJA). Further, GD2 performs during both341

seasons insufficiently (AIC-Dmax values beyond 7) in 2% and without skill (AIC-342

Dmax values beyond 10) in 1% of the global land area. While EWD3 strictly343
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outperforms GGD3, GGD3 still performs similarly to EWD3 in observations.344

Thus, our focus on EWD3 becomes only plausible during the investigation of345

AIC-D frequencies in ensemble simulations.”346

We substituted lines 436 to 448 in Section 3.1.1 by: ”We interpret EWD3’s347

performance in ensemble simulations as ideal in approximately 85% (86%) of348

the global land area during DJF (JJA). For AIC-Dmax values beyond 2, EWD3349

quickly approaches 100 % coverage, again, and performs erroneously or insuffi-350

ciently only in 1% of the global land area during both seasons. In contrast, GD2351

performs erroneously in 23% (30%) and insufficient in 14% (21%) of the global352

land grid-points during DJF (JJA). Yet, most telling might be the fraction (...)”353

We included the following transition in between lines 453 and 454 in Section354

3.1.1: ”(...) over one magnitude (by a factor of roughly 20). EWD3 also uni-355

versally outperforms GGD3. In view of their equal parameter-count, it seems356

rational to rather employ EWD3 than GGD3.357

Analyzing AIC-D frequencies for both seasons (DJF and JJA) discloses no358

distinct season-dependent differences, similar to before in the investigation of359

deviations from N0,1. Therefore, we average identified land area coverages over360

both seasons in the summary of AIC-D frequencies. Table 3 summarizes (...)”361

Aside, we inserted a sentence in the discussion. This sentence states that362

we also analyzed BIC-D frequencies and that they deliver similar results as363

shown for AIC-D frequencies. We insert this sentence at the beginning of the364

paragraph that starts in line 617: ”We also repeated our AIC-D analysis with365

the Bayesian information criterion [Schwarz et al., 1978] which delivered similar366

results. Irrespective of the employed information criterion, the findings sketched367

above stay valid (...)”368
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Abstract. The Standardized Precipitation Index (SPI) is a widely accepted drought index. Its calculation algorithm normal-

izes the index via a distribution function. Which distribution function to use is still disputed within
::
the

:
literature. This study

illuminates the long-standing dispute and proposes a solution which
:::
that

:
ensures the normality of the index for all common

accumulation periods in observations and simulations.

We compare the normality of SPI time-series derived with the gamma, Weibull, generalized gamma, and the exponentiated5

Weibull distribution. Our normality comparison evaluates actual
::::
bases

:::
on

:
a
:::::::::::::
complementary

::::::::::
evaluation.

::::::
Actual against theo-

retical occurrence probabilities of SPI categories , and the quality of the fit
:::::::
evaluate

:::
the

:::::::
absolute

:::::::::::
performance

:
of candidate

distribution functionsagainst their complexity with .
:::
In

:::::::
contrast, Akaike’s Information Criterion

::::::::::
information

:::::::
criterion

::::::::
evaluates

::::::::
candidate

:::::::::
distribution

::::::::
functions

::::::
relative

::
to
::::
each

:::::
other

:::::
while

::::::::::
analytically

::::::::
punishing

:::::::::
complexity. SPI time-series, spanning 1983–

2013, are calculated from Global Precipitation Climatology Project’s monthly precipitation data-set and seasonal precipitation10

hindcasts from the Max Planck Institute Earth System Model. We evaluate these SPI time-series over the global land area

and for each continent individually during winter and summer. While focusing on an accumulation period of 3-months, we

additionally test the drawn conclusions for other common accumulation periods (1-, 6-, 9-, and 12-months).

Our results suggest to exercise
:::::::::
exercising caution when using the gamma distribution to calculate SPI; especially in

::::::::
ensemble

simulations or their evaluation. Further, our analysis shows a distinctly improved normality for SPI time-series derived with the15

exponentiated Weibull distribution relative to other distributions. The use of the exponentiated Weibull distribution maximizes

the normality of SPI time-series in observations and simulations both individual as well as concurrent. Its use further maximizes

the normality of SPI time-series over each continent and for every investigated accumulation period. We, therefore, advocate

to derive
::::::
deriving

:
SPI with the exponentiated Weibull distribution, irrespective of the heritage of the precipitation data or the

length of analyzed accumulation periods.20

1 Introduction

Drought intensity, onset, and duration are commonly assessed with the Standardized Precipitation Index (SPI). SPI was first

introduced by McKee et al. (1993) as a temporally and spatially invariant probability-based drought index. In 2011, the World

Meteorological Organization (WMO) endorsed the index and recommended its use to all meteorological and hydrological ser-
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vices for classifying droughts (Hayes et al., 2011). Advantages of SPI are its standardization (Sienz et al., 2012), its simplicity,25

and its variable time scale which allows its application to assess meteorological, agricultural, and hydrological drought (Lloyd-

Hughes and Saunders, 2002). In contrast, the index’s main disadvantage is the mean by which its standardization is realized

and concerns the identification of a suitable theoretical distribution function to describe and normalize highly non-normal pre-

cipitation distributions (Lloyd-Hughes and Saunders, 2002). The choice of that suitable theoretical distribution function is a

key decision in the index’s algorithm (Blain et al., 2018; Stagge et al., 2015; Sienz et al., 2012). This study illuminates reasons30

for a missing consensus on this choice and attempts to establish such a consensus for both simulations and observations.

SPI quantifies the standardized deficit (or surplus) of precipitation over any period of interest – also called accumulation

period. This is achieved by fitting a probability density function (PDF) to the frequency distribution of precipitation totals

of the accumulation period – which typically spans either 1-, 3-, 6-, or 12-months. SPI is then generated by applying a Z-

transformation to the probabilities and is standard normal distributed.35

The choice of the PDF fitted to the frequency distribution of precipitation is essential because only a proper fit appropriately

standardizes the index. While the standardization simplifies further analysis of the SPI, the missing physical understanding of

the distribution of precipitation leads to a questionable basis for the fit. Therefore, the choice of the PDF is to some extent

arbitrary and depicts the Achilles heel of the index.

Originally, McKee et al. (1993) proposed a simple gamma distribution – while Guttman (1999) identified the Pearson Type III40

distribution – to best describe observed precipitation. Both of these distributions are nowadays mostly used in SPI’s calculation

algorithms. As a result, many studies that use SPI directly fit the gamma (Mo and Lyon, 2015; Ma et al., 2015; Yuan and Wood,

2013; Quan et al., 2012; Yoon et al., 2012) or the Pearson type III distribution (Ribeiro and Pires, 2016) without assessing

the normality of SPI’s resulting distribution with goodness-of-fit tests or other statistical analyses beforehand. The selected

PDF, however, is of critical importance because the choice of this PDF is the key decision involved in the calculation of SPI45

and indeed many authors have urged to investigate the adequacy of distribution functions for new data-sets and regions before

applying them (Blain et al., 2018; Stagge et al., 2015; Touma et al., 2015; Sienz et al., 2012). Such a negligence
:::::::::
Neglecting

::::
such

::
an

:::::::::::
investigation has potentially far-reaching consequences in terms of a biased drought description (Guenang et al., 2019;

Sienz et al., 2012). A biased drought description would result from an inadequacy of the fitted distribution function to describe

precipitation. Such an inadequacy has been identified for the gamma (Guenang et al., 2019; Blain et al., 2018; Blain and50

Meschiatti, 2015; Stagge et al., 2015; Sienz et al., 2012; Touma et al., 2015; Naresh Kumar et al., 2009; Lloyd-Hughes and

Saunders, 2002) as well as the Pearson type III distribution (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015)

in many parts of the world. This lead to the request for further investigations of candidate distribution functions (Blain et al.,

2018; Blain and Meschiatti, 2015; Stagge et al., 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saunders,

2002; Guttman, 1999).55

Several studies have investigated the adequacy of PDFs fitted onto observed precipitation while focusing on different can-

didate distribution functions (Blain and Meschiatti, 2015), different parameter estimation methods in the fitting procedure

(Blain et al., 2018), different SPI time scales (Guenang et al., 2019), general drought climatology (Lloyd-Hughes and Saun-

ders, 2002), and even the most appropriate methodology to test different candidate distribution functions (Stagge et al., 2015).
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As each of these investigations analyzed different regions, different PDFs
:
, or focused on different perspectives of this highly60

multi-dimensional problem, they recommend different candidate PDF
::::
PDFs.

Nevertheless, some common conclusions can be drawn. Most investigations only analyzed 2-parameter distribution functions

(Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002). Among those, they agreed

depending on the accumulation period and/or the location either on the Weibull or the gamma distribution to be best suited in

most cases. However, Blain and Meschiatti (2015) also investigated 3-, 4- and 5-parameter distribution functions and concluded65

that 3-parameter PDFs seem to be best suited to compute SPI in Pelotas, Brazil. Consequently, they advocated for a re-

evaluation of the widespread use of the 2-parameter gamma distribution (see also Wu et al., 2007). Moreover, a single candidate

distribution function was neither suited in each location nor for each accumulation period to properly calculate SPI time series

(Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002). Further, at the accumulation

period of 3-months, a critical phase transition in precipitation totals seem to manifest which complicates the overall ranking of70

candidate PDFs (Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015). Findings point at the Weibull distribution to be

best suited for short accumulation periods (smaller than 3 months) and the gamma distribution for long accumulation periods

(larger than 3 months) (Stagge et al., 2015).

Two additional studies analyzed the adequacy of different candidate PDFs fitted onto simulated precipitation while focusing

on drought occurrence probabilities in climate projections (Touma et al., 2015; Sienz et al., 2012). Touma et al. (2015) is75

the only study which
:::
that

:
tested candidate PDFs globally. However, they solely provided

::::::
provide highly aggregated results

which
:::
that

:
are globally averaged for accumulation periods between 3- and 12-months and concluded

:::::::
conclude that the gamma

distribution is overall best suited to calculate SPI. In contrast, Sienz et al. (2012) is up to now the only study which
:::
that

tested candidate PDFs in simulations as well as in observations and identified notable differences in their performance in both

realizations. They focused on an accumulation period of 1-month and their results also show that the Weibull distribution is80

well suited for SPI calculations at short accumulation periods in observations but also in simulations. Moreover, their results

also hint at the phase transition mentioned above: for accumulation periods longer than 3 months their results indicate that

the gamma distribution outperforms the Weibull distribution in observation as well as in simulations. More interestingly,

Sienz et al. (2012) results indicate that two 3-parameter distributions (the generalized gamma and the exponentiated Weibull

distribution) perform for short accumulation periods as well as the Weibull distribution and for long accumulation periods85

similar to the gamma distribution; in observations and simulations. Surprisingly, neither the exponentiated Weibull nor the

generalized gamma distribution have
:::
has been thoroughly tested since.

Testing the performance of 3-parameter distributions introduces the risk of overfitting (Stagge et al., 2015; Sienz et al.,

2012) which could explain the focus on 2-parameter distributions in recent studies. As a consequence of this
::::::::
one-sided focus

in combination with the inability of 2-parameter PDFs to perform sufficiently well in different locations and for different90

accumulation periods concurrently, many studies have proposed a multi-distribution approach (Guenang et al., 2019; Blain and

Meschiatti, 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saunders, 2002). Such an approach recommends

the use of the
:
a
:::
set

::
of

:::::
PDFs.

::::
The best-suited PDF for each accumulation periodand in each location

:
of

::::
this

::
set

::
is

::::
then

:::::::::
employed.

:::::
Thus,

::
the

:::::::::
employed

::::
PDF

:::::
might

:::::
differ

:::::::::
depending

::
on

:::
the

::::::::::::
accumulation

::::::
period,

:::
the

:::::::
location,

::
or

:::
the

:::::::
data-set. In opposition, other
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studies have strongly emphasized concern about this approach, because it adds complexity while reducing or even obliterating95

comparability across space and time (Stagge et al., 2015; Guttman, 1999). The comparability across space and time is a main

advantage of SPI. Guttman (1999) even warns of using SPI widely until a single PDF is commonly accepted and established

as the norm.

Most studies test candidate distribution functions with goodness-of-fit tests (Guenang et al., 2019; Blain et al., 2018; Blain

and Meschiatti, 2015; Stagge et al., 2015; Touma et al., 2015; Lloyd-Hughes and Saunders, 2002). In this process, some studies100

heavily rely on the Kolmogorov-Smirnov test (Guenang et al., 2019; Touma et al., 2015). However, the Kolmogorov-Smirnov

test has an unacceptably high likelihood of erroneously accepting a non-normal distribution if the parameters of the candidate

PDF have been estimated from the same data on which the tested distribution bases (which is in view
:::::::
because of scarce

precipitation data availability usually always the case) (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015).

Therefore, other studies tested the goodness-of-fit either with an adaptation of the Kolmogorov-Smirnov test, the Lillieforts105

test (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002), with the Anderson-

Darling test (Blain et al., 2018; Stagge et al., 2015) or with the Shapiro-Wilk test (Blain et al., 2018; Blain and Meschiatti,

2015; Stagge et al., 2015). Nevertheless, the Lillieforts and Anderson-Darling tests are inferior to the Shapiro-Wilk test (Blain

et al., 2018; Stagge et al., 2015) which in turn is unreliable to evaluate SPI normality (Naresh Kumar et al., 2009).

Additionally, all three of
:::
The

:::::::::::::::
above-mentioned

::::::::::::
goodness-of-fit

::::
tests

::::::
equally

:::::::
evaluate

:::::
each

::::
value

::
of

:::::
SPI’s

::::::::::
distribution.

::::
Such

:::
an110

::::::::
evaluation

:::::::
focuses

::
on

:::
the

::::::
center

::
of

:::
the

:::::::::
distribution

:::::::
because

:::
the

::::::
center

::
of

:::
any

::::::::::
distribution

:::::::
contains

:::
per

::::::::
definition

:::::
more

:::::::
samples

:::
than

:::
the

:::::
tails.

::
In

:::::::
contrast,

::::
SPI

::::::
usually

::::::::
analyzes

::::
(and

::::
thus

:::::::
depends

::
on

::
a
:::::
proper

::::::::
depiction

:::
of)

:::
the

:::::::::::
distribution’s

:::::
tails.

:::::::::
Therefore,

:
a
::::::
blurred

:::::
focus

:::::::::
manifests

::
in

:::::
these

::::::::::::
goodness-of-fit

:::::
tests.

:::::::::
Moreover,

:::
the

::::::::::
convention

::
to

:::::::
binarily

:::::::
interpret

:::
the

:::::::::::::::
above-mentioned

::::::::::::
goodness-of-fit

::::
tests

:::::::::
aggravates

::::
this

::::::
blurred

::::::
focus.

:::::::
Because

::
of

::::
this

::::::::::
convention, these goodness-of-fit tests are unable to pro-

duce any relative ranking of the performance of distribution functions for a specific location
:
(and accumulation period. In115

consequence
:
).
:::::

This
:::::::
inability

:::::::
prevents

::::
any

:::::::::
reasonable

::::::::::
aggregation

::
of

:::::::::
limitations

::::
that

::::::
surface

:::::::
despite

:::
the

::::::
blurred

::::::
focus.

::::
Thus,

they are ill-suited to discriminate the best performing PDF out of a set of PDFs (Blain et al., 2018), because they are designed

to deliver a binary answer. For SPI distributions , however, the question is not whether they are (or should
:::::
ought

::
to be) nor-

mally distributed (for which goodness-of-fit tests are well suited to provide the answer). The crucial question is rather which

PDF maximizes the normality of the resulting SPI distribution. As a result
:::::::
Because

::
of

:::
the

::::::::
ill-fitting

:::::
focus

::::
and

:::
the

::::::::
ill-suited120

:::::::::
convention

::
of

::::
these

:::::::::::::
goodness-of-fit

:::::
tests,

:::
they

:::
are

:::::
inept

::
to

:::::::
identify

::::
SPI’s

::::::::::::::
best-performing

::::::::
candidate

:::::::::
distribution

::::::::
function

:::
out

::
of

:
a
:::
set

::
of

:::::
PDFs.

:

::
In

:::::::::
agreement

::::
with

::::
this

::::::
insight, those studies,

:
that rigorously analyzed candidate distribution functions,

:
or investigate an

appropriate test methodology for evaluating SPI candidate PDFs
:
,
:::::::::::
consequently advocate the use of relative assessments: mean

absolute errors (Blain et al., 2018), Akaike’s Information Criterion (AIC) (Stagge et al., 2015; Sienz et al., 2012), or deviations125

from expected SPI categories (Sienz et al., 2012). These studies also emphasize the importance of quantifying the differences

between theoretical and calculated SPI values for different drought categories (Blain et al., 2018; Sienz et al., 2012). Stagge

et al. (2015) who investigated appropriate methodologies to test different candidate PDFs even used
:::
use

:
AIC to discriminate

the performance of different goodness-of-fit tests.
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:::
SPI

:::::::::
calculation

::::::::::
procedures

:::::
were

:::::::::
developed

:::
for

::::::::
observed

:::::::::::
precipitation

::::
data.

:::::
Since

:::::::
models

:::
do

:::
not

:::::::
exactly

::::::::
reproduce

::::
the130

:::::::
observed

:::::::::::
precipitation

::::::::::
distribution,

:::::
these

:::::::::
procedures

::::
need

::
to

::
be

::::::
tested

:::
and

:::::::::
eventually

::::::
adapted

::::::
before

:::::
being

::::::
applied

::
to

::::::::
modeled

::::
data.

:::::
Here,

::
we

::::::
aspire

::
to

::::::
identify

:::
an

:::
SPI

:::::::::
calculation

::::::::
algorithm

::::
that

:::::::::
coherently

:::::::
describes

::::::::
modeled

:::
and

::::::::
observed

::::::::::
precipitation

::::
(i.e.

:::::::
describes

::::
both

::::::::
modeled

:::
and

::::::::
observed

::::::::::
precipitation

:::::::::::
distributions

::::::::::
individually

:::
and

::::::::::::
concurrently).

:::::
While

::::::
testing

:::::
SPI’s

:::::::::
calculation

::::::::
algorithm

::
on

::::::::
modeled

::::::::::
precipitation

::::
data

::
is

::::::
usually

:::::::::
neglected,

::::
such

::
a

:::
test

::::::::
demands

::::::::
nowadays

::
a

:::::::
similarly

:::::::::
prominent

::::
role

::
as

:::
the

:::
one

:::
for

::::::::::
observations

:::::::
because

::
of

:::
the

:::::::::
increasing

:::::::::
importance

::
of

:::::::
drought

:::::::::
predictions

::::
and

::::
their

:::::::::
evaluation.

::::::
Despite

::::
this

::::::::::
importance,135

::
the

::::::::
adequacy

:::
of

:::::::
different

::::::::
candidate

::::::::::
distribution

::::::::
functions

:::
has

::
to

:::
the

:::::::
authors’

::::
best

:::::::::
knowledge

:::::
never

::::
been

:::::
tested

::
in

:::
the

::::::
output

::
of

:
a
:::::::
seasonal

:::::::::
prediction

::::::
system

:
–
::::::::
although

:::::::
seasonal

::::::::::
predictions

::::::::
constitute

:::
our

:::::
most

:::::::
powerful

::::
tool

::
to

::::::
predict

:::::::::
individual

::::::::
droughts.

::
To

:::::
close

:::
that

::::
gap,

:::
this

:::::
study

::::::::
evaluates

:::
the

::::::::::
performance

::
of

::::::::
candidate

::::::::::
distribution

::::::::
functions

::
in

::
an

:::::
output

:::
of

::
10

::::::::
ensemble

::::::::
members

::
of

::::::::
initialized

:::::::
seasonal

::::::::
hindcast

::::::::::
simulations.

