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We thank Gabriel Blain for the effort of reviewing our work. Your comments
have been very helpful in improving our manuscript. Below we answer point-
by-point to each of your comments and explain how the respective comment
helped us to improve the manuscript. Your comments are printed in black and
our responses are printed in blue. Line numbers in our response refer to the
initially submitted manuscript.

One of your comments concerning the complexity punishment by our em-
ployed information criterion caused us to reconsider our storyline. This recon-
sideration does not alter our conclusions. Yet, it simplifies for us to conclude
which helps readers to follow our conclusions.

General comments

The manuscript ”Global and regional performances of SPI candidate distribu-
tion functions in observations and simulations” proposes and new methodology
to select candidates distributions for calculating the SPI; a widely used standard-
ized drought index. The study is interesting and adds important information
to the SPI literature because it evaluates the advantages and shortcomings of
previous methodologies designed for the same purpose. It is also well written.
So, it should be considered for publication.

Thank you for these kind comments and your endorsement.

Specific comments

L.105 The Shapiro-Wilk [...] ”is unreliable to evaluate SPI normality (Naresh
Kumar et al., 2009)”. This is a very important statement, which now I tend to
agree with. Please, provide further information regarding it.

First, we are pleased that we were able to convince you. Second, we thank
you for pointing out this lack of depth in our introduction.

Goodness-of-Fit (GoF) tests are ill-suited to assess the normality of SPI
time-series, because of their spatial aggregation in combination with their binary
convention. To fully understand this interplay we start with SPI’s calculation
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procedure: (i) fit a candidate PDF onto precipitation, then (ii) Z-transform the
fitted probabilities to SPI values. Because the choice of an appropriate candidate
PDF is the key decision in this process, the initial fit of the candidate PDF onto
precipitation should be scrutinized. GoF tests, however, measure the normality
of the resulting SPI values. In theory, this switch of focus in the analysis only
complicates its structure but should not impact its outcome: if the candidate
PDF’s fit is appropriate, then its estimated probabilities are appropriate. Thus,
their exact equiprobability transformations to the standard normal variable Z
are also appropriate.

Anyhow, this complicated structure blurs the view on the measure of interest:
the fit of the candidate PDF (onto precipitation). Therefore, the following
caveat easily arises unnoticed and is, thus, not properly dealt with. After losing
sight of the actual measure of interest (the fit of the candidate PDF), the focus
lays on the normality of SPI time-series. The intuitive tool to assess normality
leads to GoF tests. The drawback of GoF test is the biased discrimination
between the tails and the center of the distribution. GoF tests equally evaluate
each value that contributes to the distribution. Such an evaluation assigns more
weight to the center and almost no weight to the tails of the distribution. Yet,
appropriately fitting the tails of precipitation distributions should logically be
of paramount importance to any sensible candidate PDF employed in SPI’s
calculation algorithm (see also our argument against weighting deviations from
N0,1 by the theoretical occurrence probability of the respective class in lines 244
to 251). But the complicated structure blurs the view from this consideration.
Instead, GoF tests conveniently present an allegedly easy solution.

As seen in Fig. 1, deviations from N0,1 are smallest in the center and largest
in the tails of the distribution. Candidate PDFs typically fit precipitation bet-
ter for the center than for the tails of the distribution: its center counts more
samples which translates to more weight in the optimization (e.g. by the max-
imum likelihood estimation). This behavior deludes GoF tests in the analysis
of SPI normality. That delusion obscures the tails of the distribution from GoF
tests. Nevertheless this delusion, despite this obscurity surfacing skepticism
about the proper depiction of the tails of the distribution can still aggregate
over many grid-points. This aggregated skepticism can still lead to a robust
analysis if evaluated relative to the similarly obscured performance of other
candidate PDFs (as shown by metrics such as AIC-D, and BIC-D). Anyhow,
additionally aggravating for GoF tests is their convention to be interpreted bi-
narily. As a consequence of this convention, SPI literature typically aggregates
results of GoF tests over domains by counting rejections. This typical aggrega-
tion prevents surfaced skepticism to fully aggregate over many grid-points. The
interplay of both caveats, the blurred tails of the distribution and the preven-
tion of remaining skepticism to fully aggregate, leads to the conclusion that GoF
tests are ill-suited to assess SPI normality. I.e. it is (admittedly more obvious
but) similarly inept to round normally distributed (N0.1±ε,0.1) variables to their
nearest integer before calculating their mean to estimate ε.

