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Abstract: Quantifying seasonal variations in precipitation δ2H and δ18O is important for many stable isotope applications, 

including inferring plant water sources and streamflow ages. Here we present global maps that concisely quantify the 

seasonality of stable isotope ratios in precipitation. We fit sine curves defined by amplitude, phase and offset parameters to 15 

quantify annual precipitation isotope cycles at 653 meteorological stations on all seven continents. At most of these stations, 

including in tropical and subtropical regions, sine curves can adequately represent the seasonal cycles in precipitation isotopes. 

Additionally, the amplitude, phase, and offset parameters of these sine curves correlate with site climatic and geographic 

characteristics. Multiple linear regression models based on these site characteristics can map global precipitation isotope 

amplitudes, phases, and offsets. We then adjusted the regression-based maps for residual spatial variations that were not 20 

captured by the regression models. We make these gridded global maps of precipitation δ2H and δ18O cycles publicly available. 

We also make tabulated site data and fitted sine curve parameters available to support the development of regionally calibrated 

models, which will generally be more accurate than our global model for regionally specific studies.  

 

1 Introduction 25 

Characterizing the stable oxygen (18O/16O) and hydrogen (2H/1H) isotope compositions of precipitation can provide insights 

into the temporal and spatial origins of water, and of geological and biological materials that incorporate O and H from water. 

However, the isotopic composition of precipitation is difficult and costly to measure across large spatial scales or at high 

temporal frequencies, and thus precipitation isotope measurements are often unavailable for the times and locations at which 

they are needed. Consequently, compiled precipitation isotope data (e.g., Global Network for Isotopes in Precipitation; 30 
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International Atomic Energy Agency) and interpolations of mean and monthly precipitation isotope data (Bowen et al., 2005; 

Bowen & Wilkinson, 2002) are used across many fields of science (West et al., 2010).  

 

Although these network datasets and interpolated maps contain spatial and temporal information, it is often convenient to 

simplify and average across one of those dimensions. When identifying the spatial origin of water in a sample, investigators 5 

may use spatial patterns in mean isotope ratios (despite those patterns varying temporally and those samples not integrating 

water signatures throughout years). Additionally, when identifying the temporal origin of water in a sample, investigators often 

use time-series of isotope data from the nearest measurement location (and thus do not account for spatial differences). 

Alternatively, concise representations of large-scale spatiotemporal precipitation isotope patterns could be widely useful and 

mitigate the need to average precipitation isotope data across space or time. 10 

 

Isotope ratios in precipitation often follow distinct seasonal cycles that can be approximated by sine curves (Dutton et al., 

2005; Feng et al., 2009; Halder et al., 2015; Vachon et al., 2007; Wilkinson and Ivany, 2002), and the parameters describing 

those sine curves are often predictable in space (Allen et al., 2018; Jasechko et al., 2016). Sine curves concisely represent 

temporal dynamics because they express continuous, cyclic time series as functions of only three parameters (amplitude, phase, 15 

and offset). To predict isotope seasonality across the globe, values of these three sine parameters, fitted to monthly precipitation 

isotope data at monitoring stations, can be described as functions of station climate and geography. Such mapped sinusoidal 

cycles were shown to be effective in predicting monthly precipitation isotope values across Switzerland (Allen et al., 2018). 

Beyond being useful for predicting isotope values at specific times, sine curves generally aid in characterizing the propagation 

of cyclic signals. For example, as precipitation travels through hillslopes and into streams, seasonal isotope amplitudes are 20 

dampened, reflecting transport processes that can be quantified as a stream-precipitation amplitude ratio (Kirchner, 2016a, 

2016b); this young water fraction, which requires sine curve fitting of precipitation isotopes, has been used in many recent 

studies (Clow et al., 2018; von Freyberg et al., 2018; Jacobs et al., 2018; Jasechko et al., 2016, 2017; Lutz et al., 2018; Song 

et al., 2017). Thus, spatial data describing how precipitation isotope compositions vary seasonally could facilitate 

interpretations of environmental 18O/16O and 2H/1H data and support predictions of precipitation isotope compositions in time 25 

and space. 

