
3 July 2019  

Dear Dr. Romano, 

We thank you and the reviewers for your comments, and we are pleased to submit a revised 
version of “Global sinusoidal seasonality in precipitation isotopes” for consideration at 
HESS. We found the reviewers’ comments to be helpful in making adjustments to better 
communicate our science. We remain confident that the data product we develop here is in 
high demand by the hydrology community (and broader communities), as many have been 
inquiring about the availability of this presented work.  

We have now uploaded the precipitation isotope maps to a Zenodo repository (meeting FAIR 
standards). We have opted to take this approach, rather than uploading the grids as 
supplemental data (as we previously proposed) because this is more adaptable and allows for 
larger files. We will lift the restrictions once the paper is accepted so that the data products 
are fully available.  

Please see the attached responses to reviewers, descriptions of revisions, and tracked changes.  

Sincerely, on behalf of coauthors, 

Scott T. Allen 
Postdoctoral Research Associate 
University of Utah 
Spatiotemporal Isotope Analytics Lab (SPATIAL) 
 



Our responses below are in black, Time’s New Roman and referee’s comments are in blue, 
Calibri font.  

Response to Referee #1 

Interactive comment on “Global sinusoidal seasonality in precipitation isotopes” by Scott T. Allen et 
al. 

Anonymous Referee #1 Received and published: 5 April 2019 

General comments: This manuscript describes a method to determine sine curve fits to the seasonal 
cycle of precipitation isotopes from stations around the globe. Interpolated maps of seasonality and 
a database of sine curve parameters were produced (not available for review). Overall the paper is 
well written, but ambitious in scope. The paper lacks an adequate explanation of how this work 
advances upon previous work, and needs more attention to sources of uncertainty in the analysis. 
With these improvements, the results presented here should be a solid contribution to the field of 
isotope hydrology.  

Thank you for your feedback. We will now better explain the differences between our research and 
others’ related research. To clarify, our paper allows readers to immediately understand the location 
and strength of seasonal cycles in precipitation isotopes. Perhaps most importantly, our method 
provides information (i.e. sine curve parameters) that is not directly available from isomap.org or the 
online isotopes in precipitation calculator (OIPC), but is increasingly used in isotope hydrology (e.g., 
young water fraction calculations).   

In the revised draft, we better explain what this data product offers and what limitations it has (see 
comments below as well as responses to reviewer 2). Indeed sine curves do not perfectly represent 
precipitation isotope variability; they are, however, a useful metric to visualize and describe presence, 
strength, and timing of seasonality. Understanding where these patterns occur aids in guiding future 
studies’ analytical approaches. We have also added an additional uncertainty analysis (see comments 
below).  

Specific comments: 

Abstract: this is somewhat disorganized, and would be improved by aiming toward a straightforward 
description of the problem or question addressed, the analyses done, and the significance of the 
result.  

In rereading our abstract, we realize that some confusion could arise because it is hard to discern 
between results and methods (because the paper does focus on methodology). We believe that this is 
warranted because we are producing a data product, and thus the results often justify subsequent 
methodological steps. Nonetheless, we have revised the manuscript to make it adhere to a more 
typical structure.  

P 2 L 4-10: Authors note that interpretive studies may ignore either the spatial or temporal aspect of 
the isotopic signal. Please explain further how the current approach improves on the interpolated 
seasonal data that are already available, where mean monthly isotope values can be downloaded 
from an online calculator for a set of spatial coordinates (isoscapes.org). The advancement 
represented by the approach in the current manuscript needs to be clearly described. 

In our method, we first capture the seasonal cycle, and then interpolate. We now specify that 
difference and its importance as an advance on current methods. Secondly, our analysis is a next-level 
data product, mostly intended for specific hydrology applications (although others are discussed 
later). One can quickly look up how amplitudes vary using our study, which would require many steps 



using isomap.org data. Since publishing Allen et al 2018, many people have asked for the product that 
we are here providing because completing these sine fits can be tricky (e.g., with respect to 
constraining phase values, consistent amplitude definitions, and quantifying errors). We provide these 
geospatial data with the hope and expectation that other researchers can complete their own studies 
more efficiently.  We have better clarified our specific objectives in the abstract, introduction, and 
conclusions.  

 P 4 L 13-15; P10 L 13-14: Amount weighting is important for hydrological interpretations; please 
discuss whether amount is best included within the sine fitting procedure for an area, or whether 
amount should be included at the level of a regional or local study, where it would be used to weight 
the robust-fit seasonal values?  

The amount weighting can be important, but we prefer not to say which approach is “best” because 
the two support different applications. One scenario where amount-weighting is important in the 
fitting is if there was an anomalously dry month (e.g., 1 small precipitation event), where the storm 
had atypically high δ18O values, or the sample was exposed to evaporation in the collector. In this 
scenario, the amplitude would be exaggerated in a non-weighted sine fit. If these values were later 
weighted a typical amount, it could result in a misrepresentation of the precipitation inputs. In an 
alternative hypothetical scenario, using weighted fits in a Mediterranean region (with dry summers) 
might under-represent the true seasonal amplitude. Both metrics are valuable, and we will now further 
discuss their respective limitations in the methods section (2.2).  

P 4 L 20: mean annual precipitation amount globally seems to have low predictive value for isotopic 
composition (table 2), does this parameter combine rainfall with snow water equivalent (SWE) 
measurements, and are those accurate enough to make this a useful parameter for station 
characterization?  

Precipitation amount varies by orders of magnitude across the globe; we are only using 1st-order linear 
regressions, so it is not overly surprising that it does not explain much (and is thereby mostly 
excluded from the regression equations). As discussed in response to reviewer 2, there is indeed some 
collinearity among these predictor variables.  

While quantifying snowfall inputs can be challenging, it is unlikely to cause errors that are large 
compared to the range of variation in precipitation amounts across sites. We now specified that SWEs 
are accounted for.  

P 5 L 1-2: are the areas and stations where there is no sinusoidal seasonal cycle clearly denoted in 
the database?  

No they were not, but they will now be made identifiable because the phase term will be replaced with 
“NA”; the amplitudes and offsets are still useful (as will be described in the manuscript). 

Section 2.3: Maps of predicted global precipitation isotope seasonality (sine curve parameters) and 
precipitation amount were generated with an interpolation scheme. Was any model validation 
performed by holding back a portion of station data and analyzing differences between measured 
and predicted isotopic value? This type of assessment should be done for the precipitation isotope 
seasonality and rainfall amount values.  

We remind the reviewer that we are presenting this as a method for predicting seasonal cycles, not for 
predicting individual monthly values (unlike the sinusoidal model used in Allen et al 2018, which was 
tested using individual months). We now validate the model’s prediction of sine parameters. 
Individual month values are highly erratic and can deviate substantially from the sine curves (as we 
show in what is now Figure 2, and formerly S1); there is a whole paragraph dedicated to discussing 
this point. We have now re-run the model iteratively, holding back subsets of the sites to be used 



solely in validation and not in calibration. We will report those values as prediction errors of 
amplitude, phase, and offset.  

P 6 L 15, L26-31, P7 L 1-5: It is not so surprising that tropical locations have seasonal cycles if one 
considers that land surface temperatures are not the primary control. Feng, X. et al., 2009, JGR, 
doi:10.1029/2008JD011279 (already cited); Scholl, M. et al., 2009, WRR, 
doi:10.1029/2008WR007515; Bailey, A. et al., 2017, JGR,doi:10.1002/2016JD026222 may provide a 
broader understanding of seasonal isotope patterns in the tropics. Condensation/equilibration 
temperatures can be very low and vapor sources isotopically depleted in tropical regions, where 
convective precipitation systems (esp. in the ITCZ) reach well above the freezing layer. The position 
of Hadley cell boundaries seems somewhat overemphasized here; atmospheric circulation factors 
that control isotope patterns (prevailing winds, atmospheric structure, dominant seasonal weather 
patterns) - have been identified in isotope-enabled GCM studies for tropical and temperate 
latitudes. 

Thank you for directing us to these papers, which will now be cited in our study. We will expand our 
discussion of previously described tropical isotope cycles and the role circulation patterns in driving 
those cycles. 

 P7L4: Precipitation d-excess globally exhibits a seasonal cycle, please see Pfahl and Sodemann, 
2014, doi:10.5194/cp-10-771-2014. We would expect similar behavior for lc-excess, but with a less-
distinct amplitude. 

Yes, it is well described that seasonal d-excess cycles exist (and we will now cite this reference). 
However, while d-excess variations can result from variations along a LMWL of slope < 8, LC-excess 
variations result from systematic seasonal deviations from LMWLs. Thus, we are describing patterns 
that differ from what is described previously in Pfahl and Sodemann. We will now expand on this 
difference to clarify.  

P 8 L 26-28: “grid-cell means are not always representative of individual station locations, as 
demonstrated by the mismatch between the elevations of monitoring stations and the mean 
elevations of the pixels they occupy (Figure S5)”. Given that elevation is a major factor in isotopic 
composition of precipitation, how does this reflect on the interpolation and smoothing used to 
produce the maps? Should the map result be presented at the global scale, given that authors 
(appropriately) aim to “produce global maps and data that support stable isotope applications,” and 
“predict individual-month values from a sine curve (P 9 L 6)”? Regional maps, where topography is 
presumably better represented, would seem to be a better approach and I encourage revision of this 
paper to include those maps and data sets, or at least a thorough explanation of the process of 
creating and calibrating regional maps.  

The answer to this question obviously depends on application. We shared these same concerns, which 
is exactly why we pursued this project as we did: a) using a high resolution DEM to conduct the initial 
interpolation, b) producing the global map, but also carefully showing where it fails to capture 
individual points, c) processing and sharing the data such that it can be immediately incorporated into 
regional regression models and d) showing where regional models perform best (Figure 6). Of course, 
we cannot produce every regional map because we cannot anticipate every future ‘region’ for which a 
map might be needed.  

Regarding the point-to-cell mismatch, this problem is true of most exercises in which data collected at 
one scale are interpreted as representative of a larger scale. By conducting the new error analysis 
described above, we quantify the magnitude of error which is partially due to the problem described 
here. 



We also further emphasize to readers that the ability to “predict individual-month values” from sine 
curves requires that the R2 values are high, and not just that there is a seasonal cycle.  

P 10 L 5-7: Please identify “regions where “seasonal precipitation isotope dynamics are well 
described by sine curves,” and where they are not, in a table or specific map. This would make the 
material much more informative to users of the data and prevent improper use of interpolated 
values. It is important to identify places where sinusoidal cycles cannot be used, especially given the 
discussion on p. 10 where authors suggest numerous applications for the data.  

