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Abstract. Inflow forecasting plays an essential role in reser-
voir management and operation. The impacts of climate
change and human activities make accurate inflow predic-
tion increasingly difficult, especially for longer lead times.
In this study, a new hybrid inflow forecast framework with5

ERA-Interim reanalysis dataset as input, adopting gradient
boosting regression trees (GBRT) and the maximal infor-
mation coefficient (MIC) is developed for multi-step ahead
daily inflow forecasting. Firstly, the ERA-Interim reanaly-
sis dataset provides more information for the framework to10

discover inflow for longer lead times. Secondly, MIC can
identify effective feature subset from massive features that
significantly affects inflow so that the framework can reduce
computational burden, distinguish key attributes with unim-
portant ones and provide a concise understanding of inflow.15

Lastly, the GBRT is a prediction model in the form of an en-
semble of decision trees and has a strong ability to capture
nonlinear relationships between input and output at longer
lead times more fully. The Xiaowan hydropower station lo-
cated in Yunnan Province, China is selected as the study area.20

Six evaluation criteria, the mean absolute error (MAE), the
root mean squared error (RMSE), the Pearson correlation
coefficient (CORR), Kling–Gupta efficiency scores (KGE),
the percent bias in flow duration curve high-segment volume
(BHV) and the Index of Agreement (IA) are used to evalu-25

ate the established models using historical daily inflow data
(1/1/2017-31/12/2018). Performance of the presented frame-
work is compared to that of artificial neural networks (ANN),
support vector regression (SVR) and multiple linear regres-
sion (MLR) models. The results indicate that the reanalysis30

data enhances the accuracy of inflow forecasting for all lead
times studied (1-10 days) and the developed method gener-

ally performs better than other models, especially for the ex-
treme values and longer lead times (4-10 days).

1 Introduction 35

Reliable and accurate inflow forecasting 1-10 days in ad-
vance is significant for efficient utilization of water re-
sources, reservoir operation and flood control, especially in
areas with concentrated rainfall. Rainfall in southern China is
usually concentrated for several days at a time due to strong 40

convective weather, for example, typhoons. Low accuracy in-
flow predictions can easily cause the failure of power stations
to make reasonable power generation plans 7-10 days ahead
of disaster events and lead to unnecessary water abandon-
ment and even substantial economic losses. Fig. 1 shows the 45

losses of electric quantity due to discarded water (LEQDW)
in Yunnan and Sichuan Provinces, China from 2011 to 2016
(Sohu, 2017; in en.com, 2018). The total amount of LEQDW
in Yunnan and Sichuan Provinces increased from 1.5 billion
kWh to 45.6 billion kWh from 2011 to 2016, with an aver- 50

age annual growth rate of 98.0%. In recent years, due to the
increased number of hydropower stations and installed hy-
dropower capacities, the problem of discarding water caused
by inaccurate inflow forecasting is becoming increasingly
serious, which has also produced a negative impact on the 55

development of hydropower in China. The main challenge
in inflow forecasting caused by climate change and human
activities at present are low accuracy, especially for longer
lead times (Badrzadeh et al., 2013; El-Shafie et al., 2007).
Meanwhile, due to streamflow variation by reason of climate 60

change and human activities, inflow forecasting model of-
ten needs to be rebuilt and the model parameters need to
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be recalibrated according to the actual inflow and meteoro-
logical data within one or two years. To address these prob-
lems, a variety of models and approaches have been devel-
oped. These approaches can be divided into three categories:
statistical methods (Valipour et al., 2013), physical methods5

(Duan et al., 1992; Wang et al., 2011; Robertson et al., 2013),
and machine learning methods (Chau et al., 2005; Liu et al.,
2015; Rajaee et al., 2019; Zhang et al., 2018; Yaseen et al.,
2019; Fotovatikhah et al., 2018; Mosavi et al., 2018; Chau,
2017; Ghorbani et al., 2018). Each method has its own con-10

ditions and scope of application. Statistical methods are usu-
ally based on historical inflow records and mainly include
the autoregressive model, the autoregressive moving average
(ARMA) model and the autoregressive integrated moving av-
erage (ARIMA) model (Lin et al., 2006). Statistical methods15

assume that the inflow series is stationary and the relationship
between input and output is simple. However, real inflow se-
ries is complex, nonlinear and chaotic (Dhanya and Kumar,
2011), making it difficult to obtain high-accuracy predictions
using statistical models. Physical methods which have clear20

mechanisms are implemented using theories of inflow gen-
eration and confluence. These methods can reflect the char-
acteristics of catchment but are very strict with initial condi-
tions and input data (Bennett et al., 2016). Meanwhile, these
methods used for flood forecasting have a shorter lead time25

and cannot be used to acquire long-term forecasting results
due to input uncertainty. Machine learning methods, having
a strong ability to handle the nonlinear relationship between
input and output and recently shown excellent performance
in inflow prediction, are widely used for medium and long-30

term inflow forecasts. In particular, several studies had shown
that artificial neural networks (ANN) (Rasouli et al., 2012;
Cheng et al., 2015; El-Shafie and Noureldin, 2011) and sup-
port vector regression (SVR) (Tongal and Booij, 2018; Luo
et al., 2019; Moazenzadeh et al., 2018) are the two pow-35

erful models for inflow predicting. However, these models
still have some inherent disadvantages. For example, ANN is
prone to being trapped by local minima and both ANN and
SVR suffer from over-fitting problems and reduced general-
izing performance. In recent years, gradient boosting regres-40

sion trees (GBRT) (Fienen et al., 2018; Friedman, 2001), a
nonparametric machine learning method based on a boost-
ing strategy and decision trees, was developed and had been
used in traffic (Zhan et al., 2019) and environmental (Wei
et al., 2019) field and proved to alleviate these problems men-45

tioned above. Thus, GBRT is selected for daily inflow predic-
tion with a lead times of 1-10 days in this paper. Compared
with ANN and SVR, GBRT also has two other advantages.
Firstly, GBRT can rank features according to their contribu-
tion to model scores, which is of great significance for re-50

ducing the complexity of the model. Secondly, GBRT is a
white box model and can be easily interpreted. To the best
of our knowledge, GBRT has not been used for daily inflow
prediction with a lead times of 1-10 days before. For com-
parison purposes, ANN, SVR and multiple linear regression55

(MLR) have been employed to forecast daily inflow and are
considered as bench mark models in this study. In addition
to forecasting models, a vital reason why many approaches
cannot attain higher accuracy for inflow predictions is that in-
flow is influenced by various factors (Yang et al., 2019), such 60

as rainfall, temperature, humidity, etc. Thus, it is very diffi-
cult to select appropriate features for inflow forecasting. Cur-
rent feature selection methods for inflow forecasting mainly
include two methodologies. The first method is the model-
free method (Bowden, 2005; Snieder et al., 2020) which 65

employs a measure of the correlation coefficient criterion
(Badrzadeh et al., 2013;Siqueira et al., 2018; Pal et al., 2013)
to characterise the correlation between a potential model in-
put and the output variable. The second method is the model-
based method (Snieder et al., 2020) which usually utilizes 70

the model and search strategies to determine optimal input
subset. Common search strategies include forward selection,
backward elimination et al (May et al., 2011). The correla-
tion coefficient has limited ability for capturing nonlinear
relationships and exhaustive search tend to need the higher 75

computation burden. In order to select effective inputs ac-
curately and quickly, the maximal information coefficient
(MIC) (Reshef et al., 2011) is used to select input factors
for inflow forecasting. MIC is a robust measure of the de-
gree of correlation between two variables and has attracted 80

a lot attention from academia (Zhao et al., 2013; Ge et al.,
2016; Lyu et al., 2017; Sun et al., 2018). In addition, suffi-
cient potential input factors are the prerequisite for obtaining
reliable and accurate prediction results and it is not enough
to use only antecedent inflow series as the input of the model. 85

