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Patrick Pieper, André Diisterhus, and Johanna Baehr
June 6, 2020

We thank the reviewer for the effort of reviewing our work. His/Her com-
ments have been very helpful in improving our manuscript. Below we answer
point-by-point to each of the reviewer’s comments and explain how the respec-
tive comment helped us to improve the manuscript. Reviewer’s comments are
printed in black and our responses are printed in blue. Line numbers in our
response refer to the initially submitted manuscript.

One comment of the reviewer concerning the sample size in simulations
caused us to perform a deeper sensitivity analysis on the ensemble size. In
this process, a caveat to the drawn conclusions emerged. Therefore we include
this sensitivity analysis to the results section and slightly adapted the drawn
conclusions.

General comments

The SPI (Standardized Precipitation Index) is a commonly and widely used
index to detect droughts based on precipitation data. It can be applied to sev-
eral aggregation periods of precipitation, e.g.1 month, 3 months, 6 months etc.,
tailored to the different drought impacts (meteorological drought, agricultural
drought, hydrological drought, . . .). In doing so, a distribution function is fit-
ted on the precipitation data and transformed to a standard distribution. This
gives the possibility to detect and compare droughts over time and space. The
curtail point is the reproduction of the standard distribution by the transformed
original distribution. Here, the paper investigate the suitability of four distribu-
tion functions with observed and forecasted precipitation data for the SPI. The
goal of this paper is to propose one distribution function applicable to observed
and forecasted precipitation totals globally for all useful aggregation periods.
The paper is well and clear written and addresses the scientific question well.

Thank you for these kind comments and the effort of acquiring an in-depth
understanding of our work.



Specific comments

You wrote in lines 164 to 167 that you use three different procedures to es-
timate the parameters of the distribution function. Therefor I expect to get
analyses of three procedures times four distributions equals to twelve analyses
per observations and simulations. You showed only one per distribution. Which
of the procedures did you used finally to fit the parameters of the distribution
functions? This is also relevant as you wrote in section 3.1.3 that the procedure
of estimation the distribution function parameters could have an impact on the
usability of the derived parameters.

Thank you for pointing out this unclear description of our methods. The
three optimization methods referred to in lines 165 to 167 are used one after
another. The goal is to find the most suitable parameters of the fit. To achieve
this goal all available tools (all three optimization methods) are employed.

To avoid misunderstandings we performed the following changes to lines 161
to 170 in the manuscript: ”(...) and dealt with later specifically. We estimate
the parameters of our candidate PDF's in SPI’s calculation algorithm with the
maximum likelihood method [Nocedal and Wright, 1999] which is also the basis
for the AIC computation.

Our parameter estimation method first identifies starting values for the n pa-
rameters of the candidate PDFs by roughly scanning the n-dimensional phase-
space spanned by these parameters. The starting values identified from that
scan are optimized with the simulated annealing method (SANN) [Bélisle, 1992].
Subsequently, these by SANN optimized starting values are again further op-
timized by a limited-memory modification of the Broyden-Fletcher-Goldfarb-
Shanno (also known as BFGS) quasi-Newton method [Byrd et al., 1995]. If the
BFGS quasi-Newton method leads to a convergence of the parameters of our
candidate PDF, we achieve our goal and end the optimization here. If the
BFGS quasi-Newton method does not lead to a convergence of the parameters
of our candidate PDF, then we circle back to the starting values optimized by
SANN and optimize them again further but this time with the Nelder-Mead
method [Nelder and Mead, 1965]. After identifying converging parameters, the
probabilities of encountering the given precipitation totals are computed and
transformed into cumulative probabilities (G(x)).

If neither the BFGS quasi-Newton nor the Nelder-Mead method leads to
any convergence of the most suitable parameters of our candidate PDFs, then
we omit these grid-points where convergence is not achieved. For the gamma,
Weibull, and exponentiated Weibull distribution, non-converging parameters
are rare exceptions and only occur in a few negligible grid-points. For the
generalized gamma distribution, however, non-convergence appears to be a more
common issue and occurs in observations as well as in simulations in roughly
every fifth grid-point of the global land area. This shortcoming of the generalized
gamma distribution needs to be kept in mind when concluding its adequacy in
SPI’s calculation algorithm.



Since PDFs that describe the frequency distribution of precipitation totals
are required to be only defined for the positive real axis, (...)”

Do you exclude grids without converging parameter fits from the further
analysis or to you use another procedure to estimate the parameters? Line
167/168

We excluded from our analysis those grid-points where we do not achieve
any convergence. We also excluded grid-points where zero-precipitation events
occurred more than one-third of the times in our time-period (see lines 188 to
189). Grid-points excluded through both of these reasons are mainly located in
the Sahara. In the process of checking grid-points excluded from the analysis,
we realized a misleading description in the manuscript concerning the excess of
zero-precipitation events. While the simulated precipitation time-series of all
ensemble members (n=310) exhibits in 3.68% of the global land grid-points too
often (more than 103 times) zero-precipitation events, only a single grid-point
(located in the Sahara) exhibits zero-precipitation events too often (more than
10 times) in observations (n=31). Barring one exception, all of the grid-points
which exhibit zero-precipitation events too often in simulations are located in
the Sahara and the Arabian Peninsula (9°N — 44°N; 16°E — 69°W). The only
exception is one grid-point which is is located in the Nevada desert.