Previously, information showing how well sine curves capture the monthly variations is in Figure S1. 
We now move Figure S1 into the main text so that nobody misses this information (Now Figure 2). 
We now also further describe the limitations and their consequences on Page 10.  

P 10 L 26: there are other references for this concept, please improve this section by including 
citations specific to the biological and geological processes that are noted; to improve the paper 
organization, consider moving material from lines 5-35 to the introduction, then briefly revisiting 
here.  

We do not agree that it is helpful to lengthen the introduction to then just revisit those points later, as 
this information is not critical for understanding the basis of the study. Nonetheless, we have 
improved on this by including relevant citations in the discussion.  

P 11: “The *majority* of stable isotope time series measured at 653 precipitation isotope monitoring 
stations show significant sinusoidal seasonal cycles in precipitation isotopes” and “In Supporting 
Information 2, we provide fitted sine curves and site metadata for *all* 653 precipitation monitoring 
stations” ... Given that some of the stations patterns do not have a sinusoidal cycle, why are sine 
curves being provided for stations where they are not applicable?  

This is an excellent point and we will now comment on this in the second-to-last paragraph in the 
discussion section. Even where there is not a sinusoidal cycle, the sine curve provides a measure of 
central tendency, which is of value. Also, by providing the sine-fit and parameters, we can show why 
the curve fit is not ‘significant’: e.g., short time series, small amplitude, erratic month-to-month values 
(i.e., leading to a large RMSE). Furthermore, including near-zero amplitudes can be important for 
fitting regional regression models. The phase term is the only one of the three parameters that is 
meaningless when the sine curve is not significant. We remove the phase values of non-significant 
sine curves from the data tables because we cannot think of any application for which those would be 
useful.  

P 11 L 15-20: Supporting information 2 and 3 were not available for peer review and have not been 
evaluated. In this section, please provide details about the sources of raw data from “publicly 
available datasets” that were used in this work, with citations, attribution or links, to aid further 
research by others.  

We will provide references in Supporting Information 2. Both files will be made available upon 
acceptance.  

Figure S3 – this is not very informative at the coarse scale shown here - the reasons underlying phase 
shifts between temperature and isotopes (seasonality) globally are fairly well understood and should 
be addressed separately for different climate zones, if included at all. Figure 3b provides much the 
same information. 



This is in the supplemental because we also believe that it is not crucial, but potentially helpful or 
interesting to someone. Thus, we prefer to keep it, but we can enhance it by breaking out below and 
above 30 degrees latitude sites.  

Response to Referee #2 

 
General comments: This paper makes an important contribution to the scientific literature by 
providing estimates of coefficients of sinusoidal cycles in precipitation isotopic composition at global 
scale. These estimates are useful for analyses of water transit time and water source attribution in 
hydrological, biological, and geological studies. Regression models are presented that will allow 
users characterize precipitation isotope cycles at points or as raster grids. 
 
Specific comments:  
 
P 2: additional information on previous geostatistical analyses (Bowen et al. 2014) and products, 
such as IsoMAP (http://isomap.org), should be included in the Introduction. Please explain how this 
study improves on previous work (eg., IsoMAP). 
 
We now further discuss other isotope data products. It is important to note that our analysis yields a 
very different product: maps that show seasonal cycles, rather than predictions of isotope values in 
specific months or years (e.g., products from Bowen et al.). Statistically, our approach first extracts 
the seasonal signal from the data, and then interpolates those signals. As such, the values used in the 
interpolations are a product of an entire time series, not just single points.  
 
Our paper allows readers to immediately understand the location and strength of seasonal cycles in 
precipitation isotopes. Perhaps most importantly, our method provides information (i.e. sine curve 
parameters) that is not directly available from isomap.org or the online isotopes in precipitation 
calculator (OIPC), but is increasingly used in isotope hydrology (e.g., young water fraction 
calculations).  While products from Bowen et al. could be used for alternative calculations of isotope 
seasonality, that product is not currently available. We are not critiquing Bowen et al.’s method, we 
are simply offering a different product for use in hydrological analyses and expect that the product 
will find uses beyond its obvious intended applications.  
 
We now make these points in the introduction.   
 
P 3 L 3-7: The data set used to develop the regressions is large and potentially veryuseful to other 
users; however, a link to the data is not readily apparent. The authors indicate there is a compiled 
data set; however, I was unable to identify a link in the cited reference (Jasechko et al. 2016)(the 
Methods section of that paper indicates they compiled approximately 63K data points). Readers will 
not be able to reproduce the analysis in this paper without access to the precipitation isotope 
sample data. It is essential to provide a clear link to the raw data set (with appropriate citations for 
data sources). 

We now cite the data sources in the data table and update the data availability statement so that it 
specifies how all of the data can be accessed. It is true that these precipitation data were previously 
analyzed by Jasechko et al. and were obtained via direct download from the IAEA’s database (ref. 34 
in Jasechko et al. 2016 and http://www-naweb.iaea.org/napc/ih/IHS_resources_isohis.html) and via 
personal communication with leaders of two national precipitation isotope networks: S. J. Birks (e.g. 
see ref. 37 in Jasechko et al. 2016) and J. M. Welker (e.g. see ref. 36 in Jasechko et al. 2016).  By 
providing the fitted sinusoid statistics, this paper marks a step forward because it does provide a single 
compiled dataset of metrics describing precipitation isotope data.   



P 4 L 19: the list of potential explanatory variables is reasonable; however, distance to nearest ocean 
ignores the influence of prevailing wind direction. While perhaps beyond the scope of this paper, it 
might be possible to include in future analyses. In the meantime, this source of error could be 
discussed in the Discussion section. 
 
We now expand our discussion of how circulation patterns and storm trajectories relate to isotope 
patterns.  
 
P 4 L 24-25: Model parameterization does not appear to follow accepted statistical best practices. In 
stepwise multiple regression, selection of model parameters usually is based on minimizing the 
Akaike information criterion (AIC) (Akaike 1981) or Bayesian information criterion (BIC), rather than 
maximizing R2, which could lead to model overparameterization. Colinearity does not appear to 
have been considered quantitatively, but should be; it often is tested using the variance inflation 
factor (VIF) (Hair et al. 2005). 
 
We understand that AIC is commonly used, but in our case, we found that minimizing the AIC led to 
the selection process retaining more terms than were retained by our method; we now mention this in 
the manuscript. Note that our method was not solely to maximize R2 values, because we also excluded 
all coefficient p-values that were not statistically significant (p < 0.05). We now report the VIFs. Even 
if we hypothetically used all of the potential predictor values (which was never the case), all of VIFs 
are less than 10 (i.e., a commonly used cutoff value).  
 
P 7 L 4: define LC-excess. 
 
LC-excess is now defined (and Landwehr and Coplen 2006 is cited). 
 
P 8 L 10-15: One of the main contributions of this paper is the presentation of models for amplitude, 
phase, and offset. This allows readers to estimate these cycle characteristics at other sites and/or 
create raster grids (as the authors have done). This is worth mentioning explicitly in the Discussion. 
 
We now more clearly emphasize this point.  
  
P 9 L 3-4: cannot locate Supporting Information 2. 
 
We opted to not release our data product until it is clear that it is finalized and the manuscript will be 
accepted. 
 
Table 1: consider including p-values. 
 
Given the size of the dataset, we prefer to not include p values because they are all extremely small 
(p=10-6

 for the weakest of these regression). 
 
 
References:  
Akaike, Hirotugu. 1981. "Likelihood of a model and information criteria." 
Journal of Econometrics 16 (1):3-14. doi: 10.1016/0304-4076(81)90071-3. 
 
Bowen, Gabriel J, Zhongfang Liu, Hannah B Vander Zanden, Lan Zhao, and George 
Takahashi. 2014. "Geographic assignment with stable isotopes in IsoMAP." Methods 
in Ecology and Evolution 5 (3):201-206. 
 
Hair, J.F., W.C. Black, B. Babin, R. Anderson, and R.L. Tatham. 2005. Multivariate data 



analysis. 6th ed. Upper Saddle River, New Jersey: Prentice Hall. 
 
Jasechko, Scott, James W. Kirchner, Jeffrey M. Welker, and Jeffrey J. McDonnell. 
2016. "Substantial proportion of global streamflow less than three months old." Nature 
Geosci 9:126-129. doi: 10.1038/ngeo2636. 
 
Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019- 
61, 2019. 
 

Response to Referee #3 

Interactive comment on “Global sinusoidal seasonality in precipitation isotopes” by Scott T. Allen et 
al. 
Anonymous Referee #3 
Received and published: 23 April 2019 
 
The authors present an incredibly useful predictive statistical model of the global patterns of d18O 
and d2H in precipitation. The methods are adequate and sound and the results are clearly described 
and presented in tables and figures. In my opinion, the manuscript can be accepted in its present 
form. I leave the following three comments only to encourage the authors to expand the discussion 
if they agree it would improve the paper. 
 
 
The authors’ objective to produce the predictive model was clearly motivated by a need in the 
hydrological community for isotopic input data to calculate young water fractions and unravel 
storage selection behavior of watersheds using stable isotope data. The observed patterns in 
explanatory variables are only lightly discussed in terms of atmospheric circulation patterns or 
origins of atmospheric water vapor. 
 
There are a number of studies that have used atmospheric air mass trajectory analyses to study the 
variability of isotopes in precipitation. I understand this is well outside the scope of this manuscript - 
and possibly out of reach computationally. It might be worth mentioning air mass trajectory analysis 
as a possible path for improving the predictions of stable isotopes in precipitation. 
 
The reviewer is correct that our primary objective is motivated by needs of the hydrologic 
community. The reviewer is also correct that air-mass trajectory effects could result in some of the 
scatter in the initial regression models. We now add further discussion on air-mass trajectory effects. 
 
On page 4, the authors describe the decision to use the "robust-fitted" seasonal parameters (as 
opposed to the "amount-weighted" parameters) for further analysis because they capture the 
variations during drier seasons better. I wonder if the "amountweighted" offset would provide a 
better estimate which is less biased by light (summer) precipitation events and if there is a 
significant difference between the two estimates. 
 