To enhance the accuracy of inflow forecasting and acquire a
longer lead time, increasing amounts of meteorological fore-
casting data have been used for inflow forecasting (Lima
et al., 2017; Fan et al., 2015; Rasouli et al., 2012). However,
with extended lead times, the errors of forecast data contin- 90

uously increase because the variables obtained by numerical
weather prediction (NWP) system are also affected by com-
plex factors (Mehr et al., 2019). Moreover, with the continu-
ous improvement of forecasting systems, it is difficult to ob-
tain consistent and long series of forecasting data (Verkade 95

et al., 2013). To mitigate these problems, the reanalysis data
generated by ERA-Interim (European Centre for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis Interim)
(Dee et al., 2011), which was proved to be one of the best
methods for reanalysis of data describing atmospheric cir- 100

culation and elements (Kishore et al., 2011), has been used
as an input. The reanalysis data which has less error than
observed data and forecast data is the result of assimilating
observed data with forecast data. ERA-Interim shows the re-
sults of a global climate reanalysis from 1979 to date, which 105

are produced by a fixed version of NWP system. The fixed
version ensures that there are no spurious trends caused by an
evolving NWP system. Therefore, meteorological reanalysis
data satisfies the need for long sequences of consistent data
and has been used for the prediction of wind speeds (Stopa 110
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Figure 1. Losses of electric quantity due to discarded water
(LEQDW) in the Sichuan and Yunnan province.

and Cheung, 2014) and solar radiation (Ghimire et al., 2019;
Linares-Rodríguez et al., 2011). This study aims to provide a
reliable inflow forecasting framework with longer lead times
for daily inflow forecasting. The framework adopts the ERA-
Interim reanalysis dataset as the input which ensured ample5

information is supplied to depict inflow. MIC is used to se-
lect appropriate features to avoid over-fitting and waste of
computing resources caused by feature redundancy. GBRT,
which is robust to outliers and has strong non-linear fitting
ability, is used as the prediction model to improve inflow10

forecasting accuracy of longer lead times. This paper is or-
ganized as follows: Section 2 describes a case study and col-
lected data. Section 3 introduces the theory and process of
methods used, including MIC and GBRT. Section 4 shows
the results and discussion of the data, followed by the con-15

clusions in Section 5.

2 Data

2.1 Study area and collected data

The Xiaowan Hydropower Station in the lower reaches of
the Lancang River is chosen as the study site (Fig. 3). The20

Xiaowan Hydropower Station is the main controlling hy-
dropower station in the Lancang River and it is very mean-
ingful to adopt the Xiaowan Hydropower Station as the
case study. The Lancang River is approximately 2000 km
long and has a drainage area of 113300 km2 above the25

Xiaowan Hydropower Station. The Lancang River which
is also known as the Mekong River originates in the Ti-
betan Plateau and runs through China, Myanmar, Laos, Thai-
land, Cambodia, and Vietnam. The major source of wa-
ter flowing into the Lancang River in China comes from30

melting snow on the Tibetan plateau (Commission, 2005).
We collected ERA-Interim reanalysis dataset, observed daily
inflow and rainfall data for Xiaowan for 8 years (Jan-

uary 2011 to December 2018). Fig. 3 depicts the daily
inflow series. The data from January 2011 to December 35

2014 (1461 days, approximately 50% of the whole dataset),
from January 2015 to December 2016 (731 days, approxi-
mately 25% of the whole dataset) and from January 2017
to December 2018 (730 days, approximately 25% of the
whole dataset) are used as training, validation and test- 40

ing set, respectively. The reanalysis dataset can be down-
loaded from https://apps.ecmwf.int/datasets/data/interim-
full-daily/levtype=sfc/ and is provided every 12 hours on a
spatial grid size of 0.25° × 0.25°. Based on the expert knowl-
edge and on the basis of available literature, the near-surface 45

26 variables (Table A1) from the reanalysis data are consid-
ered as potential selected predictors for inflow forecasting,
which include the total precipitation (tp), the 2 meter temper-
ature (t2m), the total column water (tcw), etc. More details
about ERA-Interim dataset are presented in the Appendix A. 50

2.2 Feature scaling and feature selection

Feature scaling is necessary for machine learning methods
and all features are scaled to the range between 0 and 1 before
taking part in the calculation, as follows: 55

xscale =
xoriginal−xmin

xmax−xmin
(1)

where xscale and xoriginal indicate the scaled and original
data, respectively. xmax and xmin represent the maximum
and minimum of inflow series, respectively. Reasonable se-
lection of input variables can reduce the computational bur- 60

den and improve the prediction accuracy of the model by re-
moving redundant feature information and reducing the di-
mensions of the features. If too many features are selected,
model will become very complex, which will cause trouble
when adjusting parameters, resulting in over-fitting and diffi- 65

cult convergence. Moreover, natural patterns in the data will
be blurred by noise (Zhao et al., 2013). On the other hand,
if irrelevant features are chosen, there will add noise into the
model and also hinder the learning process. MIC is employed
to select inputs from candidate predictors from reanalysis 70

data. The lagged inflow and rainfall series are identified by
partial autocorrelation function (PACF) and cross-correlation
function (CCF). The corresponding 95% confidence inter-
val is used to identify significant correlations. Furthermore,
when correlation coefficient slowly declines and cannot fall 75

into confidence interval, a trial and error procedure is used
to determine the optimum lag, i.e., starting from one-lag and
then modifying the external inputs by successively adding
one more lagged time series into inputs (Amiri, 2015; Shoaib
et al., 2015). 80
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Table 1. The candidate inputs via PACF and CCF.

