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Dear Editor, 

We would like to thank both reviewers and you for your constructive comments and helpful suggestions that helped to 

improve the quality of our manuscript entitled “Estimation of subsurface soil moisture from surface soil moisture in cold 

mountainous areas”.  

 

We have taken the comments of the editor and reviewer#2 into account and revised our manuscript accordingly. In 

particular, we have now added an analysis of the methods comparison under the exact same condition (the first 70% of 

data is selected as training data, and the remaining 30% of data is used as validation data for the three methods). Moreover, 

we have thoroughly revised the entire manuscript to improve its readability. Revisions following the comments of the 

reviewers are highlighted in yellow in the revised manuscript. 

 

We are indebted to you and the reviewers for your taking significant amount of time and effort in handling our manuscript 

and providing detailed comments and suggestions for improving the manuscript. We look forward to your affirmative 

reply. 

 

Sincerely, 

Chansheng He, Ph.D. (on behalf of all co-authors) 

Professor of Geography 

Western Michigan University, 

Kalamazoo, MI 49008, USA 
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---------------------------------------------------------------------------------------------------------------------- 

Responses to the comments from reviewers: 

The comments of reviewers are in Bolded Arial font, while our responses are indicated in Times New Roman font 

with blue color, and the New text passages are indicated in Times New Roman font with black color.  

Comments from Editor 

Dear Authors: 

Your revised submission was evaluated by two out of the three previous reviewers. As you can see, 

while one reviewer gave a positive comment, the other was still quite critical. After an in-depth 

examination of both the last issues raised by Ref.#2 (of the revised paper), I agree with these 

additional concerns. Moreover, this part of the manuscript is indeed a bit hard to read and more 

flowing and especially clear sentences are required. Therefore, I invite you to provide adequate 

responses to the points raised by this Ref.#2. 

As also raised by Ref.# 2 of the initial submission (who was different by the current #2), overall the 

manuscript still reads with some difficulty and I suggest you should improve the readability of the 

paper wherever possible. 

Response: Thanks for your comments. We have recalculated the intercomparison among the different methods and 

revised the manuscript according to the suggestion of reviewer#2. Please see the details in the response to 

reviewer#2. 

This paper has been edited by a native English-speaker with a higher degree in a relevant discipline 

(www.GeoEditing.co.uk) to improve the readability of the paper (The picture below is the email with 

GeoEditing about polishing the English of the manuscript). 

  

http://www.geoediting.co.uk/
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Comments from Referee #2 

The manuscript have been improved significantly. I went thought the review and the rebuttal letter of 

the authors, I have to say that most of my comments have been addressed even if there is one issue 

that from my point of view has not been solved yet. 

In my first review I requested more info about the dataset used for the calibration of the methods. For 

sake of clarity, I report in the following the comment: 

“The intercomparison may be influenced by the different approaches used for the calibration of the 

methods. In fact, authors states that 70% of the data was used for validation of ANN and CDF, but they 

do not provide such indication for the exponential filter. If they used the entire database for this last, 

this may affect the results.” 

Based on the reply the authors clarified that the only for ANN a portion of the dataset have been used, 

while for the exponential filter the entire dataset was used. This means that the comparison between 

the two method is not made under the same conditions. This is a critical element that do not allow to 

discriminate among the models. 

I do not agree with the author when they state that the exponential filter requires the entire dataset for 

the its application. It can be easily calibrated on a portion of the time series (the first 70% or a 

continuous window that covers such length of data). Therefore, I strongly encourage to repeat the 

analysis using continuous subset of soil moisture for both methods in order to obtain comparable 

results. 

Response: Thanks for your comments. To make sure the comparison among the three methods is made under the same 

conditions, the first 70% of the data was selected as the training data, and the remaining 30% of the data was 

used as validation data for the three methods. In the previous study, the training data was selected using the 

random sampling with the best metric (minimum RMSE). Thus, the divide of the first 70% of data into 

training data will influence the performance of the three methods. 

Our results show that ANN performed better than ExpF for the individual layers (layer 1 to 5) in terms of 

both NSE and RSR (Table S1 and Fig. S2). However, the ExpF method performed better than the ANN 

method in estimating soil moisture for the entire soil profile. Additionally, the comparison of the 

performances between the ExpF and ANN methods were nonsignificant (p>0.05) for all the layers. However, 

metrics showed that the ExpF method has significantly higher R value than the ANN method for all layers 

(p<0.05). Comparison of metrics illustrated that the CDF matching method has the lowest performance 

among the three methods. In conclusion, the metrics indicated that the ANN has the best performance in 

terms of NSE and RSR, the ExpF method has the best performance in terms of R value. Thus, the conclusion 

in the nee setup is similar to the conclusions of the previous setup. The ANN method resulted in the lowest 
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estimation error, while the ExpF method was better able to capture the SM dynamics. We have changed the 

manuscript accordingly (Line 185-215). 

“The ExpF method estimates subsurface SM based on SWI, while the ANN and CDF methods are based on volumetric 

soil moisture. Following Moriasi et al. (2007), the Nash-Sutcliffe efficiency (NSE), the ratio of RMSE to the standard 

deviation of the observations (RSR, an error statistic that normalizes the RMSE), and Pearson correlation coefficient (R) 

were used to evaluate the performance of different methods with different units. To ensure that the comparison between 

the three methods is made under the same conditions, we divide the datasets into training data (the first 70% of the data) 

and validation data (the remaining 30% of the data) for all three methods. Fig. 3 and Table 2 summarize the metrics 

(NSE, RSR, and R) for the subsurface SM estimates at different depths derived by the three different methods for the 

growing seasons of 2014, 2015, and 2016. Results show that ANN performed better than ExpF for the individual layers 

(layer 1 to 5) in terms of both NSE and RSR (Table 2 and Fig. 3), while ExpF performed better than ANN in estimating 

soil moisture for the entire soil profile. Additionally, the comparison of the performances between the ExpF and ANN 

methods was  non-significant (p>0.05) for all the layers, but ExpF showed a significantly (p<0.05) higher R-value 

compared to ANN for all layers (with a median value of 0.97, 0.93, 0.84, 0.74, and 0.96 for layers 2, 3, 4, 5, and profile 

SM, respectively). The good performance for R suggests that the ExpF method had the best ability to describe the 

temporal variability in SM. Furthermore, Table 2 and Fig. 3 indicate that CDF provided the worst performance among 

the three methods and thus cannot be recommended. 

As expected, all metrics showed that the performance of the three methods decreased with depth. The results indicate 

that for two out of the three statistical measures (i.e. RSR and NSE), the ANN method was statistically superior to the 

other two methods. Specifically, the ANN method resulted in the lowest estimation error, while the ExpF method was 

better able to capture the SM dynamics. A similar finding was reported by Zhang et al. (2017a), who found that the ExpF 

method had a significantly higher correlation coefficient along with a higher mean bias compared to the ANN method. 