In this study, we test the adequacy of the gamma, Weibull, generalized gamma, and exponentiated Weibull distribution140

in SPI’s calculation algorithms
::::::::
algorithm. The evaluation of their performance depends on the normality of the resulting SPI

time-series. In this evaluation, we focus on an SPI accumulation period of 3-months (SPI3M ) during winter (DJF) and sum-

mer (JJA) and test the drawn conclusions for other common accumulation periods (1-, 6-, 9-, and 12-months). Our analysis

conducts two different
::::::::::::
complementary

:
evaluations of their normality: (i) it compares

::::::::
evaluating

:::::
their

::::::::
normality

::
in
::::::::

absolute

::::
terms

:::
by

:::::::::
comparing

:
actual occurrence probabilities of SPI categories (as defined by WMO’s SPI User Guide (Svoboda et al.,145

2012)) against well-known theoretically expected occurrence probabilities from the standard normal distribution (N0,1), (ii) it

analytically assesses with the
::::::::
evaluating

::::
their

::::::::
normality

:::::::
relative

::
to

::::
each

:::::
other

::::
with Akaike’s Information Criterion

::::::::::
information

:::::::
criterion (AIC)

:::::
which

::::::::::
analytically

:::::::
assesses

::
of

:
the optimal trade-off between information gain against the complexity of the

PDF to adhere to the risk of overfitting. During this analysis, we investigate observations and simulations, the latter are usually

neglected but demand nowadays a similarly prominent role as observations because of the increasing importance of drought150

predictions and their evaluation. Despite this importance, the adequacy of different candidate distribution functions has to

the authors’ best knowledge never been tested in the output of a seasonal prediction system – although seasonal predictions

constitute our most powerful tool to predict individual droughts. To close that gap, this study evaluates the performance of

candidate distribution functions in an output of 10 ensemble members of initialized seasonal hindcast simulations. The
:
.

::::::::
Observed

:::
and

:::::::::
simulated

::::::::::
precipitation

::
is
::::::::
obtained

::::
from

:::
the

:
monthly precipitation data-set of the Global Precipitation Clima-155

tology Project (GPCP) serves as an observational product
:::
and

:::
the

:::::
above

:::::::::
mentioned

:::::::::
initialized

:::::::
seasonal

:::::::
hindcast

:::::::::::
simulations,

::::::::::
respectively. We conduct our analysis for the period 1982 to 2013 with a global focus which also highlights regional disparities

on every inhabited continent (Africa, Asia, Australia, Europe, North America, and South America).

2 Methods

2.1 Model and Data160

We employ a seasonal prediction system (Baehr et al., 2015; Bunzel et al., 2018) which bases on the Max-Planck-Institute

Earth System Model (MPI-ESM). MPI-ESM, also used in the Coupled Model Intercomparison Project 5 (CMIP5), consists
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of an atmospheric (ECHAM6) (Stevens et al., 2013), and an oceanic (MPIOM) (Jungclaus et al., 2013) component. For this

study the model is initialized in May and November and runs with 10 ensemble members in the low-resolution version – MPI-

ESM-LR: T63 (approx. 1.875°x1.875°) with 47 different vertical layers in the atmosphere between the surface and 0.01 hPa165

and
:::::
GR15

:::::::::
(maximum

:::::::::
1.5°x1.5°)

::::
with

:
40 different vertical layers in the ocean. Except for an extension of the simulation period

by 3 years (extended to cover the period 1982–2013), the investigated simulations are identical to the 10-member ensemble

simulations analyzed by Bunzel et al. (2018).
::::
Here,

:::
we

:::::::
analyze

:::
the

:::
sum

:::
of

:::::::::
convective

:::
and

:::::::::
large-scale

:::::::::::
precipitation

::::
from

:::::
these

:::::::::
simulations

::::::::::::::::::
(Pieper et al., 2020) .

We obtain observed precipitation from the Global Precipitation Climatology Project (GPCP) which combines observations170

and satellite precipitation data into a monthly precipitation data-set on a 2.5°x2.5°global grid spanning 1979 to present (Adler

et al., 2003). To compare these observations against our hindcasts, the precipitation output of the model is interpolated to the

same grid as GPCP’s precipitation data-set from which we only use the simulated time-period (1982–2013).

Depending on the accumulation period (1-, 3-, 6-, 9-, or 12-months) we calculate the frequency distribution of modeled and

observed precipitation totals over 2 different seasons (August and February (1), JJA and DJF (3), MAMJJA and SONDJF (6),175

and so on). Because our results do not indicate major season-dependent differences in the performance of candidate PDFs for

SPI3M , we aggregate our results for the other accumulation periods over both seasons.

Our precipitation hindcasts are neither bias- nor drift-corrected and also not recalibrated. Such corrections usually adjust

the frequency distribution of modeled precipitation in each grid-point to agree better with the observed frequency distribution.

Here, we investigate the adequacy of different PDFs in describing the frequency distribution of modeled precipitation totals180

over each accumulation period without any correction. As a consequence, we require that SPI’s calculation algorithm deals

with such differing frequency distributions on its own. That requirement enables us to identify the worst possible miss-matches.

2.2 Standardized Precipitation Index

We calculate SPI (McKee et al., 1993) for our observed and modeled time-period by fitting a PDF onto sorted 3-months

precipitation totals in each grid-point during both seasons of interest and for each accumulation period. Zero-precipitation185

events are excluded from the precipitation time-series before fitting the PDF and dealt with specifically later . We optimize
::::
later

:::::::::
specifically.

::::
We

:::::::
estimate

:
the parameters of our candidate PDFs in SPI’s calculation algorithm with the maximum likelihood

method
::::::::::::::::::::::::
(Nocedal and Wright, 1999) which is also the basis for the AIC computation.

Our parameter estimation method first identifies starting values for the n parameters of the candidate PDFs by roughly scan-

ning the n-dimensional phase-space spanned by these parameters. Those starting values are then optimized (Nocedal and Wright, 1999) by190

three different methods: (i) a
:::
The

::::::
starting

::::::
values

::::::::
identified

::::
from

::::
that

::::
scan

:::
are

::::::::
optimized

:::::
with

:::
the simulated annealing method

(Bélisle, 1992) , (ii)
:::::::
(SANN)

:::::::::::::
(Bélisle, 1992) .

::::::::::::
Subsequently,

::::
these

:::
by

:::::
SANN

:::::::::
optimized

::::::
starting

::::::
values

::
are

:::::
again

::::::
further

::::::::
optimized

::
by

:
a limited-memory modification of the Broyden-Fletcher-Goldfarb-Shanno (also known as BFGS) quasi-Newton method

(Byrd et al., 1995), and (iii) the Nelder and Mead (1965) method. After checking the .
::
If

:::
the

:::::
BFGS

::::::::::::
quasi-Newton

::::::
method

:::::
leads

::
to

:
a
:::::::::::
convergence

::
of

:::
the

::::::::::
parameters

::
of

:::
our

:::::::::
candidate

::::
PDF,

:::
we

:::::::
achieve

:::
our

::::
goal

::::
and

:::
end

::::
the

::::::::::
optimization

:::::
here.

::
If

:::
the

::::::
BFGS195

:::::::::::
quasi-Newton

:::::::
method

::::
does

:::
not

::::
lead

:::
to

:
a
:

convergence of the most suitable parameters of our candidate PDFs and omitting
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cases where convergence is not achieved
::::
PDF,

::::
then

:::
we

:::::
circle

::::
back

::
to

:::
the

::::::
starting

::::::
values

::::::::
optimized

:::
by

::::::
SANN

:::
and

:::::::
optimize

:::::
them

::::
again

::::::
further

:::
but

::::
this

::::
time

::::
with

:::
the

:::::::::::
Nelder-Mead

:::::::
method

:::::::::::::::::::::
(Nelder and Mead, 1965) .

:::::
After

::::::::::
identifying

:::::::::
converging

:::::::::
parameters,

the probabilities of encountering the given precipitation totals are computed and transformed to
:::
into cumulative probabilities

(G(x)).200

Since PDFs which
:
If

::::::
neither

:::
the

::::::
BFGS

::::::::::::
quasi-Newton

:::
nor

:::
the

:::::::::::
Nelder-Mead

:::::::
method

:::::
leads

::
to

:::
any

:::::::::::
convergence

::
of

:::
the

:::::
most

::::::
suitable

:::::::::
parameters

:::
of

:::
our

::::::::
candidate

:::::
PDFs,

::::
then

:::
we

::::
omit

:::::
these

:::::::::
grid-points

:::::
where

:::::::::::
convergence

::
is

:::
not

::::::::
achieved.

:::
For

:::
the

:::::::
gamma,

:::::::
Weibull,

:::
and

::::::::::::
exponentiated

::::::::
Weibull

::::::::::
distribution,

:::::::::::::
non-converging

::::::::::
parameters

:::
are

::::
rare

::::::::::
exceptions

:::
and

:::::
only

:::::
occur

::
in

::
a
::::
few

::::::::
negligible

::::::::::
grid-points.

:::
For

:::
the

::::::::::
generalized

::::::
gamma

::::::::::
distribution,

::::::::
however,

::::::::::::::
non-convergence

::::::
appears

::
to
:::
be

:
a
:::::
more

:::::::
common

:::::
issue

:::
and

::::::
occurs

::
in

::::::::::
observations

::
as

::::
well

:::
as

::
in

:::::::::
simulations

::
in

:::::::
roughly

:::::
every

::::
fifth

::::::::
grid-point

::
of

:::
the

::::::
global

::::
land

::::
area.

::::
This

:::::::::::
shortcoming205

::
of

:::
the

::::::::::
generalized

::::::
gamma

::::::::::
distribution

:::::
needs

::
to

:::
be

::::
kept

::
in

:::::
mind

:::::
when

:::::::::
concluding

:::
its

:::::::
potential

::::::::
adequacy

::
in
:::::

SPI’s
::::::::::
calculation

::::::::
algorithm.

:

::::
Since

::::::
PDFs

:::
that

:
describe the frequency distribution of precipitation totals are required to be only defined for the positive

real axis, that
::
the

:
cumulative probability (G(x)) is undefined for x= 0. Nevertheless, the time-series of precipitation totals

may contain events in which zero precipitation has occurred over the entire accumulation period. Therefore the cumulative210

probability is adjusted:

H(x) = q+ (1− q)G(x) (1)

where q is the occurrence probability of zero-precipitation events in the time-series of precipitation totals. q is estimated by

the fraction of the omitted zero-precipitation events in our time-series. Next, we calculate from the new cumulative probability

(H(x)) the likelihood of encountering each precipitation event of our time-series for every grid-point in each season of interest215

and each accumulation period. In the final step, analog to McKee et al. (1993), a Z-transformation of that likelihood to the

standard normal (mean=0, variance=1) variable Z takes place which constitutes the time-series of SPI.

In very arid regions or those with a distinct dry season, SPI time-series are characterized by a lower bound (Pietzsch and

Bissolli, 2011; Wu et al., 2007). That lower bound results from H(x) dependence on q and correctly ensures that short periods

without rain do not necessarily constitute a drought in these regions. Nevertheless, that lower bound also leads to non-normal220

distributions of SPI time-series. The shorter the accumulation period, the more likely it is for zero-precipitation events to occur

– and the more likely it becomes for SPI time-series to be non-normally distributed. Stagge et al. (2015) proposed to use the

centre of mass instead of the fraction of zero-precipitation events to estimate q. Such an adaptation leads to a lower q than

the fraction-approach which distinctly increases the normality of SPI time-series and their statistical interpretability if that

fraction becomes larger than approximately one third. As explained before, we want to investigate the worst possible case and,225

therefore, conservatively estimate q. As a consequence, SPI time-series are calculated exclusively for grid-points exhibiting

zero-precipitation events in less than 34 % of the times in our time-period. This limitation restricts the SPI calculation
::
in

:::::::::
simulations

:
over the Sahara

:::
and

:::
the

:::::::
Arabian

::::::::
Peninsula

:
for accumulation periods of 1- and 3-months, only exceptionally occurs

for an accumulation period of 6-months , and does not restrict accumulation periods longer than 6-months. Current complex

climate models parameterize convection and cloud micro-physics to simulate precipitation which leads to spurious precipita-230

7



tion amounts. Those spurious precipitation amounts prevent us from directly identifying the probability of zero-precipitation

events in modeled precipitation time-series. Analog to Sienz et al. (2012), we prescribe a threshold of 0.035 mm month−1 to

differentiate between months with and without precipitation in the hindcasts.

To further optimize the fit of the PDF onto modeled precipitation, all hindcast ensemble members are fitted at once.
::::

We

:::::::
checked

:::
and

::::::::::
ascertained

:::
the

::::::::::
underlying

:::::::::
assumption

:::
of

::::
this

::::::::
procedure

:
– assuming that all ensemble members show in the235

long-term
::::
each

::::::::
grid-point

:
identical frequency distributions of precipitationin the same grid-point. It is, therefore, reasonable to

presume that a better fit is achievable for simulated rather than for observed precipitation.

2.3 Candidate Distribution Functions

Cumulative precipitation sums are described by skewed distribution functions which are only defined for the positive real axis.

We test four different distribution functions and evaluate their performance based on the normality of their resulting SPI fre-240

quency distributions. The four candidate PDFs either consist of a single shape (σ) and scale (γ) parameter or include (in the case

of the two 3-parameter distributions) a second shape parameter (α). Figure 1 displays examples of those four candidate PDFs

and their 95 % quantiles for 3-months precipitation totals idealized to be distributed according to the respective distribution

function with σ = γ = (α) = 2. Table 1 lists the abbreviations used for the
::::
these

:
four candidate distribution functions.

Instead of investigating the Pearson Type III distribution, which is already widely used, we analyze the simple gamma245

distribution. They differ by an additional location parameter which does not change the here presented results (Sienz et al.,

2012). Moreover, other studies have demonstrated that the Pearson type III distribution delivers results which
:::
that are virtually

identical to the 2-parameter gamma distribution (Pearson’s r = 0.999) (Giddings et al., 2005) and argued that the inclusion of

a location parameter unnecessarily complicates the SPI algorithm (Stagge et al., 2015). Therefore, our 3-parameter candidate

PDFs comprise a second shape parameter instead
::
of

:
a
:::::::
location

:::::::::
parameter.

::::
The

::::::::::
optimization

::
of

::::
this

::::::
second

:::::
shape

::::::::
parameter

::::
also250

::::::
requires

:::
the

:::::::::::::
re-optimization

::
of

:::
the

:::
first

::::
two

::::::::::
parameters.

:::
The

:::::
fitting

:::::::::
procedure

::
of

::::::::::
3-parameter

:::::
PDFs

:::::
needs

:::::::
therefore

:::::::::::
considerable

::::
more

::::::::::::
computational

::::::::
resources

::::
than

:::
the

:::::
fitting

:::::::::
procedure

::
of

::::::::::
2-parameter

::::::::::
distribution

::::::::
functions.

1. Gamma distribution

f(x) =
1

σΓ(γ)

(x
σ

)γ−1

exp(−x
σ

) (2)

The gamma distribution (Γ being the gamma-function) is typically used for SPI calculations directly or in its location255

parameter extended version: the Pearson Type III distribution (Guttman, 1999). The results of the gamma distribution

also serve as proxy for the performance of the Pearson Type III distribution.

2. Weibull distribution

f(x) =
γ

σ

(x
σ

)γ−1

exp(−
(x
σ

)γ
) (3)

The Weibull distribution is usually used to characterize wind speed. Several studies identified the Weibull distribution,260

however, to perform well in SPI’s calculation algorithm for short accumulation periods (Guenang et al., 2019; Blain

et al., 2018; Stagge et al., 2015; Sienz et al., 2012).
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3. Generalized gamma distribution

f(x) =
α

σΓ(γ)

(x
σ

)αγ−1

exp(−
(x
σ

)α
) (4)

The generalized gamma distribution extends the gamma distribution by another shape-parameter (α). In the special case265

of α= 1 the generalized gamma distribution becomes the gamma distribution and for the other special case of γ = 1 the

generalized gamma distribution becomes the Weibull distribution. Sienz et al. (2012) identified the generalized gamma

distribution as promising candidate distribution function for SPI’s calculation algorithm.

4. Exponentiated Weibull distribution

f(x) =
αγ

σ

(x
σ

)γ−1 [
1− exp(−

(x
σ

)γ
)
]α−1

(5)270

The exponentiated Weibull distribution extends the Weibull distribution by a second shape parameter (α). For α= 1 the

exponentiated Weibull distribution becomes the Weibull distribution. Sienz et al. (2012) revealed that the exponentiated

Weibull distribution performs well in SPI’s calculation algorithm.

2.4 Deviations from the Standard Normal Distribution

SPI time-series are supposed to be standard normally distributed (µ= 0 and σ = 1). Thus, we evaluate the performance of275

each candidate distribution function (in describing precipitation totals) based on the normality of their resulting SPI frequency

distributions. In this analysis, we calculate actual occurrence probabilities for certain ranges of events in our SPI frequency

distributions and compare those actual against well-known theoretical occurrence probabilities for the same range of events.

We then evaluate the performance of each candidate distribution function and their resulting SPI time-series based on the

magnitude of deviations from the standard normal distribution (N0,1). These deviations are henceforth referred to as deviations280

from N0,1.

According to WMO’s SPI User Guide (Svoboda et al., 2012) (see Table 2), SPI distinguishes between seven different SPI

categories. These seven different categories with their pre-defined SPI intervals serve as analyzed ranges of possible events in

our analysis. It is noteworthy here, that these seven SPI categories differ in their occurrence probabilities. The occurrence of

normal conditions (N0) is more than twice as likely than all other six conditions put together. Therefore, any strict normality285

analysis of SPI time-series would weight
:::::
weigh each classes’ identified deviation from N0,1 with the occurrence probability

of the respective class. However, when analyzing droughts with SPI, one is usually interested in extreme precipitation events.

Thus, it seems less important for the center of SPI’s distribution to be normally distributed. Instead, it is intuitively particularly

important for the tails (especially the left-hand tail) of the distribution to adhere to the normal-distribution. The better the tails

of our candidate PDF’s SPI distributions agree with N0,1, the better is our candidate PDF’s theoretical description of extreme290

precipitation events. For this reason, we treat all seven SPI categories equally, irrespective of their theoretical occurrence

probability.

The 3-parameter candidate distribution functions contain the 2-parameter candidate distribution functions for special cases.

Given those special cases, the 3-parameter candidate distribution functions will in theory never be inferior to the 2-parameter
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candidate distribution functions they contain when analyzing deviations from N0,1 – assuming a sufficient quantity of input295

data which would lead to a sufficient quality of our fit. Thus, the question is rather whether deviations fromN0,1 reduce enough

to justify the 3-parameter candidate distribution functions’ requirement of an additional parameter. An additional parameter

which
:::
that needs to be fitted increases the risk of overfitting (Stagge et al., 2015; Sienz et al., 2012). On the one hand, the

final decision on this trade-off might be subjective and influenced by computational resources available or by the length of

the time-series which is to be analyzed because fitting more parameters requires more information. Moreover, it might well be300

wiser to employ scarce computational resources in optimizing the fit rather than increasing the complexity of the PDF. On the

other hand, assuming computational resources and data availability to be of minor concern, there exists an analytical way to

tackle this trade-off: Akaike’s Information Criterion (Akaike, 1974).