Although we do focus on the robust fitted data in the manuscript, we also provide values for the 
amount-weighted fits as part of the data products provided. They can be directly compared using the 
supplemental data that we will now provide. We also have extended the methods section, where we 
describe the two fitting approaches, to emphasize that these two metrics have different limitations.  
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Global sinusoidal seasonality in precipitation isotopes 
Scott T. Allen1, Scott Jasechko2, Wouter R. Berghuijs1, Jeffrey M. Welker3,4, Gregory R. Goldsmith5, 
James W. Kirchner1,6,7 
1Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland.  
2Bren School of Environmental Science and Management, University of California at Santa Barbara, Santa Barbara, CA, 5 
93117, USA 
3Ecology and Genetics Research Unit, University of Oulu, Finland and UArctic 
4Biological Sciences Department, University of Alaska, Anchorage 
5Schmid College of Science and Technology, Chapman University, Orange CA, 92866, USA 
6Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland 10 
7Department of Earth and Planetary Science, University of California, Berkeley, California, 94709, USA 

Correspondence to: Scott T. Allen (scott.t.allen@utah.edu) 

Abstract: Quantifying seasonal variations in precipitation δ2H and δ18O is important for many stable isotope applications, 

including inferring plant water sources and streamflow ages. Our objective is to develop a data product that Here we present 

global maps that concisely quantifiesy the seasonality of stable isotope ratios in precipitation. We fit sine curves defined by 15 

amplitude, phase and offset parameters to quantify annual precipitation isotope cycles at 653 meteorological stations on all 

seven continents. At most of these stations, including in tropical and subtropical regions, sine curves can represent the seasonal 

cycles in precipitation isotopes. Additionally, the amplitude, phase, and offset parameters of these sine curves correlate with 

site climatic and geographic characteristics. Multiple linear regression models based on these site characteristics capture most 

of the global variation in can map global precipitation isotope amplitudes, phases, and offsets; while phase values were not 20 

well predicted by regression models globally, they were captured by zonal (0°-30° and 30°-90°) regressions, which were then 

used to assembleproduce global maps. . To produceThese global maps of sinusoidal seasonality in precipitation isotopes based 

on regression models were , Wwe then adjusted the for the regression-based maps models for residual spatial variations that 

were not captured by the regression models. The resulting mean Median prediction errors were for amplitude and offset 

averaged0.49 ‰ for δ18O amplitude, 0.73 ‰ δ18O for for δ18O amplitude δ18O and offset (and 4.0 ‰ and 7.4 ‰ for δ2H 25 

amplitude and offset), median phase errors were 8 days for phase values in latitudes outside of 30°, and errors 20 days for 

phase values in latitudes inside of 30°. We make these gridded global maps of precipitation δ2H and δ18O cycles seasonality 

publicly available. We also make tabulated site data and fitted sine curve parameters available to support the development of 

regionally calibrated models, which will werewill often begenerally be more accurate than our global model for regionally 

specific studies.  30 
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1 Introduction 

Characterizing the stable oxygen (18O/16O) and hydrogen (2H/1H) isotope compositions of precipitation can provide insights 

into the temporal and spatial origins of water, and of geological and biological materials that incorporate O and H from water. 

However, the isotopic composition of precipitation is difficult and costly to measure across large spatial scales or at high 

temporal frequencies, and thus precipitation isotope measurements are often unavailable for the times and locations at which 5 

they are needed. Consequently, compiled precipitation isotope data (e.g., Global Network for Isotopes in Precipitation; 

International Atomic Energy Agency) and interpolations of mean and monthly precipitation isotope data (e.g., Bowen et al., 

2005; Bowen & Wilkinson, 2002) are used across many fields of science (West et al., 2010).  

 

Although these network datasets and interpolated maps contain spatial and temporal information, it is often convenient to 10 

simplify and average across one of those dimensions. When identifying the spatial origin of water in a sample, investigators 

may use spatial patterns in mean isotope ratios (despite those patterns varying temporally and those samples not integrating 

water signatures throughout years). Additionally, when identifying the temporal origin of water in a sample, investigators often 

use time-series of isotope data from the nearest measurement location (and thus do not account for spatial differences). 

Alternatively, concise representations of large-scale spatiotemporal precipitation isotope patterns could be widely useful and 15 

mitigate the need to average precipitation isotope data across space or time.  Various tools and interpolation schemes exist for 

predicting precipitation isotope ratios at a placegiven location, such as the (e.g., Online Isotopes in Precipitation Calculator 

(following based on Bowen and Revenaugh, 2003), or for mapping spatial patterns in mean or monthly values over specified 

intervals (e.g.,, such as Isomap.org following (Bowen et al., 2014), .; hHowever, previous methods have not explicitly 

supported predictions of seasonal isotope cycles by first using metrics that capture isotopic temporal dynamics and then 20 

interpolated those metrics.   

 

Isotope ratios in precipitation often follow distinct seasonal cycles that can be approximated by sine curves (Bowen, 2008; 

Dutton et al., 2005; Feng et al., 2009; Halder et al., 2015; Vachon et al., 2007; Wilkinson and Ivany, 2002)(Dutton et al., 2005; 

Feng et al., 2009; Halder et al., 2015; Vachon et al., 2007; Wilkinson and Ivany, 2002), and the parameters describing those 25 

sine curves are often predictable in space (Allen et al., 2018; Jasechko et al., 2016). Sine curves concisely represent temporal 

dynamics because they express continuous, cyclic time series as functions of only three parameters (amplitude, phase, and 

offset). To predict isotope seasonality across the globe, values of these three sine parameters, fitted to monthly precipitation 

isotope data at monitoring stations, can be described as functions of station climate and geography. Such mapped sinusoidal 

cycles were shown to be effective in predicting monthly precipitation isotope values across Switzerland (Allen et al., 2018)..  30 

Beyond being useful for predicting isotope values at in specific timesseasons, sine curves generally aid in characterizing the 

propagation of cyclic signals. For example, as precipitation travels through hillslopes and into streams, seasonal isotope 

amplitudes are dampened, reflecting transport processes that can be quantified as a stream-precipitation amplitude ratio 
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(Kirchner, 2016a, 2016b); this young water fraction, which requires sine curve fitting of precipitation isotopes, has been used 

in many recent studies (Clow et al., 2018; von Freyberg et al., 2018; Jacobs et al., 2018; Jasechko et al., 2016, 2017; Lutz et 

al., 2018; Song et al., 2017). Thus, there are immediate and obvious applications that could usefor quantified and 

mappdemapped sinusoidssine curves that capturecharacterize  precipitation isotope cycles across the globe. ThusMore 

generally, spatial data describing how precipitation isotope compositions vary seasonally could facilitate interpretations of 5 

environmental 18O/16O and 2H/1H data and support predictions of precipitation isotope compositions in time and space. 

 

Here we present global maps of precipitation isotope cycles that capture patterns in precipitation isotope seasonality. We first 

describe the strength of seasonal isotope cycles, and quantify how well sine curves explain monthly precipitation measurements 

at each of 653 precipitation isotope monitoring stations. We then explore how well the parameters describing those sine curves 10 

can be predicted across the globe, as a function of site characteristics. Lastly, we produce global maps and data that support 

stable isotope applications, and make these maps and data publicly available. We conduct these analyses to support a growing 

need for quantifications of seasonal cycles in precipitation isotopes, not to challenge the methods previously used in other 

precipitation isotope models. 

2. Methods 15 

2.1. Data 

We used a global dataset of monthly precipitation oxygen and hydrogen isotope measurements from 650 and 610 precipitation 

monitoring stations, respectively. These previously compiled (Jasechko et al., 2016) data were collected from the Canadian 

Network for Isotopes in Precipitation (Birks and Edwards, 2009; Birks and Gibson, 2013), the US Network for Isotopes in 

Precipitation (Delavau et al., 2015; Welker, 2000, 2012), and the Global Network for Isotopes in Precipitation (Aggarwal et 20 

al., 2011; Halder et al., 2015). Some stations have datasets that are as long as 57 years, although shorter durations are more 

common (Figure S1a). Following Jasechko et al. (2016), we characterize seasonal cycles only at monitoring stations that report 

precipitation isotope compositions for at least eight unique months. Monthly precipitation amounts (or snow-water 

equivalencies) are also available from 623 of the 650 stations that measured oxygen isotope ratios, and from 603 of the 610 

stations that measured hydrogen isotope ratios. All hydrogen and oxygen isotope ratios of precipitation are denoted as δ2H and 25 

δ18O, defined by  

    𝛿𝛿 𝐻𝐻 2 =  ( 𝐻𝐻 2 𝐻𝐻 1⁄ )𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠− ( 𝐻𝐻 2 𝐻𝐻 1 )⁄ 𝑉𝑉−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
( 𝐻𝐻 2 𝐻𝐻 1 )⁄ 𝑉𝑉−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

× 1000 ‰  ,   (1) 

and 

    𝛿𝛿 𝑂𝑂 18 =  ( 𝑂𝑂 18 𝑂𝑂 16⁄ )𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠− ( 𝑂𝑂 18 𝑂𝑂 16 )⁄ 𝑉𝑉−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
( 𝑂𝑂 18 𝑂𝑂 16 )⁄ 𝑉𝑉−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

× 1000 ‰  ,  (2) 

where V-SMOW refers to the Vienna Standard Mean Ocean Water standard. 30 
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We compiled gridded climatological and geographical data for global modelling and for inferring site characteristics of the 

precipitation monitoring stations (Figure 1). We downloaded climate maps of monthly precipitation sums and monthly means 

of daily low, high, and mean temperature, all at 5-arc-minute (i.e., 0.083°) resolution (WorldClim; Fick & Hijmans, 2017). 

Station climate data were inferred from these gridded products for all but three stations that were on small islands or stationary 5 

weather vessels, for which local meteorological data were acquired. The range of mean monthly temperatures was computed 

at each pixel (and each monitoring station) as the difference between the highest and lowest monthly mean values, using the 

WorldClim data. Annual mean daily temperature range was calculated as the mean differences between daily minimum and 

maximum temperatures. The WorldClim data were also used to calculate time of peak precipitation and temperature, and 

seasonal amplitude of precipitation and temperature, metrics which can together capture global patterns in hydroclimate 10 

(Berghuijs and Woods, 2016). We also used a 30-second gridded elevation map (GTOPO30; US Geological Survey, 1996) 

that was aggregated to 5-minutes for consistency with the other grids. Monitoring station elevation data were not inferred from 

the grids, but instead downloaded directly from the isotope network databases. Distance from oceans and seas was calculated 

in ArcGIS 10.4.1 (ESRI, Redlands, USA) using published coastline data (Wessel and Smith, 1996) for the centre of each 5-

minute pixel and for each monitoring station.  15 

2.2. Sine-fitting methods 

We fitted sine curves (described by the parameters amplitude, phase, and offset) to each monitoring station’s monthly measured 

δ18O and δ2H time series using a nonlinear fitting routine (“fitnlm” in MATLAB R2016B, Mathworks, Natick, Massachusetts, 

USA). The sine curve is defined with a fixed period of one year,  

Precipitation δ18O or δ2H (t) = amplitude × sin(2πt – phase) + offset  , (3) 20 

where t is the fractional year. All fitted amplitudes and phases were adjusted so that fitted amplitude values are positive, and 

phase values are between π and –π. Phase was calculated in radians, but we report all values in days from the summer solstice. 

