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Abstract. The Universal Soil Loss Equation (USLE) is the most commonly used model to assess soil erosion by water. The

model equation quantifies long-term average annual soil loss as a product of the rainfall erosivity R, soil erodibility K, slope

length and steepness LS , soil cover C and support measures P . A large variety of methods exist to derive these model inputs

from readily available data. However, the estimated values of a respective model input can strongly differ when employing

different methods and can eventually introduce large uncertainties in the estimated soil loss. The potential to evaluate soil5

loss estimates at a large scale are very limited, due to scarce in-field observations and their comparability to long-term soil

estimates. In this work we addressed (i) the uncertainties in the soil loss estimates that can potentially be introduced by

different representations of the USLE input factors and (ii) challanges that can arise in the evaluation of uncertain soil loss

estimates with observed data.

In a systematic analysis we developed different representations of USLE inputs for the study domain of Kenya and Uganda.10

All combinations of the generated USLE inputs resulted in 756 USLE model setups. We assessed the resulting distributions in

soil loss, both spatially distributed and on the administrative level for Kenya and Uganda. In a sensitivity analysis we analyzed

the contributions of the USLE model inputs to the ranges in soil loss and analyzed their spatial patterns. We compared the

calculated USLE ensemble soil estimates to available in-field data and other study results and addressed possibilities and

limitations of the USLE model evaluation.15

The USLE model ensemble resulted in wide ranges of estimated soil loss, exceeding the mean soil loss by over an order of

magnitude particularly in hilly topographies. The study implies that a soil loss assessment with the USLE is highly uncertain

and strongly depends on the realizations of the model input factors. The employed sensitivity analysis enabled us to identify

spatial patterns in the importance of the USLE input factors. The C and K factors showed large scale patterns of importance

in the densely vegetated part of Uganda and the dry north of Kenya, respectively, while LS was relevant in small scale het-20

erogeneous patterns. Major challenges for the evaluation of the estimated soil losses with in-field data were due to spatial and
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temporal limitations of the observation data, but also due to measured soil losses describing processes that are different to the

ones that are represented by the USLE.

1 Introduction

The Universal Soil Loss Equation (USLE, Wischmeier and Smith, 1965, 1987) formulates the most commonly applied concept

to assess soil loss by water erosion (Alewell et al., 2019; Borrelli et al., 2017; Panagos et al., 2015e; Kinnell, 2010). The USLE5

is an empirical relationship that computes long-term average annual soil loss as a product of six input factors that characterize

the erosive forces of the rainfall (R), the soil erodibility (K), topography (L and S), plant cover (C), and support practices

to mitigate erosion (P ). Historically, the USLE succeeded earlier attempts to quantify soil erosion by water developed for the

Corn Belt region of the United States of America (USA) in the 1940s. First relationships between soil loss on cropland and

topography (Zingg, 1940), factors for crops and conservation practices (Smith, 1941), soil erodibility (Browning et al., 1947),10

and rainfall (Musgrave, 1947) were developed and reported by Wischmeier and Smith (1965). Over several decades extensive

soil erosion data were collected in many locations on field plot scale in the USA. Eventually more than 10000 plot-years of field

data were analyzed with reference to a "unit plot" to formulate a generally applicable approach for soil loss estimation in the

USA (Wischmeier and Smith, 1965; Kinnell, 2010; Renard et al., 2011). The new approach overcame restrictions of previous

methods for soil loss estimation to specific regions in the USA and thus was termed "universal" in the literature (Wischmeier15

and Smith, 1965). Further data were collected over the following decades and the methods to calculate the USLE input factors

were substantially revised (Renard et al., 1991, 1997; Govers, 2011). The revised model was termed as the Revised USLE

(RUSLE, Renard et al., 1991). Yet, the general structure of the equation remained unchanged.

In the following we refer to USLE or RUSLE type models as USLE for simplicity. The different revisions of the USLE were

summarized in Agriculture Handbooks (Wischmeier and Smith, 1965, 1987; Renard et al., 1997) that proved to be pragmatic20

and effective tools for soil conservation planning in the USA (Renard et al., 1991, 2011). Not without causing controversies,

applications of the USLE model were extended to other land uses than cropland (Renard et al., 1991; Alewell et al., 2019),

such as rangeland (Spaeth et al., 2003; Weltz et al., 1998), or woodland (Dissmeyer and Foster, 1980). Due to the principally

simple implementation of the USLE model it found a wide application outside of the USA in more than 100 countries (Alewell

et al., 2019) at various spatial scales and in various geoclimatic regions (Benavidez et al., 2018). Several studies adopted the25

methods to calculate the USLE input factors to meet local or regional conditions (e.g., Roose, 1975; Moore, 1979; Bollinnne,

1985; Favis-Mortlock, 1998; Angima et al., 2003). Yet, to coin this empirical relationship as being "universal" is misleading

for applications outside the USA and to non cropland (Jetten and Favis-Mortlock, 2006). The application of the USLE to

conditions different from the plot experiments must be treated as a model extrapolation that is not supported by field data

(Bosco et al., 2015; Favis-Mortlock, 1998).30

It is well accepted that the USLE does not at all attempt to represent the physical processes to erode and transport soil

particles, but rather empirically relates field properties to long term soil loss (Beven and Brazier, 2011; Kinnell, 2010). The

USLEs’ wide application does not distinguish it to be the best, or only option for soil loss estimation (Evans and Boardman,
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2016a). Limitations of the USLE (but also other soil erosion models) have been well documented in the literature (see e.g.

Boardman, 1996, 2006). Jetten and Favis-Mortlock (2006) summarize applications of the USLE in Europe, where the validation

of calculated soil losses with observed data showed poor results (e.g., Favis-Mortlock, 1998; Bollinnne, 1985). Kinnell (2010)

reports a good performance of a locally adapted variant of the USLE in New South Wales, Australia, but documents the

over-prediction of small soil losses and under-prediction of large soil losses when applied to larger domains with a higher5

variability in agricultural systems (Tiwari et al., 2000; Risse et al., 1993). A recent pan-European soil loss assessment started

a broad discussion of the validity of the estimates when compared to in-field soil loss assessments in Great Britain (see the

discussion in Panagos et al., 2015e; Evans and Boardman, 2016a; Panagos et al., 2016; Evans and Boardman, 2016b). Several

authors question the applicability of the plot scale based USLE to the landscape scale (e.g., Boardman, 2006; Evans, 1995;

Govers, 2011), particularly as in large domains other processes such as gully erosion, bank erosion, or sediment deposition can10

dominate the erosion response (Govers, 2011). Evans (2013) concludes that the USLE can be helpful to identify the erosion

potential or erosion hot spots, but fails to predict the exact magnitude of erosion.

The above criticism does not impede the wide application of the USLE. For large scale erosion assessments, the availability

of large scale spatial data and methods to the infer the USLE inputs facilitate its implementation in GIS (Govers, 2011) and

therefore is an attractive option to assess soil erosion. The implementation of remote sensing (satellite) products advances large15

scale soil loss assessments, particularly in data scarce regions where observations are limited as well as in large domains where

in-field data acquisition is infeasible (Alewell et al., 2019; Bosco et al., 2015). This procedure yielded several continental and

global estimates of USLE input factors (e.g., Panagos et al., 2017, 2015a, b, c; Vrieling et al., 2010) and soil loss assessments

(e.g., Borrelli et al., 2017; Panagos et al., 2015e; Naipal et al., 2015; Yang et al., 2003; Van der Knijff et al., 2000) that were

primarily derived from large scale (remote sensing) data products. The methods to compute realizations for the USLE inputs20

that were proposed in these (and other) large scale assessments attempt to employ data products that describe (or are a proxy

for) features in the landscape (such as topography, or vegetation cover) to infer spatially distributed estimates for the USLE

inputs. For each USLE input, various methods exist to generate the spatially distributed estimates for the USLE inputs that

use different data sources (see e.g. the review of Benavidez et al., 2018). Thus, differing results in the realizations of a USLE

input factor can follow from the different computational approaches. However, a typical setup of the USLE combines only25

one representation of each USLE input in a single model setup and therefore does not depict the variations in the soil loss

calculations that may arise from different representations of the USLE input factors. Very few studies consider the impact of

the different representations of the ULSE inputs (e.g., Bosco et al., 2015) to account for the resulting ranges in calculated soil

loss. Because of the multiplicative structure of the USLE, uncertainties in the input factors are decisive for the computation of

the soil loss as they are also propagated by multiplication.30

A widely applied procedure in environmental modelling to gain confidence in a model setup is model validation, which is

the evaluation of calculated model outputs against observed data (Beven and Young, 2013; Young, 2001). Beven and Young

(2013) further stress the importance of model falsification when a model fails to reproduce observations. For large scale soil

loss assessments the possibilities to evaluate calculated soil losses, or spatially distributed estimates of the USLE inputs are

very limited (Bosco et al., 2015; Van der Knijff et al., 2000). Typically, studies that monitored soil loss within the study domain35
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rarely exist. Existing in-field data, however, entail issues of their spatial and temporal representativeness (Evans, 2013; Govers,

2011). Boardman (2006) questions the comparability of erosion plot data or in-stream sediment yields with soil losses at the

catchment scale. Govers (2011) highlights that USLE estimates reflect long time periods (Wischmeier and Smith (1965) e.g.

recommended 20 years). Such time periods are usually not covered by a soil loss monitoring campaign. Eventually, USLE

input factor estimates and large scale soil loss assessments are compared to very limited observation data (e.g., Borrelli et al.,5

2017; Vrieling et al., 2010; Moore, 1979) and in many cases no validation was carried out at all (e.g., Karamage et al., 2017;

Van der Knijff et al., 2000).