2.5 Akaike’s Information Criterion

Our aim is twofold. First, we want to maximize the normality of our SPI time-series by choosing an appropriate distribution305

function. Second, we simultaneously aspire to minimize the parameter-count of the distribution function to avoid unnecessary

complexitywhich
:
.
::::::::
Avoiding

::::::::::
unnecessary

:::::::::
complexity

:
decreases the risk of overfitting. The objective is to identify the necessary

(minimal) complexity of the PDF which prevents the PDF from being too simple and lose explanatory power. Or in other words:

we are interested in the so-called optimal trade-off between bias (model
::::
PDF

::
is too simple) and variance (model

::::
PDF

::
is too

complex). Akaike’s information criterion (AIC) performs this trade-off analytically (Akaike, 1974). AIC estimates the value310

of information gain (acquiring an improved fit) and penalizes complexity (the parameter count) directly by estimating the

Kullback-Leibler information (Kullback and Leibler, 1951):

AIC =−2lnL(θ̂|y) + 2k (6)

L(θ̂|y) describes the likelihood of specific model-parameters (θ̂) with given data from which these parameters were estimated

(y). k describes the degrees of freedom of the candidate PDF (the parameter-count which equates dependent on the candidate315

PDF either to 2 or 3). Analogue to Burnham and Anderson (2002), we modified the last term from 2k to 2k+(2k(k+1))/(n−
k− 1) in order to improve the AIC calculation for small sample sizes (n/k < 40), whereas in our case n corresponds to

the sample size of the examined period (31 for observations and 310 for simulations). The modified version approaches the

standard version for large n.

In our case, AIC’s first term evaluates the performance of candidate PDFs in describing the given frequency distribu-320

tions of precipitation totals. The second term penalizes candidate PDFs based on their parameter-count. The best performing

:::::::::::::
best-performing distribution function attains a minimum AIC value (AICmin)

:::
the

:::::::
smallest

::::
AIC

::::
value

:
because the first term is

negative and the second one is positive.

Further, the absolute AIC value is often of little information – especially in contrast to relative differences between AIC

values derived from different distribution functions(henceforth we index different distribution functions with an i and name325

the corresponding AIC .
::::::

Thus,
::
we

::::
use

::::::
relative

::::
AIC

:::::::::
differences

::::::::
(AIC-D)

::
in

:::
our

::::::::
analysis.

:::
We

:::::::
calculate

:::::
these

::::::
AIC-D

::::::
values

:::
for

::::
each

::::
PDF

::
by

:::::::::
computing

:::
the

:::::::::
difference

:::::::
between

::
its

::::
AIC

:::::
value

::
to

:::
the

::::::
lowest

:::
AIC

:::::
value

::
of

:::
all

::::
four

:::::::::
distribution

:::::::::
functions.

::::::
AIC-D
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values AICi accordingly). These relative differences inform us about superiority in the optimal trade-off between bias and

variance . Thus, we use AIC differences (AIC-D) in our further assessment
:::
and

:::
are

::::::::
calculated

:::
as

::::::
follows:

AIC-Di =AICi−AICmin (7)330

:::
The

:::::
index

::
i
::::::::
indicates

:::::::
different

::::::::::
distribution

:::::::::
functions.

::::::::
AICmin :::::::

denotes
:::
the

::::
AIC

:::::
value

:::
of

:::
the

::::::::::::::
best-performing

::::::::::
distribution

:::::::
function.

:

For our analysis, AIC-D
:::::
values

:
are well suited to compare and rank different candidate PDFs based on their trade-off

between bias and variance. The best performing distribution function is characterized by a minimum AIC value (AICmin)

which translates to an AIC-D value of 0. It seems noteworthy here that any evaluation of (or even any discrimination between)335

candidate distribution functionswhich exhibit a sufficiently small ,
:::::
which

::::::
exhibit

::::::::::
sufficiently

::::::
similar AIC-D

:::::
values,

:
is unfeasible

as a consequence of our rather small sample size (particularly in observations, but also in simulations). AIC-D values below

two should
:::::
ought

::
to

:
be in general interpreted as an indicator of substantial confidence in the performance of the model (here,

the PDF). In contrast, AIC-D values between four and seven indicate considerable
::::::::::
considerably

:
less confidence and values

beyond ten essentially none (Burnham and Anderson, 2002).340

:::
The

:::::::
analysis

::
of

:::::::::
deviations

::::
from

::::
N0,1:::::::

assesses
:::::::::::
performances

::
of

::::::::
candidate

:::::
PDFs

::
in

:::::::
absolute

:::::
terms

::::::::::
irrespective

::
of

:::
the

::::::::
candidate

:::::
PDF’s

::::::::::
complexity.

::
In

::::::::
contrast,

:::
the

::::::
AIC-D

:::::::
analysis

::::::::
evaluates

:::
the

:::::::::::
performance

::
of

::::::::
candidate

:::::
PDFs

:::::::
relative

::
to

::::
each

:::::
other

:::::
while

:::::::::
analytically

:::::::::
punishing

::::::::::
complexity.

::::::::::::
Consequently,

:::
the

::::::
AIC-D

:::::::
analysis

::::::
cannot

:::::::
evaluate

:::::::
whether

:::
the

:::::::::::::
best-performing

:::::::::
candidate

:::::::::
distribution

::::::::
function

:::
also

::::::::
performs

::::::::::
adequately

::
in

:::::::
absolute

::::::
terms.

::
In

::::::::::
opposition,

:::::::::
deviations

::::
from

:::::
N0,1:::::::::

encounter
:::::::::
difficulties

::::
when

:::::::::
evaluating

:::::::
whether

:::
an

::::::::
increased

::::::::::
complexity

::::
from

::::
one

::::
PDF

::
to

:::::::
another

:::::::
justifies

:::
any

:::::
given

::::::::::::
improvement.

::::
Both

::::::::
analyses345

:::::::
together,

::::::::
however,

:::::::
augment

::::
each

:::::
other

::::::::::::::
complementary.

::::
This

::::::
enables

:::
us

::
to

:::::::::::
conclusively

:::::::::
investigate:

:::
(i)

:::::
which

::::::::
candidate

:::::
PDF

:::::::
performs

::::
best

:::::
while

:::
(ii)

:::::::
ensuring

::::::::
adequate

:::::::
absolute

:::::::::::
performance

:::
and

:::::
while

:::
(iii)

:::::::::::
constraining

:::
the

:::
risk

::
of

::::::::::
over-fitting.

:

2.6 Aggregation of Results over Domains

For each candidate distribution function, accumulation period, domain, and during both seasons, we compute deviations from

N0,1 separately for observations and simulations as schematically depicted on the left-hand side in Fig. 2. First, we count the350

events of each SPI category in every land grid-point globally. For each category, we then sum the category counts over all

grid-points which
:::
that

:
belong to the domain of interest. Next, we calculate actual occurrence probabilities through dividing

that sum by the sum over the counts of all seven SPI categories (per grid-point there are 31 total events in observations and 310

in simulations). In a final step, we compute the difference to theoretical occurrence probabilities of N0,1 (provided in Table

2) for each SPI category and normalize that difference – expressing the deviation from N0,1 as percent
:
a
:::::::::
percentage

:
of the355

theoretically expected occurrence probability.

Again for each candidate distribution function, accumulation period, domain, and both seasons, we aggregate AIC-Ds
::::::
AIC-D

over several grid-points into a single graph separately for observations and simulations as depicted on the right-hand side of the

flow chart in Fig. 2. For each domain, we compute the fraction of total grid-points of that domain for which each candidate PDF

displays an AIC-D value equal to or below a specific AIC-Dmax value. That calculation is iteratively repeated for infinitesimally360
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increasing AIC-Dmax values. In this representation, the probabilities of all PDFs,
:
at the specific AIC-Dmax value of 0

:
, sum

up to 100 % because only one candidate PDF can perform best in each grid-point. Thus, we arrive at a summarized AIC-D

presentation in which those candidate distribution functions which approach 100 % the fastest (preferably before the specific

AIC-Dmax value of 4; ideally even before the AIC-Dmax value of 2) are better suited than the others.

2.7 Regions365

We investigate the normality of SPI time-series derived from each candidate PDF first for the entire global land area and

analyze subsequently region-specific disparities. For this analysis we focus on the land area over six regions scattered over

all six inhabited continents: Africa (0°–30°S; 10°E–40°E), Asia (63°N–31°N; 86°E–141°E), Australia (16°S–38°S; 111°E–

153°E), Europe (72°N–36°N; 10°W–50°E), North America (50°N–30°N; 130°W–70°W), and South America (10°N–30°S;

80°W–35°E) (Fig. 3).370

Examining frequency distributions of precipitation totals over smaller domains than the entire globe reduces the risk of

encountering opposite deviations from N0,1 for the same category which then
:::
that

:
balance each other in different grid-points

::::
with

::::::::
unrelated

:::::::
climatic

:::::::::::
characteristics. This statement is based on either one of the following two assumptions. First, the sum

over less
::::
fewer

:
grid-points is less likely to produce deviations which balance each other. Second, the frequency distribution of

precipitation totals is likely to be more uniform for grid-points that belong to the same region (and therefore exhibit similar375

climatic conditions) than when they are scattered around
:::::::::::
accumulated

::::
over the entire globe. One could continue along this line

of reasoning because the smaller the area of the analyzed regions, the more impactful are both of these assumptions. However,

comparing actual against theoretically expected occurrence probabilities with a scarce database (31 events in observations) will

inevitably produce deviations. In observations, we would expect in each grid-point that 0.7 extremely wet/dry and 1.4 severely

wet/dry events occur during
:::
over

:
31 years. Thus, deviations in different grid-points need to balance each other to some extent,380

to statistically evaluate and properly compare candidate PDFs. The crucial performance requirement demands that they balance

each other also when averaged over sufficiently small domains with similar climatic conditions.

For a first overview, it is beneficial to cluster as many similar results as possible together to minimize the level of complexity

of the regional dimension. The choice of sufficiently large/small domains is still rather subjective. Which size of regions is

most appropriate? This subjective nature becomes apparent in studies which
:::
that

:
identify differing borders for regions which385

:::
that

:
are supposed to exhibit rather uniform climatic conditions (Giorgi and Francisco, 2000; Field et al., 2012). Instead of

using Giorgi-Regions (Giorgi and Francisco, 2000) or SREX-Regions (Field et al., 2012), we opt here for a broader and more

continental picture.
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3 Results

3.1 SPI Accumulation Period of 3-Month390

3.1.1 Global

In agreement with prior studies (Blain et al., 2018; Lloyd-Hughes and Saunders, 2002; McKee et al., 1993), the 2-parameter

gamma distribution (GD2) describes on
::
the

:
global average the observed frequency distribution of SPI3M rather well during

the boreal winter (DJF) and summer (JJA) (Fig. 4, (a)). Contrary to Sienz et al. (2012), who investigated SPI1M time-series,

the 2-parameter Weibull distribution (WD2) delivers a poor frequency distribution of SPI3M during both seasons (Fig. 4, (b)).395

Further,
:::::
Aside

::::
from

:
GD2leads to a better agreement between the frequency distribution of SPI3M time-series and

:
,
::::::
GGD3

:::
and

::::::
EWD3

::::
also

:::::::
perform

:::::::::
adequately

:::
in

:::::::
absolute

:::::
terms

:::
for

:::::::::::
observations.

:::::::::::::
Discriminating

::::
their

:::::::::
deviations

:::::
from N0,1 than any

of the here investigated 3-parameter PDFs over both seasons of interest. Still
:
is

:::::::
difficult.

:::
On

::::
the

:::
one

:::::
hand, GD2 represents

the especially important left-hand tail of SPI3M time-series’ frequency distribution (D3) in JJA relatively poor. Here, the

investigated
:::::
worse

::::
than

::::
our 3-parameter distributions, GGD3 and the exponentiated Weibull distribution (EWD3), perform400

better (
:::::::
candidate

:::::
PDFs

::::::::
(compare

:
Fig. 4, (

::
a)

::::::
against

:
(c) and (d)).

::
On

:::
the

:::::
other

:::::
hand,

::::
GD2

:::::::
displays

::::::
smaller

:::::::::
deviations

::::
from

:::::
N0,1

:::
than

::::
our

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

::
in

:::
the

:::::
center

::
of

:::
the

:::::
SPI’s

::::::::::
distribution.

:
Despite these minor differences, and in agreement

with Sienz et al. (2012), GGD3 and EWD3 perform overall similar to GD2 (compare Fig. 4, (a) against (c) and (d)).

In theory, since the 3-parameter generalized gamma distribution (GGD3) encompasses GD2 as a special case, GGD3 should

not be inferior to GD2. In reality, however, the applied optimization methods appear to be too coarse for GGD3 to
::::::
always lead405

to an identical or better optimum than the one identified for GD2 with the given length of the time-series. When optimizing

3 parameters it is more likely to miss a specific constellation
::
of

:::::::::
parameters

:
which would further optimize the fit; especially

when limited computational resources impede the identification of the actual optimal fitting parameters. Additionally, a limited

database (our database spans 31 years) obscures the frequency distribution of precipitation totals which poses another obstacle

to the fitting methods. This results in missed optimizations opportunities which
:::
that impact GGD3 stronger than GD2 because410

of GGD3’s complexity. As a result
::::::::
increased

:::::::::
complexity

::::::
which

::::
leads

::
to
::::::
GGD3

::::::::
requiring

:::::
more

::::
data

::::
than

:::::
GD2.

::::::::
Therefore, the

weighted sum
::::::::
(weighted

::
by

:::
the

:::::::::
theoretical

:::::::::
occurrence

:::::::::
probability

::
of

:::
the

::::::::
respective

::::
SPI

::::
class

::::::
(Table

::
2))

:
over the absolute values

of deviations fromN0,1 along all SPI categories weighted by their theoretical occurrence probability (see Table 2) is lowest for

GD2 in both analyzed seasons (see legend in Fig. 4, (a)–(d)).

In agreement with Sienz et al. (2012), who identified notable differences in the performance of candidate PDFs between415

observations and simulations, this general ranking changes when we consider modeled instead of observed SPI3M time-series

(Fig. 4, (e)–(h)). While GD2, GGD3, and EWD3 perform similar in their representation of the observed frequency distribution

of SPI3M time-series
::::::
display

::::::
similar

:::::::::
deviations

::::
from

:::::
N0,1::

in
:::::::::::
observations (Fig. 4 (a), (c), and (d)), a noticeable difference

emerges in
:::::::
ensemble

:
simulations (Fig. 4 (e), (g), and (h)). GD2’s performance distinctly deteriorates in

::::::::
performs

::::::::
distinctly

:::::
worse

::::
than

:::
our

::::::::::
3-parameter

:::::
PDFs

::
in

::::::::
ensemble

::::::::::
simulations.

:
420
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::
In

::::::::::
simulations,

:::
the

::
fit

::::
onto

::::::::
3-months

::::::::::
precipitation

:::::
totals

::
is

:::::::::
performed

::
on

:::
all

::
ten

::::::::
ensemble

::::::::
members

::
at

:::::
once.

::::
This

:::::::
10-folds

:::
the

::::::
sample

:::
size

::
in
::::::::::

simulations
:::::::
relative

::
to

:::::::::::
observations.

:::::::::
Presuming

:::
an

::::::::
imperfect

::
fit

:::
for

:::
the

:::
31

:::::::
samples

::
in

:::::::::::
observations,

:::::::::
deviations

::::
from

::::
N0,1::::

are
:::::::
expected

:::
to

::::::
reduce

:::::
along

:::
our

::::
four

:::::::::
candidate

::::::::::
distribution

::::::::
functions

::
as

::
a

:::::
result

::
of

:::::::::
10-folding

::::
the

::::::
sample

::::
size

::
of

::::
their

:::
fit.

::::
Yet,

::::
GD2

::::
does

:::
not

:::::::
benefit

::::
from

:::::::::
10-folding

:::
the

::::::
sample

:::::
size.

::::
GD2

::::::::
performs

::::::::
similarly

::
in

:::::::::::
observations

:::
and

:
simula-

tions (Fig. 4 ,
::
(a)

::::
and (e))relative to observations. In contrast, both

:::
our 3-parameter candidate PDFs excel in describing the425

frequency distribution of 3-months precipitation totals in both seasons (
::::
PDFs

:::::::
display

:::::::::::
considerably

::::::
smaller

:::::::::
deviations

:::::
from

::::
N0,1::

in
::::::::
ensemble

::::::::::
simulations

::::
than

::
in

::::::::::
observations

:::::::::
(compare Fig. 4 ,

:::
(c)

:::
and

:::
(d)

::::::
against

:
(g) and (h)). Any distinction between

:::::::::::
Consequently,

:
both 3-parameter candidate distribution functions is still difficult

::::
PDFs

:::::
excel

::::::
during

::::
both

::::::
seasons

:::
in

::::::::
ensemble

:::::::::
simulations

:
(Fig. 4, (g) and (h)), Given the absolute deviations of GD2, one might most likely dismiss the need for any

adjustment in SPI3M ’s calculation algorithm as of yet. However, since Fig. 4 shows the sum of deviations from N0,1 over all430

land grid-points of the entire globe, distribution functions might be oppositely wrong for the same SPI category in different

grid-points resulting in deviations which balance each other across different grid-points.

In simulations
::::
while

::::
any

:::::::::
distinction

::::::::
between

::::
both

:::::::::::
3-parameter

::::::::
candidate

::::::::::
distribution

::::::::
functions

:::
is

::::
still

:::::::
difficult.

:::
On

::::
the

:::
one

::::
side,

::::::::
different

:::::::::
frequency

::::::::::
distributions

::::::::
between

:::::::
observed

::::
and

::::::::
modeled

:::::::::::
precipitation

:::::
totals

:::::
might

:::
be

:::
one

::::::
reason

:::
for

::::
this

:::::::::
difference.

:::
On

:::
the

:::::
other

::::
side, the fit onto 3-months precipitation totals is performed on all ten ensemble members at once.435

This leads to unequal databases (i.e. lengths of time-series) between observations and simulations. These unequal databases

obscure any direct comparison between observedand modeled SPI3M deviations. Therefore, deviations from N0,1 derived by

different PDFs were compared separately for observations and simulations up to now. Such separate comparisons base on

equally long time-series. Yet, deviations reduce non-identically along our four candidate distribution functions as a result of

10-folding the database of their fit. These irregular reductions provide us with the opportunity to analytically compare by how440

much deviations decrease for the same PDF as a result of 10-folding their database. The magnitude of this reduction should

::
of

::::
three

:::::::::
parameters

::::
also

:::::::
requires

:::::
more

::::
data

::::
than

:::
the

::
fit

::
of

::::
two.

::
It

::
is

:::::::
therefore

:::::::
sensible

::
to
::::::
expect

::::
that

::::::::::
3-parameter

:::::
PDFs

::::::
benefit

:::::::
stronger

::::
than

::::::::::
2-parameter

:::::
PDFs

::::
from

:::
an

:::::::
increase

::
in

::::::
sample

:::::
size.

:::
Are

::::
our

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

:::
are

:::::
better

::::::
suited

::::
than

:::
our

::::::::::
2-parameter

:::::
PDFs

::
to
::::::::

describe
:::::::
modeled

:::::::::::
precipitation

::::::::::::
distributions?