This full explanation is too extensive for the scope of the introduction of
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our publication. However, we do admit that only indicating problems with the
binary nature of GoF tests and hinting at issues with their spatial aggregation
might cut the story too short. To rectify this shortcoming, we split the para-
graph (lines 106 -117). This allows us to elaborate on GoF tests (in)ability to
evaluate SPI candidate distribution functions: ”(...) which in turn is unreliable
to evaluate SPI normality [Naresh Kumar et al., 2009].

The above-mentioned goodness-of-fit tests equally evaluate each value of
SPI’s distribution. Such an evaluation focuses on the center of the distribu-
tion because the center of any distribution contains per definition more samples
than the tails. In contrast, SPI usually analyzes (and thus depends on a proper
depiction of) the distribution’s tails. Therefore, a blurred focus manifests in
these goodness-of-fit tests. Moreover, the convention to binarily interpret the
above-mentioned goodness-of-fit tests aggravates this blurred focus. Because of
this convention, these goodness-of-fit tests are unable to produce any relative
ranking of the performance of distribution functions for a specific location (and
accumulation period). This inability prevents any reasonable aggregation of
limitations that surface despite the blurred focus. Thus, they are ill-suited to
discriminate the best performing PDF out of a set of PDFs [Blain et al., 2018].
For SPI distributions the question is not whether they are (or should be) nor-
mally distributed (for which goodness-of-fit tests are well suited to provide the
answer). The crucial question is rather which PDF maximizes the normality
of the resulting SPI distribution. Because of the ill-fitting focus and the ill-
suited convention of these goodness-of-fit tests, they are inept to identify SPI’s
best-performing candidate distribution function out of a set of PDFs.

In agreement with this insight, those studies, that rigorously analyzed can-
didate distribution functions, or investigate an appropriate test methodology
for evaluating SPI candidate PDFs, consequently advocate the use of relative
assessments: (...)”

While elaborating on the methodology to test the normality of SPI time-
series, we realized a missing differentiation between the analysis of AIC-D fre-
quencies and the analysis of deviations from N0,1 in the initial submission. The
fact that both analyses complement each other comes a bit too short. Thus, we
also rectified this shortcoming through the following changes to the manuscript:

We substituted a sentence from the abstract in lines 6 to 7 by: ”Our normal-
ity comparison bases on a complementary evaluation. Actual against theoretical
occurrence probabilities of SPI categories evaluate the absolute performance of
candidate distribution functions. In contrast, Akaike’s information criterion
evaluates candidate distribution functions relative to each other while analyti-
cally punishing complexity. SPI time-series (...)”

We added another paragraph at the end of section 2.5 in between lines 293
and 294 which reads as follows: ”The analysis of deviations from N0,1 assesses
performances of candidate PDFs in absolute terms irrespective of the candidate
PDF’s complexity. In contrast, the AIC-D analysis evaluates the performance of
candidate PDFs relative to each other while analytically punishing complexity.
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Consequently, the AIC-D analysis cannot evaluate whether the best-performing
candidate distribution function also performs adequately in absolute terms. In
opposition, deviations from N0,1 encounter difficulties when evaluating whether
an increased complexity from one PDF to another justifies any given improve-
ment. Both analyses together, however, augment each other complementary.
This enables us to conclusively investigate: (i) which candidate PDF performs
best while (ii) ensuring adequate absolute performance and while (iii) constrain-
ing the risk of over-fitting.”

We substituted three sentences in a paragraph of section 3.1.1 (lines 401 to
405) by: ”It is noteworthy, that investigating deviations from N0,1 over the en-
tire globe contains the risk of encountering deviations that balance each other
in different grid-points with unrelated climatic characteristics. Until dealing
with this risk, our analysis of deviations from N0,1 only indicates that three
candidate PDFs (GD2, GGD3, and EWD3) display an adequate absolute per-
formance. On the one hand, we can reduce that risk by analyzing deviations
from N0,1 only over specific regions. This analysis safeguards our investigation
by ensuring (rather than just indicating) an adequate absolute performance
around the globe and is performed later. On the other hand, we first com-
pletely eliminate this risk by examining AIC-D frequencies: aggregating AIC-D
values over the entire globe evaluates the performance of PDFs in each grid-
point and normalizes these evaluations by (rather than adding them over) the
total number of grid-points of the entire globe. We investigate AIC-D frequen-
cies first to evaluate whether GGD3 and/or EWD3 perform sufficiently better
than GD2 to justify their increased complexities.”

