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Reviewer 1

1) The results indicate that there is a clear difference in SNOWDAS
agreement (against in situ SWE) in the period 2011-2013 and 2014-
onwards. It will be interesting to see/understand why? Is it the
change in assimilation frequency, sources used in as similation, their
accuracy? I think such understanding can then support the selection
of approach used for bias correction. It has some implications also
for the design of this study. If there is a step change in SNOWDAS,
then it is not surprising that simple mean subtraction method is not
working well for the entire period. It will be interesting to see why
does the random forest outperform the other methods in such case
and what factors are controlling its efficiency? (Is it because using
year of observation?) Will it be not more fair in this case to compare
the methods in two separate periods?

We agree with the reviewer that the change in bias post-2014 is of interest,
and we mention on lines 27-30 of section 4.2 that newly assimilated datasets
are likely the dominant contributing factors to the reduction in the intensity of
the SNODAS bias during this period. We argue that while the bias is reduced
post-2014, it is still non-zero and the approaches explored in our work continue
to provide improvements to SNODAS estimates during this time. The decision
tree and random forest approaches outperform traditional methods like SLR and
mean bias subtraction due to this nonlinearity in the bias and the ability for the
machine learning techniques to recognize these patterns and better correct for
them. As shown in the predictor importance scores of table 2, year does play a
somewhat important factor along with other climatic variables like temperature
and total precipitation.

We agree with the reviewer that further descriptions of bias correction model
performance (with respect to bias and RMSE) when trained/tested over these



two separate periods (before and after 2014) would be beneficial, and therefore
additional text describing the results of these comparisons has been added to
the manuscript in section 3.3 (pages 9-10).

2) I think that the referencing (used in the Introduction and Discus-
sion) can be improved. There are some relevant papers which are
not addressed: e.g. Zahmatkesh et al. (2019) evaluating bias correc-
tion of SNODAS in Canadian basins or some studies cited in Lv et
al. (2019) focusing on the accuracy assessment of SNODAS. Please
consider to formulate how does this study compare to these studies
(in Intro and Discussion sections).

We thank the reviewer for recommending these relevant papers from Zah-
matkesh et al. (2019) and Lv et al. (2019). These references have been added
in the manuscript as additional motivation to our work in section 1 (page 2).

3) I have to say that the part related to evaluation of the impacts of
different bias corrected SWE estimates on snowmelt is not clear to
me. Using monthly estimates without accounting for evapotranspi-
ration and other processes is somewhat less robust. Comparison of
observed daily discharge with daily simulations driven by a hydrologic
model will be more representative example.

We thank the reviewer for this comment, as this point may not be immedi-
ately obvious: a direct comparison between SWE estimates and streamflow is
not straight forward and presents a major methodological challenge, as outlined
below. The primary purpose of this section (and Figure 7) is to demonstrate that
SNODAS SWE values are clearly too high and unphysical, especially during the
time period before 2015, where estimated snowmelt exceeds total spring runoff
in several cases. After bias-correction this is not the case anymore, suggesting
that the bias-corrected values are at least plausible.

The methodological challenge preventing direct validation of SWE estimates
against streamflow gauges is the fact that runoff is generated by snowmelt and
snowmelt has to be estimated from SWE changes. However, SWE also changes
due to snow fall (and sublimation); snow fall, sublimation and melt occurring
during the same time period cannot be separated easily (and can cancel each
other). A better estimate of melt and runoff therefore would require additional
data on precipitation, precipitation phase and/or temperature at high temporal
frequency and a series of non-obvious judgements (such as estimating sublima-
tion) would be required. This could be a topic of a potential follow-up study,
but is beyond the scope of this manuscript.

A hydrologic or land surface model, which would be necessary to properly
account for sublimation and evapotranspiration, would not be helpful for this
purpose, as these models compute snowpack internally and one would be left
with a comparison against modeled snowpack (SWE). Furthermore, if SWE val-
ues from SNODAS were to be assimilated into the model, melt and runoff values
would potentially be worse, since data assimilation violates mass conservation.



As a case in point, we note that SNODAS also computes snowmelt internally,
however, these values suffer from biases even larger than the biases in SWE. The
reason for this is likely that snowmelt is not assimilated and at the same time
artifacts are introduced by the assimilation of other variables (mass conserva-
tion is violated). Unfortunately, direct observation of snowmelt is not possible.

4) How to account for scale gap between SNODAS and in situ obser-
vations?

In our analysis, we compare gridded estimates of SWE from SNODAS (1 km
resolution) to snow survey estimates (which is essentially point data taken over
10 m). Due to the relatively high spatial resolution of SNODAS, along with
the fact that the in situ measurement sites are taken at distances > 1 km from
each other, we do not compare multiple in situ points to a single grid cell. This
allows us to complete a simple point to grid cell comparison where we assume
the snow survey SWE estimate is representative of the wider, containing grid
cell.

This assumption of representativeness across the grid cell introduces addi-
tional uncertainty, as SWE is highly variable at even small spatial scales, and
we have therefore included additional details in the paper to make these uncer-
tainties clearer to the reader in section 4.2 (page 12).

5) Fig.1b. What do the lines represent? Mean over 383 stations?
The reviewer is correct, the lines in Figure 1.b represent the daily mean SWE

on ground for all survey locations (383 sites) across the full study period.

6) Fig.2,3,4,5. Please explain the meaning of abbreviations MBS,

SLR, etc. in figure caption.

We thank the reviewer for this comment, and we have included an additional
description of the abbreviations for MBS, SLR, DT and RF in the caption of
Figure 2.



Reviewer 2

1) First of all and most important the applied machine learning meth-
ods are not described at all and references are missing. I don’t think
that all readers of this journal are familiar with Decision Trees (DT)
and Random Forest (RF) methods. Therefore a short description
should be included, especially explaining the RF model in more de-
tail, which shows the best results, and what’s the difference to the DT
models. Related to that comment, it doesn’t make too much sense
to mention on page 5 (line 30) that you run the model with a forest
size of 100 trees and tree depth of 15, when you don’t explain what
that parameter mean.

We thank the reviewer for this comment, and agree that additional details
should be included in the text which further describe the methodology behind
the decision tree (DT) and random forest (RF) techniques we employ in this
work.

We have updated the document to include further references/details regard-
ing what these techniques are and how they operate, along with further descrip-
tions of what parameters like forest size and tree depth mean with respect to
the RF model in section 2.3 of the manuscript (page 6).

2) Additionally, there are some points which are not clear to me and
which should be comment clarified before publishing the paper: You
didn’t explain how you handled the scaling issue when you compare
point data and gridded data (up- or downscaling?). Since you could
identify a change in the bias between the first and the second half of
the period, it would be reasonable to split the analysis into these two
periods and fit different models and take 2 different means separately
for each period.

In our analysis, we compare gridded estimates of SWE from SNODAS (1
km resolution) to snow survey estimates (which is essentially point data taken
over 10 m). Due to the relatively high spatial resolution of SNODAS, along
with the fact that the in situ measurement sites are taken at distances > 1
km from each other, we do not compare multiple in situ points to a single grid
cell. This allows us to complete a simple point to grid cell comparison where we
assume the snow survey SWE estimate is representative of the wider, containing
grid cell. The snow survey sites are selected to generally be representative of
the area around it and are not just random point measurements which would
contain higher variability in their estimates.

However, this assumption of representativeness across the grid cell introduces
additional uncertainty, as SWE is highly variable at even small spatial scales,
and we have therefore included additional details in the paper (section 4.2, page
12) to make these uncertainties clearer to the reader. Furthermore, we agree
with the reviewer that due to the change in the intensity of the bias post-2014,
a description of how the bias correction models perform over these separate two



periods would be interesting and complimentary to our analysis. Therefore, we
have also updated the results section 3.3 (pages 9-10) of the paper with the
results of this test.

3) On page 3 you specify the 383 locations with in situ measurements.
In line 14-15 you write that an average SWE is estimated taken from
10 fixed sampling stations. What does this mean? Is this the average
SWE for Ontario estimated from 10 stations, or is this the average
for each of the 383 stations taken from the 10 surrounding stations??