No. Input

1 Qt−1,Qt−4

2 Qt−1,Qt−4,Rt−1

3 Qt−1,Qt−4,Rt−1,Rt−2

4 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3

5 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4

6 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5

7 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6

8 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6,Rt−7

9 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6,Rt−7,Rt−8

10 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6,Rt−7,Rt−8,Rt−9

11 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6,Rt−7,Rt−8,Rt−9,Rt−10

12 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6,Rt−7,Rt−8,Rt−9,Rt−10,Rt−11

13 Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6,Rt−7,Rt−8,Rt−9,Rt−10,Rt−11,Rt−12

Table 2. The candidate inputs from reanalysis data via MIC

No. Input

1 obs,stl3t−1

2 obs,stl3t−1,d2mt−1

3 obs,stl3t−1,d2mt−1, tcwvt−1

4 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1

5 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1

6 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1

7 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1

8 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1

9 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1,stl1t−1

10 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1,stl1t−1, rot−1

11 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1,stl1t−1, rot−1,swvl1t−1

12 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1,stl1t−1, rot−1,swvl1t−1,swvl2t−1

13 obs,stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1,stl1t−1, rot−1,swvl1t−1,swvl2t−1,swvl3t−1

14 obs,rea,t2mt−1

15 obs,rea,t2mt−1,swvl4t−1

16 obs,rea,t2mt−1,swvl4t−1,mx2tt−1

17 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1

18 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1

19 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1

20 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1

21 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1, lspt−1

22 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1, lspt−1,sdt−1

23 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1, lspt−1,sdt−1,smltt−1

24 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1, lspt−1,sdt−1,smltt−1, istl1t−1

25 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1, lspt−1,sdt−1,smltt−1, istl1t−1, istl3t−1

26 obs,rea,t2mt−1,swvl4t−1,mx2tt−1,sft−1, cpt−1, tpt−1, rsnt−1, lspt−1,sdt−1,smltt−1, istl1t−1, istl3t−1, istl2t−1

None: obs represents the selected observed optimal input set, obs = {Qt−1,Qt−4,Rt−1,Rt−2,Rt−3,Rt−4,Rt−5,Rt−6}. rea represents the selected a part of input set
from reanalysis, rea = {stl3t−1,d2mt−1, tcwvt−1, tcwt−1,stl2t−1,mn2tt−1, tsnt−1,stl4t−1,stl1t−1,rot−1,swvl1t−1,swvl2t−1,swvl3t−1}.

3 Methodology

3.1 Feature selection via maximal information
coefficient

The calculation of MIC is based on concepts of the mutual
information (MI) (Kinney and Atwal, 2014). For a random 5
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Figure 2. Location of the Xiaowan hydropower station.

Figure 3. Daily inflow series of the Xiaowan hydropower station.

variable X, such as observed inflow, the entropy of X is de-
fined as

H(X) =−
∑
x∈X

p(x) logp(x) (2)

where p(x) is the probability density function ofX = x. Fur-
thermore, for another random variable Y , such as observed5

rainfall, the conditional entropy of X given Y may be evalu-
ated from the following expression

H(X|Y ) =−
∑
x∈X

∑
y∈Y

p(x,y) logp(x|y) (3)

where H(X|Y ) is the uncertainty of X given knowledge,
p(x,y) and p(x|y) are the joint probability density and the10

conditional probability of X = x and Y = y, respectively.
The reduction of the original uncertainty of X , due to the
knowledge of Y , is called the MI (Amorocho and Espildora,
1973; Chapman, 1986), defined by

MI(X,Y ) =H(X)−H(X|Y )

=
∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)
(4) 15

The calculation of MIC is divided into three steps. Consider
given a dataset D, including variable X and Y with a sample
size n. Firstly, drawing scatter plots ofX and Y and drawing
grids for partitioning which is called an x-by-y grid. LetD|G
denote the distribution of D divided by one of x-by-y grids as 20

G. MI∗(D,x,y) = maxMI(D|G), where is the mutual in-
formation of D|G. Secondly, characteristic matrix is defined
as

M(D)x,y =
MI∗(D,x,y)

log(min(x,y))
(5)

Lastly, MIC is introduced as the maximum value of charac- 25

teristic matrix, that is, MIC(D) = max
xy<B(n)

M(D)x,y , where

B(n) is the upper bound of the grid size which is a function
of sample size, defined B = n0.6. We perform feature selec-
tion from ERA-Interim reanalysis dataset in two steps via
MIC. First, compute MIC of each reanalysis variables and 30

observed inflow. Then, sort features based on MIC in a de-
scending order and determine the optimum inputs by using a
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trail-and-error procedure, i.e. starting from the top one fea-
ture and then modifying the external inputs by successively
adding one more feature into model inputs. The selected k
features from reanalysis data are used as part of input to the
model.5

3.2 Gradient boosting regression trees

GBRT is an ensemble model which mainly includes two al-
gorithms: decision tree algorithm and the boosting algorithm.
The decision tree robust to outliers is used as a primitive
model and boosting algorithm as integration rule is used to10

improve inflow forecasting accuracy.

3.2.1 The decision tree

The decision tree in this paper refers to decision tree learn-
ing used in computer science, which is one of the predic-
tive modelling approaches used in machine learning. A de-15

cision tree consists of branch nodes (the tree structure) and
leaf nodes (the tree output). Supposing a training dataset
is given in a feature space with N features and each fea-
ture with n samples, (X1,y1),(X2,y2), . . . ,(Xn,yn)(Xi =
(x1,x2, . . . ,xN ), i= 1,2, . . . ,n). In the input space where the20

training set is located, each region is recursively divided into
two subregions and the output value of each subregion is
used to construct a binary decision tree. The top-down cyclic
branch learning of the decision tree adopts a greedy algo-
rithm where each branch node only cares about its own ob-25

jective function. By traversing all features and all segmenta-
tion points of each feature, the best feature j and segmenta-
tion points s can be found by minimizing squared loss:

min
j,s

min
c1

∑
Xi∈R1(j,s)

(yi− c1)
2

+min
c2

∑
Xi∈R2(j,s)

(yi− c2)
2

 (6)

where30

R1(j,s) =
{
Xi|x(j)i ≤ s, i= 1,2, · · · ,N

}
(7)

R2(j,s) =
{
Xi|x(j)i > s,i= 1,2, · · · ,N

}
(8)

cm =
1

Nm

∑
Xi∈Rm(j,s)

yi (m= 1,2) (9)

yi is the observed value and R1(j,s) and R2(j,s) are the re-
sults of partitioning. c1 and c2 are output values of R1(j,s)35

and R2(j,s), respectively. Fig. 4 shows an example of a de-
cision tree model with a max depth and number of leaf nodes
of 3 and 5, respectively. If the threshold of loss is set as the
stopping condition of the decision tree, it will easily lead to
over-fitting problems. Hence, we set the following parame-40

ters to alleviate the over-fitting problem of the decision tree

Figure 4. The structure of decision tree model.

model: the maximum depth of the tree, the minimum num-
ber of samples required to split an internal node, the mini-
mum number of samples required to be at a leaf node and
the number of leaf nodes. These parameters are also the ones 45

used for optimization when using the decision tree.

3.2.2 The boosting algorithm

The idea of gradient boosting originated in the observation
by Breiman (Breiman, 1997) and can be interpreted as an
optimization algorithm based on a suitable cost function. 50

Explicit regression gradient boosting algorithms are subse-
quently developed (Friedman, 2001; Mason et al., 1999). The
boosting algorithm used is described here. Supposing a train-
ing dataset with n sample (X1,y1),(X2,y2), . . . ,(Xn,yn), a
squared loss function is used to train the decision tree: 55

L(y,f(X)) =

n∑
i=1

(y− f(Xi))
2 (10)

The core of the GBRT algorithm is the iterative process of
training the decision with a residual method. The iterative
training process of GBRT with M decision trees is as
follows: 60

1) Initialization f0(x) = argmin
c

n∑
i=1

L(yi, c).