We clarified this asymmetry between observations and simulations in lines
189 to 191: 7 This limitation restricts the SPI calculation in simulations over the
Sahara and the Arabian Peninsula for accumulation periods of 1- and 3-months,

()

Your sample sizes differ by a factor of ten between observations and forecasts
(e.g. lines 198 or 277). In line 277, you wrote that the reliability of the param-
eters depends on the sample size and is therefore better for the modelled than
for the observed data. Nevertheless, if you analyse the usability of distribution
functions for the SPI, you should have parameter estimations with the same
reliability. I propose to repeat the analysis with only one ensemble member and
add that to the paper and add a short analysis on the impact of the available
amount of data to the reliability of the SPI.

Thank you for this excellent idea. As a consequence of our focus on seasonal
predictions (which heavily rely on the entire ensemble space), we did not rec-
ognize the possibility to potentially widen our conclusions through a sensitivity
analysis of the sample size. As it turns out, differences between observations and
simulations mostly evaporate while their main distinction results from the sam-
ple size. In contrast to observations, the sample size can easily be expanded or
condensed in simulations through the employment of additional/fewer ensemble
realizations.

EWD3 outperforms GD2 for a sample size of 31 years in simulations and
observations (Table I). The better performance of EWD3 relative to GD2 is
particularly important in those grid-points where GD2 does not perform well
(AIC-D > 4). EWD3 displays such an erroneous performance in virtually no



Table I. As in Table 3, but the evaluation of simulations bases on a single ensemble
member. Observations are identical to Table 3.

SPI Period | Realization AIC-D category GD2 WD2 GGD3 EWD3
Ideal (AIC-D < 2) 84 76 22 31
Observations | Well (AIC-D < 4) 94 91 98 100
Sufficient (AIC-D <7) | 98 98 100 100
3-Months No Skill (AIC-D > 10) 1 0 0 0
Sinele Ideal (AIC-D < 2) 83 76 19 28
Ensefn Lo Well (AIC-D < 4) 93 91 98 100
Member Sufficient (AIC-D < 7) 98 98 100 100
No Skill (AIC-D > 10) 1 0 0 0

grid-point. While these results still support our overall conclusions, it is evident
that 2-parameter distribution functions can perform distinctly better in simu-
lation than initially expected. The 2-parameter PDF's perform equally between
observations and simulations. However, the 2-parameter PDFs also perform still
worse than the 3-parameter PDFs. Yet, the insights gained from Table I also
expose the question concerning the sensitivity of candidate PDF's’ performances
to the sample size.



Table II. As in Table 3, but with a focus on the sensitivity of the ensemble/sample
size in simulations.

SPI Period | Ensemble Size AIC-D category WD2 GGD3 EWDS3

Ideal (AIC-D < 2) 78 56 43 57
5 Well (AIC-D < 4) 87 74 96 99
Sufficient (AIC-D <7) | 94 90 98 100
No Skill (AIC-D > 10) 3 4 1 0

Ideal (AIC-D < 2) 77 45 53 69 |
5 Well (AIC-D < 4) 86 61 96 99
Sufficient (AIC-D <7) | 93 79 99 100
No Skill (AIC-D > 10) 4 10 1 0

Ideal (AIC-D < 2) 75 38 59 74 |
A Well (AIC-D < 4) 84 50 95 99
Sufficient (AIC-D <7) | 90 67 98 100
No Skill (AIC-D > 10) 7 19 2 0

Ideal (AIC-D < 2) 74 31 63 79 |
5 Well (AIC-D < 4) 82 42 94 99
Sufficient (AIC-D < 7) 89 57 97 99
No Skill (AIC-D > 10) 7 30 2 0

Ideal (AIC-D < 2) 73 27 64 80 |
6 Well (AIC-D < 4) 81 36 93 99
3-Months Sufficient (AIC-D < 7) 88 50 96 99
No Skill (AIC-D > 10) 9 37 2 0

Ideal (AIC-D < 2) 70 25 66 81 |
. Well (AIC-D < 4) 78 33 92 98
Sufficient (AIC-D < 7) 86 45 96 99
No Skill (AIC-D > 10) 10 43 2 1

Ideal (AIC-D < 2) 69 21 67 83 |
g Well (AIC-D < 4) 77 29 91 98
Sufficient (AIC-D <7) | 85 39 95 99
No Skill (AIC-D > 10) 11 49 3 1

Ideal (AIC-D < 2) 66 20 67 85 |
9 Well (AIC-D < 4) 76 27 90 99
Sufficient (AIC-D < 7) 84 36 95 99
No Skill (AIC-D > 10) 12 53 3 1




3-parameter PDF's benefit because of their increased complexity more than
2-parameter PDF's from an increased sample size which is realized by additional
ensemble members (Table II). Consequently, reducing the ensemble size lev-
els the playing field between 2- and 3-parameter PDFs. While a sample size
of 31 years suffices EWD3 to outperform GD2, the margin by which EWD3
outperforms GD2 increases with a further increase in sample size.