What we are referring to on page 3 is the method by which in situ measure-
ments are retrieved (snow survey), where a sampling location is selected and
then 10 point measurements are taken using a snow coring device over approx-
imately 10 meters at that location. These 10 SWE measurements along the
snow survey are then averaged together to provide a single SWE estimate for
that location. This is the technique used at all 383 in situ measurement sites.

We now include additional details on how these measurements are retrieved
to add further clarity to the reader in section 2.1 (page 3) of the manuscript.

4) Page 5: You should mention that the period of 1981-2010 is used
for calculating the climatology, which is not clear.

We thank the reviewer for noticing this detail, and we now make the temporal
period used for the calculation clear in the paper on page 5 (section 2.2.2).

5) Also, you should explain why you have used the difference be-
tween the precipitation estimates from NRCAN and the SNODAS!
It would be interesting to see the results if you would include actual
meteorological observations as predictors (for example available at:
https://data.noaa.gov/dataset /dataset /globalsurface-summary-of-the-
day-gsod, provided by the National Centers for Environment Infor-
mation). I could imagine that in that case the importance of these
variables would not be neglectable and could further improve the bias
correction.

We thank the reviewer for the comment; we have also considered this op-
tion; however, we have chosen to limit meteorological data to basic monthly
climate normals. Analogous to the choice of model complexity, there is always
a trade-off between accuracy, complexity and the risk of over-fitting. Using a
large set of predictors requires a more complex model, which increases the risk of
over-fitting. Therefore we have chosen to only include monthly normal surface
temperature and precipitation, as these two variables are usually readily avail-
able and characterize the type of climate reasonably well. The rational behind
including climate variables was that, on average, snow characteristics (like den-
sity, albedo, ice content) vary between different climates. It is true that these
characteristics would be predictable (to some extend) from the actual evolution
of these meteorological forcings; however, the processes that govern such char-
acteristics are very complex and involve long-term memory effects, which would



require a much more complex model (like an LSTM), which would approach
the complexity of physical snow models. Considering the data requirements
and complexity of this approach, we believe that the use of monthly normals
represents the best compromise.

As for the reason, the difference between SNODAS average precipitation
and NRCan normals was used, rather than total precipitation from NRCan (or
SNODAS): this choice was made because notable biases in the precipitation
fields used by SNODAS over Canada were found early on in the analysis, and
it appears obvious that the size of these biases would have a first-order effect
on the resulting SWE bias in SNODAS. At the same time, in order to reduce
the number of input variables, we did not want to include multiple, possibly
redundant, precipitation variables.

6) Page 7: When you write in 3.2.1 about mean bias, I suppose that
this mean bias is calculated as the average of the mean bias of all
stations? Similar to that I’'m a bit confused about what you write
on page 8 regarding SLR. I was assuming that you fit a regression
model for each station individually. But that seems to be not the
case, otherwise I could not understand why there should be a bias
overcorrection. It would be nice if you could clarify this, whether you
fitted separate models for each station or not.

The reviewer is correct in that the mean bias is calculated as the difference
between the average SWE across the full temporal period for SNODAS minus
the average SWE for all 383 survey sites (ie. the two dashed lines in the time-
series Figure 1.b). The reviewer is also correct in that we did not fit a SLR
model to each station, but instead trained a single model across all survey sites
for our full temporal period (as well as the partitioned upper and lower regions
in Figure 2 to see if multiple models showed improvement; and we found they
did not). The bias overcorrection in the linear techniques like SLR stems from
the fact that the SLR is attempting to model a linear relationship across all
years which is problematic due to the nonlinearity in the bias introduced post-
2014. This results in an overcorrection in some periods and an undercorrection
in others.

7) Although you wrote in the beginning that you took 75% for train-
ing, you didn’t mention if all the calculated verification measures refer
to the remaining 25% testing period.

The reviewer is correct that the calculated verification measurements on
model performance when performing validation testing refer to the remaining
25% of the dataset, we now make this clearer in the text in section 3.3 (page
10).

8) In the legend of Figure 2 you write Lower and Upper. Shouldn’t
it be southern and northern?



We thank the reviewer for noticing this naming discrepancy and we have
updated the Figure 2 legend to show Southern and Northern instead of Lower
and Upper.



Reviewer 3

1) The potential strengths of machine learning are highlighted but a
justification for the selection of random forests (RF) is not particu-
larly apparent. The authors mention applications of support vector
machines and neural networks in geosciences detailed in Lary et al.,
2009, a study of aerosol optical depth, but neglect to review specific
literature around machine learning applications in SWE estimation
(e.g. Wrzesien et al., 2017, Snauffer et al., 2018, Xue et al., 2018). A
review of such advances is warranted.

We thank the reviewer for their suggestion to include additional motiva-
tion behind our selection of the random forest technique for bias correction.
As mentioned by the reviewer, this choice primarily stems from the strengths
this technique has shown in previous literature for bias correcting data in the
geosciences (Reichstein et al., 2019; Shen, 2018; Lary et al., 2009).

However, we agree that additional motivation with respect to bias correcting
SWE would be beneficial, and we have now included additional literature focus-
ing on the application of random forest bias correction towards SWE datasets
from Wrzesien et al. (2017), Snauffer et al. (2018), Xue et al. (2018), Zahmatkesh
et al. (2019) and Lv et al. (2019) in section 1 (page 2) and section 4.2 (page 12)
of the manuscript.

2) RF model structure and hyperparameter descriptions should be
moved to the methods section. The authors mention RF is run with
a forest size of 100 and maximum tree depth of 15, but it is unclear
how these hyperparameters were selected beyond a mention of ”sen-
sitivity tuning experiments”. Generally hyperparameters should be
tuned using a standard method (e.g. grid search, particle swarm opti-
mization, evolutionary strategy, etc.) on each test split and reported
accordingly. Is the maximum number of terminal nodes for a given
tree specified or are the trees allowed to grow to full extent?

We thank the reviewer for this comment and question. During the model
training phase of our analysis, we experimented with a variety of values for
forest size and maximum tree depth to find a balance between model accuracy
and run time efficiency. This sensitivity experiment was performed through a
brute-force grid search approach of nudging each parameter value to find a set of
parameters which exhibit both high general performance (low RMSE and bias),
and an efficient RF model run time. This resulted in the selection of a forest
size of 100, along with a max tree depth of 15. As per the maximum number
of leaf nodes for each tree, this was left to allow each tree to grow to its full
extent. We have now included further details on how hyperparamaterization
was performed in the same section (2.3) on page 6 to add further clarity to the
reader.

3) RF and DT are stated to be trained on 75% of the data and
evaluated on the remaining 25% test set, but are also evaluated using



a 10-fold cross-validation, resulting in an average RMSE reduction of
4.7 mm. The change to bias is unclear, as is the motivation for using
both a 75-25 and 10-fold split structure. Since you’ve appropriately
gone to the effort to run a full 10-fold cross-validation, why aren’t
you just using these results?

When training and running our RF model, we used a 75/25 split (75% train-
ing and 25% testing) of our dataset to help mitigate against potential model
overfitting while maintaining good model performance (low bias and RMSE).
We experimented with a variety of values for the training and testing set and
found the 75/25 ratio provided a balance between strong model performance,
and a large test set of data to compare against. This train/test ratio also aligns
with standard RF test sizes as mentioned in the Scikit-learn documentation (Pe-
dregosa et al., 2011). After calculating our results, in order to further mitigate
against potential model overfitting and to evaluate model performance on unseen
data, we then went ahead and employed an additional 10-fold cross validation
which resulted in an average RMSE reduction which was complimentary to our
75/25 structured model. Our 75/25 model was therefore used as the primary
structure for our results since it was the original model developed, reported sim-
ilar results (< 1.5 mm SWE difference) to our followup CV experiments, and
was overall much more efficient to run.