2) For m-th (m= 1,2, . . . ,M ) decision trees:
a) Operating i-th (i= 1,2, . . . ,n) sample points. Using the
negative gradient of the loss function to replace the residual
in the current model rmi =−

[
∂L(yi,f(xi))

∂f(xi)

]
f(x)=fm−1(x)

. 65
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b) Fitting a regression tree with {(xi, rmi)}. The i-th
regression tree with (t= 1,2, . . . ,T ) as its corresponding
leaf node region is obtained, where t is the number of leaf
nodes of regression.
c) For each leaf region t= 1,2, . . . ,T , and5

the best fitting value is calculated by cmt =
argmin

c

∑
xi∈Rmt

L(yi,fm−1(xi) + c) .

d) The fitting results are updated by adding the ob-
tained fitting values to the previous ones using

fmt(xi) = fm−1(xi) +
T∑

t=1
cmtI (xi ∈Rmt) .10

3) Finally, a strong learning method is obtained

f̂(xi) = fM (xi) =
M∑

m=1

T∑
t=1

cmtI (xi ∈Rmt) .

According to the above introduction to GBRT, the param-
eters of the GBRT can be divided into two categories:
boosting parameters and tree parameters. The boosting15

parameters include the learning rate and the number of weak
learners (learning_rate and n_estimators). The learning
rate setting is used for reducing the gradient step. The
learning rate influences the overall time of training, and the
smaller the value is, the more iterations are required for20

training. There are four tree parameters: max_leaf_nodes,
min_samples_leaf, min_samples_split and max_depth.
Hence, GBRT has six parameters control model complexity
(Fienen et al., 2018), which we adjusted for tuning by using
a trial-and-error procedure.25

3.3 Evaluation criteria of the models

It is critical to carefully define the meaning of performance
and to evaluate the performance on the basis of the forecast-
ing and fitted values of the model compared with historical
data. The root mean squared error (RMSE) and mean abso-30

lute error (MAE) are the most commonly used criteria to as-
sess model performance and are calculated using Eq. (11)
and Eq. (12), respectively.

RMSE =

√√√√ 1

n

n∑
i=1

(Q̂i−Qi)
2

(11)

35

MAE =
1

n

n∑
i=1

∣∣∣Q̂i−Qi

∣∣∣ (12)

where Q̂i and Qi are the inflow estimation and observed
value at time i, respectively and n is the number of sam-
ples. The RMSE is more sensitive to extremes in sample sets
and thus it is used to evaluate the model’s ability to simulate40

flood peaks. The Pearson correlation coefficient (CORR) is a
measure of the strength of the association between observed
inflow series and forecasted inflow series; it is calculated ac-

cording to Eq. (13).

CORR=

n∑
i=1

(
Qi− Q̄

)(
Q̂i− Q̂

)
√

n∑
i=1

(
Qi− Q̄

)2√ n∑
i=1

(
Q̂i− Q̂

)2 (13) 45

where Q̂ is the mean of the estimation series. The range of the
CORR is between 0 and 1 and values close to 1 demonstrate
a perfect estimation result. Kling–Gupta efficiency scores
(KGE) (Knoben et al., 2019) is also a widely used evalua-
tion index. It can be provided as following Eq. (14) and (15). 50

KGE = 1

−

√√√√(CORR− 1)2 +

(
σ̂

σ
− 1

)2

+

(
Q̂

Q̄
− 1

)2 (14)

σ̂ =

√√√√ 1

n

n∑
i=1

(
Q̂i− Q̂

)2
,σ =

√√√√ 1

n

n∑
i=1

(
Qi− Q̄

)2
(15)

where σ is the standard deviation of the observed values, σ̂ 55

is the standard deviation of the inflow estimation, µ is the
mean of the observed series and µ̂ is the mean of the inflow
estimation series. The percent bias in flow duration curve
high-segment volume (BHV) (Yilmaz et al., 2008; Vogel and
Fennessey, 1994) is presented to estimate prediction perfor- 60

mance of extreme value for model. It can be provided as fol-
lowing Eq. (16).

BHV =

H∑
k=1

(
Q̂h−Qh

)
H∑

h=1

Qh

× 100 (16)

where h= 1,2, . . . ,H are the inflow indices for inflows with
exceedance probabilities lower than 0.02. In this paper, the 65

inflow threshold of exceedance probabilities equalling 0.02
is 1722 m3/s. The Index of Agreement (IA) (Willmott, 1981)
plays a significant role in evaluating the degree of the agree-
ment between observed series and inflow estimation series.
Similar to CORR, its range is between 0 (no agreement at 70

all) and 1 (perfect fit). It is given by:

IA= 1−

n∑
i=1

(Q̂i−Qi)
2

n∑
i=1

(
∣∣∣Q̂i− Q̄

∣∣∣+ ∣∣Qi− Q̄
∣∣)2 (17)

3.4 Overview of framework

Fig. 5 illustrates the overall structure of framework pre-
sented. This structure consists of two major models: GBRT 75
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and GBRT-MIC. In GBRT, we measure the relevance of dif-
ferent lags observed inflow and rainfall with observed inflow
at the time of forecast via partial autocorrelation function
(PACF) and cross-correlation function (CCF) (Badrzadeh
et al., 2013) and select appropriate lags as predictors of5

model by hypothesis test and trial-and-error procedures.
Then, data pre-processing and feature scaling are carried
out for selected predictors. Next, dividing the dataset into
training set, validation set, and testing set according to the
length of each data set specified in advance (in Section 2.2).10

A grid search algorithm, which is an exhaustive search all
candidate parameter combination method, is guided to op-
timization model parameters by evaluation of validation set
for each lead time (Chicco and Davide, 2017). Lastly, pre-
diction results are evaluated based on testing set. Compared15

with GBRT, GBRT-MIC adds reanalysis data which are se-
lected via MIC (in Section 3.1) as the input of the model.
Moreover, GBRT-MIC also calculates the importance of fea-
tures according to the prediction results and ranks the fea-
tures (Louppe, 2014). It is difficult to perform multi-step20

forecasting by the reason of accumulation of errors, reduced
accuracy, and increased uncertainty. The current state of
multi-step ahead forecasting is reviewed, there are mainly
two strategies that you can use for multi-step forecasting for
single-output, namely, Static (Direct) multi-step forecast and25

Recursive multi-step forecast (Bontempi et al., 2012; Taieb
et al., 2012). Recursive forecast strategy is biased when the
underlying model is nonlinear and is sensitive to the estima-
tion error, since estimated values, instead of actual ones, are
more and more used when we get further in the future (Bon-30

tempi et al., 2012). Thus, the Static multi-step forecasting
strategy is employed in this paper. Since the Static strategy
does not use any approximated values to compute the fore-
casts, it is not prone to any accumulation of errors. The model
structures of GBRT and GBRT-MIC are as follows:35

Q̂I
t+T =f(θI

t ;Qt,Qt−1, . . . ,Qt+1−p,

Rt,Rt−1, . . . ,Rt+1−q) (T = 1,2, . . . ,10)
(18)

Q̂II
t+T =f(θII

t ;Qt,Qt−1, . . . ,Qt+1−p,

Rt,Rt−1, . . . ,Rt+1−q,E
1
t ,E

2
t , . . . ,E

k
t )

(T = 1,2, . . . ,10)

(19)

where Q̂I
t+T and Q̂II

t+T are the forecasted value of GBRT
and GBRT-MIC at the lead time T of current time t, respec-
tively. θI

t and θII
t are parameters of GBRT and GBRT-MIC40

at the lead time T of current time t, respectively. p and q
are lags of observed inflow and rainfall determined via PACF
and CCF, respectively.Et is the features from reanalysis data
at the current time t and k is the number of features from re-
analysis data determined via MIC.45

Figure 5. Overview of the framework.