 

Here we present global maps of precipitation isotope cycles that capture patterns in precipitation isotope seasonality. We first 

describe the strength of seasonal isotope cycles, and quantify how well sine curves explain monthly precipitation measurements 

at each of 653 precipitation isotope monitoring stations. We then explore how well the parameters describing those sine curves 30 

can be predicted across the globe, as a function of site characteristics. Lastly, we produce global maps and data that support 

stable isotope applications, and make these maps and data publicly available.  
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2. Methods 

2.1. Data 

We used a global dataset of monthly precipitation oxygen and hydrogen isotope measurements from 650 and 610 precipitation 

monitoring stations, respectively. These previously compiled (Jasechko et al., 2016) data were collected from the Canadian 

Network for Isotopes in Precipitation (Birks and Edwards, 2009; Birks and Gibson, 2013), the US Network for Isotopes in 5 

Precipitation (Delavau et al., 2015; Welker, 2000), and the Global Network for Isotopes in Precipitation (Aggarwal et al., 2011; 

Halder et al., 2015). Some stations have datasets that are as long as 57 years, although shorter durations are more common 

(Figure S1a). Following Jasechko et al. (2016), we characterize seasonal cycles only at monitoring stations that report 

precipitation isotope compositions for at least eight unique months. Monthly precipitation amounts are also available from 623 

of the 650 stations that measured oxygen isotope ratios, and from 603 of the 610 stations that measured hydrogen isotope 10 

ratios. All hydrogen and oxygen isotope ratios of precipitation are denoted as δ2H and δ18O, defined by  
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where V-SMOW refers to the Vienna Standard Mean Ocean Water standard. 15 

 

We compiled gridded climatological and geographical data for global modelling and for inferring site characteristics of the 

precipitation monitoring stations. We downloaded climate maps of monthly precipitation sums and monthly means of daily 

low, high, and mean temperature, all at 5-arc-minute (i.e., 0.083°) resolution (WorldClim; Fick & Hijmans, 2017). Station 

climate data were inferred from these gridded products for all but three stations that were on small islands or stationary weather 20 

vessels, for which local meteorological data were acquired. The range of mean monthly temperatures was computed at each 

pixel (and each monitoring station) as the difference between the highest and lowest monthly mean values, using the 

WorldClim data. Annual mean daily temperature range was calculated as the mean differences between daily minimum and 

maximum temperatures. The WorldClim data were also used to calculate time of peak precipitation and temperature, and 

seasonal amplitude of precipitation and temperature, metrics which can together capture global patterns in hydroclimate 25 

(Berghuijs and Woods, 2016). We also used a 30-second gridded elevation map (GTOPO30; US Geological Survey, 1996) 

that was aggregated to 5-minutes for consistency with the other grids. Monitoring station elevation data were not inferred from 

the grids, but instead downloaded directly from the isotope network databases. Distance from oceans and seas was calculated 

in ArcGIS 10.4.1 (ESRI, Redlands, USA) using published coastline data (Wessel and Smith, 1996) for the centre of each 5-

minute pixel and for each monitoring station.  30 
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2.2. Sine-fitting methods 

We fitted sine curves (described by the parameters amplitude, phase, and offset) to each monitoring station’s monthly measured 

δ18O and δ2H time series using a nonlinear fitting routine (“fitnlm” in MATLAB R2016B, Mathworks, Natick, Massachusetts, 

USA). The sine curve is defined with a fixed period of one year,  

Precipitation δ18O or δ2H (t) = amplitude × sin(2πt – phase) + offset  , (3) 5 

where t is the fractional year. All fitted amplitudes and phases were adjusted so that amplitude values are positive, and phase 

values are between π and –π. Phase was calculated in radians, but we report all values in days from the summer solstice. Allen 

et al. (2018) previously confirmed that this non-linear fitting routine yields parameter values and component standard errors 

that are equivalent to those obtained by fitting sine curves as an additive model of sine and cosine functions with their 

uncertainties calculated by Gaussian error propagation. We fitted the sine curves by two alternative approaches: a) using 10 

iteratively reweighted least squares with a bisquare weighting function (robust-fitted), and b) using standard least squares with 

the influence of each monthly isotope measurement weighted by the amount of precipitation during that month (amount-

weighted). The amount-weighted cycles are less influenced by erratic values that occur in low-precipitation months, but also 

do not capture the variations during drier seasons as effectively. We focus on the robust-fitted parameters describing the 

seasonal cycles, but for comparison, the amount-weighted fits are also reported in Supporting Information 2.  15 

2.3. Precipitation sinusoidal prediction methods 

To characterize spatial variations in precipitation isotope seasonality, we establish relationships between the fitted sine 

parameters (amplitude, phase, and offset) and site characteristics of the precipitation isotope monitoring stations using multiple 

linear regression. To characterize the monitoring stations, we used elevation, absolute latitude, distance from the nearest ocean, 

mean annual temperature, range of mean monthly temperatures, seasonal amplitude of precipitation amount, and mean annual 20 

precipitation amount (Fig. 1). We chose these metrics as spatial predictors because global datasets of these metrics are publicly 

available and they capture aspects of climate and circulation patterns that are known to affect precipitation isotopic composition 

