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ABSTRACT 22 

Understanding the projection performance of hydrological models under contrasting 23 

climatic conditions supports robust decision making, which highlights the need to 24 

adopt time-varying parameters in hydrological modeling to reduce performance 25 

degradation. Many existing literatures model the time-varying parameters as functions 26 

of physically-based covariates; however, a major challenge remains in finding 27 

effective information to control the large uncertainties that are linked to the additional 28 

parameters within the functions. This paper formulated the time-varying parameters 29 

for a lumped hydrological model as explicit functions of temporal covariates and used 30 

a hierarchical Bayesian (HB) framework to incorporate the spatial coherence of 31 

adjacent catchments to improve the robustness of the projection performance. Four 32 

modeling scenarios with different spatial coherence schemes, and one scenario with a 33 

stationary scheme for model parameters, were used to explore the transferability of 34 

hydrological models under contrasting climatic conditions. Three spatially adjacent 35 

catchments in southeast Australia were selected as case studies to examine the validity 36 

of the proposed method. Results showed that (1) the time-varying function improved 37 

the model performance but also amplified the projection uncertainty compared with 38 

stationary setting of model parameters; (2) the proposed HB method successfully 39 

reduced the projection uncertainty and improved the robustness of model performance; 40 

and (3) model parameters calibrated over dry years were not suitable for predicting 41 

runoff over wet years because of a large degradation in projection performance. This 42 

study improves our understanding of the spatial coherence of time-varying parameters, 43 

which will help improve the projection performance under differing climatic 44 

conditions. 45 
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 48 
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1. INTRODUCTION 50 

Long-term streamflow projection is an important part of effective water 51 

resources planning because it can predict future scarcity in water supply and help 52 

prevent floods. Streamflow projections typically involve the following: (i) calibrating 53 

hydrological model parameters with partial historical observations (e.g., precipitation, 54 

evaporation, and streamflow); (ii) projecting streamflow under periods that are 55 

outside of those for model calibration; and (iii) evaluating the model projection 56 

performance with certain criteria. One of the most basic assumptions of this 57 

process—that the calibrated model parameters are stationary and can be applied to 58 

predict catchment behaviors in the near future, has been widely questioned (Brigode 59 

et al., 2013; Broderick et al., 2016; Chiew et al., 2014; Chiew et al., 2009; Ciais et al., 60 

2005; Clarke, 2007; Cook et al., 2004; Coron et al., 2012; Deng et al., 2016; Merz et 61 

al., 2011; Moore and Wondzell, 2005; Moradkhani et al., 2012; Moradkhani et al., 62 

2005; Pathiraja et al., 2016; Pathiraja et al., 2018; Patil and Stieglitz, 2015; Westra et 63 

al., 2014; Xiong et al., 2019; Zhang et al., 2018).  64 

Many previous studies have explored the transferability of stationary parameters 65 

to periods with different climatic conditions. They have concluded that hydrological 66 

model parameters are sensitive to the climatic conditions of the calibration period 67 

(Chiew et al., 2014; Chiew et al., 2009; Coron et al., 2012; Merz et al., 2011; Renard 68 

et al., 2011; Seiller et al., 2012; Vaze et al., 2010). For instance, Merz et al. (2011) 69 

calibrated model parameters using six consecutive 5-year periods between 1976 and 70 

2006 for 273 catchments in Austria and found that the calibrated parameters 71 
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representing snow and soil moisture processes showed a significant trend in the study 72 

area. Other studies have found that degradation in model performance was directly 73 

related to the difference in precipitation between the calibration and verification 74 

periods (Coron et al., 2012; Vaze et al., 2010). One proposal for managing this 75 

problem is to calibrate model parameters in periods with similar climatic conditions to 76 

the near future, but future streamflow observations are unavailable. Thus, it is still 77 

necessary to reduce the magnitude of performance loss and improve the robustness of 78 

the projection performance using calibrated parameters based on the historical records, 79 

even though the climatic conditions in the future may be dissimilar to those used for 80 

model calibration.  81 

Several recent studies have found that hydrological models with time-varying 82 

parameters exhibited a significant improvement in its projection performance 83 

compared with the stationary parameters (Deng et al., 2016; Deng et al., 2018; Westra 84 

et al., 2014). The functional method is one of the most promising ways to model 85 

time-varying parameters and shows its excellence in improving the model projection 86 

performance (Guo et al., 2017; Westra et al., 2014; Wright et al., 2015). This method 87 

models the time-varying parameter(s) as the function(s) of physically-based 88 

covariates (e.g., temporal covariate and Normalized Difference Vegetation Index). 89 

Generally, the hydrological model is run with various assumed functions, the best 90 

functional forms of time-varying parameters can be obtained by comparing the 91 

evaluation criteria. However, a major challenge for the application of the functional 92 

method remains in finding effective information to control the large uncertainties that 93 
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are linked to the additional parameters describing these regression functions. 94 

Similarity of adjacent catchments has been verified its validity in controlling the 95 

estimation uncertainty of model parameters (Bracken et al., 2018; Cha et al., 2016; 96 

Cooley et al., 2007; Lima and Lall, 2009; Najafi and Moradkhani, 2014; Sun and Lall, 97 

2015; Sun et al., 2015; Yan and Moradkhani, 2015). The level of similarity of 98 

different catchments is known as spatial coherence. For instance, Sun and Lall (2015) 99 

used the spatial coherence of trends in annual maximum precipitation in the United 100 

States, and successfully reduced the parameter estimation uncertainty in their at-site 101 

frequency analysis. In general, there are three methods to consider the spatial 102 

coherence between different catchments in parameter estimation. The first one is no 103 

pooling, which means every catchment is modeled independently, and all parameters 104 

are catchment-specific. The second one is complete pooling, which means all 105 

parameters are considered to be common across all catchments. The third/last one is 106 

hierarchical Bayesian (HB) framework, also known as partial pooling, which means 107 

some parameters are allowed to vary by catchments and some parameters are assumed 108 

to drown from a common hyper-distribution across the region that consists of 109 

different catchments. In these three approaches, the HB framework has been proved 110 

as the most efficient method to incorporate the spatial coherence to reduce the 111 

estimation uncertainty because it has the advantage of shrinking the local parameter 112 

toward the common regional mean and including an estimation of its variance or 113 

covariance across the catchments (Bracken et al., 2018; Sun and Lall, 2015; Sun et al., 114 

2015). In the field of hydrological modeling, most proceeding literatures were focused 115 
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on no pooling models that neglect the spatial coherence between catchments 116 