Because of these insights, we rectified several statements in the manuscript
which imply that 2-parameter PDFs are unable to sufficiently describe simu-
lated precipitation. Instead, we emphasize that — despite the increased need of
samples to fit 3 parameters — the 3-parameter distribution functions perform
better than the 2-parameter PDFs among our candidate PDFs. This improved
performance is already apparent for roughly 30 events and logically becomes
more distinct with increasing sample size.

In view of these insights, we created subsection 3.1.4 (in between lines 562
and 563) in which we discuss Table I and Table II:

73.1.4 Sensitivity to Ensemble Size

So far, we used all ensemble members at once to fit our candidate PDFs onto
simulated precipitation. That improves the quality of the fit. In this section,
we first analyze a single ensemble member and investigate subsequently the
sensitivity of our candidate PDFs’ performance on the ensemble size. In doing
so, we properly disentangle the difference between observations and simulations
from the impact of the sample size.

As before, 3-parameter candidate distribution functions also perform for a
single ensemble simulation better than 2-parameter PDFs (Table I). For a sin-
gle ensemble member, the difference by which 3-parameter PDFs out-perform
2-parameter PDFs reduces considerably relative to the entire ensemble simu-
lations (compare Table T against Table 3), though. In contrast to Table 3, all
of our candidate distribution functions perform similarly between a single en-
semble simulation and observations. In contrast to our previous results (e.g.
when analyzing weighted sums of deviations from N 1), modeled and observed
precipitation distributions now seem sufficiently similar. Reducing the sample
size for the fit by a factor of ten leads to more homogeneous performances of
all candidate PDF's in simulations. As a reminder, AIC-D frequencies as de-
picted in Table I measure only relative performance differences. Consequently,
our 2-parameter candidate PDFs do not actually perform better with fewer
data. Instead, limiting the input data to a single ensemble member impairs our
3-parameter candidate PDFs stronger than our 2-parameter candidate PDFs.
Irrespective of the realization, GD2 performs erroneously for 31 samples (ap-
parent in grid-points which display AIC-D values beyond 4). Despite the need
for more information, 31 samples suffice EWD3 to fix GD2’s erroneous perfor-
mances in both analyzed realizations.



In a next step, we isolate and investigate the improvement of the fit by an
increasing sample/ensemble size. As a consequence of limited observed global
precipitation data, we neglect observations and their differences to simulations
in this remaining section. During this investigation, we reanalyze Table I while
iteratively increasing the ensemble (sample) size for the fit (and the AIC-D
calculation). Irrespective of the ensemble size, EWD3 performs robustly with
high proficiency (Table II). Further, the fraction of grid-points in which EWD3
performs ideal increases constantly. This is a consequence of EWD3’s better
performance relative to our 2-parameter candidate PDFs. Unfortunately, AIC-
Ds can only compare models that base on an equal sample size without adhering
to additional undesired assumptions. Thus, any direct analysis of each candi-
date PDF’s improvement relative to its own performance for a single ensemble
member is with AIC-D frequencies not feasible. Despite this caveat, Table II
still indicates strongly that EWD3 benefits stronger from the increased sample
size than any of our 2-parameter candidate distribution functions. The larger
the sample size, the larger is the margin by which EWD3 outperforms GD2.

Despite requiring more data, our 3-parameter candidate PDFs perform al-
ready better for 31 samples. For 31 samples, we identify this better performance
of 3-parameter candidate PDF's in observations and simulations. Further, since
our 3-parameter candidate PDFs require more data to estimate optimal pa-
rameters, they benefit in simulations stronger from additional samples than our
2-parameter candidate PDFs. That benefit becomes apparent in a distinctly
improved relative performance after multiplying the sample size through the
use of additional ensemble members.”