(Aggarwal et al., 2016; Birks and Edwards, 2009; Rozanski et al., 1993). To determine which predictors should be included in 

regression models, we used a stepwise model selection approach in which different combinations of predictors were used to 

maximize R2 values while requiring that all coefficient p-values are statistically significant (p < 0.05). This step limits model 25 

overfitting by excluding redundant or non-significant predictors. After identifying the appropriate model terms, models were 

fitted using the “fitlm” function with robust fitting options that reduce the influence of outliers (MATLAB R2016B). In 

preliminary analyses, we also tested other metrics – precipitation phase, temperature phase, and mean daily temperature range 

– but determined that they were not consistently important (i.e., when included in the initial model selection, they were mostly 

excluded). Thus we excluded these other metrics from subsequent analyses to avoid overcomplicating the models; however, 30 

they often showed interesting relationships with the sine parameters, so they are provided in Figure S2. 
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For models of phase, we only used data from monitoring stations where there is a distinct seasonal cycle, because phase terms 

are meaningless and fitted values are unstable where there are no sinusoidal seasonal cycles. We characterize distinct seasonal 

cycles as ones where the phase is well constrained, with standard errors of the fitted phase terms lower than 15 days (and thus 

95 % confidence intervals of approximately ± 1 month). Roughly 74 % of the sites (n = 479) met this criterion. We also tested 

other criteria for filtering out stations with meaningless phase terms, such as R2 > 0.3 (n = 425) or R2 > 0.5 (n = 232), and those 5 

yielded similar regression models for phase. We modelled phase in mid and high latitudes (30° to 90°; n = 349 after removing 

data without distinct seasonal cycles) separately from phase in tropical and subtropical latitudes (0° to 30°; n = 130 after 

removing data without distinct seasonal cycles). We took this approach because initial inspections of these data and past 

examinations of similar data (Bowen and Revenaugh, 2003; Feng et al., 2009; Halder et al., 2015) suggested that phase is 

relatively consistent within each of these zones, with sharp transitions at approximately 30° N and S (roughly corresponding 10 

with Hadley Cell boundaries; Birner et al., 2014).  

 

These fitted spatial regression equations for amplitude, phase, and offset were used to map global precipitation isotope 

seasonality using the gridded site-characteristic data. We did not extend these maps to extrapolate Antarctic isotope seasonality 

because there are few monitoring stations there. We also mapped the residuals, estimated by subtracting the regression model 15 

estimates of amplitude, phase, and offset from the same variables determined from the fitted sine curves at the precipitation 

monitoring stations. We interpolated those residuals using inverse-distance weighting of the residual values from the three 

stations that are most proximal to each grid-cell centre. We then applied a Gaussian filter to smooth the residual adjustment 

layer, with the standard deviation equal to 3°, because we assume there are measurement uncertainties and thus the layer should 

not be fitted exactly to the points. For phase, we used nearest neighbour interpolation, rather than inverse-distance weighting, 20 

because averages across unlike phases are poorly representative; also, we smoothed the phase residuals separately in absolute 

latitudes > 30° versus absolute latitudes < 30°. For final predictive maps, we added the smoothed residual maps to the 

regression-based maps. We provide these predictive maps of the gridded amplitude, phase and offset values of δ18O and δ2H. 

We also provide gridded amplitude, phase, and offset values for precipitation amount, which can be used to scale precipitation 

isotopic inputs, in applications where amount is important. These maps are provided as geoTIFF files with georeferencing 25 

metadata (Supporting Information 3).  

 

To explore sub-global variations in performance of the spatial multiple regression models, we also performed regional 

regression analyses in which we fitted multiple regressions to data from subsections of the globe. Regressions of amplitude, 

phase, and offset were calculated for 40° × 40° windows using the same site characteristics that were used in the global models: 30 

absolute latitude, elevation above sea level, distance from coastline, range of mean monthly temperatures, mean annual 

temperature, and annual precipitation amount. These regional regressions were calculated at all vertices of a 10° grid (marking 

the centre of each 40° window). We used the same combination of stepwise regression model selection and robust regression 
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fitting as in the global analysis. Only windows that contained more than 25 precipitation isotope monitoring stations were 

analysed. We report gridded R2 and root mean square error (RMSE) values to indicate where these relationships are strongest. 

We also provide fitted sine parameters and site characteristics in the supporting information to facilitate users' development of 

other regression models for regionally specific applications (Supporting Information 2). 