We added another paragraph at the end of section 3.1.1 (in between lines 475
and 476): ”Among our candidate PDFs, EWD3 is obviously the best-suited PDF
for SPI. Yet, we still need to confirm whether also EWD3’s absolute performance
is adequate. While the global analysis indicated EWD3’s adequateness, the
ultimate validation of this claim is incumbent upon the regional analysis.”

We added another paragraph at the end of section 3.1.2 (in between lines 514
and 515): ”The analysis of AIC-D frequencies proves that EWD3 is SPI’s best
distribution function among our candidate PDFs. Additionally, the regional
investigation confirms the global analysis: the absolute performance of EWD3
is at minimum adequate in observations and ensemble simulations.”

The Bayesian information criterion (BIC) is similar to the AIC. However,
the BIC uses a different penalty for the number of parameters [ln(n) k]. Can
the authors verify if the BIC leads to similar results as those of the AIC.

We thank you for this exciting idea. Whether we use AIC or BIC to punish
candidate PDFs for their complexity does not change our conclusions. Most of
our drawn conclusions from AIC-D frequencies bases on the behavior of candi-
date PDFs’ coverages for AIC-Dmax values larger than 10 (right edge of Figure
5). These conclusions are then substantiated by candidate PDFs’ coverages
for AIC-Dmax values larger than 7. These coverages (for AIC-Dmax/BIC-Dmax
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Table I. Complexity penalty of candidate PDFs assessed with AIC and BIC.

Information
Criterion

AIC BIC
Difference

BIC-AIC

Realization
Obs. Sim. Obs. Sim. Obs. Sim.

(N=31) (N=310) (N=31) (N=310) (N=31) (N=310)
2-param. PDFs 4.43 4.04 6.87 11.47 2.44 7.43
3-param. PDFs 6.89 6.08 10.3 17.21 3.41 11.13

Difference
3-2 param.

2.46 2.04 3.43 5.74 0.97 3.7

values ≤ 7) are insensitive to the magnitude of changes caused by altered com-
plexity penalties (Table I)

What impacts our analysis is not the absolute, parameter- and sample size-
dependent punishment of candidate PDFs (values in the center of Table I).
Instead, only the penalty difference between 2- and 3-parameter PDFs that
base on the same sample size matters (evaluate observations and simulations
isolated in the last row of Table I).

Similar, altering the information criterion (from AIC to BIC) impacts our
analysis through the penalty difference between BIC and AIC (last column of
Table I). Here, the difference between 2- and 3-parameter PDFs that base on the
same sample size matters again (evaluate observations and simulations isolated
in the bottom- and rightmost cell of Table I). I.e. the additional margin by which
3-parameter PDFs need to further outperform 2-parameter PDFs in order to
still be considered as better by the new information criterion. This margin
(bottom- and rightmost cell in Table I) increases in observations (simulations)
by 0.97 (3.7) when using BIC instead of AIC.

The robustness of our conclusions stems from the robustness of the can-
didate’s coverages for large AIC-Dmax/BIC-Dmax values (≥ 7). In this AIC-
Dmax regime, the candidate PDFs’ coverages are sufficiently robust concerning
changes caused by altered complexity penalties (Fig. I). Comparing 2- against
3-parameter in Fig. 5 with AIC-D or BIC-D does not substantially change the
evaluation of large AIC-Dmax/BIC-Dmax values (≥ 7). As a first-order approx-
imation, we can compare in observations the coverages of 2-parameter PDFs
at the AIC-Dmax value of 7 against the coverages of 3-parameter PDFs at the
AIC-Dmax value 7.97 (we shift the line indicating the coverages of 3-parameter
PDFs by 0.97 units to the right). Since the slope of that line is sufficiently flat,
this shift does not impact the conclusions for large AIC-Dmax values (≥ 7).