Moreover, we rewrote parts of section 3.1.1. In this process, we substituted
lines 360 to 375 by: ”In simulations, the fit onto 3-months precipitation totals
is performed on all ten ensemble members at once. This 10-folds the sample
size in simulations relative to observations. Presuming an imperfect fit for the
31 samples in observations, deviations from N are expected to reduce along
our four candidate distribution functions as a result of 10-folding the sample
size of their fit. Yet, GD2 does not benefit from 10-folding the sample size.
GD2 performs similarly in observations and simulations (Fig. 4 (a) and (e)). In
contrast, our 3-parameter PDF's display considerably smaller deviations from
N1 in ensemble simulations than in observations (compare Fig. 4 (c¢) and (d)
against (g) and (h)). Consequently, both 3-parameter candidate PDFs excel
during both seasons in ensemble simulations (Fig. 4, (g) and (h)), while any
distinction between both 3-parameter candidate distribution functions is still
difficult. On the one side, different frequency distributions between observed
and modeled precipitation totals might be one reason for this difference. On
the other side, the fit of three parameters also requires more data than the
fit of two. It is therefore sensible to expect that 3-parameter PDFs benefit
stronger than 2-parameter PDFs from an increase in sample size. Are our 3-
parameter candidate PDFs are better suited than our 2-parameter PDF's to
describe modeled precipitation distributions? Or benefit our 3-parameter PDF's
just stronger than 2-parameter PDFs from an increasing sample size?



We attempt to disentangle both effects (analyzing modeled, instead of ob-
served, precipitation distributions, and increasing the sample size) for our 2-
parameter candidate PDFs, next. If the 2-parameter PDFs are suited to be
applied to modeled precipitation data, they should at least benefit to some ex-
tent from this multiplication of sample size. Despite expecting irregularities in
the magnitude of these reductions, they should be notable for (...)”

Further, we also changed parts of section 5. Here, we substituted lines 681
to 692 by: "Irrespective of the accumulation period or the data-set, GD2 seems
sufficiently suited to be employed in SPI’s calculation algorithm in many grid-
points of the globe. Yet, GD2 also performs erroneous in a non-negligible frac-
tion of grid-points. These erroneous performances are apparent in observations
and simulations for each accumulation period. More severely, GD2’s erroneous
performances decline further in ensemble simulations. Here, GD2 performs in
a non-negligible fraction of grid-points also insufficient or even without any
skill. In contrast, EWD3 performs for all accumulation periods without any de-
fects, irrespective of the data-set. Despite requiring more data than 2-parameter
PDFs, we identify EWD3’s proficient performance for a sample size of 31 years
in observations as well as in simulations. Further, ensemble simulations allow
us to artificially increase the sample size for the fitting procedure by including
additional ensemble members. Exploiting this possibility has a major impact
on the performance of candidate PDFs. The margin, by which EWD3 outper-
forms GD2, further increases with additional ensemble members. Furthermore,
EWD3 demonstrates proficiency also for every analyzed accumulation period
around the globe. The accumulation period of 12-months poses in simulations
the only exception. Here, EWD3 and GD2 both perform similarly well around
the globe. Still, we find that 3-parameter PDFs are generally better suited in
SPT’s calculation algorithm than 2-parameter PDF's.

Given all the dimensions (locations, realizations, accumulation periods) of
the task, our results suggest that the risk of underfitting by using 2-parameter
PDFs is larger than the risk of overfitting by employing 3-parameter PDFs. We
strongly advocate adapting the calculation algorithm of SPI and the therein use
of 2-parameter distribution functions in favor of 3-parameter PDFs. Such an
adaptation is (...)”

Aside, we clarified the following statements of the manuscript:

We changed the wording from ”simulations” to ”ensemble simulations” in

the following lines: 13, 362, 432, 450, 458, 495, 513, 569, 590, 665, 669, 693

We substituted the sentence in lines 462 to 464 by: ”(...) However, the results
justify the necessity for this increased complexity — GD2 performs erroneously in
26% (6%), insufficiently in 18% (2%), and without any skill in 12% (1%) of the
global land area in ensemble simulations (observations). The risk of underfitting

()

We included the following paragraph in between lines 622 and 623: ”Overall
our 3-parameter candidate PDFs perform better than investigated 2-parameter



candidate PDFs. Despite requiring more data, a sample size of 31 years suf-
fices our 3-parameter candidate PDFs to outperform our 2-parameter candidate
PDFs in simulations and observations. Further, our 3-parameter candidate
PDFs greatly benefit from an increase in the sample size in simulations. In
simulations, such a sample size sensitivity analysis is feasible by exploiting dif-
ferent counts of ensemble members. Whether 3-parameter PDFs would benefit
similarly from an increased sample size in observations is likely but ultimately
remains speculative because trustworthy global observations of precipitation are
temporally too constrained for such a sensitivity analysis.”

We recalculated the counts in lines 656 to 659. They now read as follows:
”"Moreover, these thresholds show a robust statistical basis in terms of being
equally represented over all 320 analyzed evaluations in this study (all entries of
Table 3, Table 4. Table 5, and Table 6). Across all 80 analyses (all rows of Table
3, Table 4, Table 5, and Table 6), the four candidate PDFs perform insufficiently
132 times, while they perform with substantial (average) confidence 130 (58)
times.”

Lines 282 to 285: In this paragraph is no transition from absolute to relative
AIC, which need to be improved. In addition, the index i is not well described.
Thank you for revealing this unclear description.

We changed lines 280 to 287 to: ”(...) penalizes candidate PDFs based on
their parameter-count. The best-performing distribution function attains the
smallest AIC value because the first term is negative and the second one is
positive.