(Heuvelmans et al., 2006; Lebecherel et al., 2016; Merz and Bloschl, 2004; Oudin et 117 

al., 2008; Singh et al., 2012; Tegegne and Kim, 2018; Xu et al., 2018); little attention 118 

has been paid to the HB framework. Thus, we want to fill this gap and explore the 119 

applicability of the spatial coherence through the HB framework in hydrological 120 

modeling with the time-varying parameters.  121 

The objectives of this paper were to: (1) verify the effect of the time-varying 122 

model parameter scheme on model projection performance and uncertainty analysis 123 

compared with stationary model parameters; (2) verify the projection performance of 124 

considering spatial coherence of adjacent catchments through the HB framework 125 

compared with spatial incoherence; and (3) compare the model projection 126 

performance for different climatic transfer schemes. 127 

The rest of the paper is organized as follows. Section 2 outlines the methodology 128 

employed in this study including differential split-sample test (DSST) for segmenting 129 

the historical series, the hydrological model, and the two-level HB framework for 130 

incorporating spatial coherence from adjacent catchments. Section 3 presents the 131 

information on the study area and data. The results and discussion are described in 132 

section 4. Section 5 summarizes the main conclusions of the study. 133 

2. METHODOLOGY 134 

The methodology is outlined by a flowchart in Figure 1, and is summarized as 135 

follows: 136 

(1) A temporal parameter transfer scheme is implemented (described in section 137 
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2.1) using a classic DSST procedure in which the available data are divided into wet 138 

and dry years; 139 

(2) A daily conceptual rainfall-runoff model is used (outlined in section 2.2); 140 

(3) A two-level HB framework is used to incorporate spatial coherence in 141 

hydrological modeling (described in section 2.3). The process layer (first level) of the 142 

framework models the temporal variation in the model parameters using a 143 

time-varying function, while the prior layer (second level) models the spatial 144 

coherence of the regression parameters in the time-varying function. Four modeling 145 

scenarios with different spatial coherence schemes, and one scenario with a stationary 146 

scheme for the model parameters, are used to evaluate the transferability of 147 

hydrological models under contrasting climatic conditions; 148 

(4) Likelihood function and parameter estimation methods are applied (outlined 149 

in section 2.4); and 150 

(5) The criteria are used to evaluate the model performance for various model 151 

scenarios (described in section 2.5). 152 

2.1 Differential split sampling test 153 

To verify the projection performance of the rainfall-runoff model under 154 

contrasting climatic conditions (wet and dry years), a classic DSST using annual 155 

rainfall records was adopted. 156 

Two separate tasks were needed to develop the DSST method into a working 157 

system. The first step was to define “dry years”. The method to define the dry years is 158 

adopted from Saft et al. (2015), which is a rigorous identification method that treats 159 
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autocorrelation in the regression residuals, undertakes global significance testing, and 160 

defines the start and end of the droughts individually for each catchment. Saft et al. 161 

(2015) tested several algorithms for dry years delineation, which considered different 162 

combinations of dry run length, dry run anomaly and various boundary criteria, and 163 

found that the identification results of dry years by one of the algorithms showed 164 

marginal dependence on the algorithm and the main results were robust to different 165 

algorithms. The detailed processes could be found on Saft et al. (2015) and also are 166 

generalized as follows. 167 

Firstly, the annual rainfall data were calculated relative to the annual mean, and 168 

the anomaly series was divided by the mean annual rainfall and smoothed with a 169 

3-year moving window. Secondly, the first year of the drought remained the start of 170 

the first 3 years negative anomaly period. Thirdly, the exact end date of the dry years 171 

was determined through analysis of the unsmoothed anomaly data from the last 172 

negative 3-year anomaly. The end year was identified as the last year of this 3 year 173 

period unless: (i) there was a year with a positive anomaly >15% of the mean, in 174 

which case the end year is set to the year prior to that year; or (ii) if the last two years 175 

have slightly positive anomalies (but each <15% of the mean), in which case the end 176 

year is set to the first year of positive anomaly; (iii) to ensure that the dry years are 177 

sufficiently long and severe, in the subsequent analysis, the authors use dry years with 178 

the following characteristics: length 7 years; mean dry years anomaly<-5%. 179 

In the second step, the wet years were defined as the complement of the dry 180 

years in the historical records. A similar approach to define the dry and wet years was 181 
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used by Fowler et al. (2016).  182 

In the DSST method, the model parameters calibrated in the wet years were 183 

evaluated in the dry years, and vice versa. In addition, criteria, i.e, NSEsqrt, BIAS, DIC, 184 

MaxF, and MinF illustrated in section 2.5, were used to evaluate the performance of 185 

the calibrated parameters for different transfer schemes. 186 

2.2 The rainfall-runoff model 187 

The hydrological model used in this study is the GR4J (modèle du Génie Rural à 188 

4 paramètres Journalier), which is a lumped conceptual rainfall-runoff model (Perrin 189 

et al., 2003). The original version of the GR4J model (Figure 2) comprised four 190 

parameters (Perrin et al., 2003): production store capacity ( 1 mm), groundwater 191 

exchange coefficient ( 2  mm), 1-day-ahead maximum capacity of the routing store 192 

( 3  mm), and the time base of the unit hydrograph ( 4  days). More details on the 193 

GR4J model can be found in Perrin et al. (2003). 194 

The GR4J model is a parsimonious, but efficient model. The model has been 195 

used successfully across a wide range of hydro-climatic conditions across the world, 196 

including the crash testing of model performance under contrasting climatic 197 

conditions (Coron et al., 2012), and the simulation of runoff for revisiting the 198 

deficiency in insufficient model calibration (Fowler et al., 2016). For example, Fowler 199 

et al. (2016) verified that conceptual rainfall-runoff models were more capable under 200 

changing climatic conditions than previously thought. These characteristics make the 201 

GR4J particularly suitable as a starting point for implementing modifications and/or 202 

improving predictive ability under changing climatic conditions.  203 
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2.3 The HB framework for the time-varying model parameter 204 