Allen et al. (2018) previously confirmed that this non-linear fitting routine yields parameter values and component standard 

errors that are equivalent to those obtained by fitting sine curves as an additive model of sine and cosine functions with their 

uncertainties calculated by Gaussian error propagation. It should be noted that standard errors depend on the length of records, 25 

and while some stations have datasets that are as long as 57 years, shorter durations are more common (Figure 2a). We fitted 

the sine curves by two alternative approaches: a) using iteratively reweighted least squares with a bisquare weighting function 

(robust-fitted), and b) using standard least squares with the influence of each monthly isotope measurement weighted by the 

amount of precipitation during that month (amount-weighted). These metrics have different limitations. The amount-weighted 

cycles are less influenced by erratic values that can occur in low-precipitation months, but also do not capture the variations 30 

during drier seasons as effectively. These metrics have different limitations. For example, if there was an anomalously dry 

month in a short data record, and that dry month also had an erraticatypical isotope value (e.g., because it was composed of a 
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single small,l event), that value could result in a robust-fit exaggerating the true seasonal isotope cycle.; Iif estimates based on 

that sinusoid were later weighted with typical precipitation amounts, this could introduce errors. Weighted-fits could introduce 

errors if drier season precipitation is important to the studya system being studied, but the dry season precipitation has minimal 

influence on the fits and thus those values are misrepresentedcharacterized. Weighted fits might also mischaracterize the 

seasonal dynamics of a typical yeardynamics in regions that are impacted by extreme eventsprecipitatoinprecipitation in some 5 

years (e.g. hurricanes or monsoons) if thosethat extreme eventsprecipitation hasve distinct isotope values signatures and yields 

those event volumes that are substantial fractions of annual precipitation (e.g., Price et al., 2008). We focus on the robust-fitted 

parameters describing the seasonal cycles, but for comparison, the amount-weighted fits are also reported in Supporting 

Information 2. We recommend that future users of these data carefully consider their different limitations when selecting 

between these two approaches.  10 

2.3.  

Precipitation sinusoidal prediction methods 

To characterize spatial variations in precipitation isotope seasonality, we establish relationships between the fitted sine 

parameters (amplitude, phase, and offset) and site characteristics of the precipitation isotope monitoring stations using multiple 

linear regression. To characterize the monitoring stations, we used elevation, absolute latitude, distance from the nearest ocean, 15 

mean annual temperature, range of mean monthly temperatures, seasonal amplitude of precipitation amount, and mean annual 

precipitation amount (Fig.ure 1). We chose these metrics as spatial predictors because global datasets of these metrics are 

publicly available and they capture aspects of climate and circulation patterns that are known to affect precipitation isotopic 

composition (Aggarwal et al., 2016; Birks and Edwards, 2009; Rozanski et al., 1993). To determine which predictors should 

be included in regression models, we used a stepwise model selection approach in which different combinations of predictors 20 

were used to maximize R2 values while requiring that all coefficient p-values are statistically significant (p < 0.05). This step 

limits model overfitting by excluding redundant or non-significant predictors. We found that using these criteria more 

aggressively removed variables than didcompared to using the more standard Akaike Information Criterion (AIC). To assess 

collinearity among these variables, we calculated the variance inflation factors (VIF) associated with a a hypothetical model 

that includesing all six variables;  andwe found those factors to range from 1.4 to 7.8, and; while no fitted models actually 25 

included all six terms, the variance inflation factors among the six predictors are still all below the often-used threshold of 10 

(Marquaridt, 1970). After identifying the appropriate model terms, models were fitted using the “fitlm” function with robust 

fitting options that reduce the influence of outliers (MATLAB R2016B). In preliminary analyses, we also tested other metrics 

– precipitation phase, temperature phase, and mean daily temperature range – but determined that they were not consistently 

important (i.e., when included in the initial model selection, they were mostly excluded). Thus we excluded these other metrics 30 

from subsequent analyses to avoid overcomplicating the models; however, they often showed interesting relationships with 

the sine parameters, so they are provided in Figure S12. 
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For models of phase, we only used data from monitoring stations where there is a distinct seasonal cycle, because phase terms 

are meaningless and fitted values are unstable where there are no sinusoidal seasonal cycles; these phase values will also be 

excluded from the supporting information data files to avoid confusion.. We characterize distinct seasonal cycles as ones where 

the phase is well constrained, with standard errors of the fitted phase terms lower than 15 days (and thus 95 % confidence 5 

intervals of approximately ± 1 month). Roughly 74 % of the sites (n = 479) met this criterion. We also tested other criteria for 

filtering out stations with meaningless phase terms, such as R2 > 0.3 (n = 425) or R2 > 0.5 (n = 232), and those yielded similar 

regression models for phase. We modelled phase in mid and high latitudes (30° to 90°; n = 349 after removing data without 

distinct seasonal cycles) separately from phase in tropical and subtropical latitudes (0° to 30°; n = 130 after removing data 

without distinct seasonal cycles). We took this approach because initial inspections of these data and past examinations of 10 

similar data (Bowen and Revenaugh, 2003; Feng et al., 2009; Halder et al., 2015) suggested that phase is relatively consistent 

within each of these zones, with sharp transitions at approximately 30° N and S (roughly corresponding with Hadley Cell 

boundaries; Birner et al., 2014).  

 

These fitted spatial regression equations for amplitude, phase, and offset were used to map global precipitation isotope 15 

seasonality using the gridded site-characteristic data. We did not extend these maps to extrapolate Antarctic isotope seasonality 

because there are few monitoring stations there. We also mapped the residuals, estimated by subtracting the regression model 

estimates of amplitude, phase, and offset from the same variables determined from the fitted sine curves at the precipitation 

monitoring stations. We interpolated those residuals using inverse-distance weighting of the residual values from the three 

stations that are most proximal to each grid-cell centre. For phase, we used nearest neighbour interpolation, rather than inverse-20 

distance weighting, because averages across unlike phases are poorly representative. We then applied a Gaussian filter to 

smooth the each of the residual adjustment layers, with the standard deviation equal to 3°, because we assume there are 

measurement uncertainties and thus the layer should not be fitted exactly to the points. For phase, we used nearest neighbour 

interpolation, rather than inverse-distance weighting, because averages across unlike phases are poorly representative; also, 

we smoothed the phase residuals separately in absolute latitudes > 30° versus absolute latitudes < 30°. For final predictive 25 

maps, we added the smoothed residual maps to the regression-based maps; wherever negative amplitudes were resulted, those 

values were forced to zero.  Errors were evaluated by running this routine again, but with while randomly excludingsetting 

aside 10% of the sites (65 sites (10%)) to not use in the calibration so that they could be usedfor subsequent use as independent 

quality-control checks. Sine parameters for those 65 stations were predicted using models calibrated with the other ~585 sites; 

this Monte Carlo procedure was iterated 15 times for both δ18O and δ2H.  30 

 

We provide these predictive maps of the gridded amplitude, phase and offset values of δ18O and δ2H. We also provide gridded 

amplitude, phase, and offset values for precipitation amount, which can be used to scale precipitation isotopic inputs, in 
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applications where amount is important. These maps are provided as geoTIFF files with georeferencing metadata (Supporting 

Information 3).  

 

To explore sub-global variations in performance of the spatial multiple regression models, we also performed regional 

regression analyses in which we fitted multiple regressions to data from subsections of the globe. Regressions of amplitude, 5 

phase, and offset were calculated for 40° × 40° windows using the same site characteristics that were used in the global models: 

absolute latitude, elevation above sea level, distance from coastline, range of mean monthly temperatures, mean annual 

temperature, and annual precipitation amount. These regional regressions were calculated at all vertices of a 10° grid (marking 

the centre of each 40° window). We used the same combination of stepwise regression model selection and robust regression 

fitting as in the global analysis. Only windows that contained more than 25 precipitation isotope monitoring stations were 10 

analysed. We report gridded R2 and root mean square error (RMSE) values to indicate where these relationships are strongest. 

We also provide fitted sine parameters and site characteristics in the supporting information to facilitate users' development of 

other regression models for regionally specific applications (Supporting Information 2). 

3 Results 

3.1 Seasonal cycles in precipitation isotopes 15 

Globally, 94 % of the precipitation δ18O monitoring stations (n = 650) have statistically significant seasonal isotope cycles (p 

< 0.05; t-test of the δ18O), although those cycles do not always explain the majority of the variance in monthly isotope values 

(i.e., only 36 % of the stations had R2 greater than 0.5; Figure 2). Amplitudes range from 0 to 11 ‰ δ18O (Figure 2Figure 3), 

with a median value of 2.3 ‰ δ18O; here, amplitude quantifies the strength of seasonal cycles as deviations from average 

annual values, so an amplitude of 2.3 ‰ δ18O corresponds to a range of 4.6 ‰ between typical values in the “higher δ18O 20 

season” and the “lower δ18O season”. Seasonal isotope variations are larger in colder, higher-latitude, higher-elevation, or 

more continental regions (Figure 2Figure 3), although no individual site characteristic explains the majority of variation in 

amplitude (Figure 2Figure 3; Table 1). The few coastal stations that have strong seasonal cycles are almost exclusively located 

in high absolute-latitude regions (Figure 3Figure 4a). To our surprise, mMany of the monitoring sites within tropical latitudes 

also have substantial seasonal cycles; for example, 27 % of sites in the tropics show amplitudes greater than 3 ‰ δ18O, and 25 

they are not all high-elevation sites (Figure 2Figure 3b). 

 

Although most stations show a seasonal precipitation δ18O cycle, the ability of sine curves to capture monthly δ18O values 

varies (Figure 2). The median percent of variance explained by sine curves is 42 %; the median RMSE of individual monthly 

deviations from fitted sine curves is 2.2 ‰ δ18O. Stronger fits occur where a) there is a strong seasonal cycle, b) the seasonal 30 

cycle is the dominant pattern of variation, and c) sine curves are the appropriate shape to characterize precipitation isotope 
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variations. Accordingly, the spatial pattern in R2 (Figure 2S1c) is broadly similar to the pattern in amplitude (r = 0.74). 