Further, the absolute AIC value is often of little information — especially
in contrast to relative differences between AIC values derived from different
distribution functions. Thus, we use relative AIC differences (AIC-D) in our
analysis. We calculate these AIC-D values for each PDF by computing the
difference between its AIC value to the lowest AIC value of all four distribution
functions. AIC-D values inform us about superiority in the optimal trade-off
between bias and variance and are calculated as follows:

AIC-D; = AIC; — AIC,in (1)

The index 7 indicates different distribution functions. AIC,,;, denotes the AIC
value of the best-performing distribution function.
For our analysis, AIC-D values are well suited (...)”

Lines 224 to 226: Do you avoid parameters in the GGD3 to become GD2 or
WB27

We estimate the parameters of all PDFs independently by fitting the re-
spective PDF to the precipitation data. Consequently, the two parameters that
GGD3 share with GD2 (WD2) can differ. This is important because the third
parameter of GGD3 (and EWD3) extends the phase-space spanned by the 2 pa-
rameters of GD2 (and WD2) into a third dimension. This third dimension pro-
vides opportunities for further optimizations — also for the first two parameters.



Thus, the new optimum for GGD3 in the three-dimensional phase-space does
not need to be located along the normal above the optimal parameter-values of
GD2 (or WD2) in the two-dimensional phase-space. The same is true in the
other direction. The optimum location of parameters in the three-dimensional
phase-space cannot simply be projected onto any two-dimensional phase-space.
Instead, the location in the two-dimensional phase-space needs to be identified
by properly optimizing the estimated fitting parameters independently.

To avoid misunderstandings, we clarified this point by inserting the following
description at the end of the second paragraph of that section at line 211: ”The
optimization of this second shape parameter also requires the re-optimization
of the first two parameters. The fitting procedure of 3-parameter PDFs needs
therefore considerable more computational resources than the fitting procedure
of 2-parameter distribution functions.”

Section 2.7: Your region are large enough to cover several precipitation
regimes in one region. I propose to reduce the size of the regions and select
regions with known good/bad model performance and different precipitation
regimes.

As of yet, the analysis is condensed enough to display the regional results
in Figures 6-8 in single plots. Such a visualization helps to convey the results
of our analysis. Until now, we presumed our results to be sufficiently robust so
that the exact borders of our regions would neither distinctly alter our results
nor our conclusions. Aside, the analyzed regions need to encompass several grid-
points as explained in lines 322 to 327. Adhering to the law of large numbers is
crucial for the statistical analysis performed for reach region. That being said,
one can still argue for smaller regions. However, such a dispute is subjective as
described in lines 330 to 324. Resolving this dispute would lead to an entirely
new analysis which is beyond the scope of this investigation.

Irrespective of resolving this dispute in general, your proposal also triggered
our curiosity concerning our presumption about the spatial robustness of our
results and conclusions. Therefore, we tested the analysis for a region with
exceptionally good performance of MPI-ESM-LR in predicting precipitation and
SPI: the North Region of Brazil (0°— 8°S; 40°W — 60°W). As a side note, examples
of poor model performance are already included in the results (e.g. the entire
European continent). For the North Region of Brazil, we repeated Figure 4 and
Table 3 of our analysis and display these results in Figure I and Table III.
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Table III. As in Table 3, but solely for the North Region of Brazil (0°- 8°S; 40°W

- 60°W).

SPI Period | Realization AIC-D category GD2 WD2 GGD3 EWD3

Ideal (AIC-D < 2) 69 76 12 35

o Well (AIC-D < 4) 84 89 92 100

Observations

Sufficient (AIC-D <7) | 100 97 100 100

3-Months No Skill (AIC-D > 10) 0 0 0 0

Ideal (AIC-D < 2) 13 50 70 93

Simulations Well (AIC-D < 4) 13 53 84 100

Sufficient (AIC-D < 7) 16 77 87 100

No Skill (AIC-D > 10) | 78 21 8 0
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Figure I. As in Figure 4, but solely for the North Region of Brazil (0°- 8°S; 40°W
- 60°W).
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On the one hand, these results further corroborate our conclusions. EWD3 is
distinctly better suited than the other candidate PDF's to describe precipitation;
also when analyzed over such a small region (see Table IIT). On the other hand,
the results also exemplify the importance of adhering to the law of large numbers
in our analysis and its sensibility in terms of the extend of analyzed regions;
specifically when evaluating deviations from Ny (see Figure I).

Line 355: How do you calculate the “weighted sum”? Please add a descrip-
tion.
Thank you for pointing out this lack of clarity.

We changed the sentence to: ”Therefore, the weighted sum (weighted by
the theoretical occurrence probability of the respective SPI class (Table 2)) over
the absolute values of deviations from NOJ along all SPI categories is lowest for
GD2 in both analyzed seasons (see legend in Fig. 4, (a)—(d)).”