In this study, various versions were constructed for evaluating the projection 205 

capabilities of models for contrasting climatic conditions (wet and dry years), and for 206 

considering the temporal variation and spatial coherence of parameter 1 . 207 

2.3.1 Process layer: temporal variation of the model parameter 208 

As described in the literature (Pan et al., 2019; Perrin et al., 2003; Renard et 209 

al., 2011; Westra et al., 2014), parameter 1 , which represents the primary storage 210 

of water in the catchment, is the most sensitive parameter in the GR4J model 211 

structure, and the stochastic variations of this parameter have the largest impact on 212 

model projection performance (Renard et al., 2011; Westra et al., 2014). In addition, 213 

the temporal variation in the catchment storage capacity was physically 214 

interpretable. Periodic variations in the production store capacity 1  can be 215 

induced by the periodicity in precipitation (Pan et al., 2018) and in seasonal 216 

vegetation growth and senescence. In the present study, 1  was constructed to 217 

account for the periodical variation that had a significant impact on the extensionality 218 

of the model. The periodical variation in catchment storage capacity 1  is described 219 

by a sine function, using amplitude and frequency.  220 

Thus, for any catchment c, the full temporal regression function for 1  at the 221 

process layer is:  222 

Process layer:            1(c, ) (c) (c)sin (c)t t   = +   (1) 223 

where ,  ,      are regression parameters for the specific DSST method, and   224 

signifies the intercept, and  ,   represents the amplitude and frequency of the 225 
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sine function, respectively. t is the time step. According to the definition of the GR4J 226 

model (Perrin et al., 2003), the value of 1  must be a positive value. If model 227 

parameter 1  is constant then =0 , 0   suffice in Eq.1. Meanwhile, the value 228 

of   becomes irrelevant. Thus, the resulting model simplifies to a stationary 229 

hydrological model.  230 

2.3.2 Prior layer: spatial coherence of regression parameters 231 

For a heterogeneous region that is distinctly non-uniform in climatic and 232 

geologic conditions, different catchments within the region typically have different 233 

catchment storage capacities and different values of production store capacity 1 . 234 

For a homogeneous region prescribed by similar climatic and geologic conditions in 235 

each part, the production store capacity (in Eq. 1) is expected to be the same among 236 

different catchments of the region. The model could be improved by considering 237 

spatial input, i.e., the spatial coherence of parameters across adjacent catchments 238 

(Chen et al., 2014; Lima et al., 2016; Merz and Bloschl, 2004; Oudin et al., 2008; 239 

Patil and Stieglitz, 2015; Renard et al., 2011; Sun et al., 2014).  240 

In this study, independent Gaussian prior distributions were used for the 241 

amplitude   and frequency   at the prior layer to include the potential spatial 242 

coherence. Their equations are as follows: 243 

Prior layer: 
( )

( )

2

2 2

2

3 3

(c) ,

(c) ,

N

N

  

  

=

=
  (2) 244 

where 2 , 3 , 2  and 3  are hyper-parameters, and ( ).N  represents the 245 

hyper-distribution, i.e., a Gaussian distribution. Independent Gaussian distributions 246 
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were assumed for the amplitude   and frequency   that were used to model 247 

spatial coherence based on practical considerations. The prior layer of the HB 248 

framework aims to describe the variation of  ,   in space by means of a Gaussian 249 

spatial process in which the mean value depends on covariates describing regional 250 

characteristics. Amplitude   and frequency   are the most important parameters 251 

in the regression function and can reflect the spatial connection of variation and 252 

cyclicity of catchment production storage capacity among catchments. The Gaussian 253 

distribution is one of the widely used distributions for describing the prior layer 254 

within the HB framework and has been applied in many previous studies, such as Sun 255 

et al (2015, 2016) and Chen et al (2014). In addition, the introduction of the Gaussian 256 

distributions to describe the spatial coherence of   and   also because that there 257 

are still uncountable factors that may have impacts on the spatial coherence between 258 

adjacent catchments, which might make the coherence tend to converge a central 259 

value but with finite variance, and obey the Central limit theorem.  260 

2.3.3 Modeling scenarios  261 

Five modeling scenarios (Table 1) were carried out to assess the effect of spatial 262 

coherence on the time-varying function. Different levels of spatial coherence of 263 

 ,   were assumed in scenarios 1 to 4, while in scenario 5 parameter 1  was set 264 

to be constant to provide a comparison. It should be noted that the estimates for 265 

spatially coherent regression parameters would be shared by different catchments 266 

while other quantities would be regarded as catchment-specific variables. For 267 

example, amplitude 𝛽 is spatially linked in scenario 1, i.e., 𝛽(𝑐) = 𝑁(𝜇2, 𝜎2
2), which 268 



13 
 

means that the estimates of 𝛽 are shared by all catchments. Meanwhile, regression 269 

parameters ω1-1, ω1-2, and ω1-3 are used as independent variables to represent the 270 

frequency of model parameter 1  in different catchments. The number of unknown 271 

quantities in different scenarios are as follows: fifteen in scenarios 1 and 2, thirteen in 272 

scenario 3 and eighteen in scenario 4. The prior ranges of all unknown quantities 273 

(including model parameters ( 2 , 3 , and 4 ), regression parameters  ,   and 274 

 , and hyper-parameters 2 , 2 , 3  and 3 ) in different scenarios and both 275 

DSST schemes could be found in Table S1 in Supplement material. It should be noted 276 

that in a specific scenario, some unknown quantities might not exist. For example, 3  277 

and 3  did not exist in scenario 1 while 2  and 2  did not exist in scenario 278 

2.  279 

2.4 Estimation and projection  280 

The objective function and parameter inference methods were used to derive the 281 

posterior distribution of all unknown quantities, as illustrated below. 282 

2.4.1 Objective function  283 

For a specific catchment, the model parameters were calibrated to minimize the 284 

following objective function, which was adopted from Coron et al. (2012).  285 

   ( )1 2 3 4, , , - 1 1c RMSE Q BIAS      = + +
    (3) 286 

where 287 

 ( ) ( )
2

1

1 T

sim obs

t

RMSE Q Q t Q t
T =

  = −       (4) 288 

and RMSE Q 
 

 refers to the root-mean-square error, in which Qsim is derived by 289 

the adopted hydrological model. T represents the number of the time series while t is 290 
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the time step. 291 

Coron et al. (2012) showed that this objective function performed well. In this 292 

function, the combination of RMSE Q 
 

 and BIAS (Eq.7) gives weight to dynamic 293 

representation as well as the water balance. Using square-root-transformed flows to 294 

compute the RMSE reduces the influence of high flows during the calibration period 295 

and provides a good compromise between alternative criteria.  296 

In the case of multiple catchments, the objective function of the HB framework 297 

was the product of Eq.3 and the conditional probability of spatial coherence of 298 

regression parameters Nf . It was written as follows: 299 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 2 2
1