Furthermore, the ExpF method is a simpler approach as it only needs one parameter (Topt), and can thus be easily applied 

in data-scarce mountainous areas, while the establishment of the ANN method is much more complicated. In addition, 

the ExpF method is a process-based method, while ANN is a machine learning method. Therefore, the ExpF method was 

used to estimate the subsurface SM in the remainder of this study.” 
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Table 2. The median of the performance (RSR, R and NSE) of the three different methods (ExpF, ANN, and CDF) for 

estimating the subsurface SM using the surface SM for each layer of 35 stations during the growing seasons of 2014, 2015, 

and 2016 

Layer 
RSR R NSE 

ExpF ANN CDF ExpF ANN CDF ExpF ANN CDF 

Layer 2 0.650 0.587 0.646 0.973 0.906 0.941 0.577 0.656 0.583 

Layer 3 1.031 0.961 1.195 0.931 0.771 0.811 -0.063 0.076 -0.429 

Layer 4 1.155 1.334 1.863 0.840 0.620 0.571 -0.334 -0.804 -2.474 

Layer 5 1.676 1.540 2.258 0.742 0.553 0.503 -1.811 -1.375 -4.267 

Profile 0.709 0.811 1.033 0.959 0.890 0.929 0.498 0.341 -0.068 

 

Fig. 3. Boxplot of the metrics (NSE, RSR, R) to compare the subsurface SM estimation using the surface SM by  the three methods (ExpF, 

ANN, CDF) with the observations of  the 35 stations during the growing seasons of 2014 to 2016. Different letters above the box indicate 

the significant difference (p<0.05) among the different methods. 



 

6 

 

However, for the standard procedure of the ExpF method in earlier studies, the entire dataset is always used 

to derive the Topt and validate the ExpF method (e.g. Wagner et al., 1999; Albergel et al., 2008; De Lange et 

al., 2008; Ford et al., 2014; Wang et al., 2017). Thus, the ExpF method is also evaluated and analyzed using 

the entire dataset. The manuscript has been revised accordingly (Line 218-227). 

“In the method comparison, the first 70% and the remaining 30% of data was selected as training and validation data, 

respectively to ensure the comparison was under the same condition. However, for the standard procedure of the ExpF 

method in earlier studies, the entire dataset is always used to derive the Topt and validate the ExpF method (e.g. Wagner 

et al., 1999; Albergel et al., 2008; De Lange et al., 2008; Ford et al., 2014; Wang et al., 2017). Thus, the ExpF method is 

evaluated and analyzed using the entire dataset as well  (performance of the ExpF method using the entire dataset was 

showed at Table 3 and Fig. S1). Results indicate that the performances of ExpF at both layer 2 and profile are significantly 

higher than that of other layers. Moreover, results also indicate that the ExpF method showed good performance for layer 

2 and profile SM (with median NSE > 0.65, median RSR<0.60, Moriasi et al., 2007).” 

Table 3. The statistics (mean±standard deviation and median) of the performance (RSR, R and NSE) of the ExpF method for 

estimating the subsurface SM using the surface SM for each layer of 35 observation stations during the growing seasons of 

2014, 2015, and 2016 

Layer  Layer 2 Layer 3 Layer 4 Layer 5 Profile 

RSR 
mean±std 0.55±0.25 0.72±0.27 0.83±0.27 0.97±0.29 0.58±0.22 

median 0.48224 0.67035 0.8264 0.97253 0.54006 

R 
mean±std 0.89±0.10 0.81±0.19 0.70±0.31 0.57±0.39 0.88±0.11 

median 0.9279 0.86705 0.81155 0.7274 0.91141 

NSE 
mean±std 0.63±0.36 0.41±0.50 0.24±0.47 -0.03±0.61 0.61±0.32 

median 0.76744 0.55063 0.31706 0.05419 0.70833 
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Fig. S1. Boxplot of the metrics (NSE, RSR, R) to evaluate the subsurface SM estimation using the surface SM by the ExpF method with the 

observations of the 35 stations during the growing seasons of 2014 to 2016. Different letters above the box indicate the significant difference 

(p<0.05) among the different layers. 
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Abstract. Profile soil moisture (SM) in mountainous areas is important for water resources management and ecohydrological 10 

studies of downstream arid watersheds. Satellite products are useful for providing spatially-distributed SM information, but 

only have limited penetration depth (e.g.: top 5 cm). In contrast, in-situ observations can provide measurements at several 

depths, but only with limited spatial coverage. Spatially continuous estimates of subsurface SM can be obtained from surface 

observations using multiple methods. This study evaluates methods to calculate subsurface SM from surface SM, and its 

application to satellite SM products, based on a SM observation network in the Qilian Mountains (China) that has operated 15 

since 2013. Three different methods were tested to estimate subsurface SM at 10 to 20, 20 to 30, 30 to 50, and 50 to 70 cm, 

and in a profile of 0 to 70 cm, from in-situ surface SM (0 to 10 cm): the exponential filter (ExpF), the artificial neural network 

(ANN) and the cumulative distribution function (CDF) matching methods. The ANN method had the lowest estimation errors 

(RSR) while the ExpF method best captured the temporal variation of subsurface soil moisture, CDF method is not 

recommended for the estimation. Meanwhile the ExpF method were able to provide accurate estimates of subsurface soil 20 

moisture at 10 to 20 cm and for the profile of 0 to 70 cm using surface (0 to 10 cm) soil moisture only. Furthermore, it was 

shown that the estimation of profile SM was not significantly worse when an area-generalized optimum characteristic time 

(Topt) was used instead of station-specific Topt for the Qilian Mountains. The ExpF method was applied to obtain profile SM 

from the SMAP_L3 surface soil moisture product, and the resulting profile SM was compared with in-situ observations. The 

ExpF method was able to estimate profile SM from SMAP_L3 surface data with reasonable accuracy (median R of 0.65). Also, 25 

the combination of the ExpF method and SMAP_L3 surface product can significantly improve the estimation of profile SM in 

mountainous areas compared to the SMAP_L4 root zone product. The ExpF method is useful and has potential for estimating 

profile SM from SMAP surface products in the Qilian Mountains. 
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1. Introduction 

Soil moisture (SM) is considered to be an essential climate variable (Bojinski et al., 2014) because of its critical role in the 30 

water, energy (Jung et al., 2010) and carbon cycles (Green et al., 2019). In particular, knowledge of profile SM is important 

for runoff modeling (Brocca et al., 2010), water resources management (Gao et al., 2018), drought assessment (Jakobi et al., 

2018), and climate analysis (Seneviratne et al., 2010). Methods for SM measurements include ground-based measurements 

and satellite-based measurements (Dobriyal et al., 2012). Most ground-based methods enable the determination of SM changes 

with high temporal resolution at different depths, but with limited spatial coverage (Jonard et al., 2018). Especially in 35 

mountainous regions,  measuring SM in situ for a large area is  difficult and thus these measurements are scarce (Ochsner 

et al., 2013). In addition, strong SM heterogeneity in complex mountainous areas makes SM estimation over large areas more 

difficult (Williams et al., 2009). By comparison, satellite estimates of SM, such as those from the Soil Moisture Active & 

Passive (SMAP) mission, provide spatial SM coverage for large areas (Entekhabi et al., 2014; Brocca et al., 2017). 

Unfortunately, SMAP and other microwave-based SM products from spaceborne sensors only provide SM estimates for a 40 

limited depth up to ~5 cm (Escorihuela et al., 2010). Thus, a gap exists with respect to the availability of subsurface SM 

information with adequate spatial coverage. 