We also added another description in line 377: ”Therefore, we weigh each
class’ deviation from N by the theoretical occurrence probability (see Table
2) of the respective class and analyze weighted deviations from N 1.”

Line 574: You stated a phase transition of the SPI at 3 months precipitation
accumulation. However, I cannot see it in Figure 4. What do you mean with
phase transition?

Thank you for calling the misleading phrasing to our attention. In Table
4, WD2 performs better than GD2 in observation for an accumulation period
of 1-month. For accumulation periods of 6-months and longer GD2 performs
better than WD2 in observations.

We see how referring to this behavior as phase transition might be misleading
and changed the paragraph to: ”In agreement with prior studies [Stagge et al., 2015,
Sienz et al., 2012], we also identify the apparent performance shift between short
(less than 3-months) and long (more than 3-months) accumulation periods for
the 2-parameter candidate PDFs. While WD2 performs well for short accumu-
lation periods (only in observations though), GD2 performs better than WD2
for longer accumulation periods. Nevertheless, neither 3-parameter candidate
PDF displays such a shift in its performance. Both 3-parameter PDFs perform
for accumulation periods shorter and longer than 3-months similarly well.”

We also changed the sentence from line 600 to 602 in which we also used
the wording phase transition. The reworded sentence reads as follows: ”The
emergence of this proposal stems from a focus on 2-parameter PDF's that exhibit
a shift in their performance which depends on the scrutinized accumulation
period.”

Section 4: Do you compare the same number of grid cells for observations
and forecasts? In addition, do you compare the same grid cells? I assume
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Table IV. Percent of covered global land grid-points for each PDF in each realiza-
tion and for each investigated season. Main differences between observations and
simulations result from the Sahara and the Arabian Peninsula not being covered in
simulations.

GD2 WD2 GGD3 EWDS3

Simulations 96.27 96.27 82.69 95.23

DJF Observations 100.00 100.00 82.33 97.16
Ratio: Sim./Obs. 0.9627 0.9627 1.0043 0.9801
Simulations 96.33 96.33 77.9 95.55

JJA Observations 99.97 99.97 84.79 96.87
Ratio: Sim./Obs. 0.9636 0.9636  0.9187 0.9864

different sets of selected grid cells for your analyses can have an impact on the
results.

Thank you for this well-founded remark. Because of this comment and an
earlier comment of yours, we double-checked the omitted grid-points again. We
omit grid-points because of excessive zero-precipitation events and as a result
of not achieved convergences. Consequently, the analyzed grid-points differ.
They differ between simulations and observations because both realizations ex-
hibit a different count of grid-points which exhibited too many (more than
one-third) zero-precipitation events. Additionally, the analyzed grid-points also
differ across the analyzed PDFs because the count of grid-points in which con-
vergence is not achieved varies PDF-dependent. It is noteworthy, that (for GD2,
WD2, and EWD3) the variations in analyzed grid-points are dominated by ex-
cessive zero-precipitation events; rather than being caused by non-converging
parameters. Averaged over both seasons, 3.68% (0%) of land grid-points are
PDF-independently excluded through an excessive count of zero-precipitation
events in simulations (observations). In contrast, the total percentage of omit-
ted grid-points per PDF (as a result of non-convergence and excessive zero-
precipitation events) are displayed in Table IV.

We excluded non-converging grid-points only for the specific PDF, the spe-
cific season, and only in the specific realization (observation or simulation). This
results in slightly different coverages for each PDF and each realization (see Ta~
ble IV). Admittedly, GGD3’s coverage can be described as inferior compared to
the other candidate PDFs. However, this inferior performance does not impact
our conclusions, but rather affirms the conclusion that EWD3 is better suited
than GGD3. Additionally, the similar coverages of the other three candidate
PDF's support the claim of a leveled playing field in our analysis. Thus, repeat-
ing the analysis for those grid-points where the fits of GD2, WD2, and EWD3
mutually converge is highly unlikely to change the result. Moreover, limiting
the analyzed grid-points to those grid-points in which GGD3’s calculation algo-
rithm finds converging parameters would artificially reduce the reliability of the
comparison between GD2, WD2, and EWD3. This impact would be similarly
undesirable.
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Yet, we do agree that different sets of grid-points can principally impact our
analysis. Therefore, we analyzed Table 3 again to ascertain our assumption of
a negligible impact on our analysis:

Table V. As in Table 3, but only for those grid-points which are mutually covered
in simulations and observations by each PDF. Note: Grid-point coverage still differs
between DJF and JJA. Depicted is the mean over both seasons.