1 2 3 4 3 3
1

2

1 2 3 4 2 2 3 3
1 1

 1:  = , , , , , , ,

 2 :  = , , , , , , ,

 3 :  = , , , , , , , , , ,

 4 :  =

C

c Nc

C

c Nc

C

c Nc n

Scenario t c c c c c c f

Scenario t c c c c c c f

Scenario t c c c c c f

Scenario

          

          

             

=

=

= =

   • 

   • 

   • 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4
1

1 2 3 4
1

, , , ,

 5 :  = , , ,

C

c
c

C

c
c

t c c c c

Scenario c c c c

    

    

=

=

   

    

  (5) 300 

where the number of catchments in the region is represented by C, and the Gaussian 301 

spatial function between regression parameters ,   and hyper-parameters 2 , 302 

3 , 2  and 3  are denoted by ()Nf . N refers to the Gaussian distribution and 303 

n represents the number of regression parameters that are spatially coherent.  304 

2.4.2 Inference 305 

The uniform distribution is used as the prior distribution for hyper-parameters 306 

and spatially irrelevant parameters. Meanwhile, spatially relevant parameters are 307 

sampled from the Gaussian distributions. Because the prior distribution has no impact 308 
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on the final evaluation of different scenarios, the prior distributions are not presented 309 

in Eq.5. The likelihood functions defined in Eqs. 3 and 5 pose a computational 310 

challenge because their dimensionality grows (primarily related to the number of 311 

catchment-specific parameters) with the number of catchments considered. The 312 

unknown quantities, including model parameters ( 2 , 3 , and 4 ), regression 313 

parameters  ,   and  , and hyper-parameters 2 , 2 , 3  and 3  (if 314 

presents), are sampled and estimated simultaneously using the Shuffled Complex 315 

Evolution Metropolis (SCEM-UA) sampling method (Ajami et al., 2007; Vrugt et al., 316 

2003; Vrugt et al., 2009). The SCEM-UA sampling method is a widely used Markov 317 

Chain Monte Carlo algorithm for simulating the posterior probability distribution of 318 

parameters that are conditional on the current choice of parameters and data. When 319 

compared with traditional Metropolis-Hasting samplers, the SCEM-UA algorithm 320 

more efficiently reduces the number of model simulations needed to infer the 321 

posterior distribution of parameters, (Ajami et al., 2007; Duan et al., 2007; Liu et al., 322 

2014; Liu and Gupta, 2007; Vrugt et al., 2003). Convergence is assessed by evolving 323 

three parallel chains with 30000 random samples, the posterior distributions of 324 

parameters are evaluated by the Gelman-Rubin convergence value and are confirmed 325 

that the convergence value is smaller than the threshold 1.2 (Gelman et al., 2013).  326 

2.5 Model performance criteria 327 

Five criteria were used to assess the projection performance during the 328 

verification periods.  329 

(1) The first criterion was NSEsqrt, known as the arithmetic square root of 330 
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Nash-Sutcliffe Efficiency (Coron et al., 2012; Moriasi et al., 2007; Nash and Sutcliffe, 331 

1970). When compared with the classic NSE, NSEsqrt gives an intermediate, more 332 

balanced picture of the overall hydrograph fit because it can reduce the influence of 333 

high flow. It is expressed as: 334 

 

( ) ( )

( )

2

1

2

1

1

T

obs sim

t
sqrt T

obs obs

t

Q t Q t

NSE

Q t Q

=

=

 −
 

= −
 −
  




  (6) 335 

where ( )simQ t  and ( )obsQ t  represent the simulated and observed daily streamflow 336 

values for the tth day, respectively; obs
Q  is the mean of the observed daily streamflow 337 

for the calculation interval, and T refers to the length of the calculation period. 338 

(2) The second criterion is the BIAS, one of the most popular indexes to reflect 339 

the deviation degree between the modeled runoff and observations, also is a part of 340 

the objective function Eq.3.  341 

 

( ) ( )

( )

1

1

T

sim obs

t

T

obs

t

Q t Q t

BIAS

Q t

=

=

−  
=

  




  (7) 342 

(3) The third criterion is the Deviance information criterion (DIC), which was 343 

defined by Spiegelhalter et al. (2002). It is a widely used and popular measure 344 

designed for Bayesian model comparison and is a Bayesian alternative to the standard 345 

Akaike Information Criterion. The DIC value for a Bayesian scenario is obtained as: 346 

 ( )( )2log , 2Bayes DICDIC p q p = − +   (8) 347 

where DICp  is the effective number of parameters, defined as 348 

 ( )( ) ( )( )
1

1
=2 log , - log ,

S

S
s

BayesDIC

s

p p q p q   
=

 
 
 

   (9) 349 
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where p refers to probability, q represents the observations of streamflow and   350 

denotes the time series of model input, e.g., rainfall and potential evapotranspiration. 351 

Posterior mean ( )=Expect ,Bayes q    and s=1,…, S, means the sequence number of 352 

the simulated parameter set s  by the adopted SCEM-UA algorithm. According to 353 

Spiegelhalter et al. (2002), scenarios with smaller DIC would be preferred to 354 

scenarios with larger DIC. 355 

(4) The fourth and fifth criteria are the Mean annual maximum flow (MaxF, 356 

mm/d) and Mean annual minimum flow (MinF, mm/d), which are used to qualify the 357 

performance of the high flows and low flows. These criteria are self-explanatory and 358 

have been used in many studies to assess the magnitude of maximum and minimum 359 

levels of flows (Ekstrom et al., 2018). The scenarios with the least absolute variation 360 

between the modeled values and the observed values are recognized as the best 361 

scenarios. 362 

3. Study area and data 363 

To evaluate the model performance, we used daily precipitation (mm/day), 364 

potential evapotranspiration (mm/day), and streamflow (mm/day) time series records 365 

for three unregulated and unimpaired catchments in south-eastern Australia, taken 366 

from the national dataset of Australia (Zhang et al., 2013), covering 1976–2011. The 367 

streams were unregulated: they were not subject to dam or reservoir regulations, 368 

which can reduce the impact of human activity. The observed streamflow record 369 

contained at least 11835 daily observations (equivalent to record integrity of greater 370 

than 90%) for 1976–2011, with acceptable data quality. The first complete year of 371 
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data was used for model warm-up to reduce the impact of the initial soil moisture 372 

conditions during the calibration period.  373 

The attributes of the south-eastern Australian catchments are shown in Table 2 374 

and Figure 3. The IDs of these catchments are 225219 (Glencairn station on the 375 

Macalister River: mean annual rainfall, potential evapotranspiration, and runoff are 376 

1106 mm, 1184 mm, and 368 mm, respectively), 405219 (Dohertys station on the 377 

Goulburn River: mean annual rainfall, potential evapotranspiration, and runoff are 378 