Previous studies have shown that subsurface SM is often related to surface and near-surface SM (Mahmood and Hubbard, 

2007; Wang et al., 2017). A variety of methods for estimating subsurface SM from surface SM information have been 

developed, including data assimilation of remote sensing data into land surface models (Han et al., 2013), physically-based 45 

methods (Manfreda et al., 2014), (semi-) empirical methods (Albergel et al., 2008), data-driven methods (Kornelsen and 

Coulibaly, 2014; Zhang et al., 2017a), and statistical methods (Gao et al., 2019). Among them, the application of both data 

assimilation and physically-based methods are limited to data-rich areas due to the large amount of required input data, e.g.: 

soil properties, which are often not available for data-scarce mountainous areas (Jin et al., 2015; Li et al., 2017; Dai et al., 

2019). The Cumulative Distribution Function (CDF) matching method is a statistical method developed to adjust systematic 50 

differences in different SM datasets (e.g.: in situ observations and satellite products) based on observation operators (Drusch 

et al., 2005; Peng et al., 2017). CDF matching can also be used for upscaling of SM (Han et al., 2012) and estimating subsurface 

SM from surface SM (Gao et al., 2019). The artificial neural network (ANN) method is an effective and powerful data-driven 

tool for nonlinear estimation problems, and has been widely used to estimate subsurface SM from surface SM measurements 

(Kornelsen and Coulibaly, 2014; Pan et al., 2017). The exponential filter (ExpF) method is a semi-empirical modeling approach 55 

and relies on a two-layer SM balance equation (Wagner et al., 1999). This method has been widely applied with both in situ 

observations and satellite products, and the performance of the ExpF method for estimating subsurface SM varied considerably 

over regions with different environmental conditions (Ford et al., 2014; González-Zamora et al., 2016; Tobin et al., 2017; 

Wang et al., 2017; Zhang et al., 2017a). Ford et al. (2014) found that root zone SM estimated from SMOS satellite products 

had a mean R2 of 0.57 (ranging from 0.00 to 0.86) and 0.24 (ranging from 0.00 to 0.51) for SM networks in Oklahoma and 60 

Nebraska, respectively. In addition to surface SM data, the ExpF method requires only one additional parameter (T, the 
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characteristic time) that reflects the combined influence of local conditions on the temporal characteristics of SM (Albergel et 

al., 2008; Ceballos et al., 2005). Previous studies have shown that T varied among different stations and several methods have 

been developed to estimate T (Wagner et al., 1999; Albergel et al., 2008; Brocca et al., 2010; Qiu et al., 2014).  

Methods for estimating subsurface SM from surface SM have not previously been evaluated for high and cold mountainous 65 

areas usingin situ SM observations across a wide area. In the absence of in situ SM observation networks over a wide area, 

satellite SM products can be an alternative for providing surface SM information for a wide area (Ochsner, et al., 2013). 

Although SM estimation from spaceborne sensors is especially challenging for mountainous regions, some validation studies 

have shown adequate accuracy (Pasolli et a., 2011; Rasmy et al., 2011; Zhao et al., 2014; Zeng et al., 2015; Zhao and Li, 2015; 

Colliander et al., 2017; Ullah et al., 2018; Qu et al., 2019; Liu et al., 2019). Nevertheless, the accuracy of profile SM estimation 70 

from remotely sensed SM products is currently unknown for mountainous regions. 

In this study, we focus on the Qilian Mountains, which is a water source for several key inland rivers with terminal lakes in 

Northwest China, including the Heihe, Shiyang, and Shule Rivers (He et al., 2018). Water scarcity threatens both food and 

ecosystem security in these endorheic basins (Feng et al., 2019). At the northeastern border of the Tibet-Qinghai plateau, with 

its significant role in the Asian monsoon, profile water content in the Qilian Mountains is a key variable in ecohydrological 75 

studies on water resources and exchange processes in these basins (Zhao et al., 2013). Therefore, the aim of this study is to use  

in situ SM observations from 35 stations and remotely sensed SM data from the Qilian Mountains, a prime example of a high 

and cold mountainous area, to characterize the relationship between surface SM and subsurface SM in order to obtain the 

spatial distribution of profile SM. We first evaluated the performance of the different methods for estimating subsurface SM. 

We then employed the best method with SMAP surface SM products to evaluate the utility of this method for estimating profile 80 

SM in mountainous regions. 

2. Study Area 

This study was carried out in the upland area of the Heihe River Basin, which is a typical terminal lake basin of an arid region 

(Liu et al., 2018) (Fig 1). It is located in the Qilian Mountains at the Northeastern border of the Qinghai-Tibet plateau. It covers 

approximately 2.7×104 km2 and the elevation ranges from about 2000 to 5000 m (Yao et al., 2017). The region has an annual 85 

precipitation ranging from 200 to 500 mm (Luo et al., 2016), annual potential evapotranspiration ranging from 700 to 2000 

mm, and an annual mean temperature ranging from -3.1 °C to 3.6 °C  from 1960 to 2012 (He et al, 2018). The main land 

covers are grassland, forestland and sparsely vegetated land (Zhou et al., 2016). The main soil types are Calcic Chernozems, 

Kastanozems, and Gelic Regosols. The main soil texture classes are silt loam, silt and sandy loam (Tian et al., 2017; 2019). 
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 90 

Fig. 1. (a) Study area and (b) distribution of the SM stations with spatial distribution of annual average precipitation from 2014 to 2016. 

3. Data and Methods 

3.1. Datasets 

We established a SM monitoring network  in September 2013 in the Qilian Mountains. The network is composed of 35 SM 

stations distributed over the entire study area (Fig. 1). At each station, SM profiles from 0 to 70 cm were measured by soil 95 

moisture probes (ECH2O 5TE, METER Group Inc., USA) at 30 min intervals. These probes were installed at depths of 5 

(representing depth of 0 to 10 cm, SM5 cm), 15 (10 to 20 cm, SM15 cm), 25 (20 to 30 cm, SM25 cm), 40 (30 to 50 cm, SM40 cm) and 

60 cm (50 to 70 cm, SM60 cm) below the soil surface. Soil-specific sensor calibrations were performed with the direct calibration 

method using soil samples taken from each station (Cobos and Chambers, 2010; Zhang et al., 2017b). The profile integrated 

SM (SM0-70 cm) was calculated by the method of González-Zamora et al. (2016): 100 

SM0−70 𝑐𝑚 =
SM5 cm×10+SM15 cm×10+SM25 cm×10+SM40 cm×20+SM60 cm×20

70
                                          (1) 

The entire data set used in this study thus consists of six in situ SM time series at depths of 5, 15, 25, 40, 60 cm, and 0 to 70 

cm for each of the 35 stations. Due to the influence of soil freezing in winter, the soil moisture time series was limited to the 

growing seasons (May to October, Tian et al., 2019) of 2014, 2015, and 2016. The  measurements were averaged to obtain 

daily SM, following the approach of Wagner et al., 1999. Data quality management was performed for each station, and data 105 

gaps existed in the harsh mountainous environment, as described in detail in Tian et al. (2019). Time series where  more than 

50% of observations were missing were excluded from further analysis. The final dataset after processing is presented in Fig. 
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2. The surface SM measured at 5 cm was used to predict the subsurface SM at depths of 15, 25, 40, 60 cm and the profile 

average (0 to 70 cm). 