4) The manuscript would be strengthened with a description of the ef-
forts you’ve undertaken to mitigate temporal and spatial auto-correlation
in your training and test sets. The manuscript would be strengthened
with further descriptions of the efforts you’ve undertaken to mitigate
overfitting. A comparison of training and validation errors would be
an appropriate way to do this.

We thank the reviewer for this comment. In order to mitigate against spatial
auto-correlation, we broke the training and testing datasets spatially as seen in
Fig. 2 of the manuscript into northern and southern regions, to evaluate model
performance in areas with differing magnitudes of bias and station densities.
With respect to mitigating against temporal autocorrelation, we use monthly
averaging of the biweekly station data which does help to some extent, however
in order to fully avoid issues with auto-correlation, we would need to employ
a strategy of removing stations/periods which are consistently correlated, and
this would introduce new biases in the training dataset for our model. Overall,
stations are usually selected in a representative manner by the Conservation
Authorities throughout the region and we trust in the integrity of the station
network to help mitigate this issue.

5) In Table 2, what are Year Id and Month Id? Are you using
straight numerical values, cyclical temporal sin-cos pairs, 1-of-c in-
dicators (Bishop, 1995)?

The Year Id and Month Id predictors are 1-of-¢ indicators (numerical val-
ues of 0 or 1) with O representing the absence of either a month/year and 1



representing the presence of a month/year.

6) The water balance analysis averages melt over a watershed associ-
ated with a given stream gauge, asserting the stream gauge provides
a reasonable estimate of snowmelt while at the same time neglecting
evapotransportation and rainfall (actually any precipitation). Such
an assertion requires that evapotransportation and subsequent pre-
cipitation are not as significant a signal as snowmelt to runoff. This
may be true, but it should be backed up by analysis and references,
or minimally one of these. Baseflow should also be at a minimum
mentioned.

These are fair comments and we agree that the argument can be strength-
ened by quantitative data. We have conducted an analysis of the dominant
hydrological components across all three catchment areas, based on climate
normals obtained from NRCan/CFS for the period of 1980-2010. The figure
is included in this response and could be included in supplementary material.
It shows that in all cases average liquid precipitation (rain) during the spring
freshet season exceeds potential evapotranspiration, so that it can be argued
that snowmelt places a lower bound on the spring freshet volume. A nuance
here is that the snowmelt peak estimated following the method of Erler et al.
(2019) can (and does) exceed the streamflow peak due to routing delay within
the catchment area. The peak of negative SWE differences (which is shown in
Fig. 7 of the manuscript) is shown in the Figure for comparison: it is evident
that the value is significantly lower than the former snowmelt estimate and does
not exceed the streamflow peak. The reason is that negative SWE differences do
not include water from additional snowfall during the melt period. Comparing
SNODAS SWE differences with those estimated from NRCan climate normals
and streamflow, it is clear that the uncorrected SNODAS values are unphysical,
while the bias-corrected values appear reasonable. For a detailed discussion of
the variables shown in the Figure and how they were processed, see section 3.2
and S2 of Erler et al. (2019)); the Figure is analogous to their Fig. 2 and the
datasets and methods employed are the same. The reason that this figure was
not included initially is that it is based on climate normals for a period before
our analysis period. Unfortunately the PET and snow depth data used in the
figure are not available past 2010, so that it was not possible to update the
figure. Curation of a new PET dataset (for just this figure) would be beyond
the scope of this study.

7) You conclude that MBS and SLR exhibit an inability to capture
year-to-year variability present in the bias, but interannual correla-
tions are not present in the analysis. The ability of bias-correction
methods particularly of the non-linear flavor to capture changes over
time is arguably one of their greatest strengths, as simple offsets are
more easily calculated, as you have done. A simple correlation cal-
culation may serve as further evidence of the utility of the nonlinear
method.

10



We thank the reviewer for this comment and agree that the inclusion of
interannual correlations between in situ the bias corrected SWE datasets would
further highlight the utility of nonlinear techniques. These results have been
included in section 3.3 of the manuscript (page 10).

8) Fig 5 is hard to read with the scales and lines used, especially the in
situ values, which are key to the plot. No description of shading used
is given in the figure caption. Suggest changing line thicknesses/colors
and/or adjusting scales, orientation, or paneling to make better use
of available space.

The Fig. 5 caption has been updated to include a description of the shaded
regions (95% sampling confidence intervals). We have also updated line thick-
ness for the in situ data to improve visibility for the reader.

11



Climatology over Catchments (NRCan & WSC, 1981-2010)
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Figure 1: Catchment water flux climatology (1981-2010) for NRCan data and
stream gauge data from the Water Survey of Canada.
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Abstract. Snow is a critical contributor to Ontario’s water-energy budget with impacts on water resource management and flood
forecasting. Snow water equivalent (SWE) describes the amount of water stored in a snowpack and is important in deriving
estimates of snowmelt. However, only a limited number of sparsely distributed snow survey sites (n=383) exist throughout
Ontario. The SNOw Data Assimilation System (SNODAS) is a daily, 1 km gridded SWE product that provides uniform
spatial coverage across this region; however, we show here that SWE estimates from SNODAS display a strong positive mean
bias of 50% (16 mm SWE) when compared to in situ observations from 2011 to 2018. This study evaluates multiple statistical
techniques of varying complexity, including simple subtraction, linear regression and machine learning methods to bias-correct
SNODAS SWE estimates using absolute mean bias and RMSE as evaluation criteria. Results show that the random forest (RF)
algorithm is most effective at reducing bias in SNODAS SWE, with an absolute mean bias of 0.2 mm and RMSE of 3.64 mm
when compared with in situ observations. Other methods, such as mean bias subtraction and linear regression, are somewhat
effective at bias reduction however, only the RF method captures the nonlinearity in the bias, and its interannual variability.
Applying the RF model to the full spatio-temporal domain shows that the SWE bias is largest before 2015, during the spring
melt period, north of 44.5° N and East (downwind) of the Great Lakes. As an independent validation, we also compare
estimated snowmelt volumes with observed hydrographs, and demonstrate that uncorrected SNODAS SWE is associated with
unrealistically large volumes at the time of the spring freshet, while bias-corrected SWE values are highly consistent with

observed discharge volumes.

1 Introduction

Snow melt is an important factor for determining flood risk in many regions within both Northern latitudes and higher elevation
across Europe and North America (Berghuijs et al., 2019, 2016; Buttle et al., 2016). Accordingly, predicting the impact of
snowmelt on flooding is contingent on having reasonable spatially distributed estimates of the snowpack snow water equivalent
(SWE). SWE is the amount of liquid water that is produced from completely and instantly melting a snowpack and is defined
in terms of snowpack depth and bulk density (or, equivalently, mass per unit area). Traditionally, ground-based observations

have been used to assess and quantify SWE; however, such an approach does not always capture the full spatial variability.



In Canada, large scale snowmelt is often a key driver of flooding across much of the southern, and more populated, parts of
the country (Buttle et al., 2016), and one can posit that an improved ability to characterize snowpack SWE would allow better
characterization of flood risk, propagation, and duration. Particularly, within the Canadian provinces of Ontario and Quebec,
snowmelt and rain-on-snow events are the most frequent initiators of flooding (Buttle et al., 2016; Irvine and Drake, 1987).
Regional flood danger was realized in a 2017 flood across Southern Quebec which damaged over four thousand homes and
lead to approximately 200 million dollars worth of insured damages (Davies, 2017). Additional serious snowmelt and rain-on-
snow induced flooding has occurred in Southern Quebec and Ontario as recently as spring 2019 (Floodlist, 2019). These recent
events indicate that even though future SWE is projected to decline in south-central Canada on account of warmer winters,
snowmelt will be a major flood factor in this region for the foreseeable future, with a strong likelihood of an increase in the
frequency of rain-on-snow events (Byun et al., 2019).