In observations (simulations), coverages of 3-parameter PDFs are highly sen-
sitive to the change of the information criterion at AIC-Dmax/BIC-Dmax values
smaller than approximately 4 (6) (compare in Fig I the top row against the
bottom row). The first-order approximation outlined before (shifting the cov-
erages of 3-parameter PDFs by 0.97 (3.7) units to the right in observations
(simulations)), describes the changes caused by using BIC (instead of AIC)
quite well. The shifted coverages of 3-parameter PDFs exhibit slope-dependent
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Figure I. AIC-D (top) and BIC-D (bottom) frequencies: percentage of global grid-
points during both seasons in which each PDF yields AIC-D/BIC-D values that are
smaller than or equal to a given AIC-Dmax/BIC-Dmax value. The vertical black line
indicates the different complexity penalties between 3- and 2-parameter PDFs (see
bottom row of Table I). AIC-D/BIC-D frequencies are displayed for each candidate
PDF for observations (left) and simulations (right).

changes at all AIC-Dmax/BIC-Dmax values. That causes 3-parameter PDFs to
be best-suited (AIC-Dmax/BIC-Dmax value of 0) in fewer grid-points. In each
grid-point, a single PDF must still be best-suited. In a second-order approxi-
mation, the coverages of 2-parameter PDFs, thus, slightly adjust for small AIC-
Dmax/BIC-Dmax values to the changes of 3-parameter PDFs’ coverages at the
AIC-Dmax/BIC-Dmax value of 0. Consequently, the coverages of 2-parameter
PDFs are overall fairly insensitive to the change of the information criterion
because they only adjust slightly. The coverages of 3-parameter PDFs are more
sensitive to the changed information criterion because they universally exhibit
a horizontal shift.

This shift, however, does not result in a universally uniform sensitivity.
The sensitivity of the coverages of 3-parameter PDFs depends on their slope.
Because their slope is in both realizations flat for AIC-Dmax values beyond
2.5, the coverages of 3-parameter PDFs are insensitive beyond AIC-Dmax/BIC-
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Dmax values of 2.5 plus 0.97 (3.7) in observations (simulations). Therefore,
the coverages of the AIC-D/BIC-D category ”no skill” (AIC-D/BIC-D > 10)
and ”sufficient” (AIC-D/BIC-D ≤ 7) are robust concerning a change of the
information criterion from AIC to BIC in both realizations. In observations,
the AIC-D/BIC-D category ”well” (AIC-D/BIC-D ≤ 4) is also robust to the
change of the information criterion (because 2.5 + 0.97 ≤ 4). Further, the slope
of coverages of both 3-parameter PDFs is rather flat between AIC-Dmax val-
ues of 1 and 2, in observations. In observations, the AIC-D/BIC-D category
”ideal” (AIC-D/BIC-D ≤ 2) is, therefore, also rather robust to the change of
the information criterion. Ergo, all AIC-D/BIC-D categories are in observa-
tions sufficiently robust to the change of the information criterion. We identify
sensitive performances to the change of the information criterion only in sim-
ulations for the AIC-D/BIC-D categories ”ideal” and ”well”. This sensitivity
does not affect the main argument against GD2 in simulations. GD2 displays
a worthless (insufficient) performance in 12% (18%) of grid-points. Also for
BIC-D frequencies, GD2 displays a worthless (insufficient) performance in more
than 10% (14%) of grid-points in simulations. In contrast, EWD3 displays,
irrespective of the employed information criterion, a worthless or insufficient
performance only in 1% of grid-points – EWD3 reduces the count of grid-point
characterized by this highly undesirable performance by over one magnitude.

We extensively draw our conclusion from erroneous performances of our can-
didate PDFs. Irrespective of the information criterion, erroneous performances
are for EWD3 virtually non-existent, but manifest for GD2 in a non-negligible
percentage of grid-points in both realizations. Thus, as also discussed in the
initial submission (e.g. when introducing AIC-D in the results, and when elabo-
rating on them in the discussion), the risk of underfitting by using 2-parameter
PDFs seems larger than the risk of overfitting by using 3-parameter PDFs.
Consequently, once the need for 3-parameter candidate PDFs is established,
their remaining punishment relative to 2-parameter PDFs biases the analy-
sis; particularly for small AIC-D values. Because of the complexity penalty
in the information criterion, our 3-parameter candidate PDFs outperform our
2-parameter candidate PDF only for AIC-Dmax values beyond their increased
complexity penalty (black vertical line in Fig I). We argue that maintaining the
complexity penalty (beyond the proven inability of 2-parameter distributions)
causes an artificial disadvantage for 3-parameter PDFs for small AIC-D values.
Therefore, the complexity penalty biases and obscures our analysis for small
AIC-Dmax values. We interpret the results from this BIC-D analysis as another
confirmation of our line of argumentation. Anyhow, this discussion (and our
interpretation of a confirmation of our line of argumentation) only underlines
our conclusion that EWD3 is better suited than GD2. In contrast, we draw
that conclusion from erroneous performances of GD2 that manifest irrespective
of the employed information criterion.