Soil cores were taken to measure soil properties including soil organic carbon (SOC), saturated hydraulic conductivity (KS), 110 

soil particle composition and bulk density for each layer during the sensor installation. Detailed descriptions of the soil 

properties can be found in Tian et al. (2017; 2019). The statistics of the soil physical characteristics are provided in Table 1. 

Daily reanalysis precipitation product (Chen et al., 2011) and Landsat-based continuous monthly 30 m×30 m resolution NDVI 

data for the period 1986 to 2017 (Cihlar et al., 1994; Huete et al., 2002; Wu et al., 2019) were acquired from the National 

Tibetan Plateau Data Centre (https://data.tpdc.ac.cn/en/). 115 

The widely used higher level SMAP_L3 Global Daily 9 km product for the growing seasons of 2015 to 2017 was used in 

this study. This product is distributed by NASA (http://nsidc.org/) and described by O'Neill et al., 2018. SMAP descending 

node observations acquired near 6:00 AM local solar time have been combined to global daily composites in order to reduce 

the impact of Faraday rotation and to consider the assumption of uniform temperature profiles in the vegetation cover during 

morning overpasses. It has to be noted that the data are provided on a 9 km grid, but that this is a result of a Backus-Gilbert 120 

optimal interpolation at brightness temperature level. The actual spatial resolution is coarser (O'Neill et al., 2018). The 

SMAP_L3 surface soil moisture product was also used to estimate the subsurface soil moisture (Layer 2: 10 to 20 cm, Layer 

3: 20 to 30 cm, Layer 4: 30 to 50 cm, Layer 5: 50 to 70 cm) and profile soil moisture (0 to 70 cm) during the growing seasons 

of 2015 and 2016 in the mountainous area.  

SMAP_L4 provides estimates of both surface and root zone SM products based on the assimilation of brightness temperature 125 

into the NASA land-surface model, and has a spatial and temporal resolution of 9 km and 3 h, respectively, (Reichle et al., 

2017). SMAP_L4 is a widely used root zone SM product (Pablos et al., 2018). Here, the SMAP_L4 data were averaged to a 

daily resolution in order to compare it with the profile SM estimates from the SMAP_L3 surface product obtained in this study. 

In particular, the SMAP_L4 SM product with both surface (0 to 5 cm, 𝑠𝑚0−5 ) and root zone (0 to 100 cm, 𝑠𝑚0−100 ) 

information were used to calculate SM of the 0 to 70 cm profile (𝑠𝑚0−70) using: 130 

𝑠𝑚0−100 = (5 ∗ 𝑠𝑚0−5+95 ∗ 𝑠𝑚5−100) 100⁄                                                               (2) 

𝑠𝑚0−70 = (5 ∗ 𝑠𝑚0−5 + 65 ∗ 𝑠𝑚5−100) 70⁄ .                                                              (3) 

Table 1. Statistics of the physical characteristics of the soil at the 35 soil moisture stations: mean (standard deviation) 

Layer 
Depth 

(cm) 

Bulk Density 

(g/cm3) 

KS 

(cm/hour) 

SOC 

(g/100g) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Layer 1 0 to 10 1.13(0.28) 3.87(4.11) 4.35(4.11) 26.6(11.9) 66.2(10.9) 7.2(1.6) 

Layer 2 10 to 20 1.14(0.24) 4.61(4.53) 3.9(3.87) 24.5(11.9) 68.6(11.2) 6.9(1.2) 

Layer 3 20 to 30 1.18(0.32) 4.78(6.22) 3.63(3.54) 27.0(15.2) 66.5(14.3) 6.5(1.4) 

Layer 4 30 to 50 1.29(0.3) 3.94(4.68) 2.21(2.28) 29.5(15.3) 63.8(14.5) 6.5(1.6) 

Layer 5 50 to 70 1.34(0.3) 1.85(2.35) 2.34(2.47) 26.9(17.1) 66.5(15.9) 6.7(1.9) 

Note: KS is the Saturated Hydraulic Conductivity; SOC is the Soil Organic Carbon. 

http://nsidc.org/
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 135 

Fig. 2. Daily soil moisture (vol. %) time series during the growing season of 2014 to 2016 for the 5 layers (layer 1, 0 to 10 cm; layer 2, 10 

to 20 cm; layer 3, 20 to 30 cm; layer 4, 30 to 50 cm; layer 5, 50 to 70 cm) in the 35 soil moisture stations. Gaps exist for some stations due 

to missing data. 
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3.2. Exponential Filter (ExpF) method  

The ExpF method predicts the dynamics of subsurface SM using an exponential filter function of the surface SM dynamics 140 

(Wagner et al., 1999; Albergel et al., 2008). First, SM (cm3/cm3) is transformed into a soil water index (SWI) with:  

𝑆𝑊𝐼𝑖 =
𝜃𝑖−𝜃𝑖,𝑚𝑖𝑛

𝜃𝑖,𝑚𝑎𝑥−𝜃𝑖,𝑚𝑖𝑛
                                                                                 (4) 

where 𝜃𝑖,𝑚𝑖𝑛 and 𝜃𝑖,𝑚𝑎𝑥  are the minimum and maximum SM in the time series collected since installation for each layer at 

each station (Ford et al., 2014). The ExpF method then estimates subsurface SM from surface SM using: 

𝑆𝑊𝐼𝑚,𝑡𝑛
= 𝑆𝑊𝐼𝑚,𝑡𝑛−1

+ 𝐾𝑡𝑛
(𝑚𝑠𝑡𝑛

− 𝑆𝑊𝐼𝑚,𝑡𝑛−1
)                                                          (5) 145 

where 𝑆𝑊𝐼𝑚,𝑡𝑛−1
 and 𝑆𝑊𝐼𝑚,𝑡𝑛

 are the predicted subsurface SWI at time tn-1 and tn, respectively. 𝑚𝑠𝑡𝑛
 is the observed 

surface SWI at time tn, and 𝐾𝑡𝑛
 represents the gain at time 𝑡𝑛 calculated by: 

𝐾𝑡𝑛
=

𝐾𝑡𝑛−1

𝐾𝑡𝑛−1+𝑒
−

𝑡𝑛−𝑡𝑛−1
𝑇

                                                                                (6) 

where 𝐾𝑡𝑛−1
 is the gain at time 𝑡𝑛−1 and T is the characteristic time in days. The equation was initialized with 𝑆𝑊𝐼𝑚,𝑡1

=

𝑚𝑠𝑡1
 and 𝐾𝑡1

= 1 (Albergel et al., 2008). This method is particularly useful as T is the only unknown parameter. The 150 

optimum T (Topt) was determined by optimization using the highest Nash-Sutcliffe score for each specific depth at each station. 

3.3. Artificial Neural Network (ANN) method 

The ANN method is a data-driven method to predict subsurface SM from surface SM (Zhang et al., 2017a). If properly trained, 

an ANN can describe nonlinear relationships between dynamics of SM at different depths (Kornelsen and Coulibaly, 2014). 