Simulation and operational forecasting of flood risk necessitates insight on the contribution of snowmelt to the active com-
ponent of the terrestrial hydrologic cycle. This is particularly important if snowmelt is anticipated to influence flood behavior
(Li and Simonovic, 2002; Bokhorst et al., 2016), and the modelling tools employed for such applications include the capability
to simulate snowpack dynamics (Anderson, 1976; Jordan, 1991). However, due to the high spatial and temporal variability of
the snowpack, combined with the sparse distribution of in situ observations, it is difficult to properly initialize and validate fore-
cast models. For this reason, data assimilation products such as SNODAS, which operates at 1 km spatial resolution (Carroll
et al., 2001) with a daily update cycle, offer an attractive option for characterizing SWE. For example, Shen and Anagnostou
(2017) employed SNODAS data aggregated to 8 km x 8 km grid cells as a validation dataset for their hydrologic model of the
20,000 km? Connecticut River Basin, wherein SWE was simulated using an energy balance approach. In CONUS scale work,
Vuyovich et al. (2014) utilized SNODAS SWE as a comparative benchmark in their evaluation of SWE derived from passive
microwave satellite sensors, wherein the data were aggregated at the scale of watersheds with an average size of 3,700 km?.

An inherent challenge with using SNODAS as either a validation target or as direct forcing data for hydrologic modelling
is that SNODAS itself may contain biases or errors that will in turn propagate through to the model outputs. In this con-
text, the motivation for this work derives from an initial comparison between SNODAS and an independent set of in situ
SWE surveys throughout Ontario (section 3.1), which suggested a positive bias of approximately 50% in the SNODAS

estimates. H—a-hydrologie-modelis—being—used-to—simulateflooding,—deviation—between—actual-and-—simulated-SWE-may

of-the-medel/forecast—YetWrzesien et al. (2017) performed a comparison between SNODAS and in situ SWE over alpine
regions in North America and found SNODAS performed best in areas with a high density of in situ measurements, however
SNODAS still exhibited a general overestimation of SWE. Additional recent studies by Leach et al. (2018), Lv et al. (2019) and

Zahmatkesh et al. (2019) also suggest similar positive biases in SNODAS SWE estimates throughout other North American

regions. This work builds on the comparison methods outlined in previous bias correction studies by Li et al. (2010), Themefl et al. (2011

Teutschbein and Seibert (2012), to examine an ensemble of bias correction techniques, quantify the skill of each model, and

apply the model over a larger spatio-temporal domain to produce a gridded bias corrected SWE product. Biases in initial SWE
estimates constitute a major source of uncertainty in hydrologic modelling (Islam and Déry, 2017); yet, at present this impor-
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tant influence of SNODAS biases on simulated hydrologic behavior and flood magnitude is not well understood. Accordingly,

the primary objectives of this work are to evaluate:
1. Biases in SNODAS across flood prone regions of Ontario, Canada.

2. The effectiveness of SNODAS bias correction from simple subtraction methods to more sophisticated machine learning

techniques.

3. The relationship between the regional water balance and snowmelt estimates from SNODAS SWE and bias-corrected
SWE.

Section 3.1 quantifies current biases between SNODAS and in situ SWE estimates throughout Ontario. Sections 3.2 and 3.3
present evaluations of several statistical methods for bias correction, to determine whether machine learning techniques offer
improved performance compared to more traditional linear methods. In Section 4, the best-performing bias correction model is
then applied across the full spatio-temporal domain to create a daily, bias corrected SWE dataset which can be compared with
the uncorrected SNODAS record. Differences between these two products can provide insights into where and when the bias
is strongest. Finally, in Section 4.1 the impact of these difference on snowmelt volume and the influence on the regional water

balance is evaluated in three representative catchment areas.

2 Data and methods
2.1 Insitu data

In situ snow survey data is retrieved from a dataset created by the Climate Research Division of Environment and Climate
Change Canada (ECCC), which has been updated to include observations up to the end of 2017 (ECCC, 2000). This dataset
includes snow survey measurements from approximately 33 Conservation Authorities (CAs) at 383 locations throughout On-
tario between 41° N and 49.5° N and -87.875° E and -73.375° E. The locations of these survey sites are marked in Fig. 1a
along with an outline of our Ontario study region. The snow surveys provide an average-estimate of SWE calculated from
as an average of 10 fixed-samptingtoeations-taken-individual snow core SWE samples taken over 10 meters at each survey
site (CA, 1985). These obtservations are recorded bi-weekly around the 1°¢ and 15" of each month from November to May
(EA1985)-These-observations-and have been recorded since 1933, but butfor this study only data from January 2011 until
December 2017 have been considered. Snow survey density is higher in the southernmost portion of Ontario (below 44.5° N)
with 189 survey locations closely grouped near the United States (US) border between Lake Huron and Lake Ontario. A sim-
ilar survey count (n = 194) exists above 44.5° N but with sparser spatial coverage due to the region’s larger size and lower
population density.

The measurement tools used for retrieving in situ observations vary between locations over the time span of our study (CA,
1985; Sturm et al., 2010). Common strategies for collecting SWE measurements by hand include the use of snow corers which

are portable, handheld tubes that are inserted into the snowpack down to the soil layer and weighed to retrieve a SWE estimate
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at that point within the snowpack (Lépez-Moreno et al., 2013). An Ontario snow inventory summary completed by Metcalfe
(2018) provided a questionnaire to 265 of the snow survey sites (with a 67% response rate) and found that the Federal Snow
Sampler (also known as the Mount Rose sampler) was used at 94% of sites and the ESC-30 was used at the remaining 6%
of locations. Methods of SWE measurement also varied with 62% using a calibrated spring balance in the field, 30% using a
digital balance in the field, 6% grouping snow samples into a container and weighing in the field, and 2% bagging the samples
and weighing them later (Metcalfe, 2018). Although an important observational metric, in situ measurements of SWE take, on
average, 20 times longer than snow depth measurements, and due to the additional time investment this often results in poor

spatial and temporal data coverage of SWE measurements across large regions (Sturm et al., 2010).
2.2 Gridded SWE products
2.2.1 The Snow Data Assimilation System (SNODAS)

SNODAS is a gridded modeling and data assimilation dataset produced by the National Oceanic and Atmospheric Admin-
istration (NOAA) National Weather Service’s Operational Hydrologic Remote Sensing Center (NOHRSC) (Barrett, 2003).
SNODAS provides a physically consistent framework for assimilating snow data from nearly all available North American
airborne, satellite and ground station sources with a Numerical Weather Prediction (NWP) snow model (Dawson et al., 2016).
Produced at 1 km resolution, SNODAS covers the continental US from approximately 25.95° N to 52.87° N and overlaps
with portions of Canada including our study region (Azar et al., 2008). Daily estimates are provided from September 2003 to
January 2018, however Ontario was only included within the assimilation domain starting in January 2011, providing seven
years of overlapping data with the in situ SWE measurements. Additional SNODAS product details are described in Table 1.
SNODAS is composed of three primary components: the data ingestion pipeline which handles data quality control and
downscaling from the NWP model forecasts, the snow mass and energy-balance model which calculates hourly snowpack
property estimates, and the data assimilation scheme which updates the model state with observational snow data (Carroll
et al., 2001). In order to prescribe forcing data for the snow model, SNODAS makes use of the Rapid Refresh (RAP) and High-
resolution Rapid Refresh (HRRR) NWP systems, deployed by the National Centers for Environmental Prediction (NCEP)
to produce high accuracy, hourly numerical weather forecasts (Benjamin et al., 2016). RAP/HRRR produces analyses and
short-term forecasts of precipitation, pressure, temperature, wind and relative humidity which are corrected using station and
radar data, downscaled, assessed for quality and then used to force the SNODAS snow model (Barrett, 2003). SNODAS uses
a spatially distributed multi-layer mass and energy-balance snow model with 3 snow layers and 2 soil layers (Carroll et al.,
2001). The snow model calculates snowpack SWE, temperature, thickness and liquid water fraction within each snow layer
and produces an estimate of total SWE, runoff melt (from the base of the snowpack), as well as estimates of exchange fluxes
with the atmosphere. Thermal properties of the snowpack are simulated using similar techniques to SNTHERMS9 as described
in Jordan (1991). After applying the surface and atmospheric forecasts from RAP/HRRR, the snow model is run at an hourly