SPI Period | Realization AIC-D category GD2 WD2 GGD3 EWDS3
Ideal (AIC-D < 2) 84 74 19 30
Observations Well (AIC-D < 4) 94 90 98 100
Sufficient (AIC-D < 7) 98 98 100 100
3-Months No Skill (AIC-D > 10) 0 0 0 0
Ideal (AIC-D < 2) 64 18 68 86
. . Well (AIC-D < 4) 73 24 89 99
Simulations 3
Sufficient (AIC-D < 7) 82 34 94 99
No Skill (AIC-D > 10) 12 56 4 1
Table VI. As in Table 3, but only for those grid-points which are mutually covered in
simulations and observations by GD2, WD2, and EWD3. Note: Grid-point coverage
still differs between DJF and JJA. Depicted is the mean over both seasons. Remark:
Grid-points analyzed for GGD3 are the ones from Table 3 minus those grid-points
which are not mutually covered by GD2, WD2, and EWD3.
SPI Period | Realization AIC-D category GD2 WD2 GGD3 EWD3
Ideal (AIC-D < 2) 84 75 20 30
. L Well (AIC-D < 4) 94 91 98 100
Observations
Sufficient (AIC-D < 7) 98 98 100 100
3-Months No Skill (AIC-D > 10) 0 0 0 0
Ideal (AIC-D < 2) 65 18 68 86
. . Well (AIC-D < 4) 74 24 89 99
Simulations 3
Sufficient (AIC-D < 7) 82 34 94 99
No Skill (AIC-D > 10) 12 57 4 1
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Averaged over all 32 entries, Table VI (Table V) differs on average by just
0.16 (0.34) percentage points from Table 3. The largest difference emerges in
observations for GGD3 in the ideal category which deviates in Table VI (Table
V) by 2 (3) percentage points from Table 3. In conclusion, we consider our
assumption of a negligible impact on our analysis ascertained.

Lines 604/605: T think the investigations to the empirical cumulative dis-
tribution functions are very relevant for this topic and should be added to the
paper or, at least, add a reference to the paper where you want to describe it.

We tried the empirical cumulative density function (ECDF) but quickly real-
ized its shortcoming: Its discrete nature is too coarse for the task at hand which
results in a massive dependence of possible SPI-values on the sample size. As
explained in lines 323 to 328, the crucial performance requirement demands
that deviations from N, spatially balance each other sufficiently quickly. For
SPI time-series derived with an ECDF, however, these deviations will never bal-
ance each other but aggregate with each additional grid-point. In the example
from line 325, SPI time-series derived with an ECDF would not lead in a single
grid-point to an extremely dry/wet event and would lead in each grid-point to
exactly one severely dry/wet event during a 31-year time-series. Thus, for each
grid-point over which we aggregate, we would add 0.7 missing extreme events
and 0.4 missing severe events on both tails of the distribution.

To prevent any confusion, we adjusted the ending of the sentence in line
607 and included another explanation: ”(...) We checked this approach which
proved to be too coarse because of its discretized nature (not shown). As a result
of its discretized nature, the analyzed sample size prescribes the magnitude of
deviations from Ny ;. Consequently, these deviations are spatially invariant and
aggregate with each additional grid-point. Thus, deviations from Ny ; will not
spatially balance each other.”

Section 5: The base problem, from my point of view is, that the models
are not able to reproduce the observed precipitation distribution function and
procedures developed on observed data need to be adapted to be applied to
model data (the GD2 performs well on the observed data). That is the base of
your research and you should comment on this here or in the introduction.

Thank you for pin-pointing this motivation. This is exactly the motivation
we had in mind which triggered us to conduct this analysis. We thought that
we sufficiently pointed that out. However, after re-reading the respective para-
graphs, we also realized that it comes a bit short. Therefore, we adjusted the
Introduction and Section 5 and address this motivation in separate, stand-alone
paragraphs:

To adjust the Introduction, we split the paragraph from lines 118 to 134.
The changes read as follows: ”SPI calculation procedures were developed for ob-
served precipitation data. Since models do not exactly reproduce the observed
precipitation distribution, these procedures need to be tested and eventually
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adapted before being applied to modeled data. Here, we aspire to identify an
SPI calculation algorithm that coherently describes modeled and observed pre-
cipitation (i.e. describes both modeled and observed precipitation distributions
individually and concurrently). While testing SPI’s calculation algorithm on
modeled precipitation data is usually neglected, such a test demands nowadays
a similarly prominent role as the one for observations because of the increasing
importance of drought predictions and their evaluation. Despite this impor-
tance, the adequacy of different candidate distribution functions has to the
authors’ best knowledge never been tested in the output of a seasonal predic-
tion system — although seasonal predictions constitute our most powerful tool to
predict individual droughts. To close that gap, this study evaluates the perfor-
mance of candidate distribution functions in an output of 10 ensemble members
of initialized seasonal hindcast simulations.