4 Experimental results and discussion

In order to compare with GBRT-MIC, the ANN-MIC, SVR-
MIC and MLR-MIC, obtained by replacing GBRT in the
framework with ANN, SVR and MLR, respectively, are also
employed for inflow forecasting with lead times of 1-10 days. 50

As mentioned previously, six indices, i.e. the MAE, RMSE,
CORR, KGE, BHV and IA, are calculated to evaluate the
performance of models based on the testing set. We also
explored the feature importance based on the GBRT-MIC
model (Louppe, 2014). All computations of this paper are 55

performed on a ThinkPad P1 workstation containing an Intel
Core i7-9850H CPU with 2.60 GHz and 16.0 GB of RAM,
using the version 3.7.10 of Python (Foundation, 2020), which
is powerful, fast and open, and scikit-learn package (Pe-
dregosa et al., 2011). 60

4.1 Feature selection

Fig. 6 shows the PACF, CCF and the corresponding 95%
confidence interval from lag 1 to lag 12. The PACF shows
significant autocorrelation at lag one and lag four, respec-
tively (Fig. 6(a)), and thus, inflow series one and four-day 65

lag are selected as the inputs of model. CCF between in-
flow and rainfall gradually decreases as increasing the time
lag (Fig. 6(b)) and cannot fall into 95% confidence interval.
Therefore, a trial-and-error procedure is used to determine
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optimal selection of lagged rainfall series. 13 input structures
are tried (Table 1) and the trial results are shown in Fig. A1.
The results indicate that 7th input structure obtains best per-
formance. Accordingly, rainfall series from one to six-day
lag are selected as the inputs of model. As mentioned previ-5

ously, based to MIC between inflow and the reanalysis vari-
able (Table A1), a trial-and-error procedure is used to deter-
mine optimal input subset. 26 input structures are tried (Ta-
ble 2) and the trial results are shown in Fig. A2. The results
show that 8th input structure obtains best performance and10

thus the No.1 to 8 predictors in Table A1 are selected as the
model input. Finally, a total of 16 variables including 8 ob-
served variables and 8 reanalysis variables are selected as the
model inputs (Table 3). As shown in Table 3, No. 9 to 18 are
reanalysis variables and the range of MIC of the reanalysis15

variables selected is 0.643 to 0.847. Furthermore, No. 9 and
No. 13 to 16 are variables related to temperature. Soil tem-
perature level 3 (No. 9) is the temperature of the soil in layer
3 (28-100 cm, the surface is at 0 cm). The temperature of the
snow layer (No. 13) gives the temperature of the snow layer20

from the ground to the snow-air interface. No. 10 to 12 are
variables related to the water content of the atmosphere. 2
meter dewpoint temperature (No. 10) is a measure of the hu-
midity of the air. Combined with temperature and pressure, it
can be used to calculate the relative humidity. The total col-25

umn water vapor (No. 11) is only the total amount of water
vapor, which is a fraction of the total column water. Total col-
umn water (No. 12) is the sum of water vapor, liquid water,
cloud ice, rain and snow in a column extending from the sur-
face of the Earth to the top of the atmosphere. Volumetric soil30

water layer 1 (No. 19) is the volume of water in soil layer 1.
In summary, all the selected predictors are interpretable and
have a good physical connection with inflow.

4.2 Hyperparameter optimization

For machine learning methods, hyperparameters are a king35

of parameters that are set before training and cannot be di-
rectly learned from the regular training process. In order to
improve the performance of models, it is imperative to tune
the hyperparameters of models. Grid search is employed to
tune the hyperparameters of GBRT, GBRT-MIC, ANN-MIC40

and SVR-MIC. Reviewing to the basis of available literature
(Badrzadeh et al., 2013; Rasouli et al., 2012), an optimizer
in the family of quasi-Newton methods, namely L-BFGS is
used as the training algorithm of ANN and the number of
hidden layers is fixed to 3. Another two parameters, namely45

activation function and the number of nodes of the hidden
layer need to be adjusted. A range of 2-20 neurons and four
commonly used activation functions (Table 4) are selected
by grid search. To alleviate the influence of random initial-
ization of weights, 50 ANN-MIC models are trained for each50

parameter combination. Optimal activation function and the
number of nodes of the hidden layer are determined by se-
lecting the minimal MAE of the validation set for each lead

time. The results of the trials show tanh and logistic function
are two more robust activation function (Fig. 7) and ANN 55

with fewer nodes is inclined to obtain lower error. The op-
timal parameter combination for each lead time is listed in
Table 5. It can be seen that the optimal number of nodes is
2, 3 or 4 and the optimal activation function is either tanh
or logistic function. For SVR, according to Lin et al. (2006) 60

and Dibike et al. (2001), radial basis function (RBF) outper-
forms other kernel functions for runoff modelling and thus
RBF is used as the kernel function in this study. There are
three parameters need to be adjusted. Firstly, an appropriate
tuning range of parameter is determined by a trial-and-error 65

procedure. And then, to reach at an optimal choice of these
parameters, the MAE is used to optimize the parameters by
grid search. Optimal tuning parameters of SVR are shown in
Table 5. As mentioned earlier, for GBRT, there are six param-
eters need to be adjusted. In order to obtain an optimal pa- 70

rameter combination as soon as possible, we optimize all pa-
rameters in two steps. Firstly, n_estimators and learning_rate
are fixed to 100 and 0.1, respectively. The max_leaf_nodes,
min_samples_leaf, max_depth and min_samples_split, four
tuning parameters generate 40000 models at each lead time. 75

Secondly, after the tree parameters are determined, learn-
ing_rate is modified to 0.01 and n_estimators is determined
by grid search. To accommodate the computational burden,
all models are distributed among about 12 central processing
units (CPUs) and total wall time for the runs is about 7 hours 80

for GBRT_MIC and GBRT. Table 6 lists optimal tuning pa-
rameters of GBRT and GBRT-MIC.