Acknowledging that soil loss assessments using the USLE is uncertain and that the evaluation of soil loss estimates in large

scale assessments has limitations, we formulate and systematically address the following objectives:

i. What are the uncertainties in soil loss estimates that we can expect from the implementation of different model input10

realizations in the USLE model? How can we interpret uncertain soil loss estimates?

ii. Which USLE model inputs contribute the most to the uncertainties of the soil loss estimates?

iii. Can we we compare the calculated soil loss estimates to in-field soil loss data? Does the evaluation enable us to reduce

the uncertainties in the estimated soil losses?

We addressed these questions in a large scale soil loss assessment for Kenya and Uganda and structured our work in the15

following way: We reviewed methods to calculate USLE inputs that were widely used in previous large scale soil loss assess-

ments and employed selected methods to generate spatially distributed estimates for the study domain (see section 3.2). All

combinations of the input factor realizations delineate a USLE model ensemble. The analysis of the USLE ensemble results is

outlined in the sections 3.4, 4.1, and 5.1. We analyzed the impact of the USLE input factors R, LS, K, and C on the calculated

ranges of the soil loss estimates in a spatial analysis (see sections 3.5, 4.2, and 5.1). For selected erosion prone counties of20

Kenya and districts of Uganda, we analyze the spatially aggregated mean soil loss estimates and compare them to the results

on the administrative level for Uganda in Karamage et al. (2017) (sections 4.3 and 5.1). In a final step we selected in-field

erosion studies that were conducted in Kenya and Uganda and compare the reported in-field erosion data to the ensemble soil

loss estimates derived with the USLE model ensemble (sections 4.4 and 5.2)

2 Study Area25

The study area covers the countries of Kenya and Uganda, located in East Africa (Fig. 1). Overall the Sub-Saharan countries

experienced drastic land degradation and a decrease in net-primary productivity of the land over the last decades (Bai et al.,

2008). The dominant driver for land degradation in the horn of Africa is soil erosion by water (Jones et al., 2013). Large parts

of Kenya and Uganda are generally prone to soil loss by water induced erosion.

In total, the study region covers an area of 821405 km2, of which 729622 km2 or 89 % of the surface are analyzed, since30

lakes and other water bodies are excluded from the analysis. Additionally, 27 administrative units in both countries (Fig. 1a),
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Figure 1. Study area covering the countries of Kenya and Uganda. A classification of the soil erosion risk after Ebisemiju (1988) (a), the

mean annual MODIS NDVI as a proxy for vegetation cover (b), and mean annual rainfall (c) are plotted to characterize spatial properties

of the study region. The boundaries for administrative units where the mean soil loss was assessed are shown with pink outlines in panel a).

Locations of soil loss assessments from previous studies that were used for comparison are shown as pink squares.

Table 1) are analysed in detail. The selection of the erosion prone administrative units is based on a visual analysis of Fig. 1a)

and on local knowledge and on-site experience.

The study region covers a wide range of factors influencing soil erosion. Fig. 1a) shows the potential erosion risk solely

stemming from topography, based on thresholds by Ebisemiju (1988). Large areas with moderate to steep slopes ("moderate

risk") are evident in the South-West of Uganda and in a north-to-south band in Kenya, where the Western or Gregory Rift5

as part of the Great Rift Valley transects the country. The area in Uganda is characterized by a hilly topography with low

elevation differences. In contrast, the erosion prone regions in Kenya are mostly characterized by larger elevation differences,

e.g. escarpments. Very steep slopes that exhibit a high risk of erosion from topography are evident around mountain massifs,

e.g. Ruwenzori (5109 m a.s.l., Uganda), Mt. Elgon (4321 m a.s.l., Uganda and Kenya) or Mt. Kenya (5199 m a.s.l., Kenya).

Additionally, high erosion risk prone areas are evident in the south-western corner of Uganda and along the Rift Valley in the10

northern part of Kenya. Fig. 1b) shows the mean annual MODIS NDVI (Didan, 2015) for the period 2001 - 2018 as a proxy

5

https://doi.org/10.5194/hess-2019-602
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 1. Administrative units analysed in more detail. The locations are shown in Fig. 1a). The slope and elevation statistics are based on

SRTM v4.1 90m DEM (Jarvis et al., 2008).

Administrative Area Mean slope Max. slope Mean elev. Max. elev. Min. elev.

Nr. Country Greater Region unit (km2) (deg) (deg) (m) (m) (m)

1 Uganda - Kiruhura 4636 4.39 28.96 1310 1670 1178

2 Uganda Lake Bunyoni Ntungamo 2062 7.57 43.61 1497 2224 1279

3 Uganda Lake Bunyoni Kabale 1740 14.79 46.15 1990 2601 1355

4 Uganda Lake Bunyoni Kisoro 733 11.95 49.44 1983 3861 1338

5 Uganda Lake Bunyoni Kanungu 1335 8.61 46.52 1388 2499 912

6 Uganda Ruwenzori Kasese 3402 8.81 60.54 1493 5034 878

7 Uganda Ruwenzori Kabarole 1825 8.01 48.94 1515 3996 626

8 Uganda Ruwenzori Bundibugyo 2265 5.65 52.24 1002 4659 612

9 Uganda - Nebbi 2922 3.71 34.70 1039 1873 612

10 Uganda - Kaabong 7301 5.87 61.41 1416 2720 834

11 Uganda Mt. Elgon Bukwo 529 12.28 53.35 2420 4204 1253

12 Uganda Mt. Elgon Kapchorwa 1215 8.00 53.39 1823 4265 1062

13 Uganda Mt. Elgon Sironko 1106 7.15 60.43 1619 4280 1045

14 Uganda Mt. Elgon Bududa 253 16.99 61.70 2103 4314 1216

15 Uganda Mt. Elgon Mbale 522 5.50 71.23 1288 2351 1083

16 Uganda Mt. Elgon Manafwa 606 8.34 57.77 1608 3319 1139

17 Kenya Mt. Elgon Bungoma 3036 5.15 45.12 1859 4304 1213

18 Kenya S-W Kenya Kisii 1353 6.24 32.83 1750 2190 1394

19 Kenya S-W Kenya Nyamira 897 6.70 31.99 1888 2214 1509

20 Kenya S-W Kenya Bomet 2384 5.14 30.29 1997 2465 1693

21 Kenya Cherangani Hills Elgeyo-Marakwet 3058 9.97 60.70 2122 3517 920

22 Kenya Cherangani Hills West Pokot 9328 8.70 67.15 1443 3524 691

23 Kenya - Samburu 21250 6.81 66.83 1185 2834 296

24 Kenya Mt. Kenya Nyeri 3380 7.39 54.88 2284 5035 1210

25 Kenya Mt. Kenya Kirinyaga 1491 4.41 45.27 1619 4747 1057

26 Kenya Mt. Kenya Embu 2780 4.89 38.56 1191 4760 520

27 Kenya - Makueni 8297 3.84 58.42 1065 2120 404
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for the vegetation cover. Higher values in NDVI show pixels with high vegetation cover, where a lower risk of water erosion

due to ground cover can be assumed, and vice-versa. Kenya exhibits a large variability in NDVI with low values in the arid to

semi-arid northern and south-eastern parts. Higher vegetation cover is present at the coast towards the Indian Ocean, around

Mt. Kenya, but also around Lake Victoria in the western part of the country. Uganda shows a rather homogeneous vegetation

distribution, with some semi-arid areas in the north-east showing a lower vegetation cover.5

Fig. 1c) shows the long-term mean annual rainfall (based on WorldClim Version2 for the period 1970 – 2000, Fick and

Hijmans, 2017) as a proxy for the erosivity by rainfall. This assumes that larger annual rainfall values lead to higher erosion

rates. Rainfall and vegetation cover are clearly connected. Hence, a more homogeneous rainfall pattern is visible for Uganda.