:::
Or

::::::
benefit

:::
our

:::::::::::
3-parameter

:::::
PDFs

:::
just

::::::::
stronger

::::
than

::::::::::
2-parameter

:::::
PDFs

::::
from

::
an

:::::::::
increasing

::::::
sample

:::::
size?445

:::
We

::::::
attempt

::
to

::::::::::
disentangle

::::
both

::::::
effects

:::::::::
(analyzing

::::::::
modeled,

::::::
instead

::
of
:::::::::

observed,
::::::::::
precipitation

:::::::::::
distributions,

::::
and

:::::::::
increasing

::
the

:::::::
sample

::::
size)

::::
for

:::
our

::::::::::
2-parameter

:::::::::
candidate

::::::
PDFs,

::::
next.

::
If
::::

the
::::::::::
2-parameter

:::::
PDFs

::::
are

:::::
suited

::
to
:::

be
:::::::
applied

::
to

::::::::
modeled

::::::::::
precipitation

:::::
data,

::::
they

::::::
should

::::::
benefit

:::
at

::::
least

:::
to

:::::
some

:::::
extent

:::::
from

::::
this

::::::::::::
multiplication

::
of

:::::::
sample

::::
size.

:::::::
Despite

:::::::::
expecting

::::::::::
irregularities

::
in
::::

the
:::::::::
magnitude

::
of

:::::
these

:::::::::
reductions,

::::
they

::::::
ought

::
to

:
be notable for candidate distribution functions which

:::
that

are adequately suited to describe modeled 3-months precipitation totals – assuming an imperfect fit for the 31 events spanning450

our observational time-series.
:::::::::
Therefore,

:::
we

:::::
weigh

::::
each

::::::
class’

::::::::
deviation

::::
from

::::
N0,1:::

by
:::
the

:::::::::
theoretical

:::::::::
occurrence

::::::::::
probability

:::
(see

:::::
Table

::
2)

::
of

:::
the

:::::::::
respective

::::
class

::::
and

::::::
analyze

::::::::
weighted

:::::::::
deviations

::::
from

:::::
N0,1.

:

For the 2-parameter PDFs, the weighted deviations from N0,1 ::::::
(shown

::
in

::::
the

::::::
legend

::
of

::::
Fig.

::
4)

:
either stay constant (for

GD2 in DJF) or increase in simulations relative to observations (shown in the legend of Fig. 4, compare the
:::::::
compare

:::
the

::::::
legends

::
in

:::
the

:
left against the right column).

:::
one

:::
in

:::
the

::::
right

:::::::
column

::
of

::::
Fig.

:::
4).

:::::::
Relative

:::
to

:::::::::::
observations, GD2’s weighted455
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deviations increase
::
in

:::::::::
simulations

:
by more than 120% in JJA, while WD2’s increase by more than 25% in JJA and 80% in

DJF. The most plausible explanation for these weighted deviations to increase
:
, when 10-folding the database,

:
are different

frequency distributions between observed and modeled 3-months precipitation totals. The
:::
Our 2-parameter

::::::::
candidate PDFs are

better suited to describe observed than modeled 3-months precipitation totals. In contrast, the
::
for

:::
our

:
3-parameter candidate

distribution functionsbenefit strongly from the artificial increase of our time-series. Their ,
:
weighted deviations from N0,1 are460

substantially larger in observations than in simulations. GGD3’s (EWD3’s) are larger by 210% (500%) and 58% (200%) during

DJF and JJA, respectively. These findings strongly hint at the presence of different frequency distributions between observed

and modeled 3-months precipitation totals. Both 2-parameter candidate PDFs seem inadequately suited for describing modeled

3-months precipitation totals. In contrast, the
:::
The

:
3-parameter candidate distribution functions perform distinctly better in

describing modeled 3-months precipitation totals than the
::::::::
candidate

::::::::::
distribution

::::::::
functions

::::::
benefit

:::::::
strongly

::::
from

:::
the

::::::::
artificial465

:::::::
increase

::
of

:::
our

:::::::::
time-series

::::
and

::::
seem

::::::
better

:::::
suited

::::
than

:::
our

:
2-parameter candidate PDFs in both of our investigated seasons

::
to

:::::::
describe

::::::::::
precipitation

:::::::::::
distributions

:::::::
obtained

:::::
from

::::::::
ensemble

:::::::::
simulations.

In this section, we have analyzed global deviations from N0,1 thus far and identified:

– GD2, GGD3, and EWD3 describe similarly well the overall frequency distribution of observed 3-months precipitation

totals.470

– WD2 performs overall poorly and is in every regard inferior to any other candidate distribution function.

– GGD3 and EWD3 describe the frequency distribution of modeled 3-months precipitation totals distinctly better than any

2-parameter candidate distribution.

– GD2 still describes the frequency distribution of modeled 3-months precipitation totals sufficiently well on
::
the

:
global

average.475

– Both 2-parameter candidate distribution functions are unable to benefit from the increased length of the database in

simulations relative to observations, while both 3-parameter PDFs strongly benefit from that increase.

As mentioned before,
:
It

::
is

:::::::::
noteworthy,

::::
that investigating deviations fromN0,1 over the entire globe contains the risk of encoun-

tering deviations which
:::
that balance each other in different grid-points

::::
with

::::::::
unrelated

:::::::
climatic

::::::::::::
characteristics.

:::::
Until

:::::::
dealing

::::
with

:::
this

::::
risk,

:::
our

:::::::
analysis

::
of

:::::::::
deviations

::::
from

::::
N0,1::::

only
::::::::
indicates

:::
that

:::::
three

::::::::
candidate

:::::
PDFs

:::::
(GD2,

::::::
GGD3,

::::
and

::::::
EWD3)

:::::::
display480

::
an

:::::::
adequate

:::::::
absolute

:::::::::::
performance. On the one hand, we can reduce that risk by analyzing these deviations

::::::::
deviations

::::
from

:::::
N0,1

only over specific regions, which is done .
::::
This

:::::::
analysis

:::::::::
safeguards

:::
our

:::::::::::
investigation

:::
by

:::::::
ensuring

::::::
(rather

::::
than

::::
just

:::::::::
indicating)

::
an

::::::::
adequate

:::::::
absolute

:::::::::::
performance

::::::
around

:::
the

:::::
globe

:::
and

::
is
:::::::::
performed

:
later. On the other hand, we

:::
first

::::::::::
completely eliminate

this risk next by examining AIC-D frequencies: aggregating AIC-D values over the entire globe evaluates the performance of

PDFs in each grid-point and normalizes these evaluations by (rather than adding them over) the total number of grid-points of485

the entire globe.
::
We

:::::::::
investigate

:::::::
AIC-D

:::::::::
frequencies

::::
first

::
to

:::::::
evaluate

:::::::
whether

::::::
GGD3

::::::
and/or

::::::
EWD3

:::::::
perform

::::::::::
sufficiently

:::::
better

:::
than

:::::
GD2

::
to

:::::
justify

:::::
their

::::::::
increased

:::::::::::
complexities.
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In general, each of the candidate distribution functions perform
::::::::
candidate

::::::::::
distribution

:::::::
function

::::::::
performs similarly well in

winter and summer in their depiction of the frequency distribution of observed 3-months precipitation totals (compare Fig. 5,

(a) against (b)). In agreement with our previous results and prior studies (Blain et al., 2018; Lloyd-Hughes and Saunders, 2002;490

McKee et al., 1993), GD2 is in most
:::::
ideally

:::::::::
describes

:::::::
observed

:::::::::
3-months

::::::::::
precipitation

:::::
totals

::::::
during

:::::
both

::::::
seasons

:::
in

:::::
many

grid-points of the global land area best suited to describe observed 3-months precipitation totals in DJF and JJA (Fig. 5, (a)

and (b)). GD2 displays AIC-D values of less than 2 in approximately 84.5%
:::::::
(83.5%) of the global land area in DJF and 83.5

% in JJA. That should
:::::
(JJA).

::::
That

:::::
ought

::
to

:
be interpreted as substantial confidence in GD2’s performance in these grid-points.

However, beyond an AIC-Dmax value of 2, EWD3
:
(and GGD3)

:
approach 100 % coverage considerably faster than GD2. The495

3-parameter candidate distribution functions compensate rather quickly
::::::
EWD3

::::::
quickly

:::::::::::
compensates

::::
for

:::::
AIC’s

::::::::::
complexity

:::::::::
punishment

:::::::
(which

::
is

::::
2.46

:::::
units

:::::
larger

:
for their increased penalty imposed by AICthrough a distinctly better performance

in virtually every global land grid-point. GGD3 and EWD3 both show in more grid-points than GD2 an AIC-Dmax value

of approximately 2.5 (exactly 2.47 for
::::
than

:::
for

:::::
GD2

::::::::
(indicated

:::
by

:::
the

:::::::
vertical

:::::
black

::::
line

::
in

::::
Fig.

:::
5)).

:::::::
Beyond

::::
this

:::::::
vertical

::::
black

::::
line,

:
EWD3 in both seasons and 2.51 (2.58) for GGD3 in DJF (JJA))(see intersect between the yellowish

::::::::::
conclusively500

::::::::::
outperforms

::::
GD2

::::
(the

::::
only

::::::::::
intersection

::
of

:::
the

:::::::::
yellowish, and the bluish as well as the yellowish and black lines

:::
lines

::::::::
coincide

::::
with

::
the

::::::::::
intersection

::
of
::::
that

::::::
vertical

:::::
black

::::
line in Fig. 5, (a) and (b)). Further, once they compensate their penalty, they quickly

approach 100 % coverage for the entire globe. For EWD3 more than 98 % of the land area is characterized in both seasons by

an AIC-Dmax value of less than 3 (98 % coverage is exactly fulfilled for an
:::::::
performs

::::
well

:
(AIC-Dmax value of 2.65 (2.95) in

:
<
::
4)

::
in

::::::::
virtually

::::
every

::::::
global

::::
land

:::::::::
grid-point.

::::::
During

:
DJF (JJA)).505

Contrarily, both 2-parameter candidate distribution functions display considerably less confidence in their description of

observed 3-months precipitation totals in more than 10 % of the global ,
::::::
EWD3

:::::::
displays

:::::::
globally

:::
(in

::
all land grid-points(apparent

by
:
)
:
AIC-D values beyond 4 in these grid-points

::
of

:::
less

::::
than

::::
5.03

::::
(7.03). In consequence, they need considerably longer to reach

98 % coverages – even allowing
:::::::
contrast,

::::
GD2

::::::::
performs

::::::::::
erroneously

::::::::
(apparent

:::
by AIC-Dmax values as high as

::
in

:::::
excess

:::
of

::
4)

::
in

::::::::::::
approximately

:::
7%

::
(6does not lead to 98 % coverage for neither one of our 2-parameter candidate PDFs in any season510

(98 % coverage is for GD2 (WD2) exactly fulfilled for an AIC-Dmax value of 6.39 (6.46) in JJAand 6.68
:::
%)

::
of

:::
the

::::::
global

:::
land

::::::::::
grid-points

::::::
during

::::
DJF

:::::
(JJA).

:::::::
Further,

::::
GD2

::::::::
performs

::::::
during

::::
both

:::::::
seasons

:::::::::::
insufficiently

:
(6.66) in DJF). As a reminder:

AIC-Dvalues between 4
:::max::::::

values
:::::::
beyond

::
7)

::
in

:::
2%

:
and 7 indicate already considerably less confidence in the distribution

function’s performance. As a side note, EWD3 performs better than GGD3 but only by a few grid-points increased coverage

for each
::::::
without

::::
skill

:
(AIC-Dmax value. Each candidate distribution function exhibits only in a minor fraction of grid-points515

essentially no confidence (AIC-D values of 10 and beyond )
:::::
values

::::::
beyond

::::
10)

:
in their description of observed 3-months

precipitation totals. GD2 (WD2) fails in its description in 0,41 % (0,49 % ) and 0.59 % (0.26 %) of grid-points
::
1%

:
of the

global land areain DJF and JJA, respectively. GGD2 only fails in 0.08 % (0.26 %) of grid-points of the global land area in

DJF (JJA), while .
::::::
While EWD3 does not fail in a single grid-point during both investigated seasons .

:::::
strictly

:::::::::::
outperforms

::::::
GGD3,

::::::
GGD3

:::
still

::::::::
performs

:::::::
similarly

::
to
::::::
EWD3

::
in
::::::::::::
observations.

::::
Thus,

::::
our

::::
focus

:::
on

::::::
EWD3

:::::::
becomes

::::
only

::::::::
plausible

::::::
during

:::
the520

::::::::::
investigation

::
of

::::::
AIC-D

::::::::::
frequencies

::
in

::::::::
ensemble

::::::::::
simulations.

:
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::
In

::::::::
ensemble

::::::::::
simulations,

:::
our

::::::
results

:::
are

:::::
again

:::::
rather

::::::
stable

::
for

:::
all

::::::::::
investigated

::::::::::
distribution

::::::::
functions

:::::::
between

:::::::
summer

::::
and

:::::
winter

::::::::
(compare

::::
Fig.

::
5,

:::
(c)

::::::
against

::::
(d)).

::::
All

:::::::::
distribution

:::::::::
functions

::::::
display

::
in

::::
both

:::::::
seasons

:::
the

:::::
same

::::::
distinct

:::::::
ranking

::
of

:::::
their

::::::::::
performance

:::
for

:::::::::
AIC-Dmax::::::

values
::
of

:
2
:::
and

:::::::
beyond.

::::::
EWD3

::::::::::
outperforms

::::::
GGD3

:::::
which

::
is

:::::
better

::::
than

:::::
GD2,

::::
while

:::::
WD2

::::::::
performs

::::::::
especially

:::::
poor.

:
The confidence in GD2 drastically diminishes further when we analyze the performance of the

:::
our four525

candidate PDFs in describing the frequency distribution of modeled 3-month precipitation totals
:::::::
ensemble

::::::::::
simulations. EWD3

is superior to any other distribution function in JJA and DJF for each AIC-Dmax value beyond 1.52 in DJF and 0.73 in JJA (see

intersect between yellowish and blueish lines in Fig. 5, (c) and (d)). Assuming those AIC-Dmax values to be sufficiently small

(AIC-D values of less than 2 are practically indistinguishable from each other in their performance), EWD3 performs best

among all candidate PDFs in general. We interpret EWD3’s description of the frequency distribution of modeled 3-months530

precipitation totals with substantial confidence in approximately 84.8 %
::::::::::
performance

::
in

::::::::
ensemble

::::::::::
simulations

:::
as

::::
ideal

:::
in

::::::::::::
approximately

::::
85%

:::::
(86%)

:
of the global land area in DJF and 86.4 % in JJA

:::::
during

::::
DJF

::::
(JJA). For AIC-Dmax values beyond

2, EWD3 again quickly approaches 100 % coveragein both seasons. Our results are againrather stable for all investigated

distribution functions between summer and winter (compare Fig. 5, (c) against (d)). All distribution functions display in both

seasons the same distinct ranking of their performance for AIC-Dmax values of 2 and beyond. EWD3 outperforms GGD3535

which is better than GD2, while WD2 performs especially poor. In winter GGD3 performs better than GD2 for AIC-Dmax

values beyond 1.99 (See intersect between blueish and black lines in Fig. 5, (c)). Here, both distributions functions performance

should be interpreted with substantial confidence in almost 70 % (exactly 68.45 % for GD2 ,
:::::
again,

:
and 69.04 % for GGD3)

:::::::
performs

::::::::::
erroneously

::
or

:::::::::::
insufficiently

::::
only

::
in

:::
1%

:
of the global land area . However, for an AIC-Dmax value of just 2.1, GGD3

already out-performs GD2 in 7.92 % (11.75 %) of the global land area during winter (summer).540

While EWD3 does not display a deteriorating performance in simulations in more than 1 % of grid-points, there is season-dependent

considerably less confidence in
:::::
during

::::
both

:::::::
seasons.

:::
In

:::::::
contrast, GD2 ’s performance in about one-third to one-fourth

:::::::
performs

:::::::::
erroneously

::
in
:::::
23%

:::::
(30%)

:::
and

::::::::::
insufficient

::
in

::::
14%

:::::
(21%)

:
of the global land grid-points (apparent by AIC-D values beyond 4 in

these grid-points). Most
:::::
during

::::
DJF

:::::
(JJA).

::::
Yet,

::::
most

:
telling might be the fraction of grid-points in which the candidate PDFs

display AIC-D values of 10 and beyond and thus show no confidence in their depiction of 3-months precipitation totals
::::
skill

::
in545

::::::::
ensemble

:::::::::
simulations. GD2 and WD2 fail in their description

:::
fails

:
during DJF (JJA) in 9.87 % (14.95 %) and 57.84 % (56.57

::::
10%

:::
(15%) of the global land area, respectively. While GGD3 still fails in 3.61 % (4.23 %) of grid-points

:
.
::
In

:::::::::
opposition,

EWD3 only fails in 0.59 % (0.71
:::::
0.45%

:::::
(0.87%) during DJF (JJA). Ergo,

::::::::
employing

:
EWD3

:
,
::::::
instead

:::
of

:::::
GD2, reduces the

count of grid-points in which it’s description of modeled 3-months precipitation totals is without any skill
::::::
without

::::
any

::::::
skillful

::::::::::
performance

:
by over one magnitude (by a factor of roughly 20)relative to GD2

:
.
::::::
EWD3

::::
also

:::::::::
universally

::::::::::
outperforms

:::::::
GGD3.550

:::::
Given

::::
their

:::::
equal

::::::::::::::
parameter-count,

:
it
::::::
seems

::::::
rational

:::
to

:::::
rather

::::::
employ

::::::
EWD3

::::
than

::::::
GGD3.

::::::::
Analyzing

:::::::
AIC-D

:::::::::
frequencies

:::
for

:::::
both

::::::
seasons

:::::
(DJF

:::
and

:::::
JJA)

::::::::
discloses

::
no

:::::::
distinct

:::::::::::::::
season-dependent

::::::::::
differences,

::::::
similar

::
to

:::::
before

::
in

:::
the

:::::::::::
investigation

::
of

:::::::::
deviations

::::
from

:::::
N0,1.

:::::::::
Therefore,

:::
we

:::::::
average

::::::::
identified

::::
land

::::
area

::::::::
coverages

::::
over

::::
both

:::::::
seasons

::
in

:::
the

::::::::
summary

::
of

:::::::
AIC-D

::::::::::
frequencies.

:
Table 3 summarizes our findings from the investigation of AIC-D values over the

entire global land area . While not even a single candidate PDF performs ideally
:::::
during

::::
both

::::::::
seasons.

::::::
EWD3

::::::::
performs

::::
well555

::::::
(AIC-D

::::
≤ 4)

:
with substantial confidence around the globe (AIC-D ≤ 2 in

::
(at

::::
least 95or more % of land grid-points ) in either
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realization
:::::::
conform

:::::::::::
performance)

:::::::
around

::
the

:::::
globe

::
in
:::::
both

::::::::::
realizations.