The above-conducted analysis helped us to streamline our reasoning. In
consequence, we slightly altered several lines of the manuscript to simplify our
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line of argumentation. This helps us to convey, and readers to intuitively un-
derstand our conclusions. In this process, we conducted two different types of
changes. Firstly, changes concerning the proper communication of AIC’s pun-
ishment (including the above-mentioned bias). Secondly, changes that focus our
analysis on GD2 and EWD3, instead of highlighting all four candidate PDFs
almost equally prominent.

In the thorough analysis of AIC’s and BIC’s complexity penalties, we iden-
tified an intuitive way to visualize the penalty difference between 2- and 3-
parameter PDFs. The black vertical line in Fig. I. Including this black line also
in Fig. 5 enables us to elaborate more precise on the impact of that penalty
difference. Therefore, we adapted Fig. 5 and discuss the adaptation in the text.
This simplifies our line of argumentation.

We changed a paragraph in Section 3.1.1 (lines 458 to 470) to: ”It seems
worth elaborating on the insufficient (only average) confidence in EWD3 to
perform ideally in observations (ensemble simulations) around the globe. The
complexity penalty of AIC correctly punishes EWD3 stronger than GD2 be-
cause AIC evaluates whether EWD3’s increased complexity (relative to GD2) is
necessary. However, the results justify the necessity for this increased complex-
ity – GD2 performs erroneously in 26% (6%), insufficiently in 18% (2%), and
without any skill in 12% (1%) of the global land area in ensemble simulations
(observations). The risk of underfitting by using 2-parameter PDFs seems larger
than the risk of overfitting by using 3-parameter PDFs. Once the need for 3-
parameter candidate PDFs is established, their remaining punishment relative
to 2-parameter PDFs biases the analysis; particularly for the ideal AIC-D cat-
egory. EWD3’s increased complexity penalty relative to 2-parameter candidate
PDFs depends on the sample size and amounts to 2.46 in observations and 2.04
in ensemble simulations (see black vertical lines in Fig. 5 (a)–(d)). The AIC-
Dmax value beyond which EWD3 reaches coverages close to 100% approximately
amounts to EWD3’s increased penalty (see Fig. 5 (a)–(d)). Correcting EWD3’s
coverages for this bias would affect our evaluation of EWD3’s performance only
for the ideal AIC-D category. To illustrate this effect, we only consider AIC’s
estimated likelihood (without its penalty). Such a consideration corrects this
complexity bias in EWD3’s performance. While we analytically analyzed this
consideration, a first-order approximation suffices for the scope of this publica-
tion. In that first-order approximation of this consideration, we simply shift the
curve of EWD3 by 2.46 units leftwards in observations (Fig. 5 (a) and (b)))
and by 2.04 units leftwards in ensemble simulations (Fig. 5 (c) and (d)). After
this shift, EWD3 would also perform ideal with substantial confidence.”

We substituted a sentence in Section 3.3 (lines 579 to 580) by the following
elaboration: ”(...) higher AIC-penalty compared to GD2. As a reminder, AIC
punishes EWD3 stronger than GD2. Nevertheless this complexity punishment,
it is obvious by now that our 2-parameter PDFs are inept to universally deliver
normal distributed SPI time-series; particularly if one considers all depicted
dimensions of the task at hand. As it turns out, this punishment is the sole
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reason for both performance limitations that EWD3 displays in Table 6: (i) for
the ideal AIC-D category and (ii) EWD3’s tied performance with GD2 for an
accumulation period of 12-months in ensemble simulations. As shown before,
AIC’s punishment is particularly noticeable in the ideal category. Further, this
punishment also affects the tied performance ranking for the accumulation pe-
riod of 12-months. To illustrate this effect, we again consider AIC’s estimated
likelihood (without its penalty) to correct EWD3’s performance for the com-
plexity punishment. While we again analytically analyzed this consideration,
for the scope of this publication a first-order approximation suffices also here. In
that first-order approximation of this consideration, EWD3’s coverages of Table
6 shift again by 2.46 (2.04) AIC units in observations (ensemble simulations).
Since neighboring AIC-D categories differ by 2-3 AIC units, this approximation
shifts EWD3’s coverages of Table 6 by roughly one category. Such a shift would
solve EWD3’s limitation in the ideal AIC-D category. Further, EWD3 would
also perform best across all AIC-D categories in ensemble simulations; including
the accumulation period of 12-months.