Dryer areas in the south-west and north-east receive around 750 – 1000 mm yr−1 of precipitation. The center of the country is

wetter with around 1000 – 1500 mm yr−1. In Kenya, wetter areas are evident around Lake Victoria and Mt. Kenya, receiving10

1500 – 2000 mm yr−1 or even higher. The northern part of the country only receives 250 – 500 mm yr−1. Here, areas around

Lake Turkana are very dry, with an annual precipitation of less than 250 mm yr−1. In accordance with vegetation cover, the

coast is wetter (1000 – 1250 mm yr−1). Between the coast and the central highlands, a dry belt is visible (500 – 750 mm

yr−1).

3 Methods and Data Basis15

3.1 The Universal Soil Loss Equation (USLE)

The general form of USLE-type equation is as follows:

A = R×K ×LS×C ×P (1)

where A is the long-term average annual soil loss in tons ha−1 yr−1, R is the rainfall erosivity in MJ mm ha−1 h−1 yr−1,

K is the soil erodibility factor in tons h MJ−1 mm−1, L and S are the unitless slope length factor and the slope steepness factor20

(that are usually evaluated together as the topographic factor LS (Renard et al., 1997)), C is the unitless cover management

factor, and P is the unitless support practice factor.

3.2 Estimation of USLE model inputs

To address the impact of different USLE input factor realizations on the simulation of the soil loss A, we generated a set of

realizations for each of the four USLE input factors R, K, LS, and C. Methods to calculate the inputs were considered that25

were either used in previous large scale applications or that were specifically developed for Eastern Africa (or regions with

similar climatic, topographic, and vegetation conditions). The implemented methods are described below. Further details to

the input factor generation is provided in the supplementary materials section S.1. The support practice factor P was excluded

from the analysis, as large scale data to derive estimates for P are very limited. Previous large scale studies, for example,
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inferred the P factor from relationships with the land use (e.g., Yang et al., 2003), or implemented a global estimate of P for

the entire study region (e.g., Karamage et al., 2017), or did not consider the P factor (e.g., Borrelli et al., 2017).

The rainfall erosivity factor R relates the intensity of rainfall events to the kinetic energy that is available to erode soil

particles (Wischmeier and Smith, 1987; Panagos et al., 2015a). Rainfall intensity records are hardly available for large domains.

Thus, large scale erosion studies often employ long-term annual average precipitation sums to infer R. We implemented long-5

term monthly precipitation provided by WorldClim Version2 (Fick and Hijmans, 2017) with a spatial resolution of 30 seconds

and aggregated the monthly values to annual precipitation. We considered the following five methods that relate long-term

mean annual precipitation (Pannual) to R, but differ in their type of mathematical relationship (Fig. 2a)). Roose (1975) and

Moore (1979) developed relationships between mean annual rainfall sums and R based on station data in Western and Eastern

Africa, respectively. Karamage et al. (2017) used the method developed by Lo et al. (1985) to calculate R for Uganda. The10

method of Renard and Freimund (1994) was developed for USA precipitation station data and has been employed in global

applications (e.g., Naipal et al., 2015; Yang et al., 2003). Nakil (2014) developed a relationship between precipitation and R

for the highly variable rainfall patterns of the west coast of India. Additionally, we considered recent products by Panagos et al.

(2017) and Vrieling et al. (2014) that inferred R estimates from high temporal precipitation data. While Panagos et al. (2017)

derived global estimates for R on a 1km grid based on a large global rainfall intensity data set to assemble the GloREDa data15

base, Vrieling et al. (2014) used the 3 hourly TRMM Multi-satellite Precipitation Analysis (TMPA) product (Huffman et al.,

2007) to infer R estimates for the African continent in a 0.25° spatial resolution. In total we included seven realizations for R

in this study (Fig. 2 a)).

The soil erodibility factor K describes the tendency of a soil to erode due to the erosive force of precipitation or surface runoff

and can be related to soil physical and chemical properties (Panagos et al., 2014). Direct assessments of the soil erodibility20

are only available at a plot scale. Large scale erosion studies employ transfer functions that infer the soil erodibility from soil

properties that are easier to acquire. Several global soil data products are available that provide physical and chemical soil

properties with different spatial resolution. We implemented soil information from SoilGrids250m (Hengl et al., 2017) and the

Global Soil Dataset for use in Earth System Models (GSDE, Shangguan et al., 2014). Layers of mass fractions of sand (Sa),

silt (Si), and clay (Cl), the soil organic carbon content (orgC) and the fraction of coarse fragments (CRF) were acquired for the25

available soil depths and weighted average values for 0-10 cm were calculated. The aggregated soil layers were used in three

transfer functions that were employed in previous large scale studies to compute K. We applied the method of Wischmeier

and Smith (1987) and followed the procedure suggested by Panagos et al. (2014) and Borrelli et al. (2017) to compute K from

the SoilGrids250m layers. The method of Wischmeier and Smith (1987) requires Sa, Si, Cl and organic matter content (OM)

as inputs. Additionally, information on soil structure (s) and soil permeability (p) is relevant. Borrelli et al. (2017) derived30

these properties from soil classes according to the World Reference Base (WRB) and the USDA soil texture classification

systems that are available for SoilGrids250m. GSDE does not provide soil class layers. Thus, the parameters s and p were

kept constant when using the GSDE as input, following a procedure by Tamene and Le (2015). We further implemented the

methods of Williams (1995) and Torri et al. (1997). Both methods require values of Sa, Si, Cl and OM as inputs. The soil
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products SoilGrids250m and GSDE in combination with three transfer functions resulted in six realizations of the K factor

(Fig. 2b)).

The slope length and steepness factor LS represents the influence of the terrain topography on soil erosion (Panagos et al.,

2015b). A digital elevation model (DEM) is the basis to derive the LS factor. In this study we implemented the SRTM v4.1

90m DEM (Jarvis et al., 2008) and the ASTER GDEM V2 (NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER5

Science Team, 2009) with a 30m resolution. ASTER GDEM V2 data was aggregated and projected to the 90m grid of SRTM

v4.1 for comparability, but also because our computation capacities were insufficient to calculate soil erosion rates on a 30m

grid for the study extent. Three methods were applied from Moore et al. (1991), Desmet and Govers (1996), and Böhner and

Selige (2006) that are available from the System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 (Conrad et al., 2015).

Together with the two DEM products six realizations of the LS factor (Fig. 2c)) were computed. Intermediate steps such as10

the reprojection of the ASTER GDEM V2, DEM fill, the calculation of flow direction or flow accumulation were processed

in ArcMap 10.6 (ESRI, 2012). In the calculation of LS using the method of Desmet and Govers (1996) we followed the steps

described in Panagos et al. (2015b). The use of ASTER GDEM v2 introduced strong noise in the computed LS layers that

results from artifacts in the remote sensing data. Particularly, the computed soil erosion in flat areas was strongly affected by

the noise signal, rendering the result unusable. Thus, we excluded the LS realizations using ASTER GDEM v2 in the analysis15

and only considered three out of the six generated realizations for the LS factor (Fig. 2 c)).

The cover management factor C subsumes the impacts of vegetation cover and land management on soil erosion (Wis-

chmeier and Smith, 1987; Panagos et al., 2015c). For large scale studies we identified two main approaches to compute C (Fig.

2d)); i) to infer C from vegetation indices from satellite based remote sensing products (e.g., Karamage et al., 2017; Naipal

et al., 2015; Tamene and Le, 2015; Van der Knijff et al., 2000) and ii) to join land cover classification products with agricultural20

statistics and C factor literature values to compile a continuous C factor layer (e.g., Borrelli et al., 2017; Panagos et al., 2015c;

Bosco et al., 2015; Yang et al., 2003).

For the computation of C from NDVI vegetation indices we implemented the method of Van der Knijff et al. (2000), who

proposed a non linear relationship between NDVI and C. We acquired 16 day MODIS NDVI averages (Didan, 2015) from

2000 to 2012 and aggregated them to a mean NDVI layer. We calculated the annual mean NDVI (see e.g., Van der Knijff et al.,25

2000; Tamene and Le, 2015) and the mean NDVI averages over the two rainy seasons March to May and October to November

as proposed by Karamage et al. (2017). Both long-term mean NDVI layers were used to compute C factor realizations with

the equation of Van der Knijff et al. (2000).