1171 mm, 1196 mm, and 420 mm, respectively), and 405264 (D/S of Frenchman Ck 379 

Jun station on the Big River: mean annual rainfall, potential evapotranspiration, and 380 

runoff are 1408 mm, 1160 mm, and 465 mm, respectively). As shown in Figure 3, 381 

these catchments are adjacent to each other. All catchments experienced a severe 382 

multiyear drought around the end of the millennium. Saft et al. (2015) identified that 383 

the rainfall-runoff relationship in these catchments was altered during the long-term 384 

drought.  385 

4. Results and discussion 386 

Results from the DSST were used to assess the model projection performance for 387 

five scenarios under contrasting climatic conditions. First, a DSST was conducted in 388 

each catchment to divide original records into wet and dry years. Then, the projection 389 

performance for the five scenarios and associated parameter uncertainties were 390 

evaluated using the criteria described above.  391 
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4.1 Dry years identification 392 

As illustrated in Table 3 and Figure 4, the drought definition method identified 393 

that the three catchments had similar dry years characteristics, with the same drought 394 

start (1997) and end (2009) points. The length of dry years for the studied catchments 395 

is same, 13 years. The mean dry years' anomaly was more severe in the Macalister 396 

catchment (225219), with an 11.70% reduction in the mean dry years' anomaly while 397 

the other two catchments experienced reductions of 11.16% (405219) and 11.14% 398 

(405264).  399 

In terms of changes in rainfall, on average catchments had an 11% reduction 400 

from the wet years to the dry years (Table 3). Meanwhile, these catchments 401 

experienced a 26.3% decrease in runoff during the dry years, which is much more 402 

severe than the reduction in rainfall. The similar findings can be derived out from the 403 

comparison of runoff coefficients of different periods, that is, all catchments 404 

experienced a decrease in its runoff coefficients during the dry years. 405 

4.2 Model performance in five scenarios 406 

As shown in Figures 5(a), 6(a) and 7, the calibrated model parameters yielded 407 

good simulation performance over the calibrated periods for all criteria. For example, 408 

the mean NSEsqrt score during the calibration period across these catchments remained 409 

close to about 0.7 or slightly higher, regardless of which scenario was chosen. 410 

However, when the same parameter sets were verified by simulating streamflow over 411 

drier or wetter years, the model performance was degraded, including both the 412 

robustness and accuracy of projection performance. Furthermore, the magnitude of 413 
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performance loss increases along with the variation in rainfall between the calibration 414 

and verification periods.  415 

Figure 5 shows the NSEsqrt performance for calibration in wet years and 416 

verification in the dry years for each scenario in all catchments. All scenarios 417 

performed well in all catchments with the mean NSEsqrt reaching 0.81 during the wet 418 

calibration period, and then all scenarios experienced a slight decrease in performance 419 

(NSEsqrt = 0.75) during the dry verification period. Scenario 4 (time-varying 420 

parameters without spatial inputs) or scenario 5 (temporally stable parameters) 421 

generally performed better during the calibration period than the scenarios that 422 

considered different levels of spatial coherence for the regression parameters. During 423 

the verification period, the NSEsqrt rank order changed (Figure 5b). Scenario 4 had a 424 

higher median NSEsqrt performance than scenario 5 in catchments 225219 and 405264. 425 

Although the median estimate in scenario 4 was slightly inferior to the latter in 426 

catchment 405219, its distribution of the NSEsqrt performance was much more 427 

positively biased from the median estimates than scenario 5. Furthermore, the former 428 

reaches higher NSEsqrt performance than the latter when comparing the top NSEsqrt 429 

performance of these two scenarios. Thus, it indicates the validity of the time-varying 430 

scheme for improving model performance. However, the introduction of additional 431 

regression parameters ( ,  and    ) at the same time amplified the model projection 432 

uncertainty in two of three catchments (405219 and 405264) when comparing results 433 

from scenarios 4 and 5. Fortunately, the appropriate adoption of spatial coherence 434 

alleviates this problem. In the DSST scheme of calibrating in the wet years and 435 
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verifying in the dry years, scenario 2 exhibited the smallest fluctuation range of 436 

NSEsqrt estimate in catchments 405219 and 405264 and was the second-best scenario 437 

in catchment 225219. Conversely, scenario 3 exhibited the smallest fluctuation range 438 

of NSEsqrt estimate in catchment 225219, and was the second-best scenario in 439 

catchments 405219 and 405264. As for the median NSEsqrt estimate, scenario 2 is the 440 

best scenario (which showed the best performance in catchment 225219 and 405219, 441 

but it was the fourth in catchment 405264), followed by scenario 3 (which is the 442 

second-best scenario in catchments 405219 and 405264 and is the third in catchment 443 

225219). In addition, the highest median NSEsqrt performance in scenarios 4 and 5 444 

during the calibration period did not guarantee the same superior performance during 445 

the verification period. This illustrates the deficiency of time-varying and stationary 446 

schemes of model parameters when spatial inputs from adjacent catchments are not 447 

considered.  448 

Similarly, Figure 6 illustrates the NSEsqrt performance for each scenario in all 449 

catchments for calibration in the dry years and verification in the wet years. All 450 

scenarios performed well for all catchments with the mean NSEsqrt reaching 0.75 in 451 

the dry calibration period and 0.79 in the wet verification period. As shown in Figure 452 

6, models experienced a slight improvement in NSEsqrt performance when transferred 453 

from the dry years to the wet years. However, the projection performance calibrated 454 

using a contrasting climatic condition was inferior to the simulation performance that 455 

was directly calibrated from the climatic condition, compared with Figures 5(a) and 456 

6(b), or Figure 6(a) and 5(b). For example, the NSEsqrt performance in Figure 6(b) is 457 
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inferior to that in Figure 5(a). By comparing scenarios in the calibration period, it was 458 

found that scenarios 4 and 5 exhibited the highest performance in two of three 459 

catchments (405219 and 405264), followed successively by scenario 3, scenario 2, 460 

and scenario 1. During the verification period, the median NSEsqrt performance in 461 

scenario 4 was 0.80% higher than scenario 5, however, the variation range in scenario 462 