However, RMSE also increases with amplitude (r = 0.58), demonstrating that greater seasonal variability is also generally 

associated with greater month-to-month deviations from the seasonal sinusoidal cycle. 

 

The phase term is well constrained (i.e., SE of phase < 15 days) at most but not all sites (n = 479), and its geographic distribution 5 

is surprisingly binary (Figure 3Figure 4b). From 30° S to 30° N (i.e., roughly corresponding with the Hadley cells), peak 

isotope values occurred 104 ± 43 days before the summer solstice (mean ± SD). By contrast, in the mid- and high-latitude 

regions, peak isotope values occurred 18.6 ± 24 days after the summer solstice. A few exceptions are found in absolute latitudes 

near 30°, which may be attributable to the effects of the Asian monsoon cycle (Cai et al., 2018) or the migration of Hadley cell 

boundaries, which do not consistently occur at 30° (Chen et al., 2014). Peak precipitation isotope values occur within a month 10 

of peak temperature at 68 89 % of the monitoring stations that are in absolute latitudes above 30° and have well-constrained 

seasonal isotopic phases (Figure S23);. hHowever, this that pattern was not ubiquitous. On average, phase of δ2H significantly 

lags δ18O in absolute latitudes over 30° (p < 0.01), albeit with a median difference of only 2 days (and median absolute 

difference of 4 days); these observations suggest that precipitation LC-excess, defined as δ2H–a×δ18O−b (where a is the slope 

and b is the intercept of the LMWL; Landwehr and Coplen, 2006),  may frequently has have a  seasonal cycle and thus an 15 

elliptical LMWL, as previously described in Switzerland (Allen et al., 2018) and suggested in global deuterium-excess 

variations (Pfahl and Sodemann, 2014)..  

 

Offset values, describing the central tendency of the seasonal cycle, span a range of 33 ‰ in δ18O. These values are highest 

(least negative) in tropical and subtropical regions, and lowest in polar regions (Figure 3Figure 4c). Most prominent is the 20 

strong temperature trend (0.47 ‰ δ18O per °C, R2 = 0.77; Figure 2Figure 3; Table 1), consistent with patterns that have been 

previously described (Dansgaard, 1964; Rozanski et al., 1993). It should be noted that offsets and amplitudes are associated 

differently with continentality (Figure 3Figure 4 a,c); while many of the regions with highly negative offsets also have large 

amplitudes, this is untrue of coastal regions in mid and high latitudes where highly negative offsets and small amplitudes co-

occur. For example, in Reykjavik, Iceland, the δ18O offset is -8.0 ‰ and the amplitude is 0.9 ‰; a similar offset is found in 25 

continental Iowa, USA (-8.2 ‰), but the amplitude is 4.5 times larger (4.0 ‰). 

 

3.2 Spatial patterns in parameters describing precipitation isotopic cycles 

The spatial patterns in amplitude, phase, and offset can be described as functions of site characteristics. Of the predictors 

examined, all have significant correlations (at p < 0.05) with amplitude, phase, and offset (Table 1; see also Figure 2Figure 3). 30 

Spearman rank correlations, which are less influenced by extreme values, are also statistically significant for all but one of 
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these relationships (Table 1). However, no variables explain the majority of variation in amplitude, and only temperature 

explained the majority of variation in offsets (Table 1).  

 

We developed multiple linear regression models of site characteristics and sine parameters, and used them to generate maps 

of δ18O sinusoidal cycles (Figure 3Figure 4). The multiple regression models explain 64 % of the variation in amplitude (RMSE 5 

= 1.1 ‰) and 83 % of the variation in offset (RMSE = 2.0 ‰). The multiple regression models for phase have low R2 values 

(0.19 and 0.21, respectively for absolute latitudes above and below 30°) because there is little variation in phase within each 

latitude band; thus, phase RMSE values are small (12 and 28 days; Table 2). The coefficients of the multiple regression 

equations describing mapped precipitation δ18O sinusoidal cycles are presented in Table 2 and analogous coefficient tables 

describing global regression models of δ2H, amount-weighted δ18O, and amount-weighted δ2H cycles are presented in Table 10 

S1.  

 

Residuals from the interpolated sine parameter layers are often clustered show clusters of similar values (Figure 4Figure 5), 

implying that sources of geographic variation are not fully captured by the predictors that we have used. Consequently, 

regionally calibrated models (calculated over moving 40° × 40° windows) often yield better fits (Figure 5Figure 6). Even in 15 

regions where multiple regression models do not effectively explain the variations in precipitation isotope sine parameters 

(e.g., Central America, South-central Asia), they will necessarily be fitted to the mean regional values, so the regional multiple 

regression model errors (RMSEs) will usually be smaller than those of the global regression model.  

 

To produce final predictive maps, we adjusted for the geospatially clustered residuals by adding the smoothed residual maps 20 

(Figure 4Figure 5) to the regression-based maps (Figure 3Figure 4). These predictive sinusoidal maps of δ18O seasonality 

(Figure 6Figure 7) and δ2H seasonality (Figure S34) are made available in the supplementary materials. They capture 88 %, 

97 %, and 96 % of the global variations in amplitude, phase, and offset, respectively. To calculate the prediction errors, we ran 

this routine again, but randomly excludedset aside 10% of the sites to not use infrom the calibration so that the sine parameters 

at those sites were predicted independently; the median amplitude and offset errors were 0.49 ‰ and 0.73 ‰ δ18O (and 4.0 ‰ 25 

and 7.4 ‰ δ2H), and median phase errors were 8 and 20 days (respectively for absolute latitudes above and below 30°). 

4 Discussion  

The occurrence of seasonal cycles in precipitation isotopes enables tracking how precipitation cycles propagate through 

landscapes and ecosystems. Previous research has found that precipitation isotopes vary seasonally, and that these seasonal 

patterns vary geographically (Halder et al., 2015; Rozanski et al., 1993). This work quantifies those seasonal patterns and their 30 
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geographical variation, yielding global maps of sinusoidal precipitation isotope cycles (i.e., global sinusoidal ‘isoscapes’) that 

can be used to predict seasonal precipitation isotope cycles in sites or regions where they have not been measured.  

 

Site characteristics explain most of the global precipitation isotope cyclicity, albeit with uncertainty in the regression model, 

the sine fits, and the raw data. Amplitude variations are mostly predictable by multiple regression (Table 2), but there were 5 

regional clusters of substantive (±1-2 ‰ δ18O) amplitude residuals. For example, the regression model (Figure 3Figure 4) 

tended to systematically underestimate amplitudes in Canada and the northern United States, and systematically overestimate 

amplitudes in other regions (e.g., Southeast USA, East Asia, and East Africa). We partially mitigated these discrepancies 

between model outputs and observations by interpolating and smoothing the residuals, as commonly done for precipitation 

isotope maps to improve the fit of the maps to the data (e.g., Terzer et al., 2013). Better fits could have been achievable through 10 

using more predictor variables in the regression models, however we chose to limit the number of variables in the multiple 

regression models, even prior to the stepwise model selection; while we explored new relationships between precipitation 

isotope seasonality and (for example) diel temperature range or precipitation amount seasonality (Figure S12), these offer little 

explanatory power that is not also captured in simpler metrics. Regardless, some uncertainties are introduced by using gridded 

climate products to infer site characteristics, because grid-cell means are not always representative of individual station 15 

locations, as demonstrated by the mismatch between the elevations of monitoring stations and the mean elevations of the pixels 

they occupy (Figure S45). Other uncertainties in the regression predictions likely result from errors in the initial sine-curve 

fitting, as demonstrated by the fact that the regression models improve when only stations with longer records are used. For 

example, if we exclude all datasets shorter than three years (see Figure 2a), the R2 of the δ18O amplitude model increases from 

0.64 to 0.73 and the R2 of the offset model increases from 0.83 to 0.87. Any uncertainties in the models or the underlying data, 20 

however, do not preclude widespread estimation of precipitation stable isotope cycles at the level of confidence indicated (e.g., 

in Table 2 and Figure 4Figure 5, or Figure 2S1b), which is improved upon through use of the residual-adjusted maps. 

Predictions can also be improved by using multiple regression models calibrated across individual regions of interest (using 

the data in Supporting Information 2). 

 25 

These maps support predicting seasonal isotope cycles, but seasonal isotope cycles are only sometimes useful for predicting 

individual-month isotope values. To predict individual-month isotope values from a sine curve, the sine curve must be 

predictable (e.g., with well-constrained phase value), but also the sine curve must capture monthly isotope variations (e.g., R2 

must be high). In only a small subset of the monitoring stations were R2 values consistently high (Figure 2S1c). For example, 

at only 6 % of stations was more than 75 % of the variance explained by sine curves. Even fewer stations had long time series 30 

that enabled us to determine whether the high R2 values also imply that inter-annual variations are small (e.g., such as in 

continental or northern latitude monitoring stations; Figure 2S1a). Thus, individual month values should be carefully inferred 
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from sine curves (e.g., by assuming errors of magnitudes like those shown in Figure S1Figure 2b), even where precipitation 

isotope cycles seasonality isare predictable.  

 

 

Precipitation isotope cycles are likely to be least predictable at in latitudes near 30°S, 0°, and or 30°N, where our models 5 

abruptly shift in phase, approximately demarcating global atmospheric circulation patterns. However, the inter-tropical 

convergence zone (ITCZ) is not consistently at 0° and Hadley cell boundaries are not consistently at 30°S and 30° N (in space 

or time; Birner et al., 2014; Chen et al., 2014), which may explain why most of the poor phase predictions (Figure 4Figure 5b) 

occur near 30° N or S. There are also errors near 0°, where predicted phase values differ by six months on either side of the 

equator, which does not precisely demarcate the ITCZ and relevant atmospheric circulations. Bowen et al. (2005) recognized 10 

this ITCZ effect and instead used the mean ITCZ position, rather than 0°, to account for phase shifts that occur there; although 

adopting Bowen’s approach cshould mitigate some of the anomalies at 0° and 30° (Figure 4Figure 5), other issues in predicting 

phase would persist (e.g., the elimination of higher frequency cycles; Jacobs et al., 2018). Thus, we opt for our simpler approach 

and accept that our model is sometimes uncertain in zones near 0° and 30°, although those uncertainties are partially mitigated 

in the residual-adjusted maps.  15 

Precisely predicting precipitation isotope cycles in low latitudes may require consideration of circulation patterns and their 

temporal variability (Cai et al., 2018; Martin et al., 2018), or use of regional multiple regression equations (which performed 

well in those regions; Figure 5).Precisely predicting precipitation isotope cycles in low latitudes may require consideration of 

circulation patterns and their temporal variability (Cai et al., 2018; Martin et al., 2018), or use of regional multiple regression 

equations (which performed well in those regions; Figure 5).  20 

 

Shortcomings in regression models may also result from not accounting for storm trajectories noror convective effects, both 

of which influence precipitation isotope ratios (Aggarwal et al., 2016; Hu et al., 2018; Konecky et al., 2019). Models 

representing those processes can aid in interpreting or predicting stable isotope ratios (Hu et al., 2018; Risi et al., 2010). 