Two land cover products, the MODIS Collection 5 LC with a spatial resolution of 250m (Channan et al., 2014; Friedl et al.,

2010) and the ESA CCI LC Map v2.0.7 with a spatial resolution of 300m (ESA, 2017) served as base layers for the join with30

agricultural statistics and C factor literature values. Two agricultural statistics were used that provide information on crop

areas at different spatial scales. i) National agricultural surveys for Kenya on ward level (KNBS, 2015) and for Uganda on

county level (UBOS, 2010) were harmonized. ii) Monfreda et al. (2008) provides global gridded crop shares of 175 crops

with a spatial resolution of 5 minutes. We assigned C factor literature values from Panagos et al. (2015c) and Angima et al.

(2003) to all crops found in the national agricultural surveys and the grid layers from Monfreda et al. (2008). Based on the35
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crop shares in the administrative units of Kenya and Uganda and for the crop shares in each grid cell of Monfreda et al. (2008)

we calculated weighted average C values as proposed in Panagos et al. (2015c). C values for non agricultural land uses of the

MODIS LC were estimated according to Panagos et al. (2015c) varying the C values for forest between boundaries based on

the MODIS vegetation continuous fields (VCF) tree cover product. ESA CCI LC classifies the land cover as shares between

different land uses (e.g. Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)). In this case,5

C values were estimated by calculating weighted averages between the calculated average C values for agricultural areas and

literature values (Panagos et al., 2015c) for non agricultural land uses according to the given fractions of the land cover classes.

The combination of the two land cover products and the two agricultural statistic products resulted in four realizations for the

C factor.

3.3 Estimation of soil loss10

In total 7, 6, 6 (3), and 6 realizations were generated for the USLE input factors R, K, LS, and C, respectively. The combination

of all input factors to assemble USLE model setups resulted in 1512 realizations of the USLE model. The LS factor realizations

that were generated with the ASTER GDEM V2 were however excluded from the model ensemble, as they showed large noise

ratios and the number of analyzed USLE model setups was therefore halved to 756. For the overlay of the generated USLE

input layers, all layers were reprojected to the grid of the SRTM v4.1 90m DEM and the long-term mean annual soil loss A15

was calculated for all model combinations in the study region of Kenya and Uganda using Eq. 1.

3.4 Analysis of spatially distributed soil loss estimates

The ensemble of 756 spatially distributed soil loss estimates with spatial resolution of 90 m were summarized in each grid cell

employing descriptive statistical measures. In each grid cell we calculated mean and median values to estimate an average soil

loss from the USLE model ensemble. The range of the minimum and maximum soil loss A in a grid cell indicates the variation20

of the ensemble simulations in a grid cell (i.e. the disagreement between the model setups).

A common concept in the erosion literature is to relate soil loss to soil formation rates and therefore classify the soil loss

as sustainable (tolerable) or non-sustainable (e.g., Blanco-Canqui and Lal, 2008; Montgomery, 2007; Van-Camp et al., 2004),

or to group soil loss based on the severity of soil removal (e.g., Zachar, 1982; FAO-PNUMA-UNESCO, 1980). Suggested

tolerable levels of soil loss (T ) vary between 5 and 12 tons ha−1 yr−1 on a global scale (Montgomery, 2007; Blanco-Canqui25

and Lal, 2008; Zachar, 1982). Karamage et al. (2017), Bamutaze (2015), Morgan (2009), or Lufafa et al. (2003) used 10 tons

ha−1 yr−1 as threshold value T for studies conducted in Eastern Africa. For soil loss levels larger than T we implemented the

soil loss classification after FAO-PNUMA-UNESCO (1980, implemented e.g. in Hernando and Romana (2015) or Olivares

et al. (2016)) where a soil loss between 10 and 50 tons ha−1 yr−1 is considered to be moderate, a soil loss between 50 and

200 tons ha−1 yr−1 to be high, and a soil loss larger than 200 tons ha−1 yr−1 to be severe. In each grid cell we classified the30

simulated soil losses from the 756 USLE model setups into the four defined soil loss classes and calculated the frequencies for

each soil loss class as follows:

10
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Figure 2. Methodological framework to generate the realizations of the USLE model input factors R, K, LS, and C.
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fi,m,n =





0 if Ai,m,n 6∈ [Aclass,lower;Aclass,upper)

1 if Ai,m,n ∈ [Aclass,lower;Aclass,upper)
(2)

fm,n =

N∑

i=1

fi,m,n

N
(3)

where fm,n is the frequency of models that calculated a soil loss between the defined boundaries Aclass,lower and Aclass,upper

of the respective class in the grid cell (m,n) and based on the N = 756 USLE model setups. A step function assigns the proba-

bilities pi,m,n = 1 or pi,m,n = 0 to a model i if the soil loss Ai,m,n that was calculated with the model i for the grid cell (m,n)5

is included or excluded from a class interval.

3.5 Analysis of the USLE input factors

In the case of a simple model, such as the USLE, uncertainties in the inputs can be analytically propagated through the model

to infer the uncertainties in the outputs (Beven and Brazier, 2011). Thus, the sensitivity of the calculated soil loss for the ranges

of the input factors can be analyzed analytically. We assessed the importance of the USLE input factors on the simulation of10

the soil loss in each grid cell by calculating the fraction between the range in soil loss that is caused by an input factor Ij and

the total range of A that results from the entire model ensemble in that grid cell:

sj,m,n =

(max(Ij,m,n)−min(Ij,m,n)) ·
∏

k 6=j

max(Ik,m,n)

(∏

k

max(Ik,m,n)−
∏

k

min(Ik,m,n)

) (4)

where sj,m,n is the sensitivity of the input factor Ij in the grid cell (m,n), I is the set of the analyzed input factors R, K,

LS, and C, and k is the index of the respective input factor. The resulting sensitivity measure is normalized between 0 and 1,15

where a sensitivity sj,m,n = 1 means that the total range of the calculated soil loss can result from varying the input Ij and 0

means that this input shows no variation between its realizations in the grid cell (m,n). In each grid cell the input factors are

ranked based on their sensitivities and visualized to get a spatial reference of the importance of the model inputs.

3.6 Analysis of soil loss on administrative level

We assessed the soil loss on administrative levels for 27 administrative units in Uganda and Kenya. For all administrative units20

and all USLE model setups the mean soil loss was calculated. The distribution of the mean soil loss in each administrative units

was analyzed with descriptive statistics. Employing Eq. (3) soil loss levels were determined for all grid cells in the respective

administrative units and for all USLE model setups. The areas of each soil loss class calculated from all USLE model setups

per administrative unit were summed up to compute the average share of a soil loss class for each administrative unit. Only
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administrative units located in the erosion prone regions that are indicated in Fig. 1 are analyzed in the main document below. A

complete summary of the results for all counties of Kenya and districts of Uganda can be found in the supplementary document

in section S.3.

3.7 Comparison of the soil loss estimates to in field assessments

To provide a reference for the USLE ensemble simulations we used literature values of long-term mean annual soil loss from5

in-field assessments. García-Ruiz et al. (2015) compiled a comprehensive literature review for global soil loss rates, where three

sources provided values for five sites within the study area of Kenya and Uganda. All three sources, however, applied different

methods to assess the soil loss and cover a wide range of spatial domains. Sutherland and Bryan (1990) estimated the soil loss

from the 0.3 km2 Katiorin catchment located in the Lake Baringo drainage area in Kenya based on an in-stream discharge and

suspended sediment sampling. Sutherland and Bryan (1990) estimated an average soil loss for the Katiorin catchment of 7310

tons ha−1 yr−1 with a range between 16 and 96 tons ha−1 yr−1. Kithiia (1997) reported results from soil loss monitorings

in tributaries of the Athi River Basin conducted by the Kenian Ministry of Water Development. From the tributary sampling

sites in the Athi River Basin we selected the 41 km2 Riara catchment with an average reported sediment load of 1474 tons

yr−1 (0.36 tons ha−1 yr−1). Bamutaze (2010) preformed an erosion plot experiment in the Sinje catchment at Mt. Elgon in

Uganda. Based on a two year monitoring, Bamutaze (2010) estimated a mean soil loss of 0.838 tons ha−1 yr−1 with a range15

between 0.185 and 1.761 tons ha−1 yr−1. De Meyer et al. (2011) assessed the soil loss from 36 farm compounds in the two

villages Iguluibi and Waibale close to the northern shore of Lake Victoria in Uganda. De Meyer et al. (2011) assessed the soil

loss by reconstructing the historic surface level and calculating the lost soil volume. The estimations range between 56 and 460

tons ha−1 yr−1 in Iguluibi and 27 and 135 tons ha−1 yr−1 in Waibale.