3 Results 5 

3.1 Seasonal cycles in precipitation isotopes 

Globally, 94 % of the precipitation monitoring stations (n = 650) have statistically significant seasonal isotope cycles (p < 

0.05; t-test of the δ18O), although those cycles do not always explain the majority of the variance in monthly isotope values 

(i.e., only 36 % of the stations had R2 greater than 0.5). Amplitudes range from 0 to 11 ‰ δ18O (Figure 2), with a median value 

of 2.3 ‰ δ18O; here, amplitude quantifies the strength of seasonal cycles as deviations from average annual values, so an 10 

amplitude of 2.3 ‰ δ18O corresponds to a range of 4.6 ‰ between typical values in the “higher δ18O season” and the “lower 

δ18O season”. Seasonal isotope variations are larger in colder, higher-latitude, higher-elevation, or more continental regions 

(Figure 2), although no individual site characteristic explains the majority of variation in amplitude (Figure 2; Table 1). The 

few coastal stations that have strong seasonal cycles are almost exclusively located in high absolute-latitude regions (Figure 

3a). To our surprise, many of the monitoring sites within tropical latitudes also have substantial seasonal cycles; for example, 15 

27 % of sites in the tropics show amplitudes greater than 3 ‰ δ18O, and they are not all high-elevation sites (Figure 2b). 

 

Although most stations show a seasonal precipitation δ18O cycle, the ability of sine curves to capture monthly δ18O values 

varies. The median percent of variance explained by sine curves is 42 %; the median RMSE of individual monthly deviations 

from fitted sine curves is 2.2 ‰ δ18O. Stronger fits occur where a) there is a strong seasonal cycle, b) the seasonal cycle is the 20 

dominant pattern of variation, and c) sine curves are the appropriate shape to characterize precipitation isotope variations. 

Accordingly, the spatial pattern in R2 (Figure S1c) is broadly similar to the pattern in amplitude (r = 0.74). However, RMSE 

also increases with amplitude (r = 0.58), demonstrating that greater seasonal variability is also generally associated with greater 

month-to-month deviations from the seasonal sinusoidal cycle. 

 25 

The phase term is well constrained (i.e., SE of phase < 15 days) at most but not all sites (n = 479), and its geographic distribution 

is surprisingly binary (Figure 3b). From 30° S to 30° N (i.e., roughly corresponding with the Hadley cells), peak isotope values 

occurred 104 ± 43 days before the summer solstice (mean ± SD). By contrast, in the mid- and high-latitude regions, peak 

isotope values occurred 18.6 ± 24 days after the summer solstice. A few exceptions are found in absolute latitudes near 30°, 

which may be attributable to the effects of the Asian monsoon cycle (Cai et al., 2018) or the migration of Hadley cell 30 

boundaries, which do not consistently occur at 30° (Chen et al., 2014). Peak precipitation isotope values occur within a month 
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of peak temperature at 68 % of the monitoring stations that have well-constrained seasonal isotopic phases (Figure S3). 

However, this pattern was not ubiquitous. On average, phase of δ2H significantly lags δ18O in absolute latitudes over 30° (p < 

0.01), albeit with a median difference of only 2 days (and median absolute difference of 4 days); these observations suggest 

that precipitation LC-excess may have a seasonal cycle, as previously described in Switzerland (Allen et al., 2018).  

 5 

Offset values, describing the central tendency of the seasonal cycle, span a range of 33 ‰ in δ18O. These values are highest 

(least negative) in tropical and subtropical regions, and lowest in polar regions (Figure 3c). Most prominent is the strong 

temperature trend (0.47 ‰ δ18O per °C, R2 = 0.77; Figure 2; Table 1), consistent with patterns that have been previously 

described (Dansgaard, 1964; Rozanski et al., 1993). It should be noted that offsets and amplitudes are associated differently 

with continentality (Figure 3 a,c); while many of the regions with highly negative offsets also have large amplitudes, this is 10 

untrue of coastal regions in mid and high latitudes where highly negative offsets and small amplitudes co-occur. For example, 

in Reykjavik, Iceland, the δ18O offset is -8.0 ‰ and the amplitude is 0.9 ‰; a similar offset is found in continental Iowa, USA 

(-8.2 ‰), but the amplitude is 4.5 times larger (4.0 ‰). 