timestep, with mass and energy balance calculated at each grid cell (Barrett, 2003).
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A simple nudging method (Newtonian Relaxation Procedure) is then used to update model SWE estimates with assimilated
ground-based, airborne and satellite snow observations (Boniface et al., 2015). This technique examines differences between
numerical model SWE estimates and assimilated observations to identify regions with significant differences (Clow and Nanus,
2011). Although many existing snow cover and SWE datasets are assimilated by SNODAS, we note that the in situ snow survey
dataset employed in this study is not assimilated by SNODAS. Differences between the model estimates and observations are
then interpolated to produce nudging fields (an increment used to nudge model estimates closer to observations) and the model
is re-run for the previous 6 hours. Each hourly increment during this period is nudged using the previously computed nudging
fields to produce the final SWE estimate for each grid cell, updated using assimilated observational datasets (Barrett, 2003).
Previous studies by Frankenstein et al. (2008) and Rutter et al. (2008) have suggested that SNODAS strongly benefits from this
data assimilation step with densely observed locations displaying high quality SWE estimates in SNODAS when compared

with in situ measurements.
2.2.2 NRCan ANUSPLIN data

During the development of the bias-correction methods, a gridded, monthly climatology (spanning 1981-2010) of 2 meter air
temperature and total precipitation was employed. This dataset was developed by the Canadian Forestry Service (CFS), which
is a division of Natural Resources Canada (NRCan); it will be henceforth referred to as the NRCan dataset. The NRCan dataset
is generated through the use of thin-plate (Laplacian) smoothing splines which interpolates point observations over a grid as
implemented in the ANUSPLIN (Australian National University SPLINe) climate modeling package (Hutchinson et al., 1991;
McKenney et al., 2011). The NRCan product provides additional gridded estimates of snowpack height, 2 meter air temperature
and total precipitation throughout Ontario (Table 1). This product has a spatial resolution of approximately 10 km and provides
monthly normal estimates of surface parameters from January 1981 to December 2010. This observational time frame overlaps
with in situ survey measurements, however NRCan data ends (December 2010) just before SNODAS becomes available in this
region (January 2011) which is an additional source of uncertainty (see section 4.2). The datasets used in the generation of this

product are independent from both the SNODAS and the snow survey datasets.
2.3 Statistical methods for bias correction

A set of statistical methods that have previously been applied to bias correction in different contexts are analysed in this
study to identify the method which displays the highest performance in reducing the bias between SNODAS SWE and in situ
observations over our study period. The methods examined include: mean bias subtraction (MBS), simple linear regression
(SLR), decision trees (DT) and random forest (RF). All models (excluding MBS) are implemented using the scikit-learn
Python package which includes built in linear regression and machine learning modules (Pedregosa et al., 2011). For MBS,
the average difference in SWE between SNODAS and in situ is calculated and then subtracted from each SNODAS estimate
to produce a bias corrected dataset. More formally, mean bias (MB) is defined as: M B = % Z?:l (z; — z;) where x; and z; are
the respective daily SNODAS and in situ SWE measurements, and 7 is the number of measurements over the study period. The

linear regression techniques used in this study conform to the least squares general regression model which relates a response
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variable y to a linear combination of n explanatory x-variable predictors § = byp+b1 21 +bsxo+...+b, 2, Where by is the model
intercept and b; to b,, are predictor coefficients. Both, simple linear regression (SLR) using a single explanatory variable, and
multiple linear regression (MLR) with numerous explanatory variables are considered in this study.

SLR is applied using daily SWE from SNODAS as the sole predictor and in situ snow survey SWE estimates as the response
variable. MLR, DT and RF methods all use the full list of predictors outlined in Table 2 to predict in situ SWE. Additienally;
the RE-methed-is-

A _decision tree is a flowchart-like data structure, wherein the decision making process begins at the root node (the top
of the tree) followed by a series of cascading decisions based on the included model predictors until the terminal leaves are
reached at the bottom of the tree which represent the regression estimate of the response variable. As implied by its name, the
random forest regression model is an ensemble of decision trees that are generated during model training (Azar et al., 2008).
Each tree included in the RF model ensemble is generated from a randomized subset of the available training data, coupled
with a randomized subset of the predictor variables
learning process of this technique, but also contributes to uncertainty in the accuracy of an individual tree (Barnett et al., 1988).
The ensemble approach used in RE accounts for and minimizes the uncertainty present in an individual decision tree by
calculating the mean prediction from all trees in the ensemble. Our RF model is run with a forest size of 100 ;-and-trees in
its ensemble, both RF and DT methods use a maximum tree depth of 15 (these-values-were-obtained-from-sensitivity-tuning
experiments-which-the maximum number of decisions before determining an estimate for the response variable) and each tree
was allowed to grow to its full extent, with no set number of maximal terminal nodes (no set maximum number of leaf nodes).
These model parameters were obtained through a brute-force grid search hyperparamaterization of the RE model, which nudged
each parameter value and examined changes in model accuracy and impacts on computational efficiency while-controllingfor
model-overfiting)to select optimal values for running the model. A variety of regression predictors were considered for use in

this study, including land use parameters, elevation, and indicators of general climate. The final set of predictors for all methods

Breiman, 2001; Gromping, 2009). This inherent randomness improves the

(shown in Table 2) was selected based on the (non-zero) model importance score for each variable from-RandomForestin the
RF model summary output.

A range of metrics have been considered in order to determine whether additional performance can be gained from using
more sophisticated statistical methods over traditional approaches. To assess model skill, we have selected absolute mean bias
(accuracy) and RMSE (precision) as our model performance criteria, as these properties have demonstrated effectiveness in
previous studies for assessing the capabilities of competing bias correction methods in the geosciences (Cannon et al., 2015;
Grossi et al., 2017; Li et al., 2010).

In addition to applying each model to the full set of in situ survey sites for the full time span, we also run spatially and
temporally partitioned models to assess changes in performance over specific regions and periods. Partitioning is applied
spatially by separating the set of in situ measurement locations into northern and southern regions at 44.5° N to help account
for snow survey density differences between the two regions of Ontario as described in section 2.1. Model performance is also

analysed temporally with training restricted to different portions of the snow season: December to February (DJF), March to



10

15

20

25

30

May (MAM) and the combined period: December to May (DJFMAM). All models and partitioned datasets were trained on

75% of the data and tested on the remaining 25% (excluding MBS which does not include a model training step).

3 Bias correction results
3.1 Quantifying biases in SNODAS SWE

Initial comparisons between current SNODAS SWE estimates and in situ observations throughout Ontario describe, on average,
a positive absolute mean bias of 50% in the SNODAS estimates from 2011 to 2017. Additionally, the snow survey sites in
Fig. 1a display a pattern of strong relative mean bias present in the SNODAS estimates at the majority of survey locations.
Relative mean bias (RMB) is defined as RM B = % S %’fi * 100 where x; and z; are the respective daily SNODAS and
in situ SWE measurements, and n is the observation count. This relative bias is positive at 212 of the 383 measurement sites
and rises above +100% relative bias at 67 locations. These sites with a strong relative bias also generally exhibit a strongly
positive absolute mean bias, with SNODAS overestimating SWE by over 100 mm SWE at many of these locations. The sites
with the strongest relative and absolute mean biases are typically grouped together in the northern portion of the study region
above 44.5° N, as well as in areas East of both Lake Huron and Lake Superior.