To compare the ensemble soil loss estimations in this study with the literature values we calculated mean soil losses for20

grid cells that cover the original study site locations. Statistical measures were aggregated for the calculated site averages and

plotted against the measured soil losses acquired from the selected studies.

3.8 Used software

The entire calculation of the USLE model realizations, most part of the input factor generation and the entire analysis of

the simulation results was performed in the R programming environment (R Core Team, 2019). Spatial tasks and analyses25

were performed using the spatial R packages raster (Hijmans, 2019), sf (Pebesma, 2018), rgdal (Bivand et al., 2019),

and fasterize (Ross, 2018). Data handling with SQLite data bases was managed through interfacing with the RSQLite

(Müller et al., 2018) and dbplyr (Wickham and Ruiz, 2019) packages. Data analyses employed the R packages dplyr

(Wickham et al., 2019b), forcats (Wickham, 2019), lubridate (Grolemund and Wickham, 2011), purrr (Henry and

Wickham, 2019), tibble (Müller and Wickham, 2019), and tidyr (Wickham and Henry, 2019). Parallel computing to run30

some analyses was performed with the R packages foreach (Microsoft Corporation and Weston, 2017b), doSNOW (Microsoft

Corporation and Weston, 2017a), and parallel (R Core Team, 2019). LS factor realizations were generated with the LS
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Module in SAGA GIS (Conrad et al., 2015). Spatial maps were prepared in ArcGIS (ESRI, 2012) and in the R environment

ggplot2 (Wickham et al., 2019a) was used for all other figures.

4 Results

4.1 Analysis of the soil loss simulated with the USLE model ensemble

Overall, the calculated soil losses by our models follow the spatial pattern indicated by the potential erosion risk from topog-5

raphy that was presented in Fig. 1a). Both, the ensemble mean (Fig. 3a)) and the median soil loss (Fig. 3b)) show increased

soil losses where moderate or high erosion risks were identified based on the slope thresholds suggested by Ebisemiju (1988).

Mean soil losses of larger than 50 tons ha−1 yr−1 were found in the south-western corner of Uganda around Lake Bunyoni

and along the Rift Valley in the North-West of Kenya. Particularly, excessive soil losses that exceed 200 tons ha−1 yr−1 were

calculated for the steep slopes around the Ruwenzori Mountains, Mt. Elgon, and Mt. Kenya with ensemble mean soil losses10

of up to 1865, 1663, and 1438 tons ha−1 yr−1, respectively. Large variations in the calculated soil losses in each grid cell

in combination with highly positively skewed distributions are two reasons why the calculated mean soil losses are generally

larger than the median values.

The strong discrepancy between the USLE model setups is evident from the comparison of the minimum calculated soil

losses (Fig. 3c)) and the maximum soil losses (Fig. 3d)) in each grid cell. While combinations of USLE model input factors15

were present in the model ensemble that calculated soil losses below 10 tons ha−1 yr−1 for 99 % of the study region and soil

losses below 100 tons ha−1 yr−1 for the entire study region, other input factor combinations resulted in soil losses above 200

tons ha−1 yr−1 for over 45 % of the study region and substantial soil losses of at least 50 tons ha−1 yr−1 for over 85 % of

the study region.

Fig. 4 provides a different perspective of the same ensemble simulations. Each grid cell shows the frequency for the defined20

soil loss levels tolerable, moderate, high, and severe (panels a)-d) respectively) that were predicted by the model members

of the ULSE model ensemble. For large areas in the Northern Region of Uganda, the south of the lakes Kyoga and Albert in

Uganda, and the Northeast Province and the northern parts of the Eastern Province in Kenya over 90 % (and in many cases all)

of the USLE model setups calculated tolerable soil losses. In the topographically heterogeneous regions of the Uganda Plateau,

the South West of Uganda and the Gregory Rift in Kenya, a substantial share of up to 40 % of all model setups calculated a25

tolerable soil and the majority of model setups resulted in moderate soil losses. Only along the steep mountain ridges in the

Rift Valley and the mountain massifs of Mt. Kenya, Mt. Elgon, the Ruwenzori Mountains and the region around Lake Bunyoni

a substantial part of USLE model setups calculated high and severe soil losses (yellow and local red regions in Fig 4 c) and d)).

Fig. 5 combines the soil loss classification and the (un)certainties in the prediction of soil loss levels based on the USLE

model ensemble into one representation. The dominant soil loss levels that a majority of model setups predicted for a grid cell30

are shown in green (tolerable), blue (moderate), orange (high), and purple (severe). The lightness of the colors indicates the

percentage of models that calculated a soil loss within the respective soil loss classes. To highlight the complex patterns that
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Figure 3. Descriptive statistics calculated for each grid cell based on the 756 USLE model realizations. Panels a) to d) show the mean,

median, minimum, and maximum long-term annual soil erosion in each grid cell.

result from the ensemble soil loss estimations in topographically heterogeneous regions, we show the Mt. Elgon (Fig. 5 b)),

Lake Bunyoni (Fig. 5 c)), and Mt. Kenya (Fig. 5 d)) regions in detail.

The strong agreement between the USLE model setups to calculate tolerable soil loss for the generally flat regions of Kenya

and Uganda (shown in purple in Fig. 4 a)) is visible in dark green in Fig. 5 a). The soil loss level patterns in the erosion prone

areas of Mt. Elgon, Lake Bunyoni, and Mt. Kenya clearly follow the topographic patterns of these regions, with high and5

severe soil loss levels along the mountain ridges and tolerable to moderate soil losses in the valley bottoms. The agreement

of the USLE model setups to predict the same soil loss level in such heterogeneous topographies is generally lower, showing

percentages of 25 to 75 %. Only along the very steep slopes of the mountain massifs (and particularly at the top of Mt. Kenya

with its steep slopes and low vegetation cover) a large majority of the USLE model ensemble predicted a severe soil loss (center

of Fig. 5 d)). Although the entire Mt. Elgon and the Mt. Kenya massifs show moderate to steep slopes (see. Fig. 1 b)), a large10

majority of the USLE model ensemble (>75 %) calculated tolerable soil losses for the densely forested northern part of Mt.

Elgon and the forest belt around Mt. Kenya.
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Figure 4. Frequency of USLE model ensemble members to predict one of the four soil loss classes tolerable (0 – 10 tons ha−1 yr−1) (a),

moderate (10 – 50 tons ha−1 yr−1) (b), high (50 – 200 tons ha−1 yr−1) (c), and severe (>200 tons ha−1 yr−1) (d), based on the soil

loss classification after FAO-PNUMA-UNESCO (1980). The pixel color illustrates the percentage of models from the model ensemble that

calculated a soil loss in between the respective class boundaries.

4.2 Analysis of the USLE input factors

The range of the calculated soil loss A in a grid cell is the direct result of the different values stemming from the various input

factor realizations. A large range in the values of an input factor in a grid cell has a greater impact on the resulting uncertainties

of the calculated soil loss compared to input factors where the different realizations show similar values. The analysis of the

strongest impact of input factors on the uncertainties of A revealed clear spatial patterns at different spatial scales (Fig. 6 a)).5

Over the whole domain, the input factors C, K, and LS were identified as the most important inputs for the uncertainties in

soil loss in 34.74%, 31.39%, and 28.55% of the total study area, respectively. The R factor was only locally identified as the

most relevant input factor in 5.32 % of the total study area. The C factor and the K factors show large aggregated patterns in

both countries. The importance of the LS factor, however, generally shows small structured, heterogeneous patterns scattered

over the entire study region. Exceptions are visible in larger depressions along the Gregory Rift in zones where the slope is10

close to 0. Lake Magadi (100 km2), an alkine lake located in an endorheic basin in the Rift Valley south of Nairobi, or a larger
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Figure 5. Dominant soil loss levels. The color shows the soil loss level predicted by the majority of USLE model setups. The lightness of

the color indicates the percentage of models that predicted the dominant soil loss level. Panel a) shows the study area of Kenya and Uganda.

The panels b), c), and d) show erosion prone areas around Mt. Elgon, Lake Bunyoni, and Mt. Kenya, respectively.

region in the east of Lake Turkana are the most distinct examples for large patterns of LS. Clusters of high importance of the R

factor were only identified in high altitudes with generally large precipitation sums, but also in very dry regions in the northern

Kenya, where the precipitation sums are close to 0.