The commonly used feed-forward ANN (with one hidden layer and 10 neurons, Levenberg–Marquardt algorithm, Ford et al., 155 

2014) was used in this study. The ANN modelling was carried out using MATLAB (neural network time series tool, R2017b, 

The MathWorks). The output of the ANN was calculated using: 

y = 𝑓[𝑊2𝑔(𝑊1𝑋 + 𝑏1) + 𝑏2]                                                                          (7) 

where y is the output (the estimated subsurface soil moisture), f and g are the activation functions of the hidden layer and the 

input layer (the surface soil moisture), respectively, W1 and W2 are the weights of the input layer and the hidden layer, 160 

respectively, and b1 and b2 are the biases of the input layer and the hidden layer, respectively. The tangent sigmoid function 

was used as the activation function as it has shown good performance in hydrological studies (Yonaba et al., 2010). As 

suggested by Zhang et al. (2017a), 70% of the data were selected for training the ANN and the remaining 30% were used for 

validation. A separate ANN model was developed for every depth combination and every site. 
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3.4. Cumulative Distribution Function matching (CDF) method 165 

In this study, the following procedure for CDF matching was used: 

1) Rank the surface (θ1) and the subsurface SM (θ2) time series; 

2) Calculate the difference between the two observation time series: 

∆𝑖= θ1,𝑖−θ2,𝑖                                                                                       (8) 

3) Use a cubic polynomial fit to relate the difference (∆) to surface SM (θ1) as recommended by Gao et al. (2019): 170 

∆̂= 𝐾0 + 𝐾1∙θ1 + 𝐾2 ∙ 𝜃1
2 + 𝐾3 ∙ 𝜃1

3
                                                                     (9) 

where ∆̂ is the predicted difference between surface and subsurface SM, and Ki (i=0,1,2,3) are parameters. 

4) Calculate CDF-matched subsurface SM (θ𝐶𝐷𝐹) with: 

𝜃𝐶𝐷𝐹 = θ1 − ∆̂                                                                                     (10) 

Similar to the ANN method, 70% of the data were used to calibrate the approach and the remaining 30% of the data were used 175 

for validation of the CDF matching method. 

3.5. Statistical analysis 

Boxplots were used to show the scatter of the data. The difference between data in different groups was examined using a one-

way analysis of variance (ANOVA) with the post-hoc Bonferroni test when the normality and homogeneity of variance of the 

datasets were satisfied. The Kruskal-Wallis ANOVA with a post-hoc Dunn’s test was used in cases where these conditions 180 

were not satisfied (Lange et al., 2008). The statistical analysis was performed in SPSS (SPSS 18.0, SPSS Inc.) and Matlab 

(R2017b, The MathWorks). The significance level was 0.05 for all statistical tests. 

4. Results and discussion 

4.1. Comparison of different methods 

The ExpF method estimates subsurface SM based on SWI, while the ANN and CDF methods are based on volumetric soil 185 

moisture. Following Moriasi et al. (2007), the Nash-Sutcliffe efficiency (NSE), the ratio of RMSE to the standard deviation of 

the observations (RSR, an error statistic that normalizes the RMSE), and Pearson correlation coefficient (R) were used to 

evaluate the performance of different methods with different units. To ensure that the comparison between the three methods 

is made under the same conditions, we divide the datasets into training data (the first 70% of the data) and validation data (the 

remaining 30% of the data) for all three methods. Fig. 3 and Table 2 summarize the metrics (NSE, RSR, and R) for the 190 

subsurface SM estimates at different depths derived by the three different methods for the growing seasons of 2014, 2015, and 

2016. Results show that ANN performed better than ExpF for the individual layers (layer 1 to 5) in terms of both NSE and 
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RSR (Table 2 and Fig. 3), while ExpF performed better than ANN in estimating soil moisture for the entire soil profile. 

Additionally, the comparison of the performances between the ExpF and ANN methods was  non-significant (p>0.05) for all 

the layers, but ExpF showed a significantly (p<0.05) higher R-value compared to ANN for all layers (with a median value of 195 

0.97, 0.93, 0.84, 0.74, and 0.96 for layers 2, 3, 4, 5, and profile SM, respectively). The good performance for R suggests that 

the ExpF method had the best ability to describe the temporal variability in SM. Furthermore, Table 2 and Fig. 3 indicate that 

CDF provided the worst performance among the three methods and thus cannot be recommended. 

As expected, all metrics showed that the performance of the three methods decreased with depth. The results indicate that 

for two out of the three statistical measures (i.e. RSR and NSE), the ANN method was statistically superior to the other two 200 

methods. Specifically, the ANN method resulted in the lowest estimation error, while the ExpF method was better able to 

capture the SM dynamics. A similar finding was reported by Zhang et al. (2017a), who found that the ExpF method had a 

significantly higher correlation coefficient along with a higher mean bias compared to the ANN method. Furthermore, the 

ExpF method is a simpler approach as it only needs one parameter (Topt), and can thus be easily applied in data-scarce 

mountainous areas, while the establishment of the ANN method is much more complicated. In addition, the ExpF method is a 205 

process-based method, while ANN is a machine learning method. Therefore, the ExpF method was used to estimate the 

subsurface SM in the remainder of this study. 

 

Fig. 3. Boxplot of the metrics (NSE, RSR, R) to compare the subsurface SM estimation using the surface SM by  the three methods (ExpF, 

ANN, CDF) with the observations of  the 35 stations during the growing seasons of 2014 to 2016. Different letters above the box indicate 210 
the significant difference (p<0.05) among the different methods. 
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Table 2. The median of the performance (RSR, R and NSE) of the three different methods (ExpF, ANN, and CDF) for 

estimating the subsurface SM using the surface SM for each layer of 35 stations during the growing seasons of 2014, 2015, 

and 2016. 

Layer 
RSR R NSE 

ExpF ANN CDF ExpF ANN CDF ExpF ANN CDF 

Layer 2 0.650 0.587 0.646 0.973 0.906 0.941 0.577 0.656 0.583 

Layer 3 1.031 0.961 1.195 0.931 0.771 0.811 -0.063 0.076 -0.429 

Layer 4 1.155 1.334 1.863 0.840 0.620 0.571 -0.334 -0.804 -2.474 

Layer 5 1.676 1.540 2.258 0.742 0.553 0.503 -1.811 -1.375 -4.267 

Profile 0.709 0.811 1.033 0.959 0.890 0.929 0.498 0.341 -0.068 

4.2. Evaluation of Topt for the ExpF method 215 

4.2.1. Variation of Topt with depth 

In the method comparison, the first 70% and the remaining 30% of data was selected as training and validation data, 

respectively to ensure the comparison was under the same condition. However, for the standard procedure of the ExpF method 

in earlier studies, the entire dataset is always used to derive the Topt and validate the ExpF method (e.g. Wagner et al., 1999; 

Albergel et al., 2008; De Lange et al., 2008; Ford et al., 2014; Wang et al., 2017). Thus, the ExpF method is evaluated and 220 

analyzed using the entire dataset as well  (performance of the ExpF method using the entire dataset was showed at Table 3 

and Fig. S1). Results indicate that the performances of ExpF at both layer 2 and profile are significantly higher than that of 

other layers. Moreover, results also indicate that the ExpF method showed good performance for layer 2 and profile SM (with 

median NSE > 0.65, median RSR<0.60, Moriasi et al., 2007). 