 

3.2 Spatial patterns in parameters describing precipitation isotopic cycles 15 

The spatial patterns in amplitude, phase, and offset can be described as functions of site characteristics. Of the predictors 

examined, all have significant correlations (at p < 0.05) with amplitude, phase, and offset (Table 1; see also Figure 2). Spearman 

rank correlations, which are less influenced by extreme values, are also statistically significant for all but one of these 

relationships (Table 1). However, no variables explain the majority of variation in amplitude, and only temperature explained 

the majority of variation in offsets (Table 1).  20 

 

We developed multiple linear regression models of site characteristics and sine parameters, and used them to generate maps 

of δ18O sinusoidal cycles (Figure 3). The multiple regression models explain 64 % of the variation in amplitude (RMSE = 1.1 

‰) and 83 % of the variation in offset (RMSE = 2.0 ‰). The multiple regression models for phase have low R2 values (0.19 

and 0.21, respectively for absolute latitudes above and below 30°) because there is little variation in phase within each latitude 25 

band; thus, phase RMSE values are small (12 and 28 days; Table 2). The coefficients of the multiple regression equations 

describing mapped precipitation δ18O sinusoidal cycles are presented in Table 2 and analogous coefficient tables describing 

global regression models of δ2H, amount-weighted δ18O, and amount-weighted δ2H cycles are presented in Table S1.  

 

Residuals from the interpolated sine parameter layers are often clustered (Figure 4), implying that sources of geographic 30 

variation are not fully captured by the predictors that we have used. Consequently, regionally calibrated models (calculated 

over moving 40° × 40° windows) often yield better fits (Figure 5). Even in regions where multiple regression models do not 
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effectively explain the variations in precipitation isotope sine parameters (e.g., Central America, South-central Asia), they will 

necessarily be fitted to the mean regional values, so the regional multiple regression model errors (RMSEs) will usually be 

smaller than those of the global regression model.  

 

To produce final predictive maps, we adjusted for the geospatially clustered residuals by adding the smoothed residual maps 5 

(Figure 4) to the regression-based maps (Figure 3). These predictive sinusoidal maps of δ18O seasonality (Figure 6) and δ2H 

seasonality (Figure S4) are made available in the supplementary materials. They capture 88 %, 97 %, and 96 % of the global 

variations in amplitude, phase, and offset, respectively.  

4 Discussion  

The occurrence of seasonal cycles in precipitation isotopes enables tracking how precipitation cycles propagate through 10 

landscapes and ecosystems. Previous research has found that precipitation isotopes vary seasonally, and that these seasonal 

patterns vary geographically (Halder et al., 2015; Rozanski et al., 1993). This work quantifies those seasonal patterns and their 

geographical variation, yielding global maps of sinusoidal precipitation isotope cycles (i.e., global sinusoidal ‘isoscapes’).  

 

Site characteristics explain most of the global precipitation isotope cyclicity, albeit with uncertainty in the regression model, 15 

the sine fits, and the raw data. Amplitude variations are mostly predictable by multiple regression (Table 2), but there were 

regional clusters of substantive (±1-2 ‰ δ18O) amplitude residuals. For example, the regression model (Figure 3) tended to 

systematically underestimate amplitudes in Canada and the northern United States, and systematically overestimate amplitudes 

in other regions (e.g., Southeast USA, East Asia, and East Africa). We partially mitigated these discrepancies between model 

outputs and observations by interpolating and smoothing the residuals, as commonly done for precipitation isotope maps to 20 

improve the fit of the maps to the data (e.g., Terzer et al., 2013). Better fits could have been achievable through using more 

predictor variables in the regression models, however we chose to limit the number of variables in the multiple regression 

models, even prior to the stepwise model selection; while we explored new relationships between precipitation isotope 

seasonality and (for example) diel temperature range or precipitation amount seasonality (Figure S2), these offer little 

explanatory power that is not also captured in simpler metrics. Regardless, some uncertainties are introduced by using gridded 25 

climate products to infer site characteristics, because grid-cell means are not always representative of individual station 

locations, as demonstrated by the mismatch between the elevations of monitoring stations and the mean elevations of the pixels 

they occupy (Figure S5). Other uncertainties in the regression predictions likely result from errors in the initial sine-curve 

fitting, as demonstrated by the fact that the regression models improve when only stations with longer records are used. For 

example, if we exclude all datasets shorter than three years, the R2 of the δ18O amplitude model increases from 0.64 to 0.73 30 

and the R2 of the offset model increases from 0.83 to 0.87. Any uncertainties in the models or the underlying data, however, 
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do not preclude widespread estimation of precipitation stable isotope cycles at the level of confidence indicated (e.g., in Table 

2 and Figure 4, or Figure S1b), which is improved upon through use of the residual-adjusted maps. Predictions can also be 

improved by using multiple regression models calibrated across individual regions of interest (using the data in Supporting 

Information 2). 