Fig. 6 b)-d) provides more detail of the spatial patterns of the input factors and their importance for the calculation of the

soil loss in regions around Mt. Elgon, Lake Bunyoni, and Mt. Kenya (that were also analyzed in Fig 5). In contrast to Fig. 65
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Figure 6. Most important USLE model input factors for the calculation of the soil loss A. The colours blue, yellow, pink, and green indicate

whether the input factors R, K, LS, or C caused the largest range in the calculation of A in a grid cell. Panel a) shows the study area of

Kenya and Uganda. The panels b), c), and d) show critical erosion hot spots around Mt. Elgon, Lake Bunyoni, and Mt. Kenya, respectively.

The insets A) to D) indicate the extents for which the input factor realizations for R, K, LS, and C were analyzed in Fig. 7.

a), finer-scale characteristics of input factor importance become visible. The patterns around the two mountains Mt. Elgon and

Mt. Kenya show similarities. Although the R factor is spatially highly concentrated at the top of Mt. Kenya and only slightly

visible on the east of Mt. Elgon, both regions show a high importance of the R factor for the calculation of A in high altitudes.

High altitude areas are mostly characterised by a sparse observation network for precipitation. R is highly correlated to some,
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in our case spatially distributed, rainfall estimates. High uncertainties in rainfall records, but also in the modelling chain to

derive remotely sensed precipitation explain these patterns. Moving down from the summits, belts of a high importance of the

C and K factor are visible. These distinct patterns result from the vertical bands of changes in vegetation in such mountainous

regions and the impact of sparse and dense natural vegetation and agricultural land uses on the calculation of the C factor. The

Lake Bunyoni region shows more heterogeneous patterns for the most important input factors. In the north, the calculation of5

A is affected by the C factor in large regions and the LS factor on very small scaled patterns. In the east and west of Lake

Bunyoni, patterns for all input factors are visible that follow the terrain topography. The LS and K factor are the most relevant

input factors for the calculation of A along the ridge lines, while the C factor becomes more important closer to the valley

bottoms.

The importance of an input factor for the calculation of A results from the differences in the estimated input factor values10

for the individual input factor realizations. In Fig. 7 we analyzed the input factor realizations of R, K, LS, and K in the four

regions A) to D) (indicated in Fig. 6). For the analysis only grid cells in the defined extents A) to D) were selected, which had

the condition (i) that the respective input factor was the most relevant one and (ii) where the soil loss was calculated to be high

to severe.

Case A) (Fig. 7 A)) shows the differences of R at the top of Mt. Kenya. Generally, a difference between the rainfall erosivity15

products derived from temporally high resolution rainfall (GloREDa (Panagos et al., 2017) and TMPA (Vrieling et al., 2014))

and the distributions of the R values obtained from long-term annual precipitation is visible. While both, GloREDa and TMPA

show low R values between 1869 and 3486 MJ mm ha−1 h−1 yr−1 and 3000 and 4602 MJ mm ha−1 h−1 yr−1, respectively,

the methods of Roose (1975), Moore (1979), Renard and Freimund (1994), and Lo et al. (1985) resulted in a wide range of R

values between 4940 MJ mm ha−1 h−1 yr−1 (minimum value using the method of Lo et al. (1985)) and 16207 MJ mm ha−120

h−1 yr−1 (maximum value using the method of Roose (1975)). Hence, a strong impact of the selected equation to calculate R

from long-term annual precipitation is observable. Only the method of Nakil (2014) showed low R values in the same range as

GloREDa and TMPA, with a range between 2590 and 3757 MJ mm ha−1 h−1 yr−1. The method of Nakil (2014), however,

generally generated very low R values (also where GloREDa and TMPA showed significantly larger R values).

Case B) (Fig. 7 B)) compares the K factor realizations in the south-eastern belt around Mt. Kenya. The six realizations of K25

show a clear pattern that is strongly affected by the methods that were employed to calculate K, while the differences between

the two soil products that were used are rather insignificant. The method of Torri et al. (1997) resulted in by far the largest K

values between 0.069 tons h MJ−1 mm−1 and 0.088 tons h MJ−1 mm−1. On average these values are three times larger

than the ones calculated with the method of Williams (1995) (with a range between 0.021 tons h MJ−1 mm−1 and 0.031 tons

h MJ−1 mm−1) and up to 13 times larger than the values calculated with the method of Wischmeier and Smith (1987) when30

using the SoilGrids data set (with a range between 0.011 tons h MJ−1 mm−1 and 0.028 tons h MJ−1 mm−1).

Case C) (Fig. 7 C)) shows the differences between the the LS factor realizations along the ridges of the hills around Lake

Bunyoni. Eventually only the SRTM 90m DEM was used as input data. Thus, Fig. 7 C) compares the three methods of Moore

et al. (1991), Desmet and Govers (1996), and Böhner and Selige (2006). While the methods of Moore et al. (1991) and Böhner
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and Selige (2006) resulted in comparable values with ranges between 1.47 and 3.90 and between 1.65 and 5.03, respectively,

the method of Desmet and Govers (1996) resulted in five times larger values with a range between 8.22 and 18.79.

Case D) (Fig. 7 D)) compares the implemented C factor realizations for the same extent around Lake Bunyoni as it was used

in case C). In general two patterns are observable. A strong difference between the realizations that employ the NDVI as input

and the C factor realization that were derived from land cover products and literature C factor values is visible. Further, using5

the gridded crop distribution product of Monfreda et al. (2008) to derive spatially distributed mean C factor values from the

literature resulted in larger values compared to the implementation of agricultural census data on the administrative unit level

for Kenya and Uganda. The impact of the used land cover product (ESA LC or MODIS LC) are low. Both realizations based

on NDVI (NDVI, annual and NDVI, rainy season) show mean C factor values of 0.04 and 0.03, respectively. The C values for

the realizations that employed crop data from Monfreda et al. (2008) and agricultural census data were on average six times10

and 4.5 times larger with mean values of 0.21 and 0.15 respectively.

4.3 Soil loss at the administrative level

The selected administrative units in Uganda and Kenya are located in erosion prone areas (shown in Fig. 3 and Fig. 4). Aver-

aging the soil loss for the domain of an administrative unit reduces the impact of areas with excessive soil loss. Nevertheless,

the median values of mean soil loss for the selected administrative units that result from the USLE model ensemble result in15

a moderate (blue) soil loss in 22 of the 27 administrative units. Four administrative units show even a high (yellow) mean soil

loss, while only one administrative unit resulted in a tolerable (green) soil loss (Fig. 8 a)). Particularly large mean soil losses

were found for the administrative units Kabale and Kisoro in the Lake Bunyoni region and the administrative units Kasese and

Bududa on the slopes of the Ruwenzori Mountains and Mt. Elgon, respectively. The data points shown as coloured squares

in Fig. 8 a) provide a reference to the soil loss assessment performed by Karamage et al. (2017) on district level in Uganda.20

As we included the realizations of the USLE input factors developed in Karamage et al. (2017) in the present assessment, the

calculated soil loss from Karamage et al. (2017) is a member of the USLE model ensemble. In 9 of the 16 districts the soil

losses calculated by Karamage et al. (2017) are lower than the 25 % quantile of soil losses that resulted from the USLE model

ensemble. Only for a few districts, such as Kasese, Bundibugyo, Nebbi, or Kaabong the soil losses calculated by Karamage

et al. (2017) and the ensemble means show comparable values.25

For each administrative unit, the mean soil losses that resulted from the individual USLE model ensemble members show

wide spreads (indicated by box plots and light grey dots in Fig. 8 a)). The spreads were particularly large in the administrative

units with overall high soil losses. In all administrative units the mean soil loss that resulted from the individual USLE model

setups are scattered over several soil loss classes (class boundaries indicated by dashed lines in Fig. 8 a)). Fig. 8 b) summarizes

the numbers of model setups that predicted one of the four soil loss classes for each administrative unit. Although the median30

soil loss class for the majority of the administrative units is moderate on average 49 % (370 out of 756 models; with a range of

25.4 % to 60.4 % between the 27 administrative units) of the models from the USLE model ensemble predicted moderate soil

loss, while all other model setups predicted one of the other four soil loss classes.
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Figure 7. Variability between the realizations of the most important USLE model input factors. The cases A) to D) (delineated in Fig 6)

exemplify the differences in the distributions of the input factor R, K, LS, and C, respectively. The cases A) to D) include the values of

input factor realizations for grid cells, in which the respective input factor was the most sensitive one and high to severe soil loss was predicted

to be likely. Panel A) analyzes the R factor realizations at the top of Mt. Kenya, panel B) shows the differences in the K factor realizations

in the belt around Mt. Kenya, and the panels C) and D) analyze the LS and C factors in the hilly topography of the Lake Bunyoni region.