Table 3. The statistics (mean±standard deviation and median) of the performance (RSR, R and NSE) of the ExpF method for estimating 225 
the subsurface SM using the surface SM for each layer of 35 observation stations during the growing seasons of 2014, 2015, and 2016 

Layer  Layer 2 Layer 3 Layer 4 Layer 5 Profile 

RSR 
mean±std 0.55±0.25 0.72±0.27 0.83±0.27 0.97±0.29 0.58±0.22 

median 0.48224 0.67035 0.8264 0.97253 0.54006 

R 
mean±std 0.89±0.10 0.81±0.19 0.70±0.31 0.57±0.39 0.88±0.11 

median 0.9279 0.86705 0.81155 0.7274 0.91141 

NSE 
mean±std 0.63±0.36 0.41±0.50 0.24±0.47 -0.03±0.61 0.61±0.32 

median 0.76744 0.55063 0.31706 0.05419 0.70833 

The accuracy of the ExpF method varied with the selected T value, and higher T values resulted in more stable estimations 

of SM time series (Wagner et al., 1999; Albergel et al., 2008). Furthermore, it was found that each station had an optimum T 

(Topt) as determined by the best match with observations in terms of NSE. The variation of NSE with T (ranging from 0 to 68 

days) for different layers for each station is shown in Fig. 4 and Table 4. The sensitivity of high values of NSE to changes in 230 
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T decreased with increasing depth, indicating that the range of T values with high NSE was larger deeper in the soil. This was 

also observed in previous studies (e.g.: Wang et al., 2017). 

 

Fig. 4. Variation of NSE with T of the exponential filter method for different layers at each station during the growing season of 2014, 2015, 

and 2016. The vertical axis is the NSE value. The frequency distribution curve and histogram show the distribution of Topt with depth for all 235 
stations. 

Results of a two-way ANOVA showed that the difference of Topt is not significant between different years (p=0.06) while 

differences were significant between layers (p<0.001). Furthermore, Topt increased with depth from layer 2 to layer 5. The 

median of Topt ranged from 1.5 days for layer 2 to 12.5 days for layer 5. The median Topt for profile SM was 3.5 days. Significant 

differences in Topt were obtained for layer 2, layer 3, and layer 4, but the difference between layers 4 and 5 was not significant. 240 

The increase of Topt with depth has already been observed in many studies and is related to the greater temporal stability of 

SM in deeper soil layers (Wang et al., 2017; Tian et al., 2019). 
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Table 4. The statistics of Topt (day) for each layers and different year for all stations. 

Year Statistics Layer 2 Layer 3 Layer 4 Layer 5 Profile 

2014 mean (std) 2.72 (2.22) 8.32 (8.39) 13.18 (12.52) 16.81 (16.70) 4.73 (4.16) 

 median 2.00 5.50 9.50 12.75 4.00 

2015 mean (std) 2.56 (2.54) 7.78 (8.04) 15.77 (15.87) 23.15 (19.61) 5.23 (4.51) 

 median 1.50 5.00 9.00 12.00 3.75 

2016 mean (std) 2.23 (2.13) 6.13 (9.80) 9.26 (9.43) 17.74 (18.93) 3.32 (2.56) 

 median 1.50 4.00 6.50 12.50 2.75 

Summary mean (std) 2.48(2.26)a 7.29(8.85)b 12.37(12.67)c 18.93(18.43)c 4.32(3.77)ab 

 median 1.50 4.50 8.50 12.50 3.50 

Note: std represents the standard deviation. This summary represents the statistical result of the three years. Letters in the summary row 

indicate significant difference between respective layers: the same letter in each column indicates that the difference is nonsignificant while 245 
different letters indicate a significant difference between the two layers (p<0.05). 

4.2.2 Evaluation of alternative methods for Topt estimation 

Previous studies have used various methods to estimate Topt. For example, Albergel et al. (2008) and Ford et al. (2014) found 

that using a single representative value for Topt (e.g.: average or median) for all stations did not significantly reduce the accuracy 

of the SM estimates. Wagner et al. (1999) recommended a common value of Topt = 20 (days) to estimate root zone SM, and 250 

this value has been widely adopted (e.g.: Lange et al., 2008; Muhammad et al., 2017). Qiu et al. (2014) proposed to estimate 

Topt using the station-specific long-term mean NDVI using 𝑇opt = −75.263 × NDVI + 68.171  (R=0.5, p<0.01). This 

approach has also been applied in another study (Tobin et al., 2017). 

Here, we evaluated four different methods to estimate Topt in our study region for estimating profile SM (0 to 70 cm, SWI) 

from surface SM (5 cm, SWI). In the first method, Topt was estimated from the NDVI-based regression of Qiu et al. (2014) to 255 

provide TQiu. In the second method, Topt was set to 20 days as recommended by Wagner et al. (1999) to provide TWagner. In the 

third method, an area-generalized Topt was obtained from the median value for the profile SM in our study region (3.5 days) to 

provide Tgeneral. In the fourth method, the original station-specific Topt parameter for profile SM was used (Tspecific). The accuracy 

of the SM estimates obtained using the different methods to estimate Topt was again evaluated using NSE, R and RMSE (Fig. 

5). The performance metrics show that Tspecific performed best (mean RSR of 0.58, R of 0.88, and NSE of 0.61) followed by 260 

Tgeneral (mean RSR of 0.61, R of 0.85, and NSE of 0.58), TWagner (mean RSR of 0.79, R of 0.69, and NSE of 0.32) and TQiu 

(mean RSR of 0.89, R of 0.59, and NSE of 0.17). However, the difference in performance between Tspecific and Tgeneral is not 

significantly different. The TWagner and the TQiu approach performed worse, and the metrics (NSE, R, RSR) are significantly 

(p<0.001) lower than those of the Tgeneral and Tspecific methods. Our results suggest that a site-specific Topt significantly improves 

the performance of the ExpF method compared to the use of the universal Topt recommended by Wagner et al. (1999) or the 265 

regression of Qiu et al. (2014). Similarly, Lange et al. (2008) also found a significant improvement when using a station-

specific Topt instead of Topt = 20 days. It should be mentioned that the estimation depth in the method of Wagner et al. (1999) 
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was 0 to 100 cm, while that of our study was 0 to 70 cm. This may partly explain the poor performance of the TWagner approach 

in this study. The use of an area-generalized Topt (3.5 days) is a suitable alternative to Topt estimation in our study area, and 

provides similar estimation performance. Other studies have also found a good performance when using an area-generalized 270 

Topt (e.g.: Albergel et al., 2008; Brocca et al., 2010; Ford et al., 2014). 

 

Fig. 5. The boxplot of NSE, Pearson’s R, and RSR for the Topt generated from different schemes. The different letters above each box indicate 

the significant difference for different schemes. 

4.3 Estimating profile soil moisture using SMAP 275 

The ExpF method is suitable to estimate the profile SM from the surface SMand the median of Topt is suitable for estimation 

of subsurface soil moisture. Thus, in this section, we evaluate the utility of the ExpF method (with the median of Topt from 

SMAP) in combination with SMAP surface products for estimating subsurface SM in mountainous areas. 