4.3 Inputs comparison

Fig. 8 illustrates performance indices of GBRT and GBRT-
MIC on the testing set (2017/01/01-2018/12/31) at lead times 85

of 1-10 days. It is obvious that the reanalysis data selected
by MIC makes a great improvement on the GBRT forecast-
ing at both short and long lead times. In particular, for the
longer lead times prediction of GBRT-MIC is significantly
outperform GBRT. For Fig. 8(a), the MAE of GBRT-MIC 90

decreases from 175 to 172, a decrease of 1.74% for two-day
ahead forecasting and decreases from 273 to 237, a decrease
increasing to 13.18% for ten-day ahead forecasting compared
with GBRT. For Fig. 8(b), the RMSE of GBRT-MIC achieves
1.4% and 10.6% reduction for two and ten-day ahead fore- 95

casting, respectively, compared with GBRT. For Fig. 8(c),
8(d) and 8(f), the CORR, KGE and IA of GBRT-MIC in-
crease by 0.2%, 2.2%, 1.0% for two-day ahead forecasting
and 3.4%, 7.8% and 2.2% for ten-day ahead forecasting, re-
spectively. Fig. 8(e) compares the BHV of GBRT and GBRT- 100

MIC which indicates reanalysis data can enhance forecasting
of extreme values. Fig. 9(a) shows the five-day ahead fore-
casted inflow of GBRT-MIC and GBRT versus the observed
inflow in the testing set. The slopes of fitting curve of GBRT-
MIC and GBRT are 0.89 and 0.81, respectively, which also 105

demonstrates that GBRT-MIC can obtain more accurate in-
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Figure 6. PACF plot of Xiaowan daily inflow and CCF of Xiaowan rainfall and inflow. (a) PACF (b) CCF.

Table 3. List of inputs of GBRT-MIC. There are of two types, observed and reanalysis variables. The reanalysis variables are available two
time a day at 00:00 UTC and 12:00 UTC. The cumulative variable (e.g., Total column water) is the sum of two periods and the instantaneous
variable (e.g. 2 meter dewpoint temperature) is the mean of two periods.

No. Description Index Unit MIC Type

1 Inflow at day t – 1 Qt−1 m3/s - Obs.
2 Inflow at day t – 2 Qt−1 m3/s - Obs.
3 Rainfall at day t – 1 Rt−1 mm - Obs.
4 Rainfall at day t – 2 Rt−2 mm - Obs.
5 Rainfall at day t – 3 Rt−3 mm - Obs.
6 Rainfall at day t – 4 Rt−4 mm - Obs.
7 Rainfall at day t – 5 Rt−5 mm - Obs.
8 Rainfall at day t – 6 Rt−6 mm - Obs.
9 Soil temperature level 3 stl3t−1 K 0.847 ERA-I.
10 2 meter dewpoint temperature 2dt−1 K 0.781 ERA-I.
11 Total column water vapour tcwvt−1 kg/m2 0.699 ERA-I.
12 Total column water tcwt−1 kg/m2 0.699 ERA-I.
13 Soil temperature level 2 stl2t−1 K 0.689 ERA-I.
14 Minimum temperature at 2 meters mn2tt−1 K 0.684 ERA-I.
15 Temperature of snow layer tsnt−1 K 0.664 ERA-I.
16 Soil temperature level 4 stl4t−1 K 0.643 ERA-I.

Table 4. Four commonly used activation functions for ANN-MIC.

Name Functional expression

Logistic f(x) = 1
1+e−x

Tanh f(x) = ex−e−x

ex+e−x

Identity f(x) = x
Relu f(x) =max(0,x)

flow forecasting than GBRT. Fig. 9(b) illustrates the distribu-
tion of the forecast errors of GBRT and GBRT-MIC. The re-
sults show the prediction error of two models approximate to
normal distribution. It demonstrates that the prediction error
contains less information that is not extracted by the model5

and more errors of forecasted inflow concentrate at 0 around
by GBRT-MIC than GBRT. Fig. 9(c) provides forecasted in-

flow time series (from the testing set) of GBRT-MIC and
GBRT at lead time of five-day. It can be seen that GBRT-
MIC provides great performance compare to GBRT, espe- 10

cially for the extreme values. This reveals that the problem
of inaccurate extreme value prediction arisen in areas with
concentrated rainfall for the GBRT model could be mitigated
by incorporating the reanalysis data identified by MIC.

4.4 Model comparison 15

GBRT-MIC, SVR-MIC, ANN-MIC with obtained optimal
model parameters are employed for inflow forecasting of one
to ten-day ahead. Summarized results for training and test-
ing set are presented in Table 7 and Table 8, respectively.
To avoid local minima problems, 50 ANN-MIC models are 20

trained for each lead time and the median of the predictions
of the 50 models gives the final prediction. It is clear from
Table 7 that the GBRT-MIC are more efficient in the train-
ing set than other models at lead times of 1-10 days, which
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Figure 7. Sensitivity of the activation function and the number of nodes in the hidden layer on the MAE of ANN-MIC, the shadow part is
95% confidence interval obtained by bootstrap of 50 trials. (a) One-day ahead (b) Ten-day ahead.

Table 5. Tuning parameters of ANN-MIC and SVR-MIC.

Model
Tuning
parameter

Tuning range 1 2 3 4 5 6 7 8 9 10

ANN-MIC Structure / 19-4-1 19-2-1 19-3-1 19-2-1 19-2-1 19-2-1 19-2-1 19-2-1 19-2-1 19-2-1
Activate
function

/ tanh tanh logistic logistic logistic logistic logistic logistic tanh tanh

SVR-MIC C (1, 100, 20) 6.2105 1.0000 1.0000 1.0000 11.4211 1.0000 1.0000 6.2105 1.0000 6.2105
ε (0.001, 0.1, 20) 0.0069 0.0084 0.0017 0.0079 0.0017 0.0001 0.0022 0.0006 0.0048 0.0043
γ (0.001, 0.1, 20) 0.0323 0.0583 0.0844 0.0271 0.0062 0.0218 0.0375 0.0166 0.0687 0.0166

Note: The bold parts, (min, max, step) represent [min+ max−min
step−1 × 0,min+ max−min

step−1 × 1, . . . ,min+ max−min
step−1 × (step− 1)]

demonstrates that GBRT-MIC has a powerful fitting ability.
Meanwhile, all machine learning models obtain better fore-
casted results than MLR-MIC which cannot capture nonlin-
ear relationship. It should be noted that ANN-MIC has best
performance for extreme values in terms of BHV in the train-5

ing set. As shown in Table 8, GBRT-MIC performs best for
the testing set at lead times of 4-10 days in terms of six in-
dices. At a lead time of ten days, the KGE of GBRT-MIC
even reached 0.8317. At the lead times of 1-3 days, three ma-
chine learning models obtain approximate performance but10

outperform MLP-MIC. The machine learning models can ac-
quire enough information to perform forecasting at the short
lead time (1-3 days). The performance indices of these four
models in the testing set (2017-2018) at the lead times of
1-10 days are presented in Fig. 10. The results indicate the15

performance of these four models decreases (higher MAE,
RMSE and BHV, and lower CORR, KGE and IA) as the lead
time increases. As mentioned earlier, the four models per-
form equally well for one- to three-day ahead forecasting,
whereas significant differences among their performances20

are found as the lead time exceeds three days. It clearly in-
dicates that the GBRT produce much higher CORR, KGE
and IA, and lower MAE, RMSE and BHV than the other
three models for four to ten-day ahead forecasting except
that the ANN-MIC perform nearly to GBRT-MIC for ten-25

day ahead forecasting. It should be noted that SVR performs

worst according to BHV and KGE, which demonstrates that
SVR cannot capture extreme values. On the contrary, GBRT-
MIC significantly outperform other models in terms of BHV
at lead times of 1-10 days, which indicates that GBRT-MIC 30

is able to obtain extreme values among all models developed
in this paper.