4 was 53% wider than the latter. These results demonstrate that the time-varying 463 

scheme (scenario 4) for model parameters improved the median NSEsqrt performance 464 

but also amplified the projection uncertainty compared with the results from the 465 

stationary scheme (scenario 5) for model parameters. In the DSST scheme of 466 

calibrating in the dry years and verifying in the wet years, scenario 3, which 467 

considered both spatial coherence of   and   between different catchments, 468 

exhibited the highest median NSEsqrt for all catchments, had the smallest fluctuation 469 

range in two catchments (225219 and 405264) and is the second smallest scenario in 470 

variation in catchment 40519 during the verification period. Conversely, scenario 2, 471 

the scenario with the best median estimate performance during the verification period 472 

in Figure 5, is just the fourth in all five scenarios in this DSST scheme. Compared 473 

with other model scenarios, the incorporation of spatial coherence of both regression 474 

parameters in scenario 3 reduced the projection uncertainty and improved the 475 

robustness of the model performance, with the smallest fluctuation ranges in most 476 

options under the contrasting climatic conditions. It indicates that the spatial setting of 477 

model parameters between different catchments provided a clear input for reducing 478 

the uncertainty of the model projection performance during the verification period. In 479 
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addition, it also should be noted that model parameters calibrated over dry years, 480 

contrastively, were not suitable for predicting runoff over wet years because of a 481 

larger degradation in projection performance than the scheme with the adverse 482 

calibration-verification direction.  483 

Comparing the DIC results for both DSST schemes in Table 4 and Table 5, the 484 

best DIC value is achieved by scenario 3, which incorporates the spatial coherence of 485 

both regression parameters and is the most complex scenario in the comparison. This 486 

finding is consistent with the results by the NSEsqrt criterion and showed the validity 487 

of the spatial coherence of both regression parameters in ensuring the robustness of 488 

the hydrological projection performance. In addition, when comparing DIC results of 489 

scenarios 4 and 5, the setting of time-varying functions improved the DIC 490 

performance in both DSST schemes. This finding also agreed with the results by the 491 

NSEsqrt criterion and indicated the positive implications of the time-varying model 492 

parameters on the projection performance.  493 

    Tables 6 and 7 illustrate the performance of high and low flows during the 494 

verification period in terms of MaxF and MinF estimates for the median projected 495 

streamflows in both DSST schemes. As shown in table 7, for the projection of high 496 

flow part, scenario 3 exhibits the best performance in all catchments among five 497 

scenarios under the scheme of calibrating in the dry years and verifying in the wet 498 

years. For the projection performance in the other DSST scheme (Table 6), scenario 3 499 

has the best projection performance in high flow part in catchment 225219 and is the 500 

second-best scenario in the other two catchments. It indicates that the incorporation of 501 
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spatial coherence of both amplitude   and frequency   successfully improves 502 

the projection performance in the high flow part. As for the projection of the low flow 503 

part, the discrepancy between the results of different scenarios and the observed low 504 

flows is not obvious (The absolute differences between the observed values and 505 

modeled values are very small). Furthermore, scenario 3 shows the best-projected 506 

performance in two catchments (405219 and 405264) in the scheme of calibrating in 507 

dry years and verifying in wet years, and is the best scenario in catchment 405264 in 508 

the scheme of calibrating in wet years and verifying in dry years. In addition, scenario 509 

3 is the second-best option in catchments 225219 and 405219 under the scheme of 510 

calibrating in wet years and verifying in dry years. Combined with the projection 511 

performance of both high and low flows, scenario 3 achieves its superior projection 512 

performance mainly by the improvement in the prediction of high flow parts.  513 

Figure 7 shows the BIAS estimates for the median of the posterior distribution of 514 

model parameters for all modeling scenarios across all catchments when 515 

transferability between the wet and dry years was examined. Although the BIAS was 516 

a component of the objective function (Eq. 3), the 10-year rolling average BIAS still 517 

deviated considerably from a value of 1 for all the scenarios in the two DSST schemes. 518 

The median estimates of the posterior distribution in both scenarios performed well in 519 

the NSEsqrt criterion for both periods. However, the median estimates did not ensure 520 

unbiased simulations over the modeling period; one scenario with a higher NSEsqrt 521 

criterion may have an altered BIAS during the modeling period. The BIAS results in 522 

catchments 225219 and 405219 showed some similarity: all scenarios tended to 523 
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underestimate streamflow along the time sequence in both DSST schemes. Conversely, 524 

all scenarios tended to overestimate the streamflow in catchment 405264 in both 525 

schemes. By comparing the BIAS performance for the five scenarios, it was observed 526 

that the spatial setting of modeling scenarios generally tended to enlarge the BIAS in 527 

all catchments, while the difference between scenarios 4 and 5 was very small.  528 

4.3 Parameter uncertainty analysis 529 

The uncertainty of the parameters was characterized by the posterior distribution 530 

of the regression parameters and was derived by the MCMC iteration. As mentioned 531 

in section 2.3.2, amplitude   and frequency   were assumed to have different 532 

levels of spatial coherence in each modeling scenario (Table 1); these scenarios in 533 

each DSST regime are compared in Figs. 8 and 9. It should be mentioned that there 534 

was no regression parameter in scenario 5. Solid lines in the violin plots represent the 535 

25th and 75th percentiles of the posterior distribution. The white dots in the violin plot 536 

denote the median estimate of the posterior distribution. In the upper plots in Figures 537 

8 and 9, it can be clearly seen that the first three scenarios had a much smaller 538 

variation interval than scenario 4 in terms of amplitude  , which denotes the 539 

amplitude of the sine function. The catchment averages of both schemes of the 540 

median estimates of   in the first three scenarios are 2.78, -4.91, and 9.26 541 

respectively, while that in the fourth scenario is much larger, reached at -39.20. 542 

Scenario 3, which considered both spatial coherence of amplitude   and frequency 543 

 , has the narrowest interval of   for all catchments, followed successively by 544 

scenario 1 (only considered the spatial coherence of the amplitude  ), scenario 2 545 
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(only frequency   was spatially coherent), and scenario 4 (no regression parameter 546 

was spatially coherent). With regards to the regression parameter  , which denotes 547 

the frequency of the sine function (in the lower figures of Figures 8 and 9), its median 548 

estimates in both four scenarios differ slightly. As shown in Figure 8, the catchment 549 

averages of frequency   for different scenarios are 0.24, 0.14, 0.15, and 0.18, while 550 

those in Figure 9 are 0.15, 0.26, 0.23, and 0.17 respectively. The period 𝑇 of the sine 551 

term could be derived based on the estimates of   by equation 𝑇 = 2𝜋/𝜔. Thus, 552 

the mean periods 𝑇 of model parameter 1  for different scenarios are 26.2, 46.3, 553 

41.9 and 35.2 in Figure 8, respectively. Similarly, the mean periods 𝑇 are 42.9, 24.1, 554 