 5 

These maps support predicting seasonal isotope cycles, but seasonal isotope cycles are only sometimes useful for predicting 

individual-month isotope values. To predict individual-month isotope values from a sine curve, the sine curve must be 

predictable (e.g., with well-constrained phase value), but also the sine curve must capture monthly isotope variations (e.g., R2 

must be high). In only a small subset of the monitoring stations were R2 values consistently high (Figure S1c). For example, 

at only 6 % of stations was more than 75 % of the variance explained by sine curves. Even fewer stations had long time series 10 

that enabled us to determine whether the high R2 values also imply that inter-annual variations are small (e.g., such as in 

continental or northern latitude monitoring stations; Figure S1a). Thus, individual month values should be carefully inferred 

from sine curves (e.g., by assuming errors of magnitudes like those shown in Figure S1b), even where precipitation isotope 

cycles are predictable.  

 15 

Precipitation isotope cycles are likely to be least predictable at 30°S, 0°, and 30°N, where our models abruptly shift in phase, 

approximately demarcating global atmospheric circulation patterns. However, the inter-tropical convergence zone (ITCZ) is 

not consistently at 0° and Hadley cell boundaries are not consistently at 30°S and 30° N (in space or time; Birner et al., 2014; 

Chen et al., 2014), which may explain why most of the poor phase predictions (Figure 4b) occur near 30° N or S. There are 

also errors near 0°, where predicted phase values differ by six months on either side of the equator, which does not precisely 20 

demarcate the ITCZ and relevant atmospheric circulations. Bowen et al. (2005) recognized this ITCZ effect and instead used 

the mean ITCZ position, rather than 0°, to account for phase shifts that occur there; although adopting Bowen’s approach 

should mitigate some of the anomalies at 0° and 30° (Figure 4), other issues in predicting phase would persist (e.g., the 

elimination of higher frequency cycles; Jacobs et al., 2018). Thus, we opt for our simpler approach and accept that our model 

is sometimes uncertain in zones near 0° and 30°, although those uncertainties are partially mitigated in the residual-adjusted 25 

maps. Precisely predicting precipitation isotope cycles in low latitudes may require consideration of circulation patterns and 

their temporal variability (Cai et al., 2018; Martin et al., 2018), or use of regional multiple regression equations (which 

performed well in those regions; Figure 5).  

 

The 653 isotope monitoring stations used here span much of earth’s climatic heterogeneity, but not all regions. The 30 

distributions of the site characteristics associated with these 653 monitoring stations are roughly similar to the global 

distributions of those characteristics (Figure S6). However, high-latitude, high-elevation monitoring stations are scarce (Figure 

S7). More notably, measurements are absent in large regions of Africa, Australia, central Asia, and north Asia. The most 
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interior regions of continents generally contained the fewest monitoring stations (Figure 1b), and we suspect that our regression 

equations may underestimate the true increase in amplitude with distance from oceans (e.g., see amplitude underestimates in 

continental North America; Figure 3a). New precipitation isotope monitoring stations would help fill in important gaps.  

 

These maps of seasonal precipitation isotope cycles serve as tools for studying terrestrial processes. In regions where seasonal 5 

precipitation isotope dynamics are well described by sine curves, sinusoidal isotope models are useful for predicting isotope 

cycles either at explicit points or continuously in time and space. The presence of large seasonal isotope cycles also enables 

the quantification of mixing, transport, and turnover of water (or its constituent O and H) in landscapes or biota. This is possible 

because 1) amplitude dampening reflects mixing processes, 2) phase shifts reflect advective travel times, and 3), offset 

differences reflect proportional contributions of different seasons’ precipitation. In hydrology, the proportion of recent 10 

precipitation in streams  can be estimated as the ratio of precipitation and streamwater isotope amplitudes (i.e., the young water 

fraction; Kirchner, 2016a). Maps of precipitation isotope cycles can facilitate estimating average precipitation amplitudes 

across catchments (Dutton et al., 2005; Jasechko et al., 2016). In such cases isotope values should ideally be weighted by 

precipitation amount, to diminish the influence of low volumes (von Freyberg et al., 2018). Quantifying seasonal precipitation 

isotope cycles also facilitates identifying the proportion (and over/under-representation) of precipitation from different seasons 15 

in samples such as streamwater (DeWalle et al., 1997; Halder et al., 2015), groundwater (Jasechko et al., 2014; Kalin and 

Long, 1994; Lee and Kim, 2007), or xylem and soil water (Allen et al., in review). Similarly, ecological and physiological 

inferences can be drawn by observing how seasonal variations in water isotope signals are incorporated into (or propagate 

through) plant and animal tissues (Csank et al., 2016; Gessler et al., 2014; Vander Zanden et al., 2015; Yang et al., 2016). 

Thus, we expect that the mapped sine parameters that we have developed, as concise characterizations of seasonal precipitation 20 

isotope cycles, will find use in both physical and biological sciences.  