::::::::::
Additionally, EWD3 performs well

:::
also

::::::::
performs

::::
best

::
in

::::
each

::
of

:::::
these

:::::::
analyses

:::::
(each

::::
row

::
of

:::::
Table

::
3
::
in

::::::
which

:::
we

:::::::
consider

:::
its

::::::::::
performance

:
with substantial confidencearound the

globe (AIC-D ≤ 4 in 95 or more % of land grid-points)in both realizations
:
). The other analyzed candidate PDFs perform

substantially worse than EWD3 in
:::::::
ensemble

:
simulations and slightly worse in observations.560

It seems worth elaborating on the combination between EWD3’s increased penalty relative to our 2-parameter candidate

PDFs and the fact that
:::::::::
insufficient

:::::
(only

:::::::
average)

:::::::::
confidence

::
in
:

EWD3 does not perform ideally with substantial confidence

::
to

:::::::
perform

::::::
ideally

::
in
:::::::::::

observations
:::::::::

(ensemble
:::::::::::

simulations)
:
around the globe. On the one side,

:::
The

::::::::::
complexity

::::::
penalty

:::
of

:::
AIC

::::::::
correctly

::::::::
punishes

::::::
EWD3

:::::::
stronger

::::
than

::::
GD2

:::::::
because

::::
AIC

::::::::
evaluates

:::::::
whether EWD3’s increased complexity justifies the

increased penalty when evaluating whether that increased complexity
:::::::
(relative

::
to

:::::
GD2)

:
is necessary. However, the results565

justify the necessity for this increased complexity
:
–
:::::
GD2

::::::::
performs

::::::::::
erroneously

::
in

::::
26%

:::::
(6%),

:::::::::::
insufficiently

::
in

::::
18%

:::::
(2%),

::::
and

::::::
without

::::
any

::::
skill

::
in

:::::
12%

::::
(1%)

:::
of

:::
the

::::::
global

::::
land

::::
area

::
in

::::::::
ensemble

::::::::::
simulations

::::::::::::
(observations). The risk of underfitting by

using 2-parameter PDFs is higher
::::
seems

::::::
larger than the risk of overfitting by using 3-parameter PDFs. In particular, when we

demand that a single candidate PDF should be suited for observations and simulations concurrently, 2-parameter candidate

PDFs seem ill-posed for the task at hand. On the other side, once
::::
Once the need for 3-parameter candidate PDFs is established,570

their remaining competition against
:::::::::
punishment

::::::
relative

::
to
:
2-parameter PDFs biases the analysis; especially

:::::::::
particularly

:
for the

ideal AIC-D category. EWD3’s increased
:::::::::
complexity

:
penalty relative to 2-parameter candidate PDFs depends on the sample

size and amounts to 2.46 in observations and 2.04 in simulations. This penalty is also approximately the
::::::::
ensemble

::::::::::
simulations

:::
(see

:::::
black

:::::::
vertical

::::
lines

::
in
::::

Fig.
::
5
:::::::
(a)–(d)).

::::
The

:
AIC-Dmax value where

:::::
beyond

::::::
which

:
EWD3 reaches a coverage

::::::::
coverages

close to 100% (
:::::::::::
approximately

::::::::
amounts

::
to

:::::::
EWD3’s

::::::::
increased

:::::::
penalty

::::
(see Fig. 5 (a)–(d)). Indeed, if

:::::::::
Correcting EWD3solely575

competes with GGD3,
::
’s

::::::::
coverages

:::
for

:::
this

::::
bias

:::::
would

:::::
affect

:::
our

:::::::::
evaluation

::
of EWD3performs ideally (

:
’s
:::::::::::
performance

::::
only

:::
for

::
the

:::::
ideal AIC-D≤ 2)over both seasons

::::::::
category.

::
To

::::::::
illustrate

:::
this

::::::
effect,

::
we

::::
only

::::::::
consider

:::::
AIC’s

::::::::
estimated

::::::::
likelihood

::::::::
(without

::
its

::::::::
penalty).

::::
Such

::
a

:::::::::::
consideration

:::::::
corrects

:::
this

::::::::::
complexity

::::
bias

::
in

:::::::
EWD3’s

:::::::::::
performance.

::::::
While

:::
we

::::::::::
analytically

:::::::
analyzed

::::
this

:::::::::::
consideration,

::
a
::::::::
first-order

:::::::::::::
approximation

:::::::
suffices

:::
for

:::
the

:::::
scope

::
of

::::
this

::::::::::
publication.

::
In

::::
that

:::::::::
first-order

::::::::::::
approximation

::
of

::::
this

:::::::::::
consideration,

:::
we

::::::
simply

::::
shift

:::
the

:::::
curve

::
of

::::::
EWD3

::
by

::::
2.46

:::::
units

::::::::
leftwards in observations (simulations) in 99 % (100 %) of the580

global land grid-points (not shown). Thus
:::
Fig.

::
5

::
(a)

::::
and

::::
(b)))

::::
and

::
by

::::
2.04

:::::
units

::::::::
leftwards

::
in

::::::::
ensemble

::::::::::
simulations

::::
(Fig.

::
5
:::
(c)

:::
and

::::
(d)).

:::::
After

:::
this

::::
shift, EWD3 already performs at least on par with the best-performing candidate PDF in both realizations

at virtually every grid-point.
:::::
would

::::
also

:::::::
perform

::::
ideal

::::
with

:::::::::
substantial

::::::::::
confidence.

These characteristics stay valid
:::
The

::::::
AIC-D

::::::::::
frequencies

:::
of

:::::
Table

:
3
::::

are
:::::
robust

:
in all investigated regions except Australia

. Here
:::
(not

:::::::
shown).

::
In

::::::::
Australia, GD2performs better than any other analyzed PDF

:
’s

:::::::::::
performance

::::::
slightly

::::::::
improves

:::::::
relative585

::
to

:::
the

::::::
global

::::::
results during DJF in observations. In contrastduring JJA-observations, GD2 performs worse than any other

investigated candidate PDFs (even
:::::
worse

::::
than WD2) . Additionally, WD2 and the other candidate PDFs also out-perform GD2

:::::
during

::::
JJA

::
in

:::::::::::
observations

:::
and

:
during DJF in simulations. Since these are the only minor regional particularities evident in

regional AIC-D frequencies, we will during the regional focus in the remaining analysis of SPI3M solely display, explain, and

concentrate on deviations from N0,1.590
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::::::
Among

:::
our

:::::::::
candidate

:::::
PDFs,

::::::
EWD3

::
is
:::::::::

obviously
:::
the

:::::::::
best-suited

:::::
PDF

:::
for

::::
SPI.

::::
Yet,

:::
we

:::
still

:::::
need

::
to

:::::::
confirm

:::::::
whether

::::
also

:::::::
EWD3’s

:::::::
absolute

:::::::::::
performance

::
is

::::::::
adequate.

:::::
While

:::
the

:::::
global

:::::::
analysis

::::::::
indicated

::::::::
EWD3’s

:::::::::::
adequateness,

:::
the

:::::::
ultimate

:::::::::
validation

::
of

:::
this

:::::
claim

::
is

:::::::::
incumbent

::::
upon

:::
the

:::::::
regional

::::::::
analysis.

3.1.2 Regional Deviations from N0,1

We investigated thus far deviations fromN0,1 for the entire global land area. That analysis
::
In

:::
this

:::::::
process,

:::
our

::::::
results

::::::
indicate

:::
an595

:::::::
adequate

:::::::
absolute

:::::::::::
performance

::
of

:::::
GD2,

::::::
GGD2,

::::
and

::::::
EWD3.

::::::::
However,

::::
that

::::::::::
investigation

:
might be blurred by deviations which

balance each other over totally different regions with unrelated climatic characteristics. Thus, we will reduce the area analyzed

in this subsection and perform a further aggregated investigation for
:::
that

::::::
focuses

:::
on

:
each continental region individually.

That further aggregation of results dismisses the dimension of different SPI categories because their analysis revealed a rather

uniform relation over each region: extreme SPI categories show the largest deviations, while normal conditions exhibit the600

smallest. As a consequence, we display from now on only unweighted sums over the absolute values of these deviations from

:::::
across

:
all SPI categories. To provide a more intuitive number for these unweighted sums, we normalize them by our SPI

category count (7). Consequently, our analysis will investigate
:::
the mean deviations per SPI category, henceforth.

In observations (Fig 6. (a) and (b)), WD2 performs in all analyzed regions again worst of all candidate PDFs in describing

::::::::
delivering

:
a proper frequency distribution of SPI3M during both investigated seasons. Over all analyzed regions and seasons,605

EWD3 displays the smallest deviations from N0,1, while GD2 and GGD3 perform only slightly worse. Some minor region-

dependent differences emerge. E.g. in Africa, a distinct ranking of the performance of all four candidate distribution functions

emerges during JJA – EWD3 outperforms GGD3 which performs better than GD2. Aside, all candidate PDFs perform almost

identical in their attempt to describe observed precipitation
::::::
display

::::::
almost

:::::::
identical

:::::::::
deviations

::::
from

::::
N0,1:

over Australia during

DJF
:
in
::::::::::
observation.610

In simulations (Fig 6. (c) and (d)), the ranking of the performance of different PDFs becomes more distinct than it is in

observations during both analyzed seasons and investigated domains, except Australia. This compared to observations easier

distinction over almost every region of the globe results from increased mean deviations for GD2, while they stay comparable

low for GGD3 and EWD3, relative to the global analysis. As showed
:::::
shown

:
before, 2-parameter PDFs are inadequately

suited to properly describe modeled precipitation totals . In consequence
:::::
ineptly

::::::::
describe

:::::::::::
precipitation

:::::
totals

:::::::
obtained

:::::
from615

::::::::
ensemble

::::::::::
simulations.

:::::::::::
Consequently, during both seasons, GGD3 and EWD3 perform in each region exceptionally well, while

GD2 performs overall average at best, whereas WD2 performs still poor in general. The performances of GD2 and WD2

are only in Africa during DJF equally poor which impedes any clear ranking. Similar
:::::::
Similarly

:
difficult is any distinction

of their performance in North America during JJA as a consequence of one of WD2’s best performances (as also identified

by Sienz et al. (2012) for SPI1M ). Furthermore poses Australia an exception to the identified ranking pattern of candidate620

PDFs for simulations. During the austral summer (DJF), WD2 distinctly outperforms GD2 which exhibits the largest mean

deviations. Interestingly, analog to the performance of candidate PDFs over Australia in observations during DJF, we identify

over Australia also in simulations a season when the performance of all four candidate distribution functions is rather similar.

However, this occurs in simulations during JJA.
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These insights about the candidate PDFs performance in observations and simulations are even more obvious at first glance625

when displayed in an image plot (Fig. 7 (a) and (b)). The poor performance of WD2 in observations and simulations is

obvious over all domains and in both investigated seasons. Also, the exception to this pattern for Australia during the austral

summer (Fig. 7 (a)) in simulations is distinctly visible. Evident are further the overall similar performances of GD2, GGD3
:
,

and EWD3 in observations over all domains and both analyzed seasons. Further, the general
:::::::
generally improved performance

of 3-parameter candidate distribution functions (GGD3 and EWD3) relative to 2-parameter candidate PDFs in simulations is630

distinctly palpable. Aside, even the better performance of EWD3 relative to GGD3 in Africa generally or in observations over

Europe is easily discernible.

The
::
For

::::::::::::
observations,

:::
the regional analysis confirms the overall insights from the global analysis in observations for each

region. In
:::
each

::::::
region:

:::::::
EWD3

::
is

:::::
(same

::
as

:::::
GD2

:::
and

:::::::
GGD3)

:::
an

:::::::
adequate

:::::
PDF

::
in

:::::
SPI’s

:::::::::
calculation

:::::::::
algorithm.

::::
For

::::::::
ensemble

simulations, the regional analysis additionally corroborates the finding of the AIC-D analysis that our 3-parameter candidate635

distribution functions perform in simulations
:::::
EWD3

::::::::
performs noticeably better than our 2-parameter PDFs

::::
GD2. The corrob-

oration of this finding substantiates support for the 3-parameter
::::::
EWD3.

:

:::
The

:::::::
analysis

:::
of

::::::
AIC-D

::::::::::
frequencies

::::::
proves

::::
that

:::::::
EWD3

::
is

:::::
SPI’s

::::
best

::::::::::
distribution

::::::::
function

::::::
among

:::
our

:
candidate PDFs.

::::::::::
Additionally,

::::
the

:::::::
regional

:::::::::::
investigation

::::::::
confirms

:::
the

::::::
global

::::::::
analysis:

:::
the

::::::::
absolute

:::::::::::
performance

::
of

:::::::
EWD3

::
is

::
at

:::::::::
minimum

:::::::
adequate

::
in

:::::::::::
observations

:::
and

::::::::
ensemble

::::::::::
simulations.

:
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3.1.3 Improvement relative to a multi-PDF Approach and a Baseline

In the following, we investigate deviations from N0,1 for a multi-PDF SPI calculation algorithm which uses in each grid-point

that distribution function which yields for this respective grid-point the minimum AIC value (whose AIC-D value equates to

0). An analog SPI calculation algorithm has been repeatedly proposed in literature (Guenang et al., 2019; Blain and Meschi-

atti, 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saunders, 2002). We analyze the impact of such an SPI645

calculation algorithm and compare those results against a baseline comparison and against the most suitable calculation algo-

rithm identified in this study which uses EWD3 as PDF. We label the
:::
The results obtained from the multi-distribution function

calculation algorithm
:::
SPI

:::::::::
calculation

:::::::::
algorithm

:::
that

::::
uses

::
a
:::::::::
multi-PDF

::::::::
approach

:::
are

::::::
labeled

:
AICmin-analysis. As a baseline

comparison, we choose the calculation algorithm and optimization method of the frequently used R-package from Beguería

and Vicente-Serrano (2017) and refer to these results as baseline. To maximize
:::
the comparability of SPI time-series calculated650

with our
:::
this

:
baseline, we employ the simple 2-parameter gamma distribution as a calculation algorithm and estimate the pa-

rameters of the PDF again with the maximum-likelihood method. It seems noteworthy that our parameter estimation method

takes about 60 times longer to find optimal parameters of GD2 than the baseline. The comparison between the performance

of our baseline against GD2’s performance (see
:::::::
compare

::::
Fig.

::
8

::::::
against

:
Fig. 7(a) and (b)) thus also serves as an indicator

for
:::::::
indicates

:
the impact of very similar parameter estimation methods which only differ by their optimization procedure

:::
the655

::::::::::::
meticulousness

:::::::
applied

::
to

:::
the

::::::::::
optimization

::
of

:::
the

:::::
same

::::::::
parameter

:::::::::
estimation

:::::::
method.

The AICmin-analysis performs generally almost identical to EWD3 over each domain and in both realizations (observations

and simulations). Further, deviations are not necessarily minimal when computing SPI with the AICmin-analysis (Fig. 8, (a)
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and (b)). This results from the dependence of AIC’s punishment on the parameter count of the distribution function. It is simply

not sufficient for EWD3 to perform best by a small margin in order to yield a lower AIC value than GD2/WD2. EWD3 needs660

to perform sufficiently better to over-compensate its by AIC imposed punishment. Or in other words, EWD3 is expected to

perform distinctly better than GD2/WD2 because of its increased complexity. As a consequence, EWD3 is only selected by

AIC as
:::
the best performing distribution function if it fulfills that expectation.

In contrast to previous results
:
in

::::
this

:::
and

:::::
other

::::::
studies

:
(Stagge et al., 2015), which showed no seasonal differences in the

performance of candidate PDFs, our
:::
the baseline performs overall better in JJA than in DJF (compare in Fig. 8, (a) against (b)).665

Relative to our findings in the previous subsection (Fig 7.), our
:::
the baseline performs similar to GD2 in JJA but worse than

WD2 in DJF (compare Fig. 7 against Fig. 8,). This reveals a substantial impact of the optimization method
::::::::
procedure, at least for

DJF-precipitation totals. Further, our
:::
the baseline performs especially poor in describing the frequency distribution of SPI3M

in simulations during the austral summer. It is important to note that our
::
the baseline over-estimates modeled extreme droughts

during DJF over Australia by more than 240% (not shown). That is by a huge margin the largest deviation we encountered670

during our analysis and highly undesirable when analyzing droughts. Contrary to Blain et al. (2018), who investigated the

influence of different parameter estimation methods on SPI’s normality and identified only barely visible effects, the massive

difference between our
:::
the

:
baseline and GD2 in DJF is severely concerning; especially given that the here used parameter

estimation methods are almost identical and only differ by their
:::::::
identical

::::
and

:::
the

::::
only

:::::::::
difference

::
is
:::
the

:::::::::::::
meticulousness

:::
of

::
the

:
optimization procedure. Since GD2 and our

::
the

:
baseline both use the maximum likelihood method to estimate the PDF’s675

parameters, main differences do not only emerge when using different estimation methods but rather manifest already in the

applied procedure
:::::::::
procedures by which these methods are optimized.

Unsurprisingly the same deficit as identified before for both 2-parameter candidate PDFs also emerges in our
::
the

:
baseline’s

performance: the by each classes’ likelihood of occurrence weighted sum over the absolute values of deviations from N0,1

increases as a result of 10-folding our database (not shown). Although our
:::
the baseline already performs especially poor680

:::::
poorly

:
when analyzing weighted deviations during DJF in observations, it performs even worse in simulations; although the

performance deteriorates only marginally. Such an increase of weighted deviations is a strong indicator of our
::
the

:
baseline’s

inability
:::::::::
difficulties to sufficiently describe the frequency distribution of modeled SPI3M . In our

:::
the baseline, these weighted

deviations increase globally by 2 % in DJF and 40 % in JJA (as a reminder: the weighted deviations stay constant for GD2 in

DJF and increase by more than 120 % in JJA). In contrast, these weighted deviations decrease for the AICmin-analysis by 70%685

in DJF and by 60% in JJA around the entire globe (not shown).

Moreover, identifying the maximum deviation from N0,1 for 196 different analyses which range along
:::::
across each SPI

category (7), region
::::::
domain (7), both seasons (2), as well as differentiating between observation and simulation (2) (not shown),

our
:::
the baseline performs worst in 79 out of those 196 analyses, while WD2 performs worst in 103 of these analyses. It is

noteworthy that out of those 79 analyses in which our
:::
the baseline performs worst, 63 analyses occur during DJF. As a side690

note, GD2 performs with our optimization overall worst six times
::::
with

:::
our

::::::::::
optimization, while GGD3 and EWD3 each perform

worst four times
::::::
overall.
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3.1.4
:::::::::
Sensitivity

::
to

:::::::::
Ensemble

::::
Size

::
So

:::
far,

::::
we

::::
used

:::
all

::::::::
ensemble

::::::::
members

::
at
:::::

once
::
to

:::
fit

:::
our

:::::::::
candidate

:::::
PDFs

::::
onto

:::::::::
simulated

:::::::::::
precipitation.

::::
That

:::::::::
improves

:::
the

::::::
quality

::
of

:::
the

::
fit.

:::
In

:::
this

:::::::
section,

::
we

::::
first

:::::::
analyze

:
a
:::::
single

::::::::
ensemble

:::::::
member

::::
and

:::::::::
investigate

:::::::::::
subsequently

:::
the

::::::::
sensitivity

:::
of

:::
our695

::::::::
candidate

:::::
PDFs’

:::::::::::
performance

::
on

:::
the

::::::::
ensemble

:::::
size.

::
In

:::::
doing

:::
so,

:::
we

:::::::
properly

:::::::::
disentangle

:::
the

:::::::::
difference

:::::::
between

:::::::::::
observations

:::
and

::::::::::
simulations

::::
from

:::
the

::::::
impact

::
of

:::
the

::::::
sample

::::
size.

:

::
As

::::::
before,

::::::::::
3-parameter

::::::::
candidate

::::::::::
distribution

::::::::
functions

:::
also

:::::::
perform

:::
for

:
a
:::::
single

::::::::
ensemble

:::::::::
simulation

:::::
better

::::
than

::::::::::
2-parameter

::::
PDFs

::::::
(Table

:::
4).