There also exists a strong temporal bias in the bi-weekly SWE estimates from SNODAS when compared with in situ
(Fig. 1b). This bias is strongest during the first half of our study period until the beginning of 2015 where, although SNODAS
estimates are generally still higher on average (by approximately 5 mm SWE), the overall absolute mean bias is reduced. If
we consider the full temporal domain, the absolute mean bias in the SNODAS estimates is approximately 16 mm SWE, which
corresponds to a 50% increase compared to that of the in situ SWE observations. The change in bias between the first and
second half of our study period implies a change in the data assimilation system used by SNODAS, wherein new datasets are

assimilated into the system to further reduce model error.
3.2 Simple subtraction and regression techniques

In the following section, the performance of four bias correction techniques will be discussed. The progression of mean bias
and RMSE over the two study regions and three time periods is summarized in Fig 2, timeseries summary metrics for the full
region are shown in Fig. 3, and the spatial pattern of (remaining) absolute mean biases at snow survey sites is shown in Fig. 4;
the timeseries of corrected and uncorrected, domain-averaged SWE (along with the 95% confidence intervals based on each

sample) is shown in Fig. 5 for our full study period.
3.2.1 Mean bias subtraction

We begin by quantifying how well SNODAS SWE biases can be reduced through a simple subtraction of its mean bias. Since
this method is constructed through the removal of the mean bias in the SNODAS data record, MBS reduces the absolute mean

bias between SNODAS and in situ to zero when averaged over all regions across all seasons as shown in Fig 2. Although zero
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absolute mean bias gives the appearance of strong performance, residual biases still remain at individual days and months of
the MBS corrected dataset.

The RMSE of the resulting bias corrected dataset is only slightly reduced compared to the default RMSE between SNODAS
and in situ SWE. The largest decreases in RMSE of approximately 15 mm SWE (30%) occur in the northern region, with a
more muted reduction throughout the southern region (approximately 2 mm SWE (10%) on average). Similar reductions in
RMSE follow when this technique is applied over all years for both regions as shown in Fig. 3. RMSE is reduced from the
default SNODAS value of 27.45 mm SWE to 21.9 mm SWE, which is an improvement of approximately 20%.

As was previously noted, this technique is able to reduce absolute mean bias across the full region to zero, however this is
achieved at the cost of introducing strong negative biases which cancel the remaining positive biases, as shown in the change in
spatial bias from Fig. 4 a to Fig. 4 b. Since MBS uniformly subtracts bias from all sites across the region, areas of low positive
bias in SNODAS (eg. along the US border) have their SWE estimates reduced too aggressively and now exhibit a strong
negative bias. This subtraction process can lead to unphysical, negative estimates of SWE which should be discarded if this
bias correction technique is to be used in practice. Additionally, areas with the strongest positive bias in SNODAS throughout
the northern region have their SWE estimates reduced by too little and continue to display a strong positive bias.

MBS results in the creation of a SWE product that has been overcorrected in some areas and undercorrected in others, and
leads to high RMSE in the final corrected dataset. Similar issues are also apparent temporally in the MBS corrected timeseries
of Fig. 5, with an undercorrection of SWE in the years before 2015, and an overcorrection during 2015 and the years that
follow. This residual error suggests that MBS is unable to fully capture spatio-temporal differences in the SNODAS bias and

that more sophisticated techniques should be investigated.
3.2.2 Linear regression

A limitation of MBS is that it is unable to benefit from predictor relationships between the snow bias and climate variables.
Using daily SNODAS SWE as a predictor, SLR displays skill in significantly reducing absolute mean bias. However, this
technique seems to overcompensate in the correction of the strong bias in the northern region of the study area, especially
during MAM where the absolute bias drops below zero to -3.2 mm SWE (Fig. 2). RMSE is reduced from the uncorrected
SNODAS values to 15-20 mm SWE on average. Similar to MBS, the SLR corrected dataset also exhibits a RMSE difference
between the northern and southern regions. We note the largest decreases in RMSE in the northern portion of the study area
across all time periods with improvements of approximately 50% over the uncorrected SNODAS values. However, only slight
reductions in RMSE are observed throughout the southern region.

SLR performance across the full spatio-temporal study range exhibits similar results to that of its partitioned comparison,
with absolute mean bias reduced to approximately -1.25 mm SWE, and overall RMSE lowered by 45% (to 14.9 mm SWE)
compared to that of the default SNODAS bias (Fig. 3). In order to determine whether the inclusion of additional predictors
improves the performance of linear regression, MLR was also examined. When run with the predictor set described in Table 2,
MLR exhibits similar performance to SLR with approximately the same reductions in absolute bias and only slightly lower

RMSE (RMSE]\/[LR = 13.66 mm SWE vs. RMSESLR =14.9 mm SWE)
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SLR continues to improve upon the results of MBS by further reducing absolute mean bias and RMSE at individual locations
as shown in Fig. 4 c. The results of this technique show significant reductions in the spatial bias present in SNODAS. However,
this technique also suffers from bias overcorrection. Since the SNODAS bias is not homogeneous across all snow survey sites,
areas of negative bias in SNODAS are corrected by the SLR model to be even more negative (as is seen at a set of survey
sites in Fig. 4 ¢ along the coasts of Lake Huron, Lake Ontario and Lake Superior). SLR improves the overall positive bias
across the majority of the northern region sites, however a strong positive bias persists at many locations after SLR is applied,
suggesting undercorrection at some locations. Similar to MBS, we note both an overcorrection and undercorrection of SWE
in the timeseries of Fig. 5 (with a transition occurring again in 2014), confirming our assumptions that the linear regression

methods are unable to account for heterogeneity and nonstationarity in the bias between years.
3.3 Nonlinear methods

The DT method displays further improvements over MBS and SLR in terms of model skill, with the second lowest overall
RMSE between 3-8 mm SWE on average, coupled with near-zero absolute mean bias when partitioned spatially and temporally
(Fig. 2). Differences in RMSE are quite small between each region and time period, and the resulting RMSE between DT and
the in situ observations is substantially lower, on average, than that of uncorrected SNODAS (an 80% improvement). We note
similar large improvements in model performance using the DT method across the full region for all months, with an overall
RMSE of 4.03 mm SWE and absolute mean bias of 0.6 mm SWE.

Building on the improvements from DT, we find that RF displays the best overall skill of all tested models by producing
SWE estimates with low absolute mean bias and the lowest overall RMSE when compared with in situ SWE. As noted in
the predictor importance scores of Table 2, RF incorporates information from a suite of predictor variables which allows the
model to better understand how SWE biases change in both time and space. RF was found to consistently outperform the other
models for all time periods for both northern and southern regions of our study area, as shown in the partitioned model run
summary statistics in Fig. 2, with absolute bias reduced below 1 mm SWE and RMSE between 3 and 5 mm SWE. Furthermore,
RF continues to outperform other methods of bias correction when the model is trained and run over the full spatio-temporal
domain, resulting in an RMSE of 3.64 mm SWE and absolute mean bias of only 0.2 mm SWE as shown in Fig. 3. This is an
86% reduction in RMSE compared to the uncorrected SNODAS RMSE and a significant improvement over the 45% reduction
achieved by SLR and the 20% reduction in RMSE from MBS. Since the the RF is composed of an ensemble of DT models, it
is not surprising that both methods perform similarly when run with the same predictor set, with RF slightly outperforming a
single DT, because the ensemble is more robust and reduces systematic model error caused by overfitting.

As the bias in SNODAS is nonstationary (Fig.1b), we next evaluate the bias correction methods separately for a sub-period

of high bias (2011-13), and one of low bias (2014-17). This test is performed using the same predictor variables in Table 2

3

excluding Year Id; i.e., we implicitly assume stationarity within each sub-period. During the high bias period (with a default

bias of 27.9 mm SWE and default RMSE of 38.5), we find similar results to the full period. MBS, SLR and RF all reduce the
absolute mean bias down to less than 1 mm SWE, and RF reduces RMSE to the lowest value of 2.7 mm SWE, compared to
5.7 and 26.6 for SLR and MBS, respectively. The low bias period (with a default bias of 9.28 mm SWE and default RMSE
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of 16.5), again exhibits a similar pattern in model performance to the full period, with all models reducing the absolute mean
bias to less than 1 mm SWE and RF again showing the lowest RMSE of 4.9 mm SWE, compared to 14.0 and 13.6 for SLR
and MBS. In summary, the sub-period analysis shows consistent performance from the RE model, but improved performance
of the SLR model during the high bias period, when the bias in SNODAS appears more uniform from year-to-year (Fig.1b).