 

These maps also indicate where precipitation isotope seasonality should be considered in interpreting isotopic signals in 

biological and geological samples. Annual mean precipitation may poorly predict the average isotopic input to any biological 

or geological process that does not integrate precipitation waters throughout entire years, particularly where precipitation 25 

isotopic composition is strongly seasonal (as discussed by, e.g., Dutton et al., 2005). Whereas event-to-event variations are 

likely to be rapidly damped by mixing in soils, lower-frequency variations, such as seasonal cycles, can persist and propagate 

through the water cycle. Where uptake and incorporation of isotopes into organisms also vary seasonally, mean annual 

precipitation may poorly and inconsistently approximate their average source water. For example, consider a hypothetical case 

of soil water with an isotopic composition that is consistently equal to that of the current month’s mean precipitation. Further 30 

assume that a tree growing in this soil takes up that soil water and incorporates its oxygen atoms into cellulose during the six 

months of the warm season (e.g., when high-δ18O precipitation falls in high latitudes). For example, if the precipitation δ18O 

has a seasonal amplitude of 4 ‰, the average composition of the water taken up by the tree will be approximately (2/π)* 4 ‰ 
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≈ 2.5 ‰ higher than the annual average precipitation. This bias will be larger in locations where the seasonal amplitude of 

precipitation isotope cycles is larger. Thus, our maps showing precipitation isotope seasonality can be used to identify locations 

where such biases are potentially significant.  

5 Summary 

The majority of stable isotope time series measured at 653 precipitation isotope monitoring stations show significant sinusoidal 5 

seasonal cycles in precipitation isotopes. The fitted parameters that define these seasonal precipitation isotope cycles are 

estimated through multiple regression models of site characteristics. These spatial models enabled us to develop maps that 

describe global patterns in precipitation isotope seasonality, although regionally calibrated spatial models often better captured 

regional variations in precipitation isotope seasonality. The global maps and associated fitted isotope data are made available 

as supplementary information.  10 

Acknowledgements  

We thank the IAEA for developing and maintaining the Global Network for Isotopes in Precipitation (GNIP), and also thank 

the many researchers who have contributed data to GNIP. This project was funded by a grant from the Swiss Federal Office 

of the Environment to G.R. Goldsmith and J.W. Kirchner.  
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In Supporting Information 2, we provide fitted sine curves and site metadata for all 653 precipitation monitoring stations. In 

Supporting Information 3, we provide 5-minute resolution gridded amplitude, phase, and offset for δ18O and δ2H of robust-

fitted sine curves. All raw data used are synthesized from other studies or publicly available datasets.  

Supplementary Materials 

Table S1 Multiple regression coefficients and fit statistics for models describing the spatial variations in sine parameters that 20 

capture seasonal precipitation isotope cycles (amount-weighted fitted δ18O, robust-fitted δ2H, and amount-weighted fitted δ2H). 

Fig. S1 Maps of precipitation isotope measurement stations’ measurement durations and sine-curve goodness-of-fit statistics. 

Fig. S2 Scatter plots of fitted sine parameters describing precipitation δ18O seasonal cycles versus site characteristics that were 

not included in the regression models. 

Fig. S3 Histogram of phase differences between seasonal isotope cycles and seasonal temperature cycles. 25 
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Fig. S4 Maps of fitted station values (markers) and the residual-adjusted maps of sine-curve parameters (shaded) that describe 

the seasonal cycles in precipitation δ18O a) amplitude, b) phase, and c) offset. 

Fig. S5 Elevations reported for sites regressed against gridded predictions of elevations of pixels containing those sites.  

Fig. S6 Probability density functions of the site characteristics used to predict seasonal precipitation isotope cycles. 

Fig. S7 Elevation versus latitude of precipitation isotope monitoring sites. 5 

Data S1 List of fitted δ18O and δ2H sine parameter values (robust fitted, and amount-weighted fitted) and site characteristics 

(to be made available upon acceptance) 

Data S2 Gridded δ18O amplitude GeoTIFF file (to be made available upon acceptance) 

Data S3 Gridded δ18O phase GeoTIFF file (to be made available upon acceptance) 

Data S4 Gridded δ18O offset GeoTIFF file (to be made available upon acceptance) 10 

Data S5 Gridded δ2H amplitude GeoTIFF file (to be made available upon acceptance) 

Data S6 Gridded δ2H phase GeoTIFF file (to be made available upon acceptance) 

Data S7 Gridded δ2H offset GeoTIFF file (to be made available upon acceptance) 

Data S8 Gridded precipitation amount amplitude GeoTIFF file (to be made available upon acceptance) 

Data S9 Gridded precipitation amount phase GeoTIFF file (to be made available upon acceptance) 15 

Data S10 Gridded precipitation amount offset GeoTIFF file (to be made available upon acceptance) 
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Table 1 Pearson and Spearman correlation coefficients of sine parameters versus (vs.) site characteristics.  