Fig. 8 c) relates the soil loss classification in the selected administrative units to the average shares of the soil loss classes in

the administrative unit areas. While on average only 20 % of the models from the USLE model ensemble predicted a tolerable

soil loss in the administrative units almost 55 % of the areas of the administrative units show on average a tolerable soil loss.

Areas with high and severe soil loss share only small areas in the administrative units with average fractions of 14.5 % and 6.5

%, respectively. Though, these areas have a strong impact on the mean soil loss in an administrative unit.5

4.4 Comparison of the soil loss estimates to in field assessments

While the total ranges of the soil loss estimates calculated for the reference sites from the USLE model ensemble cover the

reference soil losses from literature values in all five cases in Fig. 9 the interquartile ranges for the USLE model ensemble can

strongly differ from the values that were estimated from in field experiments.
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Figure 8. Mean soil loss in selected erosion prone administrative units of Uganda and Kenya. Panel a) shows the mean soil loss from all 756

USLE realizations in the selected administrative units with grey dots and aggregated as boxplots. The colors indicate whether the median

soil loss in an administrative unit is tolerable (green), moderate (blue), high (yellow), or severe (purple). For comparison the results from

Karamage et al. (2017) are plotted as colored squares. Panel b) shows the distributions of soil loss levels that were predicted by the USLE

model realizations for the selected administrative units. Panel c) shows the average shares of soil loss classes for the domains of the selected

administrative units.

Cases I and II in Fig. 9 compare average soil losses for the domains of the villages Iguluibi and Waibale to soil loss

assessments of small scale farm compounds. In both cases the soil losses assessed in the field exceed the interquartile ranges

that result from the USLE model ensemble, with ranges of 56 to 460 tons ha−1 yr−1 and 8.6 to 53.4 tons ha−1 yr−1 in

Iguluibi and 27 to 135 tons ha−1 yr−1 and 3.1 to 16.2 tons ha−1 yr−1 in Waibale.

For the Sinje test case (case III in Fig. 9) in the Manafwa district in Uganda Bamutaze (2010) resulted in very low soil losses5

between 0.185 and 1.761 tons ha−1 yr−1. Generally the districts along Mt. Elgon are known to be erosion prone. On average

the USLE model ensemble predicted high soil loss for the location of the Sinje test catchment with a median soil loss 86.8

tons ha−1 yr−1 and an interquartile range between 3.9 and 212 tons ha−1 yr−1. Although the range of calculated soil losses

is generally large, only 11 % of models from the USLE model ensemble predict soil losses that are in the range of the values

reported by Bamutaze (2010).10
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Figure 9. Comparison of soil loss simulations from the USLE model ensemble to in field soil loss assessments acquired from selected studies.

The reference soil loss values are shown with red squares for the sites Iguluibi and Waibale (De Meyer et al., 2011), Sinje (Bamutaze, 2010),

Katiorin (Sutherland and Bryan, 1990), and Riara (Kithiia, 1997) in panel a). The soil loss simulations for the reference extents from all 756

USLE model realizations are shown as grey circles. Corresponding boxplots show summary statistics for the model ensembles in panel a).

Panel b) summarizes the numbers of models that predicted the soi loss levels tolerable (green), moderate (blue), high (orange), and severe

(purple) for the reference sites.

The reported soil losses for the Katiorin catchment are comparable to the soil loss estimations for the catchments extent that

resulted from the USLE model ensembles (case IV in Fig. 9). Sutherland and Bryan (1990) reports a range of soil loss between

16 and 96 tons ha−1 yr−1 for the Katiorin catchment and 21 % of the USLE model setups predict a soil loss in the same range.

Almost 30 %, however, result in soil losses lower than 16 tons ha−1 yr−1.

Kithiia (1997) reports a very low soil loss of 0.36 tons ha−1 yr−1 for the Riara Basin. All USLE model realizations predict5

larger soil losses for the domain of Riara, with a minimum value of 1.6 tons ha−1 yr−1 and an interquartile range of 6.8 to

30.7 tons ha−1 yr−1.

5 Discussion

5.1 What can we learn from such an analysis

We illustrated how drastic the differences in the estimated soil loss magnitudes can be by selecting a method to calculate a10

USLE input factor. The statistical analysis of the generated USLE model ensemble (Fig. 3) showed that ranges of one or two

magnitudes for the estimated soil loss were possible. These large ranges ultimately result from differences in the individual

realizations of the USLE input factors (some realizations were over a magnitude larger than others in Fig. 7). These differences

in the inputs propagate through the USLE equation by multiplication.

The immanent question that arises is whether we are able to exclude any combinations of USLE input factors or individual15

realizations of input factors, as they fail to result in plausible soil losses and eventually reduce the ranges in estimated soil

losses (Beven, 2018; Beven and Brazier, 2011). From a modellers perspective, neither the comparison to observations (Fig.

9), nor a plausibility check of the individual USLE model realisations generally allowed us to exclude model combinations or

individual methods for the generation of USLE inputs. As a consequence, we have to acknowledge the uncertainties that result
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from commonly used methods to generate spatially distributed estimates of the USLE input factors and/or find additional ways

to evaluate the simulated soil losses (see section 5.2).

In the case that model setups cannot be falsified and are considered as "fit-for-purpose" (Beven, 2018), we must treat each

member of the ensemble equally. In Fig. 4 and Fig. 5, and Fig. 8 we proposed ways to utilize the generated USLE model

ensemble and infer the severity of soil loss on different spatial levels based on a compromise of many models. From a decision5

makers perspective, such large ranges in soil loss imply challenges in the interpretation of the results and complicate decisions

on possible measures that can be implemented. Nevertheless, the analysis of soil loss on the administrative level (Fig. 8) and

particularly the comparison to the results from Karamage et al. (2017) should highlight an example to favor the analysis of the

entire possible uncertainty range in soil loss, as opposed to accepting a single prediction of soil loss as a basis for decision

making.10

A possible approach to utilize the USLE ensemble predictions was presented in the combined assessment of soil loss levels

that were predicted by the majority of the ensemble members and showed the fraction of models that predicted dominant soil

loss levels in Fig. 4. Such reduction of information provided by the ensemble results enables to provide a "single" answer

to the question of the severity of the soil loss to be expected and conveying the "certainty" of a prediction at the same time.

Though, thresholds that define a specific soil loss as tolerable, or critical are seen as controversial (Bosco et al., 2015) and a15

wide range thresholds for tolerable soil loss (e.g., Karamage et al., 2017; Bosco et al., 2015; Bamutaze, 2015; Blanco-Canqui

and Lal, 2008; Montgomery, 2007) and soil loss classification schemes (e.g., Zachar, 1982; FAO-PNUMA-UNESCO, 1980)

are proposed.

To illustrate the dominant soil loss level together with the frequency of models that predicted that soil loss level can strongly

support the evaluation of the model results. A large share of the USLE input factor combinations, for instance, predicted low20

soil losses along slopes with dense forest vegetation (see e.g. dark green area in Fig. 5 d)). Thus, reduced soil loss in densely

vegetated areas can be expected with a higher certainty based on the ensemble predictions. In contrast, areas with sparse

vegetation (e.g. close to the summit of Mt. Kenya in Fig. 5) show increased soil loss, but lower percentages of USLE model

members that predict the respective soil loss level at the same time. These are potential zones where any form of validation or

plausibility check would benefit the analysis.25

The analysis of the USLE input factor realizations with respect to their impact on the uncertainties of the simulated soil loss

reveals patterns for the USLE inputs on different spatial scales in Fig. 6. These patterns can support in identifying the USLE

inputs that require greater attention for the USLE model setup, based on the local conditions. Larger patterns were mainly

visible for the input factors C and K, while LS showed very small scaled patterns and R showed a lower relevance for the

prediction uncertainties in general. While the C is clearly the most important input factor for large regions in the densely30

vegetated part of Uganda and around Lake Victoria in Kenya, K is most relevant in the drier regions of Kenya. The R factor

was mainly relevant in higher altitudes. The LS factor realizations were most relevant in highly variable topographies and very

flat areas where the factor is close to zero and numerical issues governed the results of the sensitivity analysis.
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5.2 Are in-field data a valid reference for USLE model evaluation

No clear pattern can be defined from the comparison of estimated soil losses to in-field soil loss assessments within the study

domain. The selected reference studies had different specific scopes. While Sutherland and Bryan (1990), or Kithiia (1997)

monitored the accumulated soil loss from river catchments, De Meyer et al. (2011) assessed the soil loss on small scales and

on sites that are particularly erosion prone. While most of the selected reference studies report low to moderate soil losses5

for their study domains, De Meyer et al. (2011) reports high to excessive soil losses for several of the farm compounds they

investigated. The methodologies that were used for the soil loss assessments strongly impacted the reported soil losses and

result in wide ranges of soil loss between the selected studies.