Furthermore,, and storm sources and cloud types are a likely cause of the the variability in tropical precipitation isotopes ratios 25 

we show here may be the result of different storm sources and cloud types (Bailey et al., 2017; Scholl et al., 2009) that we 

show here.  that we describe here.Thus,  Pprecisely predicting precipitation isotope cycles in low latitudes without calibration 

data may (especially) require consideration of circulation patterns and their temporal variability (Cai et al., 2018; Martin et al., 

2018b); an alternative option would be using , or use of regional multiple regression equations, which  (which pperformed well 

in those regions; (Figure 6). NonethelessRegardless, most systematic effects should be compensated by the residual-smoothing 30 

step, as demonstrated by the relatively small prediction errors that we observed.  
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The 653 isotope monitoring stations used here span much of earth’s climatic heterogeneity, but not all regions. The 

distributions of the site characteristics associated with these 653 monitoring stations are roughly similar to the global 

distributions of those characteristics (Figure S56). However, high-latitude, high-elevation monitoring stations are scarce 

(Figure S67). More notably, measurements are absent in large regions of Africa, Australia, central Asia, and north Asia. The 

most interior regions of continents generally contained the fewest monitoring stations (Figure 1b), and we suspect that our 5 

regression equations may underestimate the true increase in amplitude with distance from oceans (e.g., see amplitude 

underestimates in continental North America; Figure 3Figure 4a). New precipitation isotope monitoring stations would help 

fill in important gaps.  

 

 10 

These maps of seasonal precipitation isotope cycles serve as tools for studying terrestrial processes. In regions where seasonal 

precipitation isotope dynamics are well described by sine curves, sinusoidal isotope models are useful for predicting isotope 

cycles values either at explicit points or continuously in time and space. The presence of large seasonal isotope cycles also 

enables the quantification of mixing, transport, and turnover of water (or its constituent O and H) in landscapes or biota. This 

is possible because 1) amplitude dampening reflects mixing processes, 2) phase shifts reflect advective travel times, and 3), 15 

offset differences reflect proportional contributions of different seasons’ precipitation.  In hydrology, the proportion of recent 

precipitation in streams  can be estimated as the ratio of precipitation and streamwater isotope amplitudes (i.e., the young water 

fraction; Kirchner, 2016a). Maps of precipitation isotope cycles can facilitate estimating average precipitation amplitudes 

across catchments (Dutton et al., 2005; Jasechko et al., 2016). In such cases isotope values should ideally be weighted by 

precipitation amount, to diminish the influence of low volumes (von Freyberg et al., 2018). Quantifying seasonal precipitation 20 

isotope cycles also facilitates identifying the proportion (and over/under-representation) of precipitation from different seasons 

in samples such as streamwater surface waters (Bowen et al., 2019; DeWalle et al., 1997; Halder et al., 2015)(DeWalle et al., 

1997; Halder et al., 2015), groundwater (Jasechko et al., 2014; Kalin and Long, 1994; Lee and Kim, 2007), or plant and soil 

water (Allen et al., 2019). Similarly, ecological and physiological inferences can be drawn by observing how seasonal 

variations in water isotope signals are incorporated into (or propagate through) plant and animal tissues (Csank et al., 2016; 25 

Gessler et al., 2014; Martin et al., 2018a; Vander Zanden et al., 2015; Yang et al., 2016). Even where phase values are poorly 

constrained, amplitude and offset values still are still useful identifiers of typical mean values and their magnitudes of seasonal 

variation. Thus, we expect that the mapped sine parameters that we have developed, as concise characterizations of seasonal 

precipitation isotope cycles, will find use in both physical and biological sciences.  

 30 

These maps also indicate where precipitation isotope seasonality should be considered in interpreting isotopic signals in 

biological and geological samples. Annual mean precipitation may poorly predict the average isotopic input to any biological 

or geological process that does not integrate precipitation waters throughout entire years, particularly where precipitation 
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isotopic composition is strongly seasonal (as discussed by, e.g., Dutton et al., 2005). Whereas event-to-event variations are 

likely to be rapidly damped by mixing in soils, lower-frequency variations, such as seasonal cycles, can persist and propagate 

through the water cycle. Where uptake and incorporation of isotopes into organisms (Balasse et al., 2003; Schubert and Jahren, 

2015) or geologic materials (Johnson et al., 2006) also vary seasonally, mean annual precipitation may poorly and 

inconsistently approximate their average source water. For example, consider a hypothetical case of soil water with an isotopic 5 

composition that is consistently equal to that of the current month’s mean precipitation. Further assume that a tree growing in 

this soil takes up that soil water and incorporates its oxygen atoms into cellulose during the six months of the warm season 

(e.g., when high-δ18O precipitation falls in high latitudes). For example, if the precipitation δ18O has a seasonal amplitude of 

4 ‰, the average composition of the water taken up by the tree will be approximately (2/π)* ) × 4 ‰ ≈ 2.5 ‰ higher than the 

annual average precipitation. This bias will be larger in locations where the seasonal amplitude of precipitation isotope cycles 10 

is larger. Thus, our maps showing precipitation isotope seasonality can be used to identify locations where such biases are 

potentially significant.  

5 Summary 

The majority of stable isotope time series measured at 653 precipitation isotope monitoring stations show significant sinusoidal 

seasonal cycles in precipitation isotopes. The fitted parameters that define these seasonal precipitation isotope cycles are 15 

estimated through multiple regression models of site characteristics. These spatial models enabled us to develop maps that 

describe global patterns in precipitation isotope seasonality, although regionally calibrated spatial models often better captured 

regional variations in precipitation isotope seasonality. The global maps and associated fitted isotope data are made available 

as supplementary information.  

Acknowledgements  20 

We thank the IAEA for developing and maintaining the Global Network for Isotopes in Precipitation (GNIP), and also thank 

the many researchers who have contributed data to GNIP. This project was funded by a grant from the Swiss Federal Office 

of the Environment to G.R. Goldsmith and J.W. Kirchner. Constructive comments were provided by three reviewers.  

Data Availability 

In Supporting Information 2, we provide all of fitted sine curves and site metadata for the 653 precipitation monitoring stations 25 

that are presented in this study. In Supporting Information 3, we provide metadata and a link to a 5-minute resolution gridded 

amplitude, phase, and offset for δ18O and δ2H of robust-fitted sine curves, hosted on Zenodo.org. All raw data used are 

synthesized from other studies or publicly available datasets; contact Dr. Jeff Welker for more information and collaborations 



14 
 
 

withregarding the USNIP (US Network for Isotopes in Precipitation) dataset at: jmwelker@alaska.edu (the web site is under 

reconstruction). 

Supplementary Materials 

Supplementary Information 1 

Table S1 Multiple regression coefficients and fit statistics for models describing the spatial variations in sine parameters that 5 

capture seasonal precipitation isotope cycles (amount-weighted fitted δ18O, robust-fitted δ2H, and amount-weighted fitted δ2H). 

Fig. S1 Maps of precipitation isotope measurement stations’ measurement durations and sine-curve goodness-of-fit statistics. 

Fig. S12 Scatter plots of fitted sine parameters describing precipitation δ18O seasonal cycles versus site characteristics that 

were not included in the regression models. 

Fig. S23 Histogram of phase differences between seasonal isotope cycles and seasonal temperature cycles. 10 

Fig. S34 Maps of fitted station values (markers) and the residual-adjusted maps of sine-curve parameters (shaded) that describe 

the seasonal cycles in precipitation δ18O a) amplitude, b) phase, and c) offset. 

Fig. S45 Elevations reported for sites regressed against gridded predictions of elevations of pixels containing those sites.  

Fig. S56 Probability density functions of the site characteristics used to predict seasonal precipitation isotope cycles. 

Fig. S67 Elevation versus latitude of precipitation isotope monitoring sites. 15 

 

Supplementary Information 2 

Data S1 List of fitted δ18O and δ2H sine parameter values (robust fitted, and amount-weighted fitted) and site characteristics  

(to be made available upon acceptance) 

 20 

Supplementary Information 3 

Data S2 Information to access the geospatial database (hosted on the public repository Zenodo.org), containing TIFF file of 

the following gridded products: Data S2 Gridded δ18O amplitude GeoTIFF file (to be made available upon acceptance);  

Data S3 Gridded δ18O phase Geo; TIFF file (to be made available upon acceptance) 

Data S4 Gridded δ18O offset ; GeoTIFF file (to be made available upon acceptance) 25 

Data S5 Gridded δ2H amplitude;  GeoTIFF file (to be made available upon acceptance) 

Data S6 Gridded δ2H phase;  GeoTIFF file (to be made available upon acceptance) 

Data S7 Gridded δ2H offset;  GeoTIFF file (to be made available upon acceptance) 

Data S8 Gridded precipitation amount amplitude;  GeoTIFF file (to be made available upon acceptance) 

Data S9 Gridded precipitation amount phase;  GeoTIFF file (to be made available upon acceptance) 30 

Data S10 Gridded precipitation amount offset. GeoTIFF file (to be made available upon acceptance) 



15 
 
 

 

References 

Aggarwal, P. K., Froehlich, K. and Gonfiantini, R.: Contributions of the International Atomic Energy 
Agency to the development and practice of isotope hydrology, Hydrogeol J, 19(1), 5–8, 
doi:10.1007/s10040-010-0648-3, 2011. 5 

Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., 
Schumacher, C. and Funk, A.: Proportions of convective and stratiform precipitation revealed in water 
isotope ratios, Nature Geoscience, 9(8), 624–629, doi:10.1038/ngeo2739, 2016. 

Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W. and Goldsmith, G. R.: Seasonal origins of 
soil water used by trees, Hydrology and Earth System Sciences Discussions, 1–23, 10 
doi:https://doi.org/10.5194/hess-2018-554, in review. 

Allen, S. T., Kirchner, J. W. and Goldsmith, G. R.: Predicting spatial patterns in precipitation isotope 
(δ2H and δ18O) seasonality using sinusoidal isoscapes, Geophysical Research Letters, 4859–4868, 
doi:10.1029/2018GL077458, 2018. 