 
Sine parameters vs. |latitude| vs. 

elevation 

vs. dist. 

from coast 

vs. temp. 

range 

vs. mean 

temp 

vs. mean 

precip. 

Pearson       

Amplitude 0.34 0.34 0.54 0.58 -0.56 -0.35 

Phase 0.76 -0.12 0.25 0.72 -0.68 -0.64 

Offset -0.67 -0.16 -0.23 -0.70 0.88 0.40 

Spearman       

Amplitude 0.30 0.42 0.56 0.51 -0.49 -0.37 

Phase 0.59 0.04 0.20 0.63 -0.64 -0.62 

Offset -0.69 -0.26 -0.35 -0.65 0.87 0.40 
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Table 2 Multiple regression coefficients and fit statistics for models describing global variations in sine parameters that capture 

seasonal precipitation δ18O cycles. Dashes mark predictors that were excluded by the stepwise-regression model selection.  

 

 

 

 

 

 

 

 

 

 

a referring to sites in latitudes > 30° (N or S) 

b referring to sites in latitudes < 30° (N or S) 

 

 

|Latitude| 

(° from 

equator) 

Elevation 

(m amsl) 

Dist. from 

coast (km) 

Temp. 

range 

(°C) 

Mean Annual Temp. 

(°C) 

Mean Annual 

Precip. (mm 

yr-1) 

Intercept RMSE R2 

Amplitude 

(‰ δ18O) 
-0.06 0.0003 0.0013 0.08 -0.12 — 4.5 1.1 0.64 

Phase (days)a — 0.005 — — -0.38 — 24.2 12.0 0.19 

Phase 

(days)b 
-1.27 — — 0.78 — — -100.0 28.2 0.21 

Offset 

(‰ δ18O) 
0.10 — — -0.11 0.55 -0.0008 -15.7 2.0 0.83 
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Figure 1 Global maps of site characteristics used for predicting seasonal precipitation isotope cycles: a) elevation of precipitation 

isotope monitoring stations plotted over the elevation map, b) distance from coast, c) temperature range between mean 

temperatures of warmest and coldest months, d) mean annual temperature, and e) mean annual precipitation. Values at 

precipitation isotope monitoring stations are marked by circles. For b-e, station-level data are estimated as the value of the grid 

cells that the stations occupy.  
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Figure 2 Scatter plots of fitted sine parameters describing precipitation δ18O seasonal cycles – a-f) amplitude, g-l) phase, m-r) offset 

– versus site characteristics. For associated Spearman and Pearson correlation coefficients, see Table 1. Colours indicate absolute 

latitude (high latitudes in blue, low latitudes in red) as shown in panels a, g, and m.
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Figure 3. Maps of fitted station values (markers) and regression-based sine-curve parameters (shaded) that describe 

the seasonal cycles in precipitation δ18O a) amplitude, b) phase, and c) offset. The shading reflects multiple-regression 

models based on landscape characteristics, described in Table 2; for phase, separate models were used in absolute 

latitudes > 30° versus latitudes < 30° (see methods). Here, residuals were not yet added back into the model. 
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Figure 4. Maps of δ18O a) amplitude, b) phase, and c) offset residuals, where the sine parameter values predicted 

from the multiple regression equations (shown in the interpolated maps in Figure 3) were subtracted from those of 

parameter values fitted to measurements at each precipitation isotope monitoring site (also shown in Figure 3). The 

shading shows the smoothed residual layers (see Methods).  
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Figure 5. Fit statistics for regionally fitted regressions that explain the spatial variations of the precipitation δ18O sine 

parameters. Regressions of a) amplitude, b) phase, and c) offset versus site characteristics were calculated for 40° × 

40° pixels (centred on vertices at a 10° grid). Only pixels which contained >25 precipitation isotope measurements 

stations were used; for phase (b), we only used measurement stations that had well-constrained sinusoidal cycles (i.e., 

the standard error of the phase was less than 15 days). These figures show that site characteristics do not consistently 

explain the patterns of variations, and often the R2 values are substantially lower than those of the global regression 

model (Table 2). However, the errors (RMSEs) are (almost) universally lower than those of the global regression 

model, implying that regionally calibrated regressions models are better predictors of spatial patterns in precipitation 

isotope cycles.   
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Figure 6. Maps of fitted station values (markers) and the residual-adjusted maps of sine-curve parameters (shaded) that describe 

the seasonal cycles in precipitation δ18O: a) amplitude, b) phase, and c) offset. The interpolated surface is the sum of the infilled 

surfaces in Figures 3 and 4 (see Methods).   
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