4.3.1 Assessment of the SMAP surface SM product 

The observed surface SM of each station was compared with the SMAP_L3 soil moisture product that overlapped with the 280 

corresponding station for the growing seasons of 2015 and 2016 for all stations to evaluate the accuracy of the SMAP 

measurements (Pablos et al., 2018). The root mean square error (RMSE), mean bias error (MBE), unbiased RMSE (ubRMSE) 

and R were adopted as metrics to evaluate accuracy. The relationship between the SMAP_L3 SM data product and the in situ 

observations at 5 cm depth are presented in Fig.6. Clearly, the larger deviation from linearity in the relationship is due to the 

scale discrepancy between the relatively large satellite footprints and the point location of in situ SM measurements. 285 

Nevertheless, the statistical metrics still indicate a significant relationship between the SMAP_L3 SM data product and the in 

situ observations at 5 cm depth. The time series of the two datasets for each station are provided in the supplementary Fig. S2. 

Figs. 6 and S2 show that the performance was low at two stations (D13 with R of 0.18, D15 with R of 0.08) with scrubland 

and relatively high soil moisture. The poor performance at scrubland sites is consistent with results presented by Zhang et al. 
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(2017b) for this study region. Results showed that the MBE varied from -0.23 to 0.07 cm3/cm3 with a median of -0.021 cm3/cm3. 290 

This indicates that SMAP underestimated surface SM over the study region, which is consistent with previous studies in the 

area (Chen et al., 2017; Zhang et al., 2017b). The RMSE varied between 0.026 and 0.250 cm3/cm3 between sites with a median 

value of 0.052 cm3/cm3. After removing the bias, the SMAP product had a median ubRMSE of 0.036 cm3/cm3 (range from 

0.024 to 0.083 cm3/cm3). Therefore, the SMAP product achieved the accuracy requirement of 0.04 cm3/cm3 (Chan et al., 2016) 

in this study area. The R value ranged from 0.075 to 0.81 with a median value of 0.59. The relationship between SMAP-derived 295 

and in situ observed surface SM was significant (p<0.05) at all but one station. This suggests that the SMAP surface product 

can represent the temporal dynamics of the observed surface SM time series. 

 
Fig. 6. The SMAP_L3 surface SM (cm3/cm3) versus in situ observations at the surface (5 cm) for the 35 soil moisture stations. Color indicates 

station. The averaged metrics (RMSE, MBE, R, ubRMSE) are for all 35 stations during the growing seasons of 2015 and 2016. 300 

4.3.2 SMAP-based estimation of subsurface soil moisture 

For the estimation of subsurface soil moisture from the SMAP_L3 surface product, the site-specific Topt was calculated based 

on the best match between SMAP estimations and in situ observations in terms of NSE. The median values of Topt for the layers 

2, 3, 4, 5, and profile are 7 days, 12 days, 22 days, 35 days, and 10 days, respectively. The subsurface SWI estimated from the 

combination of SMAP surface SM with the ExpF method (with the median values of Topt) were compared with the in situ 305 

observations. A comparison of the subsurface SWI time series for different layers at each station are provided in Fig. S3 to S7. 

Fig.7 shows the measured SWI plotted against the predicted SWI. The performance metrics of these comparisons for each 

layer are summarized in Table 5.  
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Table 5. Performance metrics (RSR, R, NSE) for the comparison of SMAP estimated and observed SWI at different layers for the 35 stations 

during the growing seasons of 2015 to 2016. 310 

Layer 
RSR R NSE 

Mean±Std Median Mean±Std Median Mean±Std Median 

Layer 2 a 1.24±1.31 0.92 0.58±0.28 0.69 0.06±0.37 0.18 

Layer 3 ab 1.28±0.83 1.11 0.45±0.35 0.55 -0.08±0.41 -0.02 

Layer 4 b 1.49±1.21 1.12 0.28±0.46 0.31 -0.18±0.37 -0.13 

Layer 5 b 1.96±3.43 1.17 0.24±0.5 0.34 -0.15±0.39 -0.15 

Profile a 1.22±0.82 0.92 0.55±0.3 0.65 0.08±0.41 0.14 

Note: the different letters after the layers indicate that the difference is significant at p<0.05 (Kruskal-Wallis ANOVA) 

As expected, the estimation accuracy of subsurface SM decreased with depth. The ANOVA results showed that the 

subsurface SM estimation accuracy for layer 2 (median value of RSR=0.92, R=0.69, NSE=0.18) and profile SM (RSR=0.92, 

R=0.65, NSE=0.14) were significantly higher than for layer 4 (RSR=1.12, R=0.31, NSE=-0.13) and layer 5 (RSR=1.17, 

R=0.34, NSE=-0.15) (p<0.05). The NSE values were positive for layer 2 and profile SM, while the NSE values for the other 315 

layers were negative. The negative MBE shows that subsurface SM was underestimated. The relationship between SMAP-

derived and in situ observed subsurface SM for layer 2 and profile SM was significant (p<0.01) at all but one station (D15). 

Thus, the SMAP surface product and ExpF method can be used to estimate the subsurface SM in the study area, especially for 

layer 2 (10 to 20 cm) and profile (0 to 70 cm) SMs. 

As suggested by Ford et al. (2014), we partitioned the error in the SMAP-based estimation of profile SWI (“SMAP-observed 320 

profile SWI”, Fig. S8c) in errors associated with the ExpF method and errors due to SMAP observation differences to gain 

some insight into the error sources of SMAP-based estimates of profile SWI. For this, profile SWI estimated using the ExpF 

method from observed surface SWI was compared with in situ observed profile SWI (“estimated-observed profile SWI”) to 

assess errors of the ExpF method (Fig. S8(a)). In addition, SMAP-based and in situ observed surface SWI (“SMAP-observed 

surface SWI”) were compared to assess inherent errors of the SMAP product (Fig. S8(b)). RMSE, R and MAE were used as 325 

the metrics to assess accuracy. The results of this analysis are summarized in Table 6.  

Table 6. Statistics of the metrics (RSR, R, NSE) of the comparisons of estimated-observed profile SWI datasets, SMAP_L3-observed surface 

SWI datasets, SMAP_L3-observed profile SWI datasets, and SMAP_L4-observed profile SWI datasets for the 35 stations during the growing 

seasons of 2015 and 2016. 

Comparisons 
RSR R NSE 

Mean±std Median Mean±std Median Mean±std Median 

Estimated-observed PSWI 0.86±1.00 0.68 0.88±0.11 0.9 0.56±0.32 0.64 

SMAP_L3-observed SSWI 1.13±0.49 1.01 0.57±0.17 0.59 -0.09±0.52 -0.07 

SMAP_L3-observed PSWI 1.22±0.82 0.92 0.55±0.3 0.65 0.08±0.41 0.14 

SMAP_L4-observed PSWI 1.42±0.76 1.25 0.47±0.31 0.55 -0.49±0.68 -0.3 

Note: e.g.: Estimated-observed PSWI means the comparison of the estimated profile SWI and observed profile SWI. 330 
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Fig. 7. Comparisons of SMAP_L3 estimated-observed subsurface SWI for all stations during the growing seasons of 2015 to 2016. The 

smoothed color density in the scatter plot shows the density of points more clearly. The dash and solid lines are the best-fitted curve and 

“y=x” line, respectively. 