In this study, we test the adequacy of the gamma, Weibull, generalized
gamma, and exponentiated Weibull distribution in SPI’s calculation algorithm.
The evaluation of their performance depends on the normality of the result-
ing SPI time-series. In this evaluation, we focus on an SPI accumulation pe-
riod of 3-months (SPI3ps) during winter (DJF) and summer (JJA) and test
the drawn conclusions for other common accumulation periods (1-, 6-, 9-, and
12-months). Our analysis conducts two complementary evaluations of their
normality: (i) evaluating their normality in absolute terms by comparing ac-
tual occurrence probabilities of SPI categories (as defined by WMO’s SPI User
Guide [Svoboda et al., 2012]) against well-known theoretically expected occur-
rence probabilities from the standard normal distribution (N 1), (ii) evaluating
their normality relative to each other with Akaike’s information criterion (AIC)
which analytically assesses of the optimal trade-off between information gain
against the complexity of the PDF to adhere to the risk of overfitting. Dur-
ing this analysis, we investigate observations and simulations. Observed and
simulated precipitation is obtained from the monthly precipitation data-set of
the Global Precipitation Climatology Project (GPCP) and the above mentioned
initialized seasonal hindcast simulations, respectively. We conduct our analysis
for the period 1982 to 2013 with a global focus which also highlights regional
disparities on every inhabited continent (Africa, Asia, Australia, Europe, North
America, and South America).”

To adjust Section 5, we inserted in between Lines 672 and 673 (at the start
of the section) the following paragraph: ”Current SPI calculation algorithms are
tailored to describe observed precipitation distributions. Consequently, current
SPI calculation algorithms are ineptly suited to describe precipitation distribu-
tions obtained from ensemble simulations. Also in observations, erroneous per-
formances are apparent and well-known, but less conspicuous than in ensemble
simulations. We propose a solution that rectifies these issues and improves the
description of modeled and observed precipitation distributions individually as
well as concurrently. The performance of 2-parameter candidate distribution
functions is inadequate for this task. By increasing the parameter count of the
candidate distribution function (and thereby also its complexity) a distinctly
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better description of precipitation distributions can be achieved. In simulations
and observation, the here identified best-performing candidate distribution func-
tion — the exponentiated Weibull distribution (EWD3) — performs proficiently
for every common accumulation period (1-, 3-, 6-, 9-, and 12-months) virtu-
ally everywhere around the globe. Additionally, EWD3 excels when analyzing
ensemble simulations. Its increased complexity (relative to GD2) leads to an
outstanding performance of EWD3 when an available ensemble multiplies the
sample size.”

Figure 6: Can you add the global average, as for Figure 4, as an additional
domain to this figure?

We agree that the global average belongs in this Figure. To avoid any
confusion, we decided to prominently label the global average in the caption of
the figure.

The caption now reads as follows: "Mean deviations from Ny per SPI
category for the entire global land area and each investigated region. Results
are depicted for observations (left) and simulations (right) during DJF (top)
and JJA (bottom).”

Technical corrections

Lines 379/380: It was not clear what was set in relation to what. Please reword
this part.
Corrected.

Reworded to: ”Relative to observations, GD2’s weighted deviations increase
in simulations by more than 120% in JJA, while WD2’s increase by more than
25% in JJA and 80% in DJF.”

Line 527: I think you to refer to Figure 8 and not to Figure 7.
We do mean Figure 7.

To clarify this misunderstanding, we reworded the sentence to: ”"The com-
parison between the performance of our baseline against GD2’s performance
(compare Fig. 8 against Fig. 7) thus also indicates the impact of the meticu-
lousness applied to the optimization of the same parameter estimation method.”

Line 583: I think you want to refer to “GD2” instead of “GGD2” (typo).
We want to refer to GGD3. We corrected that typo and changed ”GGD2”
to "GGD3”.

Figure 4: Add to the caption that it is for global average.
Added.

18



References

[Bélisle, 1992] Bélisle, C. J. (1992). Convergence theorems for a class of simu-
lated annealing algorithms on RY. Journal of Applied Probability, 29(4):885
895.

[Byrd et al., 1995] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A
limited memory algorithm for bound constrained optimization. STAM Journal
on Scientific Computing, 16(5):1190-1208.

[Nelder and Mead, 1965] Nelder, J. A. and Mead, R. (1965). A simplex method
for function minimization. The computer journal, 7(4):308-313.

[Nocedal and Wright, 1999] Nocedal, J. and Wright, S. J. (1999). Springer se-

ries in operations research. numerical optimization.

[Sienz et al., 2012] Sienz, F., Bothe, O., and Fraedrich, K. (2012). Monitoring
and quantifying future climate projections of dryness and wetness extremes:
Spi bias. Hydrology and Earth System Sciences, 16(7):2143.

[Stagge et al., 2015] Stagge, J. H., Tallaksen, L. M., Gudmundsson, L.,
Van Loon, A. F., and Stahl, K. (2015). Candidate distributions for climato-
logical drought indices (spi and spei). International Journal of Climatology,
35(13):4027-4040.

[Svoboda et al., 2012] Svoboda, M., Hayes, M., and Wood, D. (2012). Stan-
dardized precipitation index user guide. World Meteorological Organization
Geneva, Switzerland.

19