4.5 Feature importance

A benefit of using gradient boosting is that after the boosted
trees are constructed, relative importance scores for each fea- 35

ture can be acquired to estimate the contribution of each
feature to inflow forecasting. Fig. 11 shows the feature im-
portance based on GBRT-MIC for lead times of one and ten
days. The one-day lag observed time series (Qt−1) is more
important for shorter lead times (Fig. 11(a)), which demon- 40

strates that the historical observed values are essential to
inflow forecasting at shorter lead times. The features (e.g.,
stl3t−10 and d2mt−10) from the reanalysis data have a high
relative importance at longer lead times (Fig. 11(b)). Based
on the analysis of the concepts of and (Section 4.1), we infer 45

that the temperature near the ground effects the inflow by af-
fecting the melting of snow which is consistent with the fact
that the Lancang River is a snow-melt river. The ten-day lag
observed time series (Qt−10) is also very important which in-
dicate the long memory of inflow series (Salas, 1993). Mean- 50
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Table 6. Tuning parameters of GBRT and GBRT-MIC.

Tuning parameter Tuning range
Optimal parameters (the lead times of 1-10 days)

GBRT GBRT-MIC

max_leaf_nodes [2, 4, 6,. . ., 40] 8, 4, 4,4, 4, 2, 4, 2, 2, 2 7, 9, 13, 7, 15, 4, 5, 4, 4, 17
min_samples_leaf [1, 6, 11, . . ., 46] 6, 31, 1,1, 1, 31, 6, 1, 6, 1 2, 7, 2,4, 2, 1, 10, 10, 8, 1
max_depth [1, 2, 3, . . ., 10] 3, 2, 2,2, 3, 1, 3, 1, 1, 1 4, 6, 8,5, 9, 9, 2, 2, 7, 2
min_samples_split [2, 4, 6, . . ., 40] 18, 2, 16,16, 24, 2, 16, 2, 2, 2 18, 15, 12,13, 8, 3, 19, 3, 19, 8

n_estimators [100, 200, 300, . . ., 4000]
1100, 900,1200, 700, 700,
1200, 600,1100, 900, 900

3800, 2700,1300, 900, 1000,
700, 1400,2000, 1300, 1200

Figure 8. Performance of GBRT and GBRT-MIC for the testing set (2017-2018) in term of six indices. (a) MAE (b) RMSE (c) CORR (d)
KGE (e) BHV (f) IA.

while, it is found that the reanalysis data provides important
information for inflow forecasting at longer lead times.

5 Conclusions

In this study, GBRT-MIC is employed to make inflow fore-
casts for lead times of 1-10 days and ANN-MIC, SVR-MIC 5

and MLR-MIC are developed to compare with GBRT-MIC.
The reanalysis data selected by MIC, the antecedent inflow
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Figure 9. Five-day ahead inflow forecasts of the GBRT and GBRT-MIC for the testing set (2017-2018, 730 days). (a) Observed versus
forecasted inflow. (b) The histogram of predicting error of testing set (c) Comparison of the observed and forecasted inflow.

and the rainfall records selected by PACF and CCF are used
as predictors to drive the models. These models are compared
using six evaluation criteria, the MAE, RMSE, CORR, KGE,
BHV and IA. It is shown that GBRT-MIC, ANN-MIC and
SVR-MIC outperform MLR-MIC at lead times of 1-10 days,5

and GBRT-MIC performs best at lead times of 4-10 days,
especially for forecasting of extreme values. According to
comparison the forecasted results of GBRT and GBRT-MIC,
we conclude that GBRT-MIC can be used for more accurate
and reliable inflow forecasting at lead times of 1-10 days and10

reanalysis data selected by MIC makes a great improvement
on the GBRT forecasting, especially for lead times of 4-10
days. In addition, the feature importance achieved by GBRT-
MIC demonstrates that soil temperature, the total amount of
water vapour in a column and dewpoint temperature near the15

ground contribute to increase the prediction accuracy of in-
flow at longer lead times. In summary, the developed frame-
work that integrates GBRT and reanalysis data selected MIC

and can well perform inflow forecasting at lead times of 1-
10 days. The results of this study are of significance to assist 20

power stations in making power generation plans 7-10 days
in advance in order to reduce LEQDW and flood disasters.
Another direction of improving the results could be consid-
ering heuristic methods (for example, Grey Wolf algorithm)
to optimize model parameters, which could search for more 25

wide range of hyper parameters and get optimization param-
eters more quickly.

Code availability. The code used for this study can be found in
Liao (2020; https://doi.org/10.5281/zenodo.3701182).

Data availability. The reanalysis dataset can be downloaded from 30

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/



14 S. L. Liao et al.: Daily inflow forecasting using ERA-Interimreanalysis dataset

Figure 10. Performance of GBRT-MIC, SVR-MIC, ANN-MIC and MLR-MIC for the testing set (2017-2018) in term of six indices. (a)
MAE (b) RMSE (c) CORR (d) KGE (e) BHV (f) IA.

Appendix A

The ERA-Interim is a reanalysis product of the global at-
mospheric forecasts at ECMWF which is produced through
data assimilation system, called as the Integrated Forecast
System (IFS). The system includes a 4-dimensional varia-5

tional analysis (4D-Var) with a 12-hour analysis window.
The spatial resolution of the data set is approximately 80 km
(0.72°) on 60 levels in the vertical from the surface up to 0.1
hPa. (Berrisford et al., 2011). This reanalysis meteorological
products of from 0.125° to 2.5° are generated by interpola-10

tion. This reanalysis meteorological products from the ERA-
Interim such as rainfall, maximum and minimum tempera-
tures, and wind speed at 0.25° (latitude) × 0.25° (longitude)
spatial and 12-hour temporal resolutions for the study period
2011-2018 are downloaded from the ECMWF webpage.15

13 input structures from observed data are tried and 50
trials are performed for each input structure. The results (Fig.

A1) show 7th input structure is the optimal input subset for
GBRT. 26 input structures from reanalysis data are tried and
50 trials are performed for each input structure. The results 20

(Fig. A2) show 8th input structure is the optimal input subset
for GBRT-MIC.
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Table 7. Performance indices of the training set.

Indice Model 1 2 3 4 5 6 7 8 9 10

MAE (m3/s) GBRT-MIC 56 63 78 122 89 163 161 155 161 172
SVR-MIC 98 126 144 162 173 183 188 194 197 203
ANN-MIC 99 129 148 162 172 184 192 196 203 205
MLR-MIC 103 136 159 175 187 198 207 215 221 228

RMSE (m3/s) GBRT-MIC 77 87 107 185 124 257 255 245 254 278
SVR-MIC 153 212 247 280 300 319 329 337 344 353
ANN-MIC 151 206 240 264 284 304 318 328 334 339
MLR-MIC 157 214 250 275 295 315 330 342 352 361

CORR GBRT-MIC 0.9952 0.9940 0.9908 0.9724 0.9877 0.9464 0.9468 0.9510 0.9476 0.9366
SVR-MIC 0.9811 0.9641 0.9511 0.9380 0.9286 0.9186 0.9126 0.9073 0.9039 0.8977
ANN-MIC 0.9815 0.9653 0.9528 0.9424 0.9331 0.9232 0.9156 0.9101 0.9066 0.9036
MLR-MIC 0.9801 0.9628 0.9485 0.9376 0.9278 0.9172 0.9090 0.9019 0.8959 0.8900