Fig. S8 and Table 5 show that the SMAP-observed SWI had lower performance metrics for surface SWI (median value of 335 

RSR, R, and NSE are 1.01, 0.59, and -0.07, respectively) than for profile SWI (median value of RSR, R, and NSE are 0.88, 

0.72, and 0.19, respectively), which was similar to the results obtained from the Nebraska SM network (Ford et al., 2014). This 

may be because the profile SWI was estimated based on the SMAP surface SWI and Topt, which was determined by optimization 

using the maximum NSE. This may have improved the performance of profile SWI estimation. In addition, the performance 

metrics for SMAP–observed SWI comparisons for both surface and profile SWI were significantly (p<0.001) lower than those 340 

of estimated–observed profile SWI (median value of RSR, R, and NSE are 0.68, 0.90, and 0.64, respectively). Thus, the major 

error in SMAP-based profile SWI estimates stems from the SMAP satellite product and is not derived from the ExpF method, 

which is also supported by previous studies (e.g.: Ford et al., 2014; Pablos et al., 2018). As mentioned before, the scale mismatch 



 

17 

between point measurements and satellite footprints will introduce additional errors in the validation of the satellite-derived 

subsurface products (Jin et al. 2017). 345 

Subsequently, the SMAP_L4 and SMAP_L3 estimated profile SWI were compared to the in situ observed profile SWI (see 

Fig. S9 and Table 5). Table 5 shows that the performance of profile soil moisture estimation using the SMAP_L3 surface 

product and the ExpF method (median RSR, R, and NSE of 0.92, 0.65, and 0.14, respectively) was significantly (p<0.01) 

better than that of the SMAP_L4 product (median RSR, R, and NSE of 1.25, 0.55, and -0.3, respectively). The low performance 

of the SMAP_L4 profile product may be associated with uncertainty in the meteorological driving forces and the soil 350 

parameters in the NASA catchment model for cold mountainous areas (Reichle et al., 2017; Zhao et al., 2018; Dai et al., 2019). 

Thus, our results suggest that combining the exponential filter method with the SMAP_L3 product significantly improves the 

estimation of profile SM for the data-scarce cold arid mountainous areas.  

Finally, the spatial distribution of profile soil moisture during the growing season of 2015, 2016, and 2017 was obtained 

using the median value of Topt and the SMAP_L3 product to get the spatial distribution of profile SM in the study area (Fig. 355 

8). Profile SM is higher in the southeast and lower  in the northwestern part of the study area. This distribution coincides with 

the spatial distribution of precipitation and surface SM. The temporal variation of profile SWI, surface SWI, and precipitation 

are shown in Fig. S10. Fig. S10 shows that the temporal variation of the SM profile corresponded well with the occurrence of 

precipitation: profile SM increased from May (mean SM of 0.27) to September (0.533) and then decreased until October 

(0.304). Profile SWISMAP [Define SWISMAP before using it] was lower than surface SWISMAP from May to August, while profile 360 

SWISMAP was higher than surface SWISMAP from September to October. This can be attributed to the higher sensitivity of 

surface SM dynamics to precipitation and evapotranspiration (ET). During the months of September and October, less 

precipitation and higher ET caused a faster decrease in surface SM compared to profile SM. 

Previous studies have shown the difficulty of applying the ExpF method to satellite products in mountainous area, where 

complex topography (Paulik et al., 2014), snow and soil freezing (Ford et al., 2014; Pablos et al., 2018) cause large errors and 365 

poor performance of the filtering method (Albergel et al., 2008). Ford et al. (2014) found an improvement of performance after 

removing the effects of snow from the data in the SCAN network, USA. In contrast, the present study showed that the ExpF 

method is useful in estimating profile SM from SMAP surface products in the growing season in high and cold mountainous 

areas, based on in situ SM observations. 
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 370 

Fig. 8. The spatial distribution of the monthly averaged profile SWI product estimated from the SMAP_L3 surface product during the 

growing seasons from 2015 to 2017. The title of each subplot provides the month and year.  
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5. Conclusions 

We used three methods (the exponential filter (ExpF), the artificial neural network (ANN) and the cumulative distribution 

function matching (CDF) methods) to calculate subsurface SM from in situ surface SM observations at 5 cm depth in the 375 

Qilian Mountains (China). We also evaluated the utility of the ExpF method to estimate profile SM from SMAP surface 

products in the study area. Our main findings are: 

1) With increasing depth of the predicted soil layer, the accuracies of all three methods decreased. The ExpF methods showed 

good performance for the estimation of SM down to 20 cm and profile. 

2) The ANN method exhibited the lowest estimation error, while the ExpF approach captures the temporal variation of 380 

subsurface SM better than other methods.  

3) The area-generalized Topt value of the ExpF method can be used in the study area to estimate the subsurface SM without 

significantly reducing the performance compared to a station-specific Topt. 

4) Subsurface SM derived from the SMAP_L3 surface SM product using the ExpF method showed less deviation from the in 

situ observations compared to the SMAP_L4 root zone product for the study area. 385 

We anticipate that our findings can improve the estimation of subsurface SM for large regions in mountainous areas, which 

in turn will support ecohydrological research and water resources management in inland river basins. 
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Fig. S1. Boxplot of the metrics (NSE, RSR, R) to evaluate the subsurface SM estimation using the surface SM by the ExpF method with the 

observations of the 35 stations during the growing seasons of 2014 to 2016. Different letters above the box indicate the significant difference 

(p<0.05) among the different layers. 
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 5 

Fig. S2. Comparison of the SMAP and in-situ observations of surface soil moisture (cm3/cm3) data during the growing season of 2015-2016 

for the 35 stations. Also with the RMSE and R of the comparisons of the two datasets for each station during the growing season of 2015-

2016.  



 

3 

 
Fig. S3. Comparison of the SMAP estimation and in-situ observation of layer 2 SWI time series during the growing season of 2015-2016 10 
for the 35 stations. Also with the RMSE and R of the comparisons of the two datasets for each station during the growing season of 2015-

2016. 
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Fig. S4. Comparison of the SMAP estimation and in-situ observation of layer 3 SWI time series during the growing season of 2015-2016 

for the 35 stations. Also with the RMSE and R of the comparisons of the two datasets for each station during the growing season of 2015-15 
2016. 
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Fig. S5. Comparison of the SMAP estimation and in-situ observation of layer 4 SWI time series during the growing season of 2015-2016 

for the 35 stations. Also with the RMSE and R of the comparisons of the two datasets for each station during the growing season of 2015-

2016. 20 
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Fig. S6. Comparison of the SMAP estimation and in-situ observation of layer 5 SWI time series during the growing season of 2015-2016 

for the 35 stations. Also with the RMSE and R of the comparisons of the two datasets for each station during the growing season of 2015-

2016. 
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 25 
Fig. S7. Comparison of the SMAP estimation and in-situ observation of profile SWI time series during the growing season of 2015-2016 for 

the 35 stations. Also with the RMSE and R of the comparisons of the two datasets for each station during the growing season of 2015-2016. 
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Fig. S8. Scatterplot of the comparisons of (a) estimated-observed profile SWI, (b) SMAP-observed surface SWI, and (c) SMAP-observed 30 
profile SWI for the 35 stations during the growing seasons of 2015-2016. 
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Fig. S9. Comparison of the SMAP_L3 estimated PSWI, SMAP_L4 PSWI and in-situ observation of PSWI time series during 

the growing season of 2015-2016 for the 35 stations. 35 
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Fig. S10. (a) the temporal variation of precipitation, SSWI and PSWI, and (b) the comparison (bar represents the mean value 

and error bar means the standard deviation) of the monthly SSWI and PSWI during the growing seasons of 2015-2017. 