:::
For

::
a
:::::
single

:::::::::
ensemble

:::::::
member,

:::
the

:::::::::
difference

:::
by

:::::
which

:::::::::::
3-parameter

:::::
PDFs

::::::::::
out-perform

:::::::::::
2-parameter

:::::
PDFs

::::::
reduces

:::::::::::
considerably

:::::::
relative

::
to

:::
the

:::::
entire

:::::::::
ensemble

::::::::::
simulations

::::::::
(compare

:::::
Table

::
4
::::::
against

:::::
Table

:::
3),

:::::::
though.

::
In

:::::::
contrast

:::
to700

::::
Table

::
3,
:::

all
::
of

:::
our

:::::::::
candidate

:::::::::
distribution

::::::::
functions

:::::::
perform

::::::::
similarly

:::::::
between

::
a
:::::
single

::::::::
ensemble

:::::::::
simulation

::::
and

:::::::::::
observations.

::
In

:::::::
contrast

::
to

::::
our

:::::::
previous

::::::
results

:::::
(e.g.

:::::
when

::::::::
analyzing

:::::::::
weighted

::::
sums

:::
of

:::::::::
deviations

:::::
from

:::::
N0,1),

::::::::
modeled

::::
and

::::::::
observed

::::::::::
precipitation

:::::::::::
distributions

::::
now

::::
seem

::::::::::
sufficiently

::::::
similar.

:::::::::
Reducing

:::
the

::::::
sample

::::
size

::
for

:::
the

:::
fit

::
by

::
a
:::::
factor

::
of

:::
ten

:::::
leads

::
to

:::::
more

:::::::::::
homogeneous

::::::::::::
performances

::
of

:::
all

::::::::
candidate

:::::
PDFs

::
in

::::::::::
simulations.

:::
As

::
a
::::::::
reminder,

::::::
AIC-D

::::::::::
frequencies

::
as

::::::::
depicted

::
in

:::::
Table

::
4

:::::::
measure

::::
only

::::::
relative

:::::::::::
performance

::::::::::
differences.

::::::::::::
Consequently,

:::
our

::::::::::
2-parameter

::::::::
candidate

:::::
PDFs

:::
do

:::
not

:::::::
actually

:::::::
perform

:::::
better705

::::
with

:::::
fewer

::::
data.

:::::::
Instead,

::::::
limiting

:::
the

:::::
input

::::
data

::
to

:
a
:::::
single

::::::::
ensemble

:::::::
member

:::::::
impairs

:::
our

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

:::::::
stronger

:::
than

::::
our

::::::::::
2-parameter

::::::::
candidate

:::::
PDFs.

::::::::::
Optimizing

:
3
::::::::::
parameters

:::::
needs

::::
more

::::::::::
information

::::
than

:::
the

::::::::::
optimization

:::
of

:
2
::::::::::
parameters.

:::::::::
Irrespective

:::
of

::
the

::::::::::
realization,

::::
GD2

::::::::
performs

::::::::::
erroneously

:::
for

::
31

:::::::
samples

::::::::
(apparent

::
in

:::::::::
grid-points

::::::
which

::::::
display

::::::
AIC-D

::::::
values

::::::
beyond

:::
4).

::::::
Despite

::::
the

::::
need

:::
for

:::::
more

::::::::::
information,

:::
31

:::::::
samples

::::::
suffice

::::::
EWD3

:::
to

::
fix

::::::
GD2’s

:::::::::
erroneous

:::::::::::
performances

:::
in

::::
both

:::::::
analyzed

::::::::::
realizations.

:
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::
In

::
the

::::
next

::::
step,

:::
we

::::::
isolate

:::
and

:::::::::
investigate

:::
the

:::::::::::
improvement

::
of

:::
the

::
fit

::
by

::
an

:::::::::
increasing

::::::::::::::
sample/ensemble

::::
size.

:::
As

:
a
::::::::::
consequence

::
of

::::::
limited

::::::::
observed

:::::
global

:::::::::::
precipitation

:::::
data,

:::
we

::::::
neglect

:::::::::::
observations

:::
and

:::::
their

:::::::::
differences

::
to

::::::::::
simulations

::
in
::::

this
:::::::::
remaining

::::::
section.

:::::::
During

:::
this

::::::::::::
investigation,

:::
we

::::::::
reanalyze

:::::
Table

::
4
:::::
while

:::::::::
iteratively

:::::::::
increasing

:::
the

::::::::
ensemble

::::::::
(sample)

::::
size

:::
for

:::
the

:::
fit

::::
(and

:::
the

::::::
AIC-D

::::::::::
calculation).

::::::::::
Irrespective

:::
of

:::
the

::::::::
ensemble

::::
size,

:::::::
EWD3

:::::::
performs

::::::::::
proficiently

::::::
(Table

:::
5).

:::::::
Further,

:::
the

:::::::
fraction

::
of

:::::::::
grid-points

:::
in

:::::
which

::::::
EWD3

::::::::
performs

:::::
ideal

::::::::
increases

:::::::::
constantly.

:::::
This

::
is

::
a

::::::::::
consequence

:::
of

::::::::
EWD3’s

:::::
better

:::::::::::
performance715

::::::
relative

::
to

:::
our

:::::::::::
2-parameter

::::::::
candidate

::::::
PDFs.

::::::::::::
Unfortunately,

:::::::
AIC-Ds

:::
can

::::
only

::::::::
compare

::::::
models

::::
that

::::
base

:::
on

::
an

:::::
equal

:::::::
sample

:::
size

:::::::
without

::::::::
adhering

::
to

::::::::
additional

:::::::::
undesired

:::::::::::
assumptions.

:::::
Thus,

::::
any

:::::
direct

:::::::
analysis

::
of

::::
each

:::::::::
candidate

:::::
PDF’s

::::::::::::
improvement

::::::
relative

::
to

::
its

::::
own

:::::::::::
performance

::
for

::
a

:::::
single

::::::::
ensemble

:::::::
member

:
is
::::
with

::::::
AIC-D

::::::::::
frequencies

:::
not

:::::::
feasible.

:::::::
Despite

:::
this

::::::
caveat,

:::::
Table

:
5
::::
still

:::::::
indicates

::::::::
strongly

:::
that

::::::
EWD3

:::::::
benefits

:::::::
stronger

:::::
from

:::
the

::::::::
increased

::::::
sample

::::
size

::::
than

::::
any

::
of

:::
our

::::::::::
2-parameter

:::::::::
candidate

:::::::::
distribution

:::::::::
functions.

:::
The

:::::
larger

:::
the

::::::
sample

:::::
size,

:::
the

:::::
larger

:
is
:::
the

:::::::
margin

::
by

:::::
which

:::::::
EWD3

::::::::::
outperforms

:::::
GD2.720

::::::
Despite

::::::::
requiring

:::::
more

::::
data,

::::
our

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

:::::::
perform

:::::::
already

:::::
better

:::
for

:::
31

:::::::
samples.

::::
For

::
31

::::::::
samples,

:::
we

::::::
identify

::::
this

:::::
better

::::::::::
performance

::
of

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

::
in

:::::::::::
observations

:::
and

::::::::::
simulations.

:::::::
Further,

:::::
since

:::
our

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

::::::
require

::::
more

::::
data

::
to

:::::::
estimate

:::::::
optimal

::::::::::
parameters,

:::
they

::::::
benefit

::
in

::::::::::
simulations

:::::::
stronger

::::
from

:::::::::
additional

:::::::
samples

:::
than

::::
our

::::::::::
2-parameter

:::::::::
candidate

::::::
PDFs.

::::
That

::::::
benefit

::::::::
becomes

::::::::
apparent

::
in

::
a
::::::::
distinctly

:::::::::
improved

::::::
relative

:::::::::::
performance

:::::
after

:::::::::
multiplying

:::
the

::::::
sample

::::
size

:::::::
through

:::
the

:::
use

::
of

:::::::::
additional

::::::::
ensemble

:::::::
members.725

22



3.2 Other SPI Accumulation Periods

A similar pattern as identified for SPI3M also emerges in the evaluation of AIC-D-based performances of our candidate PDFs

for accumulation periods of 1-, 6-, 9-, and 12-months (Table 4
:
7). No candidate PDF performs ideally (AIC-D values below

2) with substantial confidence around the globe. The reasons for this shortcoming are distribution-dependent. GD2 performs

too poor in too many grid-points (e.g. apparent by too low percentages for covering AIC-D values even below 4) and EWD3730

excels only for AIC-D values beyond 2 because it first needs to over-compensate its AIC-imposed complexity-penalty (as ex-

plained before). Equally apparent is the striking inability of the 2-parameter candidate PDFs to adequately perform in
::::::::
ensemble

simulations for all analyzed accumulation periods which we have also seen for SPI3M before.

In agreement with prior studies (Stagge et al., 2015; Sienz et al., 2012), we also identify the apparent phase transition

::::::::::
performance

::::
shift

:
between short (less than 3-months) and long (more than 3-months) accumulation periods for the 2-parameter735

candidate PDFs. While WD2 performs well for short accumulation periods (only in observations though), GD2 performs better

than WD2 for longer accumulation periods. Nevertheless, the results for the
::::::
neither 3-parameter candidate PDFs do not display

such a phase transition
::::
PDF

:::::::
displays

::::
such

:
a
::::
shift

::
in
:::
its

:::::::::::
performance.

::::
Both

::::::::::
3-parameter

:::::
PDFs

:::::::
perform

:::
for

:::::::::::
accumulation

:::::::
periods

::::::
shorter

:::
and

::::::
longer

:::
than

:::::::::
3-months

:::::::
similarly

::::
well.

Most interesting, EWD3 performs well almost everywhere around the entire globe for each accumulation period and in both740

realizations. EWD3 shows the highest percentages of all candidate PDFs for each analysis (each row of Table 4
:
6) beyond

AIC-D values of 2; except for an accumulation period of 12-months in simulations. While there is not even a single can-

didate PDF that seems sufficiently well suited for an accumulation period of 12-months in simulations, GD2 and EWD3

both perform equally adequate; despite EWD3’s higher AIC-penalty compared to GD2. If
::
As

::
a
:::::::::
reminder,

::::
AIC

::::::::
punishes

EWD3 only competes against GGD3,
::::::
stronger

:::::
than

:::::
GD2.

:::::::::::
Nevertheless

:::
this

::::::::::
complexity

:::::::::::
punishment,

::
it

::
is

:::::::
obvious

:::
by

::::
now745

:::
that

:::
our

::::::::::
2-parameter

:::::
PDFs

:::
are

:::::
inept

::
to

:::::::::
universally

::::::
deliver

:::::::
normal

:::::::::
distributed

:::
SPI

::::::::::
time-series;

::::::::::
particularly

::
if

:::
one

::::::::
considers

:::
all

:::::::
depicted

::::::::::
dimensions

::
of

:::
the

::::
task

::
at

:::::
hand.

:::
As

:
it
:::::
turns

::::
out,

:::
this

::::::::::
punishment

::
is

:::
the

::::
sole

::::::
reason

:::
for

::::
both

:::::::::::
performance

:::::::::
limitations

:::
that

:
EWD3 performs ideal (

:::::::
displays

::
in

:::::
Table

::
6:

:::
(i)

:::
for

:::
the

::::
ideal

:
AIC-D ≤ 2) in 88 % and shows no skill (

:::::::
category

::::
and

:::
(ii)

:::::::
EWD3’s

::::
tied

::::::::::
performance

:::::
with

::::
GD2

:::
for

:::
an

:::::::::::
accumulation

::::::
period

::
of
::::::::::

12-months
::
in

::::::::
ensemble

:::::::::::
simulations.

:::
As

:::::
shown

:::::::
before,

:::::
AIC’s

::::::::::
punishment

::
is

::::::::::
particularly

::::::::
noticeable

:::
in

:::
the

::::
ideal

::::::::
category.

:::::::
Further,

::::
this

::::::::::
punishment

:::
also

::::::
affects

:::
the

::::
tied

:::::::::::
performance750

::::::
ranking

:::
for

:::
the

::::::::::::
accumulation

::::::
period

::
of

::::::::::
12-months.

:::
To

::::::::
illustrate

:::
this

::::::
effect,

:::
we

:::::
again

::::::::
consider

:::::
AIC’s

:::::::::
estimated

:::::::::
likelihood

:::::::
(without

::
its

:::::::
penalty)

::
to

::::::
correct

:::::::
EWD3’s

:::::::::::
performance

:::
for

:::
the

:::::::::
complexity

::::::::::
punishment.

::::::
While

::
we

:::::
again

::::::::::
analytically

:::::::
analyzed

::::
this

:::::::::::
consideration,

:::
for

:::
the

:::::
scope

::
of

::::
this

:::::::::
publication

::
a
::::::::
first-order

::::::::::::
approximation

:::::::
suffices

::::
also

::::
here.

::
In
::::

that
:::::::::
first-order

::::::::::::
approximation

::
of

:::
this

::::::::::::
consideration,

:::::::
EWD3’s

::::::::
coverages

::
of

:::::
Table

::
6

:::
shift

:::::
again

:::
by

::::
2.46

:::::
(2.04)

::::
AIC

::::
units

::
in

::::::::::
observations

:::::::::
(ensemble

:::::::::::
simulations).

::::
Since

:::::::::::
neighboring AIC-D > 10) in less than 5 % of the global land grid-points. Moreover

::::::::
categories

:::::
differ

::
by

::::
2-3

::::
AIC

:::::
units,755

:::
this

::::::::::::
approximation

:::::
shifts

:::::::
EWD3’s

:::::::::
coverages

::
of

:::::
Table

:
6
:::
by

:::::::
roughly

:::
one

::::::::
category.

::::
Such

::
a
::::
shift

:::::
would

:::::
solve

:::::::
EWD3’s

:::::::::
limitation

::
in

:::
the

::::
ideal

::::::
AIC-D

::::::::
category.

:::::::
Further,

::::::
EWD3

::::::
would

::::
also

:::::::
perform

::::
best

:::::
across

:::
all

::::::
AIC-D

:::::::::
categories

::
in

::::::::
ensemble

:::::::::::
simulations;

::::::::
including

::
the

::::::::::::
accumulation

:::::
period

:::
of

:::::::::
12-months.

:
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::::::
Despite

:::
the

::::::::
inclusion

::
of

::::
the

:::::::::
complexity

:::::::
penalty, EWD3 performs

:::
still best in 32 out of all 40 analyses (all rows of Table

3 and Table 4
:
6), and in 30 of those 32 analyses, we consider EWD3’s performance to display at least average confidence760

(indicated by a yellow or green background color in the
::::::::
respective table). In contrast, GD2 (WD2) only performs 2 (1

::::
only

:::::::
performs

::
7

::
(2) times best

:
(while also performing with at least average confidence

:
)
:
–
:::::
WD2

::::::::
performs

::::
once

::::
best and GGD2 never

performs best
:::::
GGD3

:::::
never.

4 Discussion

Previous studies have emphasized the importance of using a single PDF to calculate SPI for each accumulation period and765

location (Stagge et al., 2015; Guttman, 1999) to ensure comparability across space and time which is one of the index’s main

advantages (Lloyd-Hughes and Saunders, 2002). However, any 2-parameter distribution function seems in observations already

ill-suited to deliver adequately normally distributed SPI time-series for both short (less than 3-months) and long (more than

3-months) accumulation periods (Stagge et al., 2015; Sienz et al., 2012). Introducing
::::::::
ensemble simulations as another level of

complexity exacerbates the problem additionally. Yet, the importance of accepting and solving this problem becomes increas-770

ingly pressing as a result of a growing interest in dynamical drought predictions and their evaluation against observations. To

properly evaluate drought predictability of precipitation hindcasts against observations, the distribution function used in SPI’s

calculation algorithm needs to capture sufficiently well both frequency distributions mutually: those of observed and modeled

precipitation totals. In this study, we show that the 3-parameter exponentiated Weibull distribution (EWD3) is very promising

in solving this problem virtually everywhere on the entire
::::::
around

:::
the globe in both realizations (observations and simulations)775

for all common accumulation periods (1-, 3-, 6-, 9-, and 12-months).

Other studies have pessimistically dismissed the possibility of such a solution to this problem and proposed instead a multi-

PDF approach (Guenang et al., 2019; Blain and Meschiatti, 2015; Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and

Saunders, 2002) which selects different PDFs depending on the location and accumulation period of interest. The emergence

of this approach
:::::::
proposal

:
stems from a phase transition in the relative performance of

:::::
focus

::
on

:
2-parameter PDFs , which we780

also identify in this study
:::
that

::::::
exhibit

:
a
::::
shift

::
in
:::::
their

::::::::::
performance

:::::
which

:::::::
depends

:::
on

:::
the

:::::::::
scrutinized

:::::::::::
accumulation

::::::
period. While

WD2 performs better for an accumulation period of 1-month, GD2 is better suited for longer accumulation periods. However,

any multi-PDF approach would partly sacrifice the aforementioned index’s pivotal advantage of comparability across space and

time. Our results suggest that such a multi-PDF approach does not improve the normality of calculated SPI time-series relative

to a calculation algorithm that uses EWD3 as PDF everywhere. Furthermore, the use of an empirical cumulative distribution785

function has been proposed (Sienz et al., 2012). We also checked this approach which proved to be too coarse as a result
:::::::
because

of its discretized description
:::::
nature

:
(not shown).

::
As

:
a
:::::
result

:::
of

::
its

:::::::::
discretized

::::::
nature,

:::
the

::::::::
analyzed

::::::
sample

::::
size

:::::::::
prescribes

:::
the

::::::::
magnitude

:::
of

::::::::
deviations

:::::
from

:::::
N0,1.

::::::::::::
Consequently,

::::
these

:::::::::
deviations

:::
are

:::::::
spatially

::::::::
invariant

:::
and

:::::::::
aggregate

::::
with

::::
each

:::::::::
additional

:::::::::
grid-point.

::::::
Thus,

:::::::::
deviations

:::::
from

::::
N0,1:::

will
::::
not

:::::::
spatially

::::::
balance

:::::
each

:::::
other.

Yet, in agreement with those other studies (Guenang et al., 2019; Blain and Meschiatti, 2015; Touma et al., 2015; Sienz et al.,790

2012; Lloyd-Hughes and Saunders, 2002), our results also suggest that 2-parameter PDFs are not able to produce sufficiently
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normally distributed SPI time-series
::::
inept

:
for all accumulation periods, locations, and realizations. Yet

::::::
Despite

:::
this

::::::::
inability

::
of

::::::::::
2-parameter

:::::
PDFs, EWD3 competed against 2-parameter PDFs in our analysis. This competition unnecessarily (given

the inadequacy of 2-parameter PDFs,
:::
the

::::
risk

::
of

::::::::::
underfitting

::::::
seems

::
to

::::::::
outweigh

:::
the

:::
risk

:::
of

:::::::::
overfitting) exacerbates EWD3’s

performance assessed with AIC-D because AIC punishes complexity
::::::::::
(irrespective

::
of

:::
that

::::
risk

::::::::::::
consideration). As a consequence795

of EWD3’s increased complexity, AIC imposes a larger penalty on EWD3 than on the 2-parameter candidate PDFs
:
(which

are anyhow ill-suited to solve the outlined problem (because they are most likely too simple). Still, EWD3 conclusively out-

performs any other candidate PDFwithout performing ideally .
::::
Yet,

::::::
EWD3

::::
does

:::
not

:::::::
perform

::::::
ideally

::::
with

:::::::::
substantial

:::::::::
confidence

::
in

::::::::
ensemble

::::::::::
simulations. However, accepting the need for a 3-parameter PDF in SPI’s calculation algorithm a priori levels

::::::
leveling

:
the playing field

:::
for

::::::::
candidate

::::::::::
distribution

::::::::
functions

::::
with

:::::::
different

:::::::::
parameter

:::::
counts

:
in our AIC-D analysis and leads800

to an ideal performance of EWD3 globally
:::::::::
universally.