27.4 and 38.0 in Figure 9, respectively. In addition, we used the Hilbert-Huang 555 

Transform method (Huang et al., 1998) to identify the potential periods of the series 556 

of several climate variables (including the daily rainfall, daily potential 557 

evapotranspiration, daily maximum temperature and daily minimum temperature in 558 

the studied catchments). It was found that these daily series have periods of 22.2~49.1 559 

days. Thus, we guess that the potential periods of these climate variables may be the 560 

possible reasons for the periods of time-varying parameters. It also should be 561 

mentioned that the adopted Hilbert spectrum method is one of the most popular 562 

methods for analyzing nonlinear and non-stationary data. Huang et al. (1999) 563 

indicated that this method is better than the Fourier transform method and Wavelet 564 

Transform method in processing nonlinear and non-stationary data.  565 

In summary, by combining the results of parameter uncertainty estimation and 566 

model projection performance evaluation, the incorporation of spatial coherence 567 
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successfully improved the robustness of the projection performance in both DSST 568 

schemes by controlling the estimation uncertainty of amplitude  .  569 

5. CONCLUSIONS 570 

In this study, a two-level HB framework was used to incorporate the spatial 571 

coherence of adjacent catchments to improve the hydrological projection performance 572 

of sensitive time-varying parameters for a lumped conceptual rainfall-runoff model 573 

(GR4J) under contrasting climatic conditions. Firstly, a temporal parameter transfer 574 

scheme was implemented, using a DSST procedure in which the available data were 575 

divided into wet and dry years. Then, the model was calibrated in the wet years and 576 

evaluated in the dry years, and vice versa. In the first level of the proposed HB 577 

framework, the most sensitive parameter in the GR4J model, i.e., the production 578 

storage capacity ( 1 ), was allowed to vary with time to account for the periodic 579 

variation that had significant impacts on the extensionality of the model. The periodic 580 

variation in catchment storage capacity was represented by a sine function for 1  
581 

(parameterized by amplitude and frequency). In the second level, four modeling 582 

scenarios with different spatial coherence schemes, and one scenario with a stationary 583 

scheme of catchment storage capacity, were used to evaluate the transferability of 584 

hydrological models under contrasting climatic conditions. Finally, the proposed 585 

method was applied to three spatially adjacent, unregulated, and unimpaired 586 

catchments in southeast Australia. The study concludes that: (1) the time-varying 587 

setting was valid in improving the model performance but also extended the 588 

projection uncertainty in contrast to the stationary setting; (2) the inclusion of spatial 589 
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coherence successfully reduced the projection uncertainty and improved the 590 

robustness of model performance; and (3) a large performance degradation has been 591 

found in the DSST scheme with its model parameters calibrated over dry years and 592 

verified in the wet years. This study improves our understanding of the spatial 593 

coherence of time-varying parameters, which will help improve the projection 594 

performance under differing climatic conditions. However, there are several unsolved 595 

problems that need to be addressed. First, the spatial setting of regression parameters 596 

may expand the BIAS between the simulation and streamflow observation with a 597 

single objective function; the potential physical mechanism behind this result should 598 

be explored further. Secondly, this study was confined to spatially coherent 599 

catchments that are similar in climatic and hydrogeological conditions; further 600 

research is needed to determine which factors have the most significant impacts on 601 

model projection performance when considering obvious inputs from other 602 

catchments.  603 
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TABLES 810 

Table 1. Different spatial coherence scenarios for amplitude β and frequency ω in the time-varying functional form of model parameter 811 

θ1. To explore the performance of spatial coherence within the time-varying function, different levels of spatial coherence for amplitude 812 

β and frequency ω were assumed for the first three scenarios; in contrast, no spatial coherence is assumed in scenario 4, and a 813 

temporally stable θ1 is assumed in scenario 5. 814 

Category Scenario β ω Constraints 

Time-varying 

Spatial  

coherence 

1 Parameter β is region-related 
Parameter ω is 

catchment-specific 

θ 1=α (c)+β (c)sin[ω (c)t], while 

β(c)=N(μ2, σ2
2) 

2 Parameter β is catchment-specific Parameter ω is region-related 
θ1=α(c)+β(c)sin[ω(c)t], while 

ω(c)=N(μ3, σ3
2) 

3 Parameter β is region-related Parameter ω is region-related 
θ1=α(c)+β(c)sin[ω(c)t], while 

β(c)=N(μ2, σ2
2) and ω(c)=N(μ3, σ3

2) 

No spatial 

coherence 

4 Parameter β is catchment-specific 
Parameter ω is 

catchment-specific 
θ1=α(c)+β(c)sin[ω(c)t] 

Time invariant 5 No parameters β or ω θ1 is stationary 

 815 

NB: θ1 represents the production storage capacity of the catchment; β is the slope describing long-term change during the modeling period, and ω is the amplitude of 816 

the sine function describing its seasonal variation during the modeling period; μ2, σ2, μ3, σ3 are hyper-parameters. 817 
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Table 2. Comparison of catchments attributes in terms of mean annual rainfall (mm), mean annual evaporation (mm), and mean annual 818 

runoff (mm) for 1976–2011.  819 

 820 

Catchments 

ID  

River 

Name 

Observations   

start 

Observations  

end 

Mean annual 

rainfall 

Mean annual potential 

evapotranspiration 

Mean annual 

runoff 

225219 Macalister 1/1/1976 30/12/2011 1106 1184 368 

405219 Goulburn 1/1/1976 30/12/2011 1171 1196 420 

405264 Big 1/1/1976 30/12/2011 1408 1160 465 

Table 3. Drought identification results for the catchments. 821 

 822 

Catchments 

ID 

Drought 

start 

Drought 

end 
Length 

Mean dry years 

anomaly 

% 

Complete 
R1 R2 

Change in 

runoff (%) 

Change in 

rainfall (%) 

225219 1997 2009 13 -11.70% 91.5% 0.34 0.28 -27.21 -11.27 

405219 1997 2009 13 -11.16% 99.9% 0.38 0.31 -26.04 -10.97 

405264 1997 2009 13 -11.14% 98.5% 0.35 0.29 -25.63 -10.51 

NB: R1 and R2 refer to the runoff coefficient during the wet and dry years, respectively. 823 