Bailey, A., Blossey, P. N., Noone, D., Nusbaumer, J. and Wood, R.: Detecting shifts in tropical 15 
moisture imbalances with satellite-derived isotope ratios in water vapor, Journal of Geophysical 
Research: Atmospheres, 122(11), 5763–5779, doi:10.1002/2016JD026222, 2017. 

Balasse, M., Smith, A. B., Ambrose, S. H. and Leigh, S. R.: Determining Sheep Birth Seasonality by 
Analysis of Tooth Enamel Oxygen Isotope Ratios: The Late Stone Age Site of Kasteelberg (South 
Africa), Journal of Archaeological Science, 30(2), 205–215, doi:10.1006/jasc.2002.0833, 2003. 20 

Berghuijs, W. R. and Woods, R. A.: A simple framework to quantitatively describe monthly 
precipitation and temperature climatology, International Journal of Climatology, 36(9), 3161–3174, 
doi:10.1002/joc.4544, 2016. 

Birks, S. J. and Edwards, T. W. D.: Atmospheric circulation controls on precipitation isotope–climate 
relations in western Canada, Tellus B: Chemical and Physical Meteorology, 61(3) [online] Available 25 
from: https://www.tandfonline.com/doi/abs/10.1111/j.1600-0889.2009.00423.x (Accessed 7 October 
2018), 2009. 

Birks, S. J. and Gibson, J. J.: Isotope Hydrology Research in Canada, 2003-2007, Canadian Water 
Resources Journal, doi:10.4296/cwrj3402163, 2013. 

Birner, T., Davis, S. M. and Seidel, D. J.: The changing width of Earth’s tropical belt, Physics Today, 30 
67(12), 38, doi:10.1063/PT.3.2620, 2014. 



16 
 
 

Bowen, G. J.: Spatial analysis of the intra-annual variation of precipitation isotope ratios and its 
climatological corollaries, J. Geophys. Res., 113(D5), D05113, doi:10.1029/2007JD009295, 2008. 

Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric 
precipitation, Water Resources Research, 39(10), doi:10.1029/2003WR002086, 2003. 

Bowen, G. J. and Wilkinson, B.: Spatial distribution of δ18O in meteoric precipitation, Geology, 30(4), 5 
315–318, doi:10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2, 2002. 

Bowen, G. J., Wassenaar, L. I. and Hobson, K. A.: Global application of stable hydrogen and oxygen 
isotopes to wildlife forensics, Oecologia, 143(3), 337–348, doi:10.1007/s00442-004-1813-y, 2005. 

Bowen, G. J., Liu, Z., Vander Zanden, H. B., Zhao, L. and Takahashi, G.: Geographic assignment with 
stable isotopes in IsoMAP, Methods Ecol Evol, 5(3), 201–206, doi:10.1111/2041-210X.12147, 2014. 10 

Bowen, G. J., Cai, Z., Fiorella, R. P. and Putman, A. L.: Isotopes in the Water Cycle: Regional- to 
Global-Scale Patterns and Applications, Annual Review of Earth and Planetary Sciences, 47(1), null, 
doi:10.1146/annurev-earth-053018-060220, 2019. 

Cai, Z., Tian, L. and Bowen, G. J.: Spatial-seasonal patterns reveal large-scale atmospheric controls on 
Asian Monsoon precipitation water isotope ratios, Earth and Planetary Science Letters, 503, 158–169, 15 
doi:10.1016/j.epsl.2018.09.028, 2018. 

Chen, S., Wei, K., Chen, W. and Song, L.: Regional changes in the annual mean Hadley circulation in 
recent decades, Journal of Geophysical Research: Atmospheres, 119(13), 7815–7832, 
doi:10.1002/2014JD021540, 2014. 

Clow, D. W., Mast, M. A. and Sickman, J. O.: Linking transit times to catchment sensitivity to 20 
atmospheric deposition of acidity and nitrogen in mountains of the western United States, Hydrological 
Processes, 32(16), 2456–2470, doi:10.1002/hyp.13183, 2018. 

Csank, A. Z., Miller, A. E., Sherriff, R. L., Berg, E. E. and Welker, J. M.: Tree-ring isotopes reveal 
drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska, Ecological 
Applications, 26(7), 2001–2020, doi:10.1002/eap.1365, 2016. 25 

Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16(4), 436–468, doi:10.1111/j.2153-
3490.1964.tb00181.x, 1964. 

Delavau, C., Chun, K. P., Stadnyk, T., Birks, S. J. and Welker, J. M.: North American precipitation 
isotope (δ18O) zones revealed in time series modeling across Canada and northern United States, Water 
Resour. Res., 51(2), 1284–1299, doi:10.1002/2014WR015687, 2015. 30 



17 
 
 

DeWalle, D. R., Edwards, P. J., Swistock, B. R., Aravena, R. and Drimmie, R. J.: Seasonal isotope 
hydrology of three Appalachian forest catchments, Hydrological Processes, 11(15), 1895–1906, 
doi:10.1002/(SICI)1099-1085(199712)11:15<1895::AID-HYP538>3.0.CO;2-#, 1997. 

Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J. and Lohmann, K. C.: Spatial distribution and 
seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA, 5 
Hydrol. Process., 19(20), 4121–4146, doi:10.1002/hyp.5876, 2005. 

Feng, X., Faiia, A. M. and Posmentier, E. S.: Seasonality of isotopes in precipitation: A global 
perspective, Journal of Geophysical Research: Atmospheres, 114(D8), doi:10.1029/2008JD011279, 
2009. 

Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1‐km spatial resolution climate surfaces for global 10 
land areas, International Journal of Climatology, 37(12), 4302–4315, doi:10.1002/joc.5086, 2017. 

v. Freyberg, J., Allen, S. T., Seeger, S., Weiler, M. and Kirchner, J. W.: Sensitivity of young water 
fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrology and 
Earth System Sciences, 22(7), 3841–3861, doi:https://doi.org/10.5194/hess-22-3841-2018, 2018. 

Gessler, A., Ferrio, J. P., Hommel, R., Treydte, K., Werner, R. A. and Monson, R. K.: Stable isotopes in 15 
tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the 
leaves to the wood, Tree Physiol, 34(8), 796–818, doi:10.1093/treephys/tpu040, 2014. 

Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J. and Aggarwal, P. K.: The Global 
Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and 
riverine research, Hydrol. Earth Syst. Sci., 19(8), 3419–3431, doi:10.5194/hess-19-3419-2015, 2015. 20 

Hu, J., Emile-Geay, J., Nusbaumer, J. and Noone, D.: Impact of Convective Activity on Precipitation 
δ18O in Isotope-Enabled General Circulation Models, Journal of Geophysical Research: Atmospheres, 
123(23), 13,595-13,610, doi:10.1029/2018JD029187, 2018. 

Jacobs, S. R., Timbe, E., Weeser, B., Rufino, M. C., Butterbach-Bahl, K. and Breuer, L.: Assessment of 
hydrological pathways in East African montane catchments under different land use, Hydrology and 25 
Earth System Sciences, 22(9), 4981–5000, doi:https://doi.org/10.5194/hess-22-4981-2018, 2018. 

Jasechko, S., Birks, S. J., Gleeson, T., Wada, Y., Fawcett, P. J., Sharp, Z. D., McDonnell, J. J. and 
Welker, J. M.: The pronounced seasonality of global groundwater recharge, Water Resources Research, 
50, 8845–8867, doi:10.1002/2014WR015809, 2014. 

Jasechko, S., Kirchner, J. W., Welker, J. M. and McDonnell, J. J.: Substantial proportion of global 30 
streamflow less than three months old, Nature Geosci, 9(2), 126–129, doi:10.1038/ngeo2636, 2016. 



18 
 
 

Jasechko, S., Wassenaar, L. I. and Mayer, B.: Isotopic evidence for widespread cold-season-biased 
groundwater recharge and young streamflow across central Canada, Hydrological Processes, 31(12), 
2196–2209, doi:10.1002/hyp.11175, 2017. 

Johnson, K. R., Hu, C., Belshaw, N. S. and Henderson, G. M.: Seasonal trace-element and stable-
isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon 5 
reconstruction, Earth and Planetary Science Letters, 244(1), 394–407, doi:10.1016/j.epsl.2006.01.064, 
2006. 

Kalin, R. M. and Long, A.: Application of hydrogeochemical modelling for validation of hydrologic 
flow modelling in the Tucson basin aquifer, Arizona, United States of America, International Atomic 
Energy Agency, Proceedings of a final research co-ordination meeting held in Vienna, 1-4 June 1993. 10 
[online] Available from: http://inis.iaea.org/Search/search.aspx?orig_q=RN:26036831 (Accessed 29 
January 2019), 1994. 

Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young 
water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. 
Sci., 20(1), 279–297, doi:10.5194/hess-20-279-2016, 2016a. 15 

Kirchner, J. W.: Aggregation in environmental systems – Part 2: Catchment mean transit times and 
young water fractions under hydrologic nonstationarity, Hydrol. Earth Syst. Sci., 20(1), 299–328, 
doi:10.5194/hess-20-299-2016, 2016b. 

Konecky, B. L., Noone, D. C. and Cobb, K. M.: The Influence of Competing Hydroclimate Processes 
on Stable Isotope Ratios in Tropical Rainfall, Geophysical Research Letters, 46(3), 1622–1633, 20 
doi:10.1029/2018GL080188, 2019. 

Landwehr, J. M. and Coplen, T. B.: Line-conditioned excess: A new method for characterizing stable 
hydrogen and oxygen isotope ratios in hydrologic systems, [online] Available from: 
http://inis.iaea.org/Search/search.aspx?orig_q=RN:37043527 (Accessed 13 September 2017), 2006. 

Lee, K.-S. and Kim, Y.: Determining the seasonality of groundwater recharge using water isotopes: a 25 
case study from the upper North Han River basin, Korea, Environmental Geology, 52, 853–859, 
doi:10.1007/s00254-006-0527-3, 2007. 

Lutz, S. R., Krieg, R., Müller, C., Zink, M., Knöller, K., Samaniego, L. and Merz, R.: Spatial Patterns 
of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in 
Contrasting Catchments, Water Resources Research, 54(7), 4767–4784, doi:10.1029/2017WR022216, 30 
2018. 

Marquaridt, D. W.: Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear 
Estimation, Technometrics, 12(3), 591–612, doi:10.1080/00401706.1970.10488699, 1970. 