The
::
We

::::
also

::::::::
repeated

:::
our

::::::
AIC-D

:::::::
analysis

::::
with

::::
the

::::::::
Bayesian

::::::::::
information

:::::::
criterion

::::::::::::::::::::::::
(Schwarz et al., 1978) which

::::::::
delivered

::::::
similar

::::::
results.

::::::::::
Irrespective

::
of

:::
the

:::::::::
employed

::::::::::
information

::::::::
criterion,

:::
the findings sketched above stay valid on every continent

in both realizations with a few exceptions. It seems noteworthy, that Australia’s observed DJF- and modeled JJA-precipitation

totals are generally poorly described by any of our candidate distribution functions. Since the performance
::::::::::
performances

:
of805

all investigated distribution functions deteriorate to a similar level, it is difficult, however, to discern any new ranking. Even

more troublesome is the proper description of simulated 12-months precipitation totals. Here, our candidate PDFs perform only

sufficiently. Yet, despite its increased AIC-penalty, EWD3 performs still best along
:::
with

:
the 2-parameter gamma distribution.

::::::
Overall

:::
our

:::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

:::::::
perform

:::::
better

::::
than

:::::::::::
investigated

::::::::::
2-parameter

::::::::
candidate

::::::
PDFs.

:::::::
Despite

::::::::
requiring

::::
more

::::
data,

::
a
::::::
sample

::::
size

::
of

:::
31

::::
years

:::::::
suffices

:::
our

::::::::::
3-parameter

::::::::
candidate

:::::
PDFs

:::
to

:::::::::
outperform

:::
our

:::::::::::
2-parameter

::::::::
candidate

:::::
PDFs810

::
in

:::::::::
simulations

::::
and

:::::::::::
observations.

:::::::
Further,

:::
our

::::::::::
3-parameter

:::::::::
candidate

:::::
PDFs

::::::
greatly

::::::
benefit

::::
from

:::
an

:::::::
increase

::
in

:::
the

::::::
sample

::::
size

::
in

::::::::::
simulations.

::
In

:::::::::::
simulations,

::::
such

::
a

::::::
sample

::::
size

::::::::
sensitivity

::::::::
analysis

::
is

::::::
feasible

:::
by

:::::::::
exploiting

:::::::
different

::::::
counts

:::
of

::::::::
ensemble

::::::::
members.

:::::::
Whether

:::::::::::
3-parameter

:::::
PDFs

::::::
would

::::::
benefit

::::::::
similarly

:::::
from

::
an

:::::::::
increased

::::::
sample

::::
size

::
in

:::::::::::
observations

::
is
:::::
likely

::::
but

::::::::
ultimately

:::::::
remains

::::::::::
speculative

:::::::
because

::::::::::
trustworthy

::::::
global

::::::::::
observations

:::
of

:::::::::::
precipitation

:::
are

:::::::::
temporally

::::
too

::::::::::
constrained

:::
for

::::
such

:
a
:::::::::
sensitivity

:::::::
analysis.

:
815

In contrast to Blain et al. (2018), who investigated the influence of different parameter estimation methods on the normality

of the resulting SPI time-series and only found minuscule effects, our results show a substantial impact
::
of

:::
the

:::::::::::::
meticulousness

::::::
applied

::
to

:::::::
optimize

:::
the

:::::
same

::::::::
parameter

:::::::::
estimation

::::::
method. Despite using the same parameter estimation methods and the same

candidate PDF, the baseline investigated here enlarges deviations from N0,1 by roughly half a magnitude compared to GD2 in

DJF. This result is concerning because it indicates that main differences do not only emerge when using different parameter820

estimation methods but rather manifest already in the applied procedure
:::::::::
procedures by which these methods are optimized. In

our analysis, not different PDFs but different optimizations
::::::::::
optimization

:::::::::
procedures

:
of the same parameter estimation method

:::
can impact normality most profoundly.

Other consequences of this finding are apparent major season-dependent differences in the performance of the investigated

baseline. This finding contradicts the results of Stagge et al. (2015) in which no seasonal differences in the performance of825

candidate PDFs emerged. While
::::
(and

:::
the

::::::
results

:::
we

:::::::
obtained

::::
from

:::
the

:::::::
analysis

:::
of

:::
our

::::::::
candidate

::::::
PDFs).

:::::
These

::::::
results

:::::::
suggest
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:::
that

:::
the

::::::::::::
performances

::
of

::::::::
candidate

::::::
PDFs

:::
are

::::::::::
independent

:::
of

:::
the

::::::
season.

:::
In

:::::::
contrast,

:
the baseline performs similar to GD2

during JJA, its performance
:::
but

:::
the

::::::::::
performance

:::
of

:::
the

:::::::
baseline severely deteriorates during DJF in our analysis. While this

deterioration is overall more apparent in observations than in simulations, its most obvious instance occurs in simulations.

The investigated baseline over-estimates modeled extreme droughts in Australia during DJF by more than 240% . Therefore830

:
–
::::
that

::::::
depicts

:::
the

::::::
largest

:::::::
deviation

:::::
from

::::
N0,1:::

we
::::::::::
encountered

:::
in

:::
this

:::::
study.

:::::::::
Therefore,

:
we urge to exercise substantial caution

while analyzing SPIDJF time-series with the investigated baseline’s R-package irrespective of the heritage of input data. In

our analysis, we encounter the largest mean deviations in the baseline. These deviations
:::::
While

:::
the

::::::
largest

:::::::::
deviations

:::::
from

::::
N0,1 occur during DJF in Australia, but the baseline performs particularly poor

:::::
poorly

:
during DJF in general. During DJF,

the examined baseline displays larger deviations from N0,1 than any other of the here analyzed 6
::
six

::::
here

::::::::
analyzed

:
SPI835

calculations (GD2, WD2, GGD3, EWD3, baseline, and AICmin-analysis) in 63 out of 98 different analyses, which range along

:::::
across

:
all seven SPI categories, all seven regions, and along observations as well as simulations

::::
both

::::::::::
realizations. Aside from

the investigated baseline and in agreement with (Stagge et al., 2015)
::::::
general

:::::::::
agreement

::::
with

:::::::::::::::::
Stagge et al. (2015) , we find no

::::
only

::
in

:::::::
Australia

::::::
minor seasonal differences in the performance of our candidate PDFs.

To aggregate our AIC-D-analysis over the globe and visualize this aggregation in tables, we need to evaluate the aggregated840

performance of candidate PDFs for certain AIC-D categories (Burnham and Anderson, 2002). Their aggregation over all land

grid-points of the globe demands the introduction of two further performance criteria which require interpretation. These

criteria inform
::::::
another

:::::::::::
performance

:::::::
criterion

::::
that

:::::::
requires

::::::::::::
interpretation.

::::
That

::::::::
criterion

::::::
informs

:
whether the candidate PDFs

conform
::
to

:
the respective AIC-D categories in sufficient grid-points globally and, therefore, need

::::
needs

:
to interpret which

fraction of the global
:::
land

:
grid-points can be considered sufficient. For this fraction of global land grid-points, we select 85845

% and 95 % as thresholds. In consequence
:::::::::::
Consequently, we categorize our candidate PDFs for each AIC-D category into

three different classes of possible performances. We consider the confirmation of the respective AIC-D category in
:
at
:::::

least

95% or more
::
of grid-points globally as an indicator of substantial confidence in the candidate PDF to perform according to the

respective AIC-D category globally. Confirmation of the respective AIC-D category in less than 85% of grid-points globally is

considered as an indicator of insufficient confidence in the candidate PDF. Finally
:::::
Lastly, we consider it to be an indicator of850

average confidence in candidate PDFs when they conform to the respective AIC-D category in between 85% and 95% of grid-

points globally. One might criticize that these thresholds lack a scientific foundation or that they are to some extent arbitrary.

However, they seem adequately reasonable and agree with analog evaluations of such fractions derived by rejection frequencies

from goodness-of-fit tests in previous studies (Blain et al., 2018; Blain and Meschiatti, 2015; Stagge et al., 2015; Lloyd-Hughes

and Saunders, 2002). Moreover, these thresholds show a robust statistical basis in terms of being equally represented over all855

160
:::
320

:
analyzed evaluations in this study (all entries of Table 3and

:
,
:::::
Table

::
4. Table 4

:
5,
::::
and

:::::
Table

:
6). Across all 40

::
80

:
analyses

(all rows of Table 3and ,
:
Table 4,

:::::
Table

::
5,

::::
and

:::::
Table

:
6), the four candidate PDFs perform insufficiently 65

:::
132

:
times, while

they perform with substantial (average) confidence 64 (31
:::
130

:::
(58) times.

There is scope to further test the robustness of our derived conclusions in different models with different time horizons

and
:::
foci

::
on

:
accumulation periods other than 3-months (e.g. 12-months). Of additional interest would be insights about the860

distribution of precipitation. Such insights would enable SPI’s calculation algorithm to physically base its key decision.
::
A
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:::::
recent

:::::
study

:::::::
suggests

:::
that

::
a

::::::::::
4-parameter

:::::::
extended

::::::::::
generalized

:::::
Pareto

::::::::::
distribution

:::::
excels

::
in

:::::::::
describing

:::
the

::::::::
frequency

::::::::::
distribution

::
of

::::::::::
precipitation

::::::::::::::::::::
(Tencaliec et al., 2020) .

::::::::
Anyhow,

:::
the

::::::::
inclusion

::
of

:::
yet

::::::
another

::::::::::
distribution

:::::::::
parameter

::::::::::
additionally

::::::::::
complicates

::
the

:::::::::::
optimization

::
of

:::
the

:::::::::
parameter

:::::::::
estimation

:::::::
method.

:::
We

::::::
already

::::::::::
exemplified

:::
the

::::::
impact

::
of

:::
the

:::::::::::::
meticulousness

::
of

:::
the

:::::::
applied

::::::::::
optimization

::
in

::::
this

:::::
study.

::::::::::
Establishing

::
a
:::::::
standard

:::
for

:::
the

:::::::::::
optimization

:::::::
process

:::::
seems

::::::::
currently

:::::
more

:::::
urgent

::::
than

::::::::
attempts

::
to865

:::::::
improve

:::
SPI

:::::::
through

::::::::::
4-parameter

:::::
PDFs.

:

The results presented here further imply that the evaluated predictive skill of drought predictions assessed with SPI should

be treated with caution because it is likely biased by SPI’s current calculation algorithms. This
:::::::
common bias in SPI’s common

calculation algorithms obscures the evaluation of predictive skill of
:::::::
ensemble

:
simulations by inducing a blurred representa-

tion of the frequency distribution of modeled precipitation totals
:::
their

:::::::::::
precipitation

:::::::::::
distributions. That blurred representation870

translates to
:::::::
emerges

::
in

:
the simulated drought index which impedes the evaluation process. Drought predictions often try to

correctly predict the drought intensity. The evaluation process usually considers this to be successfully achieved if the same

SPI category as the observed one is predicted. This evaluation is quite sensitive to the thresholds used when classifying SPI

categories. The bias identified here blurs these categories for the model but not for
:
in

:::::::::
ensemble

:::::::::
simulations

::::::::
stronger

::::
than

::
in

observations against which the model’s predictability is customarily evaluated. As a consequence of these sensitive thresholds,875

such a one-sided bias potentially undermines current evaluation processes.

5 Summary and Conclusions

::::::
Current

::::
SPI

:::::::::
calculation

::::::::::
algorithms

:::
are

:::::::
tailored

::
to

:::::::
describe

::::::::
observed

:::::::::::
precipitation

::::::::::::
distributions.

::::::::::::
Consequently,

::::::
current

::::
SPI

:::::::::
calculation

:::::::::
algorithms

:::
are

::::::
ineptly

::::::
suited

::
to

:::::::
describe

:::::::::::
precipitation

:::::::::::
distributions

:::::::
obtained

:::::
from

::::::::
ensemble

::::::::::
simulations.

:::::
Also

::
in

:::::::::::
observations,

::::::::
erroneous

::::::::::::
performances

:::
are

:::::::
apparent

::::
and

::::::::::
well-known,

::::
but

:::
less

:::::::::::
conspicuous

::::
than

::
in

::::::::
ensemble

::::::::::
simulations.

::::
We880

::::::
propose

::
a
:::::::
solution

:::
that

:::::::
rectifies

:::::
these

:::::
issues

::::
and

:::::::
improves

:::
the

::::::::::
description

::
of

:::::::
modeled

::::
and

::::::::
observed

::::::::::
precipitation

:::::::::::
distributions

::::::::::
individually

::
as

::::
well

::
as

:::::::::::
concurrently.

::::
The

:::::::::::
performance

::
of

:::::::::::
2-parameter

::::::::
candidate

::::::::::
distribution

::::::::
functions

::
is

:::::::::
inadequate

:::
for

::::
this

::::
task.

:::
By

:::::::::
increasing

:::
the

::::::::
parameter

:::::
count

:::
of

:::
the

::::::::
candidate

::::::::::
distribution

:::::::
function

:::::
(and

::::::
thereby

::::
also

:::
its

::::::::::
complexity)

::
a

::::::::
distinctly

:::::
better

:::::::::
description

::
of

::::::::::
precipitation

:::::::::::
distributions

:::
can

::
be

::::::::
achieved.

::
In

::::::::::
simulations

:::
and

::::::::::
observation,

:::
the

::::
here

::::::::
identified

:::::::::::::
best-performing

::::::::
candidate

:::::::::
distribution

::::::::
function

:
–
::::

the
:::::::::::
exponentiated

:::::::
Weibull

::::::::::
distribution

::::::::
(EWD3)

:
–
::::::::
performs

::::::::::
proficiently

:::
for

:::::
every

::::::::
common885

:::::::::::
accumulation

:::::
period

::::
(1-,

:::
3-,

::
6-,

:::
9-,

::::
and

:::::::::
12-months)

::::::::
virtually

:::::::::
everywhere

:::::::
around

:::
the

:::::
globe.

:::::::::::
Additionally,

::::::
EWD3

::::::
excels

:::::
when

::::::::
analyzing

::::::::
ensemble

::::::::::
simulations.

:::
Its

::::::::
increased

::::::::::
complexity

:::::::
(relative

::
to
::::::

GD2)
:::::
leads

::
to

::
an

::::::::::
outstanding

:::::::::::
performance

::
of
:::::::

EWD3

::::
when

:::
an

:::::::
available

::::::::
ensemble

:::::::::
multiplies

:::
the

::::::
sample

::::
size.

:

We investigate different candidate distribution functions (gamma (GD2), Weibull (WD2), generalized gamma (GGD3), and

exponentiated Weibull distribution (EWD3)) in SPI’s calculation algorithm concerning
:::
and

:::::::
evaluate their adequacy in meeting890

SPI’s normality requirement. We conduct this investigation for observations and simulations during summer (JJA) and winter

(DJF). Our analysis evaluates globally and over each continent individually the resulting SPI3M time-series based on their

normalitywhile focusing .
::::
This

:::::::
analysis

:::::::
focuses on an accumulation period of 3-months and testing

::::
tests the conclusions drawn

from that focus for the most common other accumulation periods (1-, 6-, 9-, and 12-months). Normality
:::
The

::::::::
normality

:
of
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SPI is assessed by
:::
two

:::::::::::::
complementary

::::::::
analyses.

::::
The

::::
first

:::::::
analysis

::::::
checks

:::
the

:::::::
absolute

:::::::::::
performance

:::
of

::::::::
candidate

:::::
PDFs

:::
by895

comparing actual occurrence probabilities of SPI categories (as defined by WMO’s SPI User Guide (Svoboda et al., 2012))

against well-known theoretical occurrence probabilities of N0,1. To penalize unnecessary complexity we employ
::::
The

::::::
second

::::::
analysis

::::::::
evaluates

:::::::::
candidate

:::::
PDFs

::::::
relative

::
to

::::
each

:::::
other

:::::
while

:::::::::
penalizing

::::::::::
unnecessary

::::::::::
complexity

::::
with

:
Akaike’s Information

Criterion (AIC).

Our results show that
:::::::::
Irrespective

::
of

:::
the

::::::::::::
accumulation

::::::
period

::
or

:::
the

:::::::
data-set,

:
GD2 is

:::::
seems

:
sufficiently suited to calculate900

SPIderived from observations for all accumulation periods analyzed. WD2 performs in observations better for an accumulation

periodof 1-months but worse for longer accumulation periods. Based on our analysis of AIC-D values and deviations from

N0,1::
be

::::::::
employed

:::
in

:::::
SPI’s

:::::::::
calculation

:::::::::
algorithm

::
in
::::::

many
:::::::::
grid-points

:::
of

:::
the

::::::
globe.

::::
Yet,

:::::
GD2

::::
also

::::::::
performs

::::::::
erroneous

:::
in

:
a
::::::::::::
non-negligible

:::::::
fraction

:::
of

::::::::::
grid-points.

::::::
These

:::::::::
erroneous

:::::::::::
performances

::::
are

:::::::
apparent

:::
in

:::::::::::
observations

:::
and

:::::::::::
simulations

:::
for

::::
each

:::::::::::
accumulation

:::::::
period.

:::::
More

::::::::
severely,

::::::
GD2’s

:::::::::
erroneous

:::::::::::
performances

:::::::
decline

::::::
further

:::
in

::::::::
ensemble

::::::::::
simulations.

::::::
Here,905

::::
GD2

::::::::
performs

::
in

::
a
:::::::::::::
non-negligible

:::::::
fraction

::
of

::::::::::
grid-points

::::
also

::::::::::
insufficient

::
or

:::::
even

:::::::
without

:::
any

:::::
skill.

:::
In

:::::::
contrast, EWD3

performs exceptionally well and better than any 2-parameter candidate PDF in observations for all accumulation periods

. Further
::::::
without

::::
any

:::::::
defects,

::::::::::
irrespective

::
of

:::
the

::::::::
data-set.

:::::::
Despite

::::::::
requiring

::::
more

::::
data

:::::
than

::::::::::
2-parameter

:::::
PDFs, we identify

considerable differences between observations and simulations. For all accumulation periods analyzed in simulations, both

2-parameter candidate PDFsperform inadequately (WD2) or sufficiently but only with average confidence around the globe910

(
:::::::
EWD3’s

::::::::
proficient

:::::::::::
performance

:::
for

:
a
:::::::
sample

:::
size

:::
of

::
31

:::::
years

::
in
:::::::::::

observations
::
as
:::::

well
::
as

::
in

:::::::::::
simulations.

:::::::
Further,

::::::::
ensemble

:::::::::
simulations

:::::
allow

::
us

::
to

:::::::::
artificially

:::::::
increase

:::
the

::::::
sample

:::
size

:::
for

:::
the

:::::
fitting

:::::::::
procedure

::
by

::::::::
including

::::::::
additional

::::::::
ensemble

:::::::::
members.

::::::::
Exploiting

::::
this

::::::::
possibility

::::
has

:
a
:::::
major

::::::
impact

::
on

:::
the

::::::::::
performance

::
of
:::::::::
candidate

:::::
PDFs.

:::
The

:::::::
margin,

::
by

::::::
which

::::::
EWD3

::::::::::
outperforms

GD2). In contrast, ,
:::::::

further
::::::::
increases

::::
with

:::::::::
additional

::::::::
ensemble

:::::::::
members.