 824 
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Table 4. Comparison of five scenarios in terms of the deviance information 825 

criterion (DIC) when model parameters were calibrated in the wet years and 826 

verified in the dry years.  827 

 828 

Category Scenario DIC 

Time-varying 
Spatial coherence 

1 4961.7  

2 1202.3  

3 -1254.4  

No spatial coherence 
4 5052.8  

Time-invariant 5 5827.3  

 829 

Table 5. Comparison of five scenarios in terms of the deviance information 830 

criterion (DIC) when model parameters were calibrated in the dry years and 831 

verified in the wet years. 832 

 833 

Category Scenario DIC 

Time-varying 
Spatial coherence 

1 -6167.0  

2 -5743.6  

3 -10574.0  

No spatial coherence 
4 -8710.0  

Time-invariant 5 -7460.8  

 834 

Table 6. Comparison of the projection performance of median flows during the 835 

verification period associated with the Mean annual maximum flow (MaxF, 836 

mm/d) and Mean annual minimum flow (MinF, mm/d) when model parameters 837 

were calibrated in the wet years and verified in the dry years. The percentage 838 

represents the % variation between the modeled value and the observed value.  839 

 840 

 Mean annual maximum flow  Mean annual minimum flow 

225219 405219 405264  225219 405219 405264 

Observed 10.58 11.98 9.23  0.050 0.093 0.17 

Scenario 1 +25.7% -52.9% -27.7%  +0.6% -51.3% -25.6% 

Scenario 2 -14.6% -14.6% -20.9%  +7.1% -35.0% -18.3% 

Scenario 3 +3.1% -36.1% +5.6%  -17.9% -1.1% -6.4% 

Scenario 4 -44.2% -54.7% +3.3%  +76.6% -4.4% -14.4% 

Scenario 5 -52.1% -49.7% -13.6%  +72.0% -6.9% -29.1% 

Note:  841 

1. The data in 1976 has been used for model warm-up to reduce the impact of the initial soil 842 

moisture conditions during the calibration period, and is not counted in the table;  843 

2. The scenarios with bold values are labeled as the best scenario for projecting the streamflow 844 

during the verification periods, and the values from these scenarios have the least absolute 845 

percentage difference with the observed values. 846 
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 847 

Table 7. Comparison of the projection performance of median flows during the 848 

verification period associated with the Mean annual maximum flow (MaxF, 849 

mm/d) and Mean annual maximum flow (MinF, mm/d) when model parameters 850 

were calibrated in the dry years and verified in the wet years. The percentage 851 

represents the % variation between the modeled value and the observed value.  852 

 853 

 

Mean annual maximum flow   Mean annual minimum flow 

225219 405219 405264   225219 405219 405264 

Observed 10.73  12.06  8.94    0.03  0.09  0.19  

Scenario 1 +15.5% -43.1% +44.3%  -26.5% -51.1% -52.4% 

Scenario 2 +15.7% -54.2% +15.3%  -35.7% -29.8% -55.0% 

Scenario 3 +2.0% -11.5% -6.4%  -20.7% -41.4% -50.0% 

Scenario 4 +11.7% -18.3% +38.1%  -26.3% -43.7% -49.5% 

Scenario 5 +32.2% -21.6% +34.0%   -42.8% -45.1% -50.0% 

Note:  854 

1. The data in 1997 has been used for model warm-up to reduce the impact of the initial soil 855 

moisture conditions during the calibration period, and is not counted in the table;  856 

2. The scenarios with bold values are labeled as the best scenario for projecting the streamflow 857 

during the verification periods, and the values from these scenarios have the least absolute 858 

percentage difference with the observed values.  859 

 860 
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FIGURES 861 
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 862 

Figure 1. Flow chart of the methodology for integrating inputs from spatially 863 

coherent catchments and temporal variation of model parameters into a 864 

hydrological model under contrasting climatic conditions (wet and dry years). 865 
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 867 

Figure 2. Schematic diagram of the GR4J rainfall-runoff model adopted by 868 

Perrin et al. (2003). In the figure, P and E refer to precipitation and 869 

evapotranspiration, respectively; En and Pn denote net precipitation and net 870 

evapotranspiration, respectively; Ps refers to the part of precipitation that fills 871 

the production store (i.e. S). The production store is determined as a function of 872 

the water level S in the production store. The θ1,θ2,θ3, and θ4 denote model 873 

parameters. The Perc refers to the percolation leakage that is a function of 874 

production store S and parameter θ1. The Pr refers to the total quantity of water 875 

that reaches the routing functions. The UH1 and UH2 denote two-unit 876 

hydrographs. The Q1 and Q9 refer the corresponding output of the unit 877 

hydrographs, respectively; F indicates the groundwater exchange term; R is the 878 

level in the routing store. The Qr refers to the outflow of the routing store, Qd is a 879 

function of water exchange, and Q refers to the total streamflow. 880 

  881 
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883 
 884 

Figure 3. Locations of study catchments in Victoria, Australia. The catchment 885 

IDs are 225219 (Macalister River catchment), 405219 (Goulburn River 886 

catchment), and 405264 (Big River catchment). 887 

 888 
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 891 

 892 

 893 

Figure 4. The identified dry years in all catchments. The annual anomaly is 894 

defined as a percentage of the mean annual rainfall895 
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Figure 5. NSEsqrt for each of the five scenarios for each catchment during (a) the calibration period (wet years) and (b) the verification 896 

period (dry years). The white dots represent the median estimates of the results. 897 

  898 
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Figure 6. NSEsqrt for each of the five scenarios for each catchment during (a) the calibration period (dry years) and (b) the verification 899 

period (wet years). The white dots represent the median estimates of the results. 900 
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 901 

Figure 7. Long-term simulation BIAS of Qmedian for five scenarios in all 902 

catchments. Simulation BIAS is plotted as a 10-year moving average, and 903 

10-year moving average streamflows are plotted for reference. The left-hand 904 

three graphs are calibrated in the wet years and then verified in the dry years, 905 

while the opposite sequence applies to the right-hand graphs. 906 

 907 

 908 
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 909 

Figure 8. Posterior distributions of the regression parameters (β and ω) for the 910 

production storage capacity (θ1) for the four model scenarios in each catchment 911 

when calibrated in the wet years and verified in the dry years. The solid 912 

horizontal lines within the violin plots denote the 25th and 75th percentiles of the 913 

posterior distribution, while the white dots denote median estimates.  914 

 915 

 916 
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 917 

Figure 9. Posterior distributions of the regression parameters (β and ω) for the 918 

production storage capacity (θ1) for the four model scenarios in each catchment 919 

when calibrated in the dry years and verified in the wet years. The solid 920 

horizontal lines within the violin plots denote the 25th and 75th percentiles of the 921 

posterior distribution, while the white dots denote median estimates. 922 