Despite the inclusion of the complexity penalty, EWD3 performs (...)”

Answering this question helped us to further streamline the conclusions we
would like to convey. We realized that the manuscript highlights all four candi-
date PDFs almost equally for too long. Dismissing WD2 and GGD3 earlier helps
us in telling the story. To focus our story on GD2 and EWD3, we conducted
the following changes to the manuscript:

We substituted lines 342 to 345 in Section 3.1.1 by: ”(...) during both seasons
(Fig. 4, (b)). Aside from GD2, GGD3 and EWD3 also perform adequately in
absolute terms for observations. Discriminating their deviations from N0,1 is
difficult. On the one hand, GD2 represents the especially important left-hand
tail of SPI3M time-series’ frequency distribution (D3) in JJA worse than our
3-parameter candidate PDFs (compare Fig. 4, (a) against (c) and (d)). On the
other hand, GD2 displays smaller deviations from N0,1 than our 3-parameter
candidate PDFs in the center of the SPI’s distribution. Despite these minor
differences (...)”

We substituted lines 411 to 431 in Section 3.1.1 by: ”(...) considerably
faster than GD2. EWD3 quickly compensates for AIC’s complexity punishment
(which is 2.46 units larger for EWD3 than for GD2 (indicated by the vertical
black line in Fig. 5)). Beyond this vertical black line, EWD3 conclusively
outperforms GD2 (the only intersection of the yellowish, and the bluish lines
coincide with the intersection of that vertical black line in Fig. 5, (a) and
(b)). EWD3 performs well (AIC-Dmax ¡ 4) in virtually every global land grid-
point. During DJF (JJA), EWD3 displays globally (in all land grid-points)
AIC-D values of less than 5.03 (7.03). In contrast, GD2 performs erroneously
(apparent by AIC-Dmax values in excess of 4) in approximately 7% (6%) of the
global land grid-points during DJF (JJA). Further, GD2 performs during both
seasons insufficiently (AIC-Dmax values beyond 7) in 2% and without skill (AIC-
Dmax values beyond 10) in 1% of the global land area. While EWD3 strictly
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outperforms GGD3, GGD3 still performs similarly to EWD3 in observations.
Thus, our focus on EWD3 becomes only plausible during the investigation of
AIC-D frequencies in ensemble simulations.”

We substituted lines 436 to 448 in Section 3.1.1 by: ”We interpret EWD3’s
performance in ensemble simulations as ideal in approximately 85% (86%) of
the global land area during DJF (JJA). For AIC-Dmax values beyond 2, EWD3
quickly approaches 100 % coverage, again, and performs erroneously or insuffi-
ciently only in 1% of the global land area during both seasons. In contrast, GD2
performs erroneously in 23% (30%) and insufficient in 14% (21%) of the global
land grid-points during DJF (JJA). Yet, most telling might be the fraction (...)”

We included the following transition in between lines 453 and 454 in Section
3.1.1: ”(...) over one magnitude (by a factor of roughly 20). EWD3 also uni-
versally outperforms GGD3. In view of their equal parameter-count, it seems
rational to rather employ EWD3 than GGD3.

Analyzing AIC-D frequencies for both seasons (DJF and JJA) discloses no
distinct season-dependent differences, similar to before in the investigation of
deviations from N0,1. Therefore, we average identified land area coverages over
both seasons in the summary of AIC-D frequencies. Table 3 summarizes (...)”

Aside, we inserted a sentence in the discussion. This sentence states that
we also analyzed BIC-D frequencies and that they deliver similar results as
shown for AIC-D frequencies. We insert this sentence at the beginning of the
paragraph that starts in line 617: ”We also repeated our AIC-D analysis with
the Bayesian information criterion [Schwarz et al., 1978] which delivered similar
results. Irrespective of the employed information criterion, the findings sketched
above stay valid (...)”
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