To further mitigate against model overfitting, the data for the RF and DT models were-are randomly split into a training set
composed of 75% of the dataset-and-evaluated-on-values, and a testing set which comprises the remaining 25%. Additionally,
a separate 10-fold cross validation (CV) resampling procedure was applied to further evaluate model performance on unseen
data. The CV K-fold splits the full dataset in time into 10 consecutive groups of samples which are held constant for the full
CV procedure. We then train the model on each combination of £ — 1 folds and their performance is calculated as the average
of all training and testing scores for each K-fold split. When applied to the full spatio-temporal dataset, this technique results
in an average reduction in RMSE to 4.7 mm SWE between the RF CV models and in situ observations in the 25% remaining
testing portion of the dataset. The fold value of k& = 10 was selected as a compromise between the size of the training sample

and the computational overhead-F

(James et al., 2013).

The RF model displays the best overall performance in terms of reducing bias and RMSE, and this skill is demonstrated
spatially in Fig. 4 d. Compared to the other bias correction methods, the RF model is the most effective at reducing the spatial
bias in SNODAS, with only small differences between model corrected SWE values and in situ SWE across the majority of the
region. This accuracy is also evident in the timeseries of domain-averaged SWE values shown in Fig. 5, with the RF corrected
SWE estimates closely tracking the in situ observations across all years. However;no-modelis—perfeet—and-itis—clear-that
even-with-its-strong-general-performance;-the-Comparisons of interannual correlations further emphasize the strengths of the

nonlinear techniques over traditional bias correction methods at capturing changes in bias over time. Interannual correlations
between RF corrected SWE sti ibi “non mean-bias(m § in-the high-biasnorthern ion

tasand in situ are the highest at approximatel
0.99, with correlations of approximately 0.93 for linear regression and of approximately 0.90 between the default SNODAS

and in situ SWE. The RF model is therefore selected as the best-performing candidate model to perform bias correction on the

4 Application of the random forest model

Running-In this section, we apply the trained RF model to-grid—to the full 1 km SNODAS grid for all
of Ontario (approx 1.5 million grid cells, Fig. 1 a)allows-us—to-, and derive a gridded estimate of corrected SWE throughout

the entire region. When—running-en—a-standard;,4-core-desktop-predictingagainst-approximately+-5-million—grid-eells (s
kmrresolution);-this-This operation takes around 30 seconds per day of SNODAS observations (approximately 1.5 megabytes
per day in storage space) on a modern, 4-core desktop computer. After running the RF model at 1 km resolution, we plot

10
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the resulting average monthly SWE bias between SNODAS and the RF corrected grid in Fig. 6 for December through May
(SNODAS — RF). From these plots we note a strong positive monthly bias from January through April with the largest bias
in SNODAS SWE estimates in March and April (averaging 57.7 mm SWE and 55.8 mm SWE, respectively), when the amount
of snow on the ground is generally at its highest in Ontario. We also note a strong bias East (downwind) of Lake Superior and

Lake Huron where SNODAS may be producing too much lake-effect snow.

4.1 Water-balanee-analysis

understanding-the-regional-water-balanee-of-Ontario—Through the application of the RF bias correction, estimated mean SWE
during December to May in the study region outlined in Fig. 1 a is reduced by approximately 33 mm (Fig. 6). Naturally;-these

SWE redueti ] molicati : onal
4.1 Water balance analysis

The difference in snow water volume between uncorrected and bias-corrected SNODAS SWE has important implications for

understanding the regional water balance of Ontario. The reduction in mean SWE resulting from the bias correction should
reduce the regional melt estimates, and-these-are-estimated-which we estimate using hydrographs of area-normalized discharge

from three Ontario river gauges from-for the period 2011 to 2018: Pic River (48.77° N) near Marathon, the South Branch
Muskoka River (45.14° N) at Baysville, and the Thames River (42.54° N) at Thamesville (basins outlined in Fig. 1 a). Monthly
melt water amounts are estimated as the negative-(negative) SWE differences between consecutive monthly means from the
SNODAS and RF SWE datasets (Erler et al., 2019). To compare the melt volumes with normalized discharge values, the melt
has-been-is averaged over the drainage area associated with each stream gauge. tt-can-be-argued-We argue that this provides
a reasonable estimate of the amount of water being released from the snowpack during the spring freshet period in each
watershed. Note, however, that this does not include losses of water due to evapotranspiration or additional water input from
rainfall.

Figure 7 shows the timeseries of area-normalized discharge and estimated melt rate over the study period for the three
catchmentareaslisted-abovedrainage areas. The timing of observed peak streamflow closely aligns with melt rate peaks during
the spring freshet at the northern gauges of Pic River and the South Muskoka River. Since the melt water estimates do not
include rainfall, they should be considered a conservative estimate of potential spring discharge ttis-evidentthat-the-The melt
volumes derived from the corrected dataset are close to, but ustatty-mostly below, observed discharge values in the two northern
catchments, while the estimates based on the uncorrected SNODAS SWE data significantly exceed the observed discharge, and
can thus be considered unphysical. This serves as an independent validation of the physical plausibility of the bias correction
method proposed here.

We further note that the differences between the corrected and uncorrected melt estimates are most apparent during the period

of high bias prior to 2045;-as-wasreported-in-seetion3-1-2015. In this context it is also interesting to note that the accumulation
of SWE in the uncorrected SNODAS dataset exceeds the total amount of precipitation (based on the NRCan dataset) for most
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winter months prior to 2015, and for isolated winter months after 2015. In the southern Thames River watershed, on the other
hand, there exists a much lower bias between SNODAS and RF-corrected melt compared to the two northern watersheds,
which is consistent with the previously discussed spatial pattern of biases in Fig 1 a. In addition, the Thames River watershed is
not snowmelt dominated, so the biases do not affect streamflow in the same way as they do in the two northern watersheds. The
changes in the magnitude of snowmelt shown in Fig. 7 suggest that the RF bias-corrected SWE constitutes an improvement
over the uncorrected SNODAS-derived melt estimates throughout the study region, and that the RF-corrected dataset could

provide a valuable new resource for hydrologic modeling and flood risk forecasting.
4.2 Discussion

Linear regression and machine learning techniques have previously been used effectively across the geosciences for bias correc-

tion of global and regional climate model output (Teutschbein and Seibert, 2012; Li et al., 2010; Lary et al., 2009; Reichstein

et al., 2019; Shen, 2018). Previous studies on the estimation of North American SWE using artificial neural networks and

support vector machines also exhibit similar results, with machine learning techniques outperforming general linear models
Snauffer et al., 2018; Xue et al., 2018). However, recent work by Dixon et al. (2016) and Ehret et al. (2012) suggests that bias

correction methods have their own associated uncertainties which must be considered when applied to datasets like SNODAS.
These studies suggest that potential inconsistencies can exist between real-world and model dynamics, and their interactions
with bias correction techniques. This can lead to unphysical changes in the relationships between variables and model dynam-
ics, and even violate basic physical principles. This last point is relevant to this study, as some models (like MBS) over-correct
SWE on the ground to negative values, which are physically meaningless. Our research has found that more sophisticated
nonlinear statistical techniques like DT and RF produce bias-corrected SWE values that adhere more closely to these physical
principles.