Aforementioned limitations of the temporal and spatial representativeness of the reported soil losses from the selected

reference studies are likely to be present and may have impacted the significance of the comparison to the soil loss estimates.10

Boardman (2006) stresses that long-term monitoring schemes and additional assessments of rills and gullies would be required

to allow a comparison to soil loss estimations. Records from erosion monitoring studies are, however, usually short (Evans,

2013; Govers, 2011). The reference studies of Sutherland and Bryan (1990) and Bamutaze (2010) for instance only covered

monitoring periods of 1 and 2 years, respectively and thus are only snapshots in time that are difficult to compare with long-term

assessments.15

Although the soil losses reported in De Meyer et al. (2011) are based on cumulative soil losses in farm compounds over

periods of 15 to 20 years, the spatial domains of the farm compounds that were analyzed do not properly reflect the spatial

resolution of the grid on which the soil loss assessment with the USLE was conducted. Other reference studies, such as

Sutherland and Bryan (1990) or Kithiia (1997) better meet the spatial scale of the USLE soil loss assessment. However, the

presented soil yields are in-stream sediment loads. These reported loads are affected by processes, such as deposition, gully20

erosion, land sliding, or bank erosion that superimpose rill and inter-rill erosion (Govers, 2011). Boardman (2006) further

highlights that the in-stream sediment delivery ratios (SDR) are a function of time and scale. Boardman (2006) compares the

differences in the SDR of the Yellow River and British rivers that differ by a factor of 28. Such large difference in the SDR

does, however, not necessarily reflect the differences in soil erosion rates.

Evans (1995) and Boardman (2006) point out that soil losses derived in plot scale experiments do not reflect erosion taking25

place on the landscape scale. Evans (1995) found that plot scale soil losses are larger than soil losses in the landscape by a

factor of two to ten under comparable conditions. The soil losses reported in Bamutaze (2010) were however lower than the

soil losses estimated by almost 90 % of all used USLE models in this study and thus show an opposite behavior.

Prasuhn et al. (2013), Warren et al. (2005), or Evans (2002), among others, demand that soil losses that were estimated by

models must be supported by field based observations. Bosco et al. (2015) emphasize the limitations of in-field validation for30

large scale studies. Bosco et al. (2014) and Bosco et al. (2015) highlight the potential to employ new high resolution satellite

imagery and Google Earth, or Google Streetview data for plausibility checks of soil loss estimates. Yet, the verification (and

falsification) of the absolute magnitudes of soil loss estimates on large scales remains a challenge.
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5.3 Further considerations and limitations

In this study we only implemented a selection of methods and primary data sources for the calculation of the USLE input

factors. Hence, we have to recognize that the performed study does not provide a comprehensive picture of the uncertainties that

are introduced by different representations of the USLE input factors. Albeit, the calculated ranges in soil loss were substantial

and considering additional realizations of USLE input factors can in the worst case increase the ranges of calculated soil loss.5

The demonstrated procedure, however, pinpoints the central weakness of the USLE. The model can identify relative risks for

soil erosion, but fails to predict exact magnitudes of soil loss. Eventually every modeller must acknowledge the limitations of

the USLE (some of them we addressed at great length) and not overestimate the predictive power of the model.

We are fully aware that such a comprehensive analysis is very likely out of scope for most studies that employ the ULSE

model, as in most applications the soil loss estimation is only a small part of the entire analysis. Further, extending such analysis10

to larger domains or increasing the spatial resolution can be limited by available computation and storage capacities. For

instance, the entire ensemble of USLE model representations in the present study comprised 11225×14778×1512 (~250·109)

pixel values required 2.13 TB distributed in SQlite data bases on four separate hard drives to allow an efficient batch-wise

analysis of the model results. Nevertheless, checking the plausibility of estimated soil loss must be the minimum requirement

for every study employing the USLE (see suggestion above and Bosco et al., 2015, 2014).15

We omitted the analysis of the conservation support or management practice factor P in this study. For all USLE model

setups the P factor was globally set to a value of 1. According to literature values, the application and maintenance of support

practise measures can substantially reduce the soil erosion in erosion prone landscapes. Conservation measures, such as contour

farming, strip cropping, or terracing reduces the calculated soil loss by a factor of up to 2, 4, and 10, respectively, depending

on the slope on which the measure was applied (Karamage et al., 2017). Large scale estimations of P and the implementation20

of the P factor in large scale soil loss assessments are almost absent, as only very limited spatial data is available on soil

conservation measures. Panagos et al. (2015d) generated a spatial estimate for P for entire Europe, considering the effects

of contouring, stone walls, and grass margins. Panagos et al. (2015d) thereby used comprehensive spatial statistics on soil

conservation based on 270000 data points available for Europe from the LUCAS data base (LUCAS, 2012). Such detailed

data is, however, not available in all regions of the world. Thus, other large scale assessments omitted the P factor and used25

a value of 1 globally (e.g., Borrelli et al., 2017), assigned a reduced P value globally in the study domain (Karamage et al.,

2017), or assigned global values for P to specific land uses (Yang et al., 2003). Such simplifications do not reflect the spatial

distributions of soil conservation measures that are actually applied in a (large scale) study domain, although their impact on

large soil loss estimates can be substantial.

6 Conclusions30

The USLE model, an empirical model to estimate the soil loss by water erosion is widely applied in large scale assessments

and was implemented in a case study to assess the soil loss on the entire domain of Kenya and Uganda. Although the USLE has

a simple model structure and is therefore easy to implement, the generation of spatially distributed estimates of the USLE input
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factors for the study domain poses a major challenge. Large scale (remote sensing) data products and methods to employ them

for the generation of the USLE inputs greatly support soil loss assessments on large scales. In order to analyze and quantify the

impact of available data products and with methods for the calculation of USLE inputs on the uncertainties of estimated soil

losses, we generated a range of realizations for each USLE input factor and combined them to 756 realizations of the USLE to

compute spatially distributed soil loss for entire Kenya and Uganda.5

Overall, but particularly in erosion prone areas of the study domain, the calculated ranges of soil loss showed large values. In

many cases, especially in areas with high soil losses, the calculated ranges exceeded the mean soil loss by greater than one order

of magnitude. To condense the information provided by the USLE model ensemble we proposed to classify the soil loss into

the soil levels tolerable, moderate, high, and severe employing common soil loss thresholds from literature. The classification

allowed to utilize the USLE ensemble predictions to analyze but consider the "certainty" of the prediction simultaneously. The10

employed approach enabled to identify zones with increased soil loss, but also areas where the agreement in the USLE model

ensemble is low and thus suggest an evaluation and/or plausibility checks for the simulations.

A sensitivity analysis of the soil loss predictions was performed to identify the USLE input factors that introduce the strongest

impact on the uncertainties of the soil loss estimates. The analysis identified clear patterns on the large scale for the input factors

C and K, where the C factor is more relevant for areas with denser vegetation and the K factor showed a greater importance15

for the calculation of the soil loss in dry less densely vegetated areas. The LS factor showed very scattered patterns in complex

topographies and was relevant for the uncertainties of the calculated soil loss in sloped terrain.

A validation of simulated soil loss on large scale domains, employing in-field assessments from the literature poses to be a

challenge and in this study no clear conclusions can be drawn for the ensemble soil loss estimates when they were compared to

soil loss observations. Thus, the comparison failed to falsify any of the generated USLE model combinations that would allow20

to exclude ensemble members to ultimately reduce the soil loss prediction uncertainties. Major issues for a valid comparison

are the differing origins of the in-field soil loss data as well as spatial and temporal limitations of the observed data.

Although available computational and time resources will naturally limit such an analysis of soil loss predictions in most

studies that employ the USLE model, the findings clearly highlight the importance to critically view and analyze single USLE

model predictions, as the resulting soil loss estimates are highly sensitive to the combinations of realizations of the USLE25

model inputs. We further question the aptitude of soil loss assessments based on in-stream sediment yields or small scale plot

experiments to be valid data for the evaluation of soil loss estimates and want to refer to new approaches (e.g. Bosco et al.,

2014) that potentially allow to check the plausibility of large scale soil loss assessments.

Code and data availability. The study was performed using openly available primary input data. For some of these data we do not have the

permission for further distribution. All input data can, however, be acquired from the rights holders of these data sets. All intermediate and30

final data that were generated in this study and the corresponding R code to manage and process the data are available upon request to the

corresponding authors.
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