KGE GBRT-MIC 0.9884 0.9827 0.9738 0.9439 0.9642 0.9009 0.9069 0.9099 0.9002 0.8877
SVR-MIC 0.9618 0.9207 0.8982 0.8613 0.8445 0.8266 0.8223 0.8247 0.8149 0.8103
ANN-MIC 0.9735 0.9508 0.9325 0.9177 0.9048 0.8907 0.8800 0.8724 0.8668 0.8611
MLR-MIC 0.9718 0.9473 0.9272 0.9117 0.8979 0.8829 0.8713 0.8613 0.8528 0.8444

BHV (%) GBRT-MIC -0.3025 -0.6382 -0.8986 -1.3422 -1.4019 -1.5485 -1.7486 -1.7692 -2.6647 -3.0375
SVR-MIC -1.3488 -3.3959 -4.0686 -6.9058 -7.5421 -8.2216 -6.9950 -6.1996 -6.2406 -5.6687
ANN-MIC -0.1814 -0.2586 -0.7710 -0.7723 -0.6249 -0.6815 -0.6878 -0.8821 -0.6487 -0.1239
MLR-MIC -0.4668 -1.0527 -1.5863 -1.9709 -1.9477 -2.1634 -2.0182 -1.8074 -2.0454 -1.7473

IA GBRT-MIC 0.9976 0.9969 0.9952 0.9854 0.9935 0.9706 0.9712 0.9734 0.9712 0.9650
SVR-MIC 0.9902 0.9804 0.9727 0.9636 0.9574 0.9506 0.9472 0.9449 0.9421 0.9386
ANN-MIC 0.9906 0.9820 0.9752 0.9695 0.9643 0.9586 0.9541 0.9509 0.9487 0.9468
MLR-MIC 0.9898 0.9807 0.9729 0.9668 0.9613 0.9551 0.9502 0.9460 0.9423 0.9387

Note : The bold numbers represent the values of performance criterion for the best fitted models.

Figure 11. Feature importance obtained by GBRT-MIC. (a) One-day ahead (b) Ten-day ahead.
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Table 8. Performance indices of the testing set.

Indice Model 1 2 3 4 5 6 7 8 9 10

MAE (m3/s) GBRT-MIC 137 172 185 188 202 211 219 222 230 237
SVR-MIC 131 164 182 197 212 223 227 231 233 237
ANN-MIC 132 163 182 198 211 221 225 230 239 238
MLR-MIC 138 173 195 213 230 244 248 252 259 263

RMSE (m3/s) GBRT-MIC 211 274 295 304 319 336 347 359 374 396
SVR-MIC 200 263 303 342 366 387 395 403 407 413
ANN-MIC 199 258 296 324 341 362 376 391 402 399
MLR-MIC 205 268 314 347 369 391 404 413 423 429

CORR GBRT-MIC 0.9722 0.9526 0.9449 0.9414 0.9354 0.9285 0.9236 0.9181 0.9112 0.8997
SVR-MIC 0.9751 0.9575 0.9434 0.9300 0.9196 0.9099 0.9058 0.8999 0.8993 0.8950
ANN-MIC 0.9752 0.9580 0.9444 0.9333 0.9257 0.9163 0.9091 0.9017 0.8956 0.8975
MLR-MIC 0.9738 0.9545 0.9374 0.9231 0.9126 0.9012 0.8940 0.8893 0.8834 0.8802

KGE GBRT-MIC 0.9550 0.9367 0.9244 0.9092 0.9200 0.8769 0.8693 0.8580 0.8417 0.8317
SVR-MIC 0.9520 0.9055 0.8797 0.8347 0.8158 0.7950 0.7915 0.7941 0.7822 0.7786
ANN-MIC 0.9625 0.9352 0.9115 0.8953 0.8808 0.8658 0.8530 0.8440 0.8371 0.8313
MLR-MIC 0.9605 0.9284 0.9011 0.8800 0.8620 0.8452 0.8319 0.8232 0.8137 0.8054

BHV (%) GBRT-MIC -0.3826 0.3880 -0.2319 -0.9629 0.6566 -2.2766 -2.7422 -3.1924 -4.3363 -4.5040
SVR-MIC -1.3382 -4.0253 -5.3037 -8.2410 -9.4167 -10.0357 -9.6049 -8.9452 -9.6886 -10.1058
ANN-MIC -0.1228 -0.9608 -1.8150 -2.0839 -2.7642 -3.3509 -4.4831 -4.7424 -5.1999 -5.5886
MLR-MIC -0.8093 -2.3244 -3.4945 -4.4210 -4.8268 -5.5955 -6.5914 -6.6302 -6.8944 -7.3080

IA GBRT-MIC 0.9856 0.9753 0.9710 0.9686 0.9661 0.9601 0.9571 0.9535 0.9485 0.9419
SVR-MIC 0.9869 0.9763 0.9676 0.9568 0.9495 0.9421 0.9396 0.9372 0.9351 0.9326
ANN-MIC 0.9872 0.9779 0.9701 0.9637 0.9590 0.9532 0.9486 0.9442 0.9405 0.9408
MLR-MIC 0.9865 0.9759 0.9661 0.9577 0.9511 0.9441 0.9392 0.9360 0.9320 0.9295

Note : The bold numbers represent the values of performance criterion for the best fitted models.

Figure A1. Trial results of 13 input structures from observed data. Figure A2. Trial results of 26 input structures from reanalysis data.
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Table A1. Description and notations of the ECMWF Reanalysis Fields.

No. Variable MIC Description Units

1 stl3 0.847 Soil temperature level 3 K
2 d2m 0.781 2 metre dewpoint temperature K
3 tcwv 0.699 Total column water vapour kg/m2

4 tcw 0.699 Total column water kg/m2

5 stl2 0.689 Soil temperature level 2 K
6 mn2t 0.684 Minimum temperature at 2 metres since previous post-processing K
7 tsn 0.664 Temperature of snow layer K
8 stl4 0.643 Soil temperature level 4 K
9 stl1 0.631 Soil temperature level 1 K
10 ro 0.619 Runoff m
11 swvl1 0.614 Volumetric soil water layer 1 m3/m3

12 swvl2 0.610 Volumetric soil water layer 2 m3/m3

13 swvl3 0.610 Volumetric soil water layer 3 m3/m3

14 t2m 0.571 2 metre temperature K
15 swvl4 0.550 Volumetric soil water layer 4 m3/m3

16 mx2t 0.539 Maximum temperature at 2 metres since previous post-processing K
17 sf 0.470 Snowfall m of water equivalent
18 cp 0.426 Convective precipitation K
19 tp 0.416 Total precipitation m
20 rsn 0.408 Snow density kg/m3

21 lsp 0.358 Large-scale precipitation m
22 sd 0.337 Snow depth m of water equivalent
23 smlt 0.252 Snowmelt m of water equivalent
24 istl1 0.112 Ice temperature layer 1 K
25 istl3 0.109 Ice temperature layer 3 K
26 istl2 0.100 Ice temperature layer 2 K
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