‘We must also consider uncertainties in the in situ snow survey data record. Hand measured SWE observations are generally
considered to be of high accuracy; however, measurement error can still occur. Common issues include snow sticking to the
inside of the measurement device or falling out of the bottom of the device due to improper soil capping (L6pez-Moreno et al.,
2013; ECCC, 2000). Issues like these can lead to underestimations in SWE when measurements are being recorded. Further-
more, from the available documentation by Metcalfe (2018), not all CAs use the same snow coring device and measurement
techniques when retrieving SWE samples and this may result in systematic differences in their reported SWE estimates. Errors
in the reference dataset can propagate through into the bias correction model during training and negatively impact the reliabil-
ity of the model, even away from the snow survey locations. Additional error also arises in our comparison of point to grid data
since our analysis assumes that the snow survey data is generally representative of the surrounding area in the containing 1 km
SNODAS grid cell. While snow survey locations are selected to be representative of their surrounding landscapes CA (1985),
snow density varies drastically over small spatial scales, and this assumption of homogeneity contributes to further uncertainty

in our analysis (Molotch and Bales, 2005).
Any additional uncertainties that exist in SNODAS and NREan-the NRCan gridded precipitation product (which are ingested

as predictors into the bias correction models) will further contribute to the overall error in the bias corrected SWE dataset (Hay
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et al., 2006). Uncertainties in the SNODAS numerical forecast model along with measurement error from the datasets being
assimilated by each product add to the total uncertainty of the system. Furthermore, we note again that the reference period of
the climate normals that have been used to characterize the climate in the RF model, is 1981 to 2010, while the study period
is 2011 to 2018. This may introduce additional uncertainty due to decadal variability and transient shifts in climate; however,
since only long-term averages (monthly normals) have been employed for this purpose, the error is likely small.

While there is no clearly documented reason behind the shiftin-the-magnitade-of-the-SNODAS SWE bias that we-nete-in
occurred after 2015, we believe this may be the result of a-change-in-new datasets being inserted into the data assimilation
scheme being-used by SNODA Swhereinnew-datasets—are-being-assimilated-into-thesystem. Although one may argue that
since the general magnitude of the SNODAS bias is reduced post 2014, a bias correction of SNODAS SWE in this region
is unnecessary. We suggest that the bias correction is still a valuable contribution, since the SNODAS bias remains non-zero
(approximately 5 mm SWE on average, and even higher throughout the northern region) during this period when compared
with in situ, and the extended bias corrected data record allows us to better calibrate current hydrologic models. Another area

of potential interest for other groups using SNODAS in Canada exists in the latitudinal gradient of bias we note in Fig. 4 a,

which suggests that the mean SNODAS bias increases in magnitude as we move further away from the US border (SNODAS
is a US product which mainly ingests US data).

Each of the bias correction methods examined here show-shows skill in reducing the absolute bias present between SNODAS
and in situ SWE observations, from the default 16 mm SWE in SNODAS to less than 1.5 mm SWE across all techniques. MBS
and SLR exhibit an inability to capture year-to-year variability present in the bias and often overcorrect or undercorrect the
amount of SWE on ground, resulting in high RMSE between their corrected estimates and in situ observations. The more
sophisticated machine learning techniques display further improvements in skill, with RF reducing RMSE by approximately
86% compared to that of the uncorrected SNODAS RMSE, and a reduction in absolute bias throughout the region to 0.2
mm SWE. The additional predictors combined with the ability of the model to capture nonlinear behavior, allows the RF
model to closely reproduce observed SWE values and remain within physically plausible limits. The RF model also provides
insights into the strengths of the relationships between biases and various model predictors, suggesting a connection between
SNODAS biases and elevation, total precipitation and air temperature. Furthermore, it is also evident that the bias diminishes
over time, even though this may not be adequately reflected in the predictor importance ranking of the calendar year variable.
Unfortunately, due to lack of documentation regarding changes in the assimilation system of SNODAS, it is not possible to

identify the reasons behind these changes.

13



10

15

20

In this study we have only employed simple linear regression and decision tree-based methods of bias correction. Never-
theless, we have demonstrated that nonlinear techniques can be used very effectively for bias correction, and are far superior

to linear methods. Suppert-veetor-machines—and-neural-networks—Neural networks and support vector machines have also
been effectively implemented for the purpose of bias correction in the geosciences ;—and-it-(Lary et al., 2009). A paper b

Xue et al. (2018) also found that machine learning methods can act as effective operators at estimating North American snow

mass. It is possible that these other machine learning techniques may offer further improvements to the methods examined
here(bary-et-al5-2009), and should be considered in additional followup work. Furthermore, it has been suggested by Reich-
stein et al. (2019) and Shen (2018) that deep learning methods can provide powerful new perspectives in addressing common
challenges in information extraction for water resource research. However, the region that was considered in this study is rel-
atively small and climatologically homogeneous, and the number of in situ observations is likely insufficient to justify the use
of more complex techniques that typically require very large training data sets. If, on the other hand, bias correction were to be
attempted on a larger scale, for example the entire SNODAS domain, a more complex technique should be considered: likely
a deep neural network, potentially with recurrent properties or convolutional layers, so as to account for memory effects and
spatial structure. In this scenario, it would also be possible to make use of significantly more in situ observations across North

America (e.g., SNOTEL sites), that could be used to train such a model.

Data availability. SNODAS SWE data is publicly available for download via National Snow and Ice Data Center (https://doi.org/10.7265/
N5TB14TC). NRCan ANUSPLIN gridded products can be downloaded from Natural Resources Canada (https://cfs.nrcan.gc.ca/projects/3).

ECCC snow survey records are available for public download on GitHub (https://github.com/frasertheking/ontario_snow_surveys).
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Table 1. Descriptions of the primary datasets used in our bias correction methods including relevant regression variables, their resolution,

observational record coverage and data references.

Dataset Variable(s) Horizontal resolution Data period Reference

Snow Surveys Snow water equivalent 383 points Jan 1933-May 2018  ECCC (2000)
SNODAS Snow water equivalent, Total precip. 1 km Jan 2010-Dec 2018 Carroll et al. (2001)
NRCan 2-Meter temperature, Total precip. 10 km Jan 1979-Jan 2010 McKenney et al. (2011)
Provincial DEM Elevation 30 m May 1978-Mar 2018  MNREF (2019)
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Table 2. Predictor names and details used in the decision tree, multiple linear regression and random forest bias correction models. Also
included are their respective variable units, measurement timescales, data sources and variable importance scores produced by the random

forest model.

Predictor Description Units Time scale Data source(s) RF Importance
SWE SWE on ground Millimeter Daily SNODAS 0.68
T2 2 meter air temperature Celsius Monthly NRCan 0.08
TP Difference NRCan - SNODAS total precipitation ~ Millimeter Monthly NRCan, SNODAS 0.08
Year Id Year of observation Year Indicator - - 0.07
Elevation Height relative to sea level Meter - Ontario Government 0.06
Month Id Month of observation Month Indicator - - 0.01
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Figure 1. (a) Relative mean bias between SNODAS and in situ SWE aggregated for each snow survey site (colored points). Thicker black
contours show the boundaries of the three drainage basins in the water balance analysis (Section 4.1). (b) Daily mean SWE on ground
estimates from SNODAS—and-all in situ SWE-survey sites and SNODAS, taken biweekly from November to May [2011-2017] at 383

locations across Ontario.
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Regional Bias Correction Model Comparisons
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Figure 2. Performance results of regional bias correction methods (mean bias subtraction (MBS), simple linear regression (SLR), decision
tree regression (DT) and random forest regression (RF)) for northern and southern geographic regions across DJF, MAM and the combined
annual snow season (DJFMAM).
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Figure 3. Bias correction model performance results for each technique across the full spatio-temporal domain.
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Figure 4. Absolute mean bias comparisons between in situ SWE and (a) SNODAS, (b) MBS, (c) SLR, and (d) RF, averaged at each snow
survey site over the full study period.
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Temporal Bias Correction Model Results
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Figure 5. Daily mean SWE on ground for the MBS, SLR and RF bias corrected datasets, the default SNODAS SWE dataset and in situ SWE
records. Shaded areas represent 95% confidence intervals based on the region data sample.
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Monthly Mean Bias (SNODAS - RF SWE)
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Figure 6. Monthly mean bias of SWE on ground between SNODAS and the RF bias corrected SWE dataset over December, January,

February, March, April and May across the full study region at 1 km resolution.
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Hydrographs and SWE Differences at selected Gauges
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Figure 7. Monthly timeseries of area-normalized discharge from three river gauges in Ontario, along with corresponding melt estimates
calculated from the SNODAS and RF corrected SWE datasets. Melt estimates are negative monthly SWE differences averaged over the

drainage area of the corresponding gauge (see section 4.1).
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