:::::::::::
Furthermore,

:
EWD3 performs particularly well

with substantial confidence around the entire globe in simulations and for every accumulation period analyzed
:::::::::::
demonstrates915

:::::::::
proficiency

::::
also

::
for

:::::
every

::::::::
analyzed

:::::::::::
accumulation

:::::
period

::::::
around

:::
the

:::::
globe. The accumulation period of 12-months poses in sim-

ulations the only exception. Here, EWD3 still performs well but only with average confidence
:::
and

::::
GD2

::::
both

:::::::
perform

::::::::
similarly

:::
well

:
around the globe. We

::::
Still,

::
we

:
find that 3-parameter PDFs are generally better suited in SPI’s calculation algorithm than

2-parameter PDFs. Our results show

:::::
Given

:::
all

:::
the

::::::::::
dimensions

:::::::::
(locations,

::::::::::
realizations,

::::::::::::
accumulation

:::::::
periods)

:::
of

:::
the

::::
task,

::::
our

::::::
results

:::::::
suggest that the risk of920

overfitting 3-parameter PDFs is overcompensated by
:::::::::
underfitting

:::
by

::::
using

::::::::::
2-parameter

:::::
PDFs

::
is

:::::
larger

::::
than the risk of underfitting

2-parameter
:::::::::
overfitting

:::
by

:::::::::
employing

::::::::::
3-parameter

:
PDFs. We strongly advocate to adapt and use 3-parameter distribution

functions instead of 2-parameter PDFsfor the calculation algorithm of SPI
:::::::
adapting

:::
the

::::::::::
calculation

::::::::
algorithm

:::
of

:::
SPI

::::
and

:::
the

::::::
therein

:::
use

::
of

::::::::::
2-parameter

::::::::::
distribution

:::::::
functions

::
in
:::::
favor

::
of

::::::::::
3-parameter

:::::
PDFs. Such an adaptation is particularly important for

the proper evaluation and interpretation of drought predictions and
:::::
derived

:::::
from

::::::::
ensemble simulations. For this adaptation, we925

propose the employment of EWD3 as a
:
new standard PDF for SPI’s calculation algorithm, irrespective of the heritage of input

data or the length of scrutinized accumulation periods. Despite the issues discussed here, SPI remains a valuable tool for ana-

lyzing droughts. This study might contribute to the value of this tool by illuminating and resolving the discussed long-standing

issue concerning the proper calculation of the index.

28



Data availability. The model simulations are available at the World Data Center for Climate (WDCC): http://cera-www.dkrz.de/WDCC/ui/930
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Table 1. Abbreviations used for candidate distribution functions.

Distribution function Parameter count Abbreviation

Gamma distribution 2 GD2

Weibull distribution 2 WD2

Generalized gamma distribution 3 GGD3

Exponentiated Weibull distribution 3 EWD3

Table 2. Standardized Precipitation Index (SPI) classes with their corresponding definition
::

SPI
:::::::
intervals and

::::::::
theoretical

:
occurrence proba-

bilities (according to WMO’s SPI User Guide (Svoboda et al., 2012)).

SPI interval SPI class Probability [%]

SPI ≥ 2 W3: extremely wet 2.3

2> SPI ≥ 1.5 W2: severely wet 4.4

1.5> SPI ≥ 1 W1: moderately wet 9.2

1> SPI >−1 N0: normal 68.2

−1≥ SPI >−1.5 D1: moderately dry 9.2

−1.5≥ SPI >−2 D2: severely dry 4.4

SPI ≤−2 D3: extremely dry 2.3

Table 3. Percent of grid-points which
:::
that

:
are classified

:::
into

::::::
specific

:::::::
AIC-D

::::::::
categories

::
(according to Burnham and Anderson

(2002)depending on whether they display AIC-D values lower than specific thresholds or higher than 10
:
) for each candidate PDF over

both seasons. Percentages of grid-points indicate the confidence in candidate PDFs to overall perform according to the respective AIC-D

category. We consider percentages that exceed (subceed in case of AIC-D values beyond 10) 95% (5%) as
:
a sign of substantial confidence

in the candidate PDF (green) to overall perform according to the respective AIC-D category. In contrast, we consider those candidate PDFs

which
:::
that exceed/subceed in 85/15% of the grid-points as

:
a
:
sign of average confidence in the candidate PDF (yellow) to overall perform

according to the respective AIC-D category. Percentages which
:::
that fall short of 85% (or which

::
that

:
show no skill in more than 15%) are

considered as
::
an overall sign of insufficient confidence in the candidate PDF (red).

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

3-Months

Observations

Ideal (AIC-D ≤ 2) 84 76 22 31

Well (AIC-D ≤ 4) 94 91 98 100

Sufficient (AIC-D ≤ 7) 98 98 100 100

No Skill (AIC-D > 10) 1 0 0 0

Ensemble

Simulations

Ideal (AIC-D ≤ 2) 65 18 68 86

Well (AIC-D ≤ 4) 74 24 89 99

Sufficient (AIC-D ≤ 7) 82 34 94 99

No Skill (AIC-D > 10) 12 57 4 1
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Table 4.
:::::
Percent

::
of
:::::::::

grid-points
:::
that

:::
are

:::::::
classified

::::
into

::::::
specific

::::::
AIC-D

::::::::
categories

::::::::
(according

::
to

::::::::::::::::::::::::
Burnham and Anderson (2002) )

:::
for

::::
each

:::::::
candidate

::::
PDF

::::
over

:::
both

:::::::
seasons.

:::::::::
Percentages

::
of
:::::::::

grid-points
::::::
indicate

:::
the

:::::::::
confidence

::
in

:::::::
candidate

:::::
PDFs

::
to

:::::
overall

:::::::
perform

::::::::
according

::
to

::
the

::::::::
respective

::::::
AIC-D

:::::::
category.

::
We

:::::::
consider

:::::::::
percentages

:::
that

::::::
exceed

:::::::
(subceed

::
in

:::
case

::
of
::::::

AIC-D
:::::
values

::::::
beyond

:::
10)

::::
95%

::::
(5%)

::
as

:
a
::::
sign

::
of

::::::::
substantial

::::::::
confidence

::
in

::
the

::::::::
candidate

::::
PDF

:::::
(green)

::
to

::::::
overall

::::::
perform

:::::::
according

::
to
:::
the

::::::::
respective

:::::
AIC-D

:::::::
category.

::
In

:::::::
contrast,

::
we

:::::::
consider

::::
those

:::::::
candidate

:::::
PDFs

:::
that

::::::::::::
exceed/subceed

::
in

::::::
85/15%

::
of

:::
the

::::::::
grid-points

:::
as

:
a
:::
sign

:::
of

::::::
average

::::::::
confidence

::
in

:::
the

:::::::
candidate

::::
PDF

:::::::
(yellow)

::
to

:::::
overall

::::::
perform

::::::::
according

::
to

::
the

::::::::
respective

:::::
AIC-D

:::::::
category.

:::::::::
Percentages

::::
that

:::
fall

::::
short

::
of

:::
85%

:::
(or

:::
that

::::
show

:::
no

:::
skill

::
in

::::
more

::::
than

::::
15%)

:::
are

::::::::
considered

::
as

::
an

:::::
overall

::::
sign

::
of

::::::::
insufficient

::::::::
confidence

::
in

:::
the

:::::::
candidate

::::
PDF

::::
(red).

::
In

::::::
contrast

::
to

::::
Table

::
3,
:::
the

::::::::
evaluation

::
of

::::::::
simulations

:::::
bases

::
on

:
a
:::::
single

:::::::
ensemble

:::::::
member.

::::::::::
Observations

::
are

:::::::
identical

::
to

::::
Table

::
3.

:::
SPI

:::::
Period

::::::::
Realization

:::::
AIC-D

:::::::
category

::::
GD2

::::
WD2

:::::
GGD3

:::::
EWD3

3-Months

Observations

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
84 76 22 31

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
94 91 98 100

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 98 98 100 100

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 1 0 0 0

Single

Ensemble

Member

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
83 76 19 28

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
93 92 98 100

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 98 98 100 100

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 1 0 0 0
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Table 5.
:::::
Percent

::
of
:::::::::

grid-points
:::
that

:::
are

:::::::
classified

::::
into

::::::
specific

::::::
AIC-D

::::::::
categories

::::::::
(according

::
to

::::::::::::::::::::::::
Burnham and Anderson (2002) )

:::
for

::::
each

:::::::
candidate

::::
PDF

::::
over

:::
both

:::::::
seasons.

:::::::::
Percentages

::
of
:::::::::

grid-points
::::::
indicate

:::
the

:::::::::
confidence

::
in

:::::::
candidate

:::::
PDFs

::
to

:::::
overall

:::::::
perform

::::::::
according

::
to

::
the

::::::::
respective

::::::
AIC-D

:::::::
category.

::
We

:::::::
consider

:::::::::
percentages

:::
that

::::::
exceed

:::::::
(subceed

::
in

:::
case

::
of
::::::

AIC-D
:::::
values

::::::
beyond

:::
10)

::::
95%

::::
(5%)

::
as

:
a
::::
sign

::
of

::::::::
substantial

::::::::
confidence

::
in

::
the

::::::::
candidate

::::
PDF

:::::
(green)

::
to

::::::
overall

::::::
perform

:::::::
according

::
to
:::
the

::::::::
respective

:::::
AIC-D

:::::::
category.

::
In

:::::::
contrast,

::
we

:::::::
consider

::::
those

:::::::
candidate

:::::
PDFs

:::
that

::::::::::::
exceed/subceed

::
in

::::::
85/15%

::
of

:::
the

::::::::
grid-points

:::
as

:
a
:::
sign

:::
of

::::::
average

::::::::
confidence

::
in

:::
the

:::::::
candidate

::::
PDF

:::::::
(yellow)

::
to

:::::
overall

::::::
perform

::::::::
according

::
to

::
the

::::::::
respective

:::::
AIC-D

:::::::
category.

:::::::::
Percentages

::::
that

:::
fall

::::
short

::
of

:::
85%

:::
(or

:::
that

::::
show

:::
no

:::
skill

::
in

::::
more

::::
than

::::
15%)

:::
are

::::::::
considered

::
as

::
an

:::::
overall

::::
sign

::
of

::::::::
insufficient

::::::::
confidence

::
in

:::
the

:::::::
candidate

::::
PDF

::::
(red).

::
In

::::::
contrast

::
to

::::
Table

::
3,
:::
the

::::::::
evaluation

::
of

::::::::
simulations

:::::
bases

::
on

::::::
different

::::::::
ensemble

::::
sizes.

:::
SPI

:::::
Period

:::::::
Ensemble

::::
Size

:::::
AIC-D

:::::::
category

::::
GD2

::::
WD2

:::::
GGD3

:::::
EWD3

3-Months

2

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
78 56 43 57

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
87 74 96 99

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 94 90 98 100

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 3 4 1 0

3

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
77 45 53 69

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
86 61 96 99

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 93 79 99 100

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 4 10 1 0

4

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
75 38 59 74

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
84 50 95 99

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 90 67 98 100

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 7 19 2 0

5

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
74 31 63 79

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
82 42 94 99

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 89 57 97 99

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 7 30 2 0

6

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
73 27 64 80

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
81 36 93 99

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 88 50 96 99

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 9 37 2 0

7

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
70 25 66 81

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
78 33 92 98

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 86 45 96 99

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 10 43 2 1

8

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
69 21 67 83

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
77 29 91 98

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 85 39 95 99

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 11 49 3 1

9

:::
Ideal

:::::::
(AIC-D

:::
≤ 2)

:
66 20 67 85

:::
Well

::::::
(AIC-D

::::
≤ 4)

:
76 27 90 99

:::::::
Sufficient

::::::
(AIC-D

::::
≤ 7) 84 36 95 99

::
No

::::
Skill

::::::
(AIC-D

:::::
> 10) 12 53 3 134



Table 6. Percent of grid-points which
:::
that

:
are classified

:::
into

::::::
specific

:::::::
AIC-D

::::::::
categories

::
(according to Burnham and Anderson

(2002)depending on whether they display AIC-D values lower than specific thresholds or higher than 10
:
) for each candidate PDF over

both seasons. Percentages of grid-points indicate the confidence in candidate PDFs to overall perform according to the respective AIC-D cat-

egory. We consider percentages that exceed (subceed in case of AIC-D values beyond 10) 95% (5%) as
:
a sign of substantial confidence in the

candidate PDF (green) to overall perform according to the respective AIC-D category. In contrast, we consider those candidate PDFs which

:::
that exceed/subceed in 85/15% of the grid-points as

:
a
:
sign of average confidence in the candidate PDF (yellow) to overall perform according

to the respective AIC-D category. Percentages which
:::
that fall short of 85% (or which

::
that

:
show no skill in more than 15%) are considered

as
::
an overall sign of insufficient confidence in the candidate PDF (red).

:
In

::::::
contrast

::
to
:::::

Table
::
3,

:::
this

::::
table

:::::::
evaluates

:::::::
different

:::::::::::
accumulations

:::::
periods

::
of

::::
SPI.

SPI Period Realization AIC-D category GD2 WD2 GGD3 EWD3

1-Month

Observations

Ideal (AIC-D ≤ 2) 84 86 30 33

Well (AIC-D ≤ 4) 94 97 100 100

Sufficient (AIC-D ≤ 7) 98 99 100 100

No Skill (AIC-D > 10) 0 0 0 0

Ensemble

Simulations

Ideal (AIC-D ≤ 2) 55 43 81 87

Well (AIC-D ≤ 4) 64 54 96 100

Sufficient (AIC-D ≤ 7) 73 66 98 100

No Skill (AIC-D > 10) 21 26 1 0

6-Months

Observations

Ideal (AIC-D ≤ 2) 82 67 16 30

Well (AIC-D ≤ 4) 93 86 96 99

Sufficient (AIC-D ≤ 7) 99 98 99 100

No Skill (AIC-D > 10) 0 0 0 0

Ensemble

Simulations

Ideal (AIC-D ≤ 2) 75 11 49 77

Well (AIC-D ≤ 4) 82 15 82 95

Sufficient (AIC-D ≤ 7) 88 22 90 97

No Skill (AIC-D > 10) 8 71 7 2

9-Months

Observations

Ideal (AIC-D ≤ 2) 83 64 13 28

Well (AIC-D ≤ 4) 93 84 93 98

Sufficient (AIC-D ≤ 7) 99 97 98 99

No Skill (AIC-D > 10) 0 1 1 0

Ensemble

Simulations

Ideal (AIC-D ≤ 2) 75 10 40 76

Well (AIC-D ≤ 4) 82 13 76 93

Sufficient (AIC-D ≤ 7) 89 18 85 95

No Skill (AIC-D > 10) 7 76 12 3

12-Month

Observations

Ideal (AIC-D ≤ 2) 82 61 13 29

Well (AIC-D ≤ 4) 92 81 91 96

Sufficient (AIC-D ≤ 7) 98 96 97 98

No Skill (AIC-D > 10) 1 1 1 1

Ensemble

Simulations

Ideal (AIC-D ≤ 2) 79 9 34 69

Well (AIC-D ≤ 4) 86 11 75 87

Sufficient (AIC-D ≤ 7) 91 15 83 90

No Skill (AIC-D > 10) 6 80 14 7
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Figure 1. Candidate Distribution functions whose performance is investigated in this study: the 2-parameter gamma distribution (GD2),

the 2-parameter Weibull distribution (WD2), the 3-parameter generalized gamma distribution (GGD3) and the 3-parameter exponentiated

Weibull distribution (EWD3). Displayed are examples of those PDFs for σ = γ(= α) = 2 and their corresponding 95% quantiles.

36



Figure 2. Flow chart of methods to aggregate deviations fromN0,1 (left) and AIC-D frequencies (right) over domains.

Figure 3. Borders of regions examined in this study.
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Figure 4. Deviations from N0,1 :::
over

:::
the

:::::
entire

::::
globe

:
for observed (left) and modeled (right) SPI time-series. SPI time-series are derived

by using the simple 2-parameter gamma distribution (GD2, top row), the simple 2-parameter Weibull distribution (WD2, second row), the

3-parameter generalized gamma distribution (GGD3, third row), and the 3-parameter exponentiated Weibull distribution (EWD3, bottom

row). The legends depict the weighted sum
::
(by

::::
their

::::::::
respective

::::::::
theoretical

::::::::
occurrence

:::::::::
probability)

::::
sums (WS) of deviations from N0,1 over

all SPI categoriesweighted by their respective theoretical occurrence probability.
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Observations Simulations

DJF

JJA

(a)

(b) (d)

(c)

Figure 5. AIC-D frequencies: percentages of global land grid-points in which each distribution function yields AIC-D values that are smaller

than or equal to a given AIC-Dmax value.
:::
The

::::::
vertical

:::::
black

:::
line

:::::::
indicates

::
the

:::::::
different

:::::::::
complexity

:::::::
penalties

::::::
between

::
3-
:::
and

::::::::::
2-parameter

::::
PDFs.

:
AIC-D frequencies are displayed for each candidate PDF for observations (left) and simulations (right) during DJF (top) and JJA

(bottom).
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Figure 6. Mean deviations from N0,1 per SPI category for
:::
the

::::
entire

:::::
global

::::
land

::::
area

:::
and

:
each investigated domain

:::::
region.

::::::
Results

:::
are

::::::
depicted

:
for observations (left) and simulations (right) during DJF (top) and JJA (bottom).
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Figure 7. Mean deviations from N0,1 per SPI category during DJF (a) and JJA (b). Mean deviations are displayed for each investigated

domain and each analyzed PDF for observations and simulations.

41



0

10

20

30

40

50

60

A
vg

. D
ev

. i
n 

%

Glob
al

Afric
a

Asia

Aus
tra

lia

Eur
op

e

 N
−A

mer
ica

 S
−A

mer
ica

EW
D3 i

n O
bs

.

EW
D3 i

n S
im

.

BL2
 in

 O
bs

.

BL2
 in

 S
im

.

AIC m
in
 in

 O
bs

.

AIC m
in
 in

 S
im

.

(a) Mean Deviations of each Domain per Analysis in DJF

D
om

ai
n

Analysis

0

10

20

30

40

50

60

A
vg

. D
ev

. i
n 

%

Glob
al

Afric
a

Asia

Aus
tra

lia

Eur
op

e

 N
−A

mer
ica

 S
−A

mer
ica

EW
D3 i

n O
bs

.

EW
D3 i

n S
im

.

BL2
 in

 O
bs

.

BL2
 in

 S
im

.

AIC m
in
 in

 O
bs

.

AIC m
in
 in

 S
im

.

(b) Mean Deviations of each Domain per Analysis in JJA

D
om

ai
n

Analysis

Figure 8. As in Fig. 7 but for the 3-parameter exponentiated Weibull distribution (EWD3) – the best performing candidate distribution

function in this study –, a baseline which uses the 2-parameter gamma distribution (BL2)with a simpler parameter optimization than employed

in our previous analysis, and a frequently proposed multi-PDF SPI calculation algorithm which
::

that
:
uses in each grid-point

::
and

::::::
season that

distribution function which
:::
that yields in this

::
the

:
respective grid-point

:::
and

:::::
during

:::
the

::::::::
respective

:::::
season the minimum AIC value (AICmin-

analysis which is denoted as AICmin in this figure
:
).
::
In
:::::::

contrast
::
to

::::
GD2

::
in

:::
our

:::::::
previous

:::::::
analysis,

::::
BL2

::::::
employs

::
a
::::::
simpler

::::::::::
optimization

:::::::
procedure

::
of

:::
the

::::
same

::::::::
parameter

::::::::
estimation

:::::
method

:
(
:::::::
maximum

::::::::
likelihood

::::::::
estimation).
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