19 
 
 

Martin, J., Looker, N., Hoylman, Z., Jencso, K. and Hu, J.: Differential use of winter precipitation by 
upper and lower elevation Douglas fir in the Northern Rockies, Global Change Biology, 24(12), 5607–
5621, doi:10.1111/gcb.14435, 2018a. 

Martin, N. J., Conroy, J. L., Noone, D., Cobb, K. M., Konecky, B. L. and Rea, S.: Seasonal and ENSO 
Influences on the Stable Isotopic Composition of Galápagos Precipitation, Journal of Geophysical 5 
Research: Atmospheres, 123(1), 261–275, doi:10.1002/2017JD027380, 2018b. 

Pfahl, S. and Sodemann, H.: What controls deuterium excess in global precipitation?, Climate of the 
Past, 10(2), 771–781, doi:https://doi.org/10.5194/cp-10-771-2014, 2014. 

Price, R. M., Swart, P. K. and Willoughby, H. E.: Seasonal and spatial variation in the stable isotopic 
composition (δ18O and δD) of precipitation in south Florida, Journal of Hydrology, 358(3), 193–205, 10 
doi:10.1016/j.jhydrol.2008.06.003, 2008. 

Risi, C., Bony, S., Vimeux, F. and Jouzel, J.: Water-stable isotopes in the LMDZ4 general circulation 
model: Model evaluation for present-day and past climates and applications to climatic interpretations 
of tropical isotopic records, Journal of Geophysical Research: Atmospheres, 115(D12), 
doi:10.1029/2009JD013255, 2010. 15 

Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R.: Isotopic Patterns in Modern Global 
Precipitation, in Climate Change in Continental Isotopic Records, edited by P. K. Swart, K. C. 
Lohmann, J. Mckenzie, and S. Savin, pp. 1–36, American Geophysical Union., 1993. 

Scholl, M. A., Shanley, J. B., Zegarra, J. P. and Coplen, T. B.: The stable isotope amount effect: New 
insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico, Water Resources Research, 20 
45(12), doi:10.1029/2008WR007515, 2009. 

Schubert, B. A. and Jahren, A. H.: Seasonal temperature and precipitation recorded in the intra-annual 
oxygen isotope pattern of meteoric water and tree-ring cellulose, Quaternary Science Reviews, 125, 1–
14, doi:10.1016/j.quascirev.2015.07.024, 2015. 

Song, C., Wang, G., Liu, G., Mao, T., Sun, X. and Chen, X.: Stable isotope variations of precipitation 25 
and streamflow reveal the young water fraction of a permafrost watershed, Hydrological Processes, 
31(4), 935–947, doi:10.1002/hyp.11077, 2017. 

Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J. and Aggarwal, P. K.: Global isoscapes for δ18O 
and δ2H in precipitation: improved prediction using regionalized climatic regression models, Hydrology 
and Earth System Sciences, 17, 4713–4728, doi:https://doi.org/10.5194/hess-17-4713-2013, 2013. 30 

US Geological Survey: Global 30 Arc-Second Elevation (GTOPO30), US Geological Survey, Center 
for Earth Resources Observation and Science (EROS)., 1996. 



20 
 
 

Vachon, R. W., White, J. W. C., Gutmann, E. and Welker, J. M.: Amount-weighted annual isotopic 
(δ18O) values are affected by the seasonality of precipitation: A sensitivity study, Geophys. Res. Lett., 
34(21), L21707, doi:10.1029/2007GL030547, 2007. 

Vander Zanden, H. B., Wunder, M. B., Hobson, K. A., Van Wilgenburg, S. L., Wassenaar, L. I., 
Welker, J. M. and Bowen, G. J.: Space-time tradeoffs in the development of precipitation-based 5 
isoscape models for determining migratory origin, J Avian Biol, 46(6), 658–667, 
doi:10.1111/jav.00656, 2015. 

Welker, J. M.: Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an 
initial analysis with application to water source studies, Hydrological Processes, 14(8), 1449–1464, 
doi:10.1002/1099-1085(20000615)14:8<1449::AID-HYP993>3.0.CO;2-7, 2000. 10 

Welker, J. M.: ENSO effects on δ18O, δ2H and d-excess values in precipitation across the U.S. using a 
high-density, long-term network (USNIP), Rapid Communications in Mass Spectrometry, 26(17), 
1893–1898, doi:10.1002/rcm.6298, 2012. 

Wessel, P. and Smith, W. H. F.: A global, self‐consistent, hierarchical, high‐resolution shoreline 
database, Journal of Geophysical Research: Solid Earth, 101(B4), 8741–8743, doi:10.1029/96JB00104, 15 
1996. 

West, J. B., Bowen, G. J., Dawson, T. E. and Tu, K. P., Eds.: Isoscapes: Understanding movement, 
pattern, and process on Earth through isotope mapping, Springer Netherlands. [online] Available from: 
//www.springer.com/gp/book/9789048133536 (Accessed 8 October 2018), 2010. 

Wilkinson, B. H. and Ivany, L. C.: Paleoclimatic inference from stable isotope profiles of accretionary 20 
biogenic hardparts – a quantitative approach to the evaluation of incomplete data, Palaeogeography, 
Palaeoclimatology, Palaeoecology, 185(1), 95–114, doi:10.1016/S0031-0182(02)00279-1, 2002. 

Yang, L. H., Ostrovsky, D., Rogers, M. C. and Welker, J. M.: Intra-population variation in the natal 
origins and wing morphology of overwintering western monarch butterflies Danaus plexippus, 
Ecography, 39(10), 998–1007, doi:10.1111/ecog.01994, 2016. 25 



21 
 
 

Table 1 Pearson and Spearman correlation coefficients of sine parameters versus (vs.) site characteristics.  

 Sine parameters vs. |latitude| vs. 

elevation 

vs. dist. 

from coast 

vs. temp. 

range 

vs. mean 

temp 

vs. mean 

precip. 

Pearson       
Amplitude 0.34 0.34 0.54 0.58 -0.56 -0.35 

Phase 0.76 -0.12 0.25 0.72 -0.68 -0.64 

Offset -0.67 -0.16 -0.23 -0.70 0.88 0.40 

Spearman       

Amplitude 0.30 0.42 0.56 0.51 -0.49 -0.37 

Phase 0.59 0.04 0.20 0.63 -0.64 -0.62 

Offset -0.69 -0.26 -0.35 -0.65 0.87 0.40 
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Table 2 Multiple regression coefficients and fit statistics for models describing global variations in sine parameters that capture 
seasonal precipitation δ18O cycles. Dashes mark predictors that were excluded by the stepwise-regression model selection.  

 

 

 

 

 

 

 

 

 

 

a referring to sites in latitudes > 30° (N or S) 
b referring to sites in latitudes < 30° (N or S) 

 

 

|Latitude| 

(° from 

equator) 

Elevation 

(m amsl) 

Dist. from 

coast (km) 

Temp. 

range 

(°C) 

Mean Annual Temp. 

(°C) 

Mean Annual 

Precip. (mm 

yr-1) 

Intercept RMSE R2 

Amplitude 

(‰ δ18O) 
-0.06 0.0003 0.0013 0.08 -0.12 — 4.5 1.1 0.64 

Phase (days)a — 0.005 — — -0.38 — 24.2 12.0 0.19 

Phase 

(days)b 
-1.27 — — 0.78 — — -100.0 28.2 0.21 

Offset 

(‰ δ18O) 
0.10 — — -0.11 0.55 -0.0008 -15.7 2.0 0.83 
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Figure 1 Global maps of site characteristics used for predicting seasonal precipitation isotope cycles: a) elevation of precipitation 
isotope monitoring stations plotted over the elevation map, b) distance from coast, c) temperature range between mean 
temperatures of warmest and coldest months, d) mean annual temperature, and e) mean annual precipitation. Values at 
precipitation isotope monitoring stations are marked by circles. For b-e, station-level data are estimated as the value of the grid 
cells that the stations occupy.   
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Figure 2. Maps of precipitation isotope measurement stations with colours indicating a) the length of measurements at each site, and 
goodness-of-fit statistics b) root mean square errors (RMSE) and c) coefficients of variations (R2) of the fitting of sine curves to 
monthly, empirical time series from each station. We show the robust-fitted δ18O statistics; the amount-weighted δ18O fit statistics, 
and the δ2H statistics (robust-fitted and amount-weighted) are provided in the Supporting Information 2 data file.5 
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Figure 2Figure 3 Scatter plots of fitted sine parameters describing precipitation δ18O seasonal cycles – a-f) amplitude, g-l) phase, m-
r) offset – versus site characteristics. For associated Spearman and Pearson correlation coefficients, see Table 1. Colours indicate 
absolute latitude (high latitudes in blue, low latitudes in red) as shown in panels a, g, and m.
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Figure 3Figure 4. Maps of fitted station values (markers) and regression-based sine-curve parameters (shaded) that 
describe the seasonal cycles in precipitation δ18O a) amplitude, b) phase, and c) offset. The shading reflects 
multiple-regression models based on landscape characteristics, described in Table 2; for phase, separate models were 
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used in absolute latitudes > 30° versus latitudes < 30° (see methods). Here, residuals were not yet added back into the 
model. 
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Figure 4Figure 5. Maps of δ18O a) amplitude, b) phase, and c) offset residuals, where the sine parameter values 
predicted from the multiple regression equations (shown in the interpolated maps in Figure 3Figure 4) were 
subtracted from those of parameter values fitted to measurements at each precipitation isotope monitoring site (also 
shown in Figure 3Figure 4). The shading shows the smoothed residual layers (see Methods).  
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Figure 5Figure 6. Fit statistics for regionally fitted regressions that explain the spatial variations of the precipitation 
δ18O sine parameters. Regressions of a) amplitude, b) phase, and c) offset versus site characteristics were calculated 
for 40° × 40° pixels (centred on vertices at a 10° grid). Only pixels which contained >25 precipitation isotope 
measurements stations were used; for phase (b), we only used measurement stations that had well-constrained 
sinusoidal cycles (i.e., the standard error of the phase was less than 15 days). These figures show that site 
characteristics do not consistently explain the patterns of variations, and often the R2 values are substantially lower 
than those of the global regression model (Table 2). However, the errors (RMSEs) are (almost) universally lower than 
those of the global regression model, implying that regionally calibrated regressions models are better predictors of 
spatial patterns in precipitation isotope cycles.   
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Figure 6Figure 7. Maps of fitted station values (markers) and the residual-adjusted maps of sine-curve parameters (shaded) that 
describe the seasonal cycles in precipitation δ18O: a) amplitude, b) phase, and c) offset. The interpolated surface is the sum of the 
infilled surfaces in Figures 3 and 4 (see Methods).   
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