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Reviewer 3

General Comment:

This work evaluates several bias-correction methods (simple subtraction, single and
multiple linear regression, decision trees, and random forests) to SNODAS, resulting
in a new data product that shows improved fidelity to in situ observations. The authors
further develop a simple water balance analysis that exhibits the improved consistency
of the inferred melt of the corrected model to streamflow observations. This work rep-
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resents important progress to advancing the application of machine learning to water
resources management in regions of snowmelt-dominated streamflow regimes.

General Comment Response:

We thank the reviewer for their comments and suggestions for improving the
manuscript, and we will work to incorporate these changes into the article. Our re-
sponses to each of the reviewer’s questions/comments is included below.

Specific Comment 1:

The potential strengths of machine learning are highlighted but a justification for the
selection of random forests (RF) is not particularly apparent. The authors mention ap-
plications of support vector machines and neural networks in geosciences detailed in
Lary et al., 2009, a study of aerosol optical depth, but neglect to review specific liter-
ature around machine learning applications in SWE estimation (e.g. Wrzesien et al.,
2017, Snauffer et al., 2018, Xue et al., 2018). A review of such advances is warranted.

Specific Response 1:

We thank the reviewer for their suggestion to include additional motivation behind our
selection of the random forest technique for bias correction. As mentioned by the
reviewer, this choice primarily stems from the strengths this technique has shown in
previous literature for bias correcting data in the geosciences (Reichstein et al., 2019;
Shen, 2018; Lary et al., 2009). However, we agree that additional motivation with
respect to bias correcting SWE would be beneficial, and we have now included ad-
ditional literature focusing on the application of random forest bias correction towards
SWE datasets from Wrzesien et al., 2017, Snauffer et al., 2018, Xue et al., 2018, Zah-
matkesh et al., 2019 and Lv et al., 2019, in section 1 and section 4.2 of the manuscript.

Specific Comment 2:

RF model structure and hyperparameter descriptions should be moved to the methods
section. The authors mention RF is run with a forest size of 100 and maximum tree
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depth of 15, but it is unclear how these hyperparameters were selected beyond a men-
tion of "sensitivity tuning experiments". Generally hyperparameters should be tuned
using a standard method (e.g. grid search, particle swarm optimization, evolutionary
strategy, etc.) on each test split and reported accordingly. Is the maximum number of
terminal nodes for a given tree specified or are the trees allowed to grow to full extent?

Specific Response 2:

We thank the reviewer for this comment and question. During the model training phase
of our analysis, we experimented with a variety of values for forest size and maximum
tree depth to find a balance between model accuracy and run time efficiency. This
sensitivity experiment was performed through a brute-force grid search approach of
nudging each parameter value to find a set of parameters which exhibit both high gen-
eral performance (low RMSE and bias), and an efficient RF model runtime. This test
resulted in the selection of a forest size of 100, along with a max tree depth of 15. As
per the maximum number of leaf nodes for each tree, this was left to allow each tree
to grow to its full extent. We have moved some of the general model structure details
(along with the hyperparameter descriptions) into the methods section and have also
included further details on how the hyperparamaterization was performed in the same
section (2.3) to add further clarity.

Specific Comment 3:

RF and DT are stated to be trained on 75% of the data and evaluated on the remaining
25% test set, but are also evaluated using a 10-fold cross-validation, resulting in an
average RMSE reduction of 4.7 mm. The change to bias is unclear, as is the motivation
for using both a 75-25 and 10-fold split structure. Since you’ve appropriately gone to
the effort to run a full 10-fold cross-validation, why aren’t you just using these results?

Specific Response 3:

When training and running our RF model, we used a 75/25 split (75% training and
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25% testing) of our dataset to help mitigate against potential model overfitting while
maintaining good model performance (low bias and RMSE). We experimented with a
variety of values for the training and testing set and found the 75/25 ratio provided a
balance between strong model performance, and a large test set of data to compare
against. This train/test ratio also aligns with standard RF test sizes as mentioned in
the SciKit-learn documentation (Pedregosa et al. 2011). After calculating our results,
in order to further mitigate against potential model overfitting and to evaluate model
performance on unseen data, we then went ahead and employed an additional 10-fold
cross validation which resulted in an average RMSE reduction which was complimen-
tary to our 75/25 structured model. Our 75/25 model was therefore used as the primary
structure for our results since it was the original model developed and employed for
bias correction, reported similar results (< 1.5 mm SWE difference) to our followup CV
experiments, and was overall much more efficient to run.

Specific Comment 4:

The manuscript would be strengthened with a description of the efforts you’ve under-
taken to mitigate temporal and spatial auto-correlation in your training and test sets.
The manuscript would be strengthened with further descriptions of the efforts you’ve
undertaken to mitigate overfitting. A comparison of training and validation errors would
be an appropriate way to do this.

Specific Response 4:

In order to mitigate against spatial auto-correlation, we broke the training and testing
datasets spatially as seen in Fig. 2 of the manuscript into northern and southern re-
gions, to evaluate model performance in areas with differing magnitudes of bias and
station densities. With respect to mitigating against temporal autocorrelation, we use
monthly averaging of the biweekly station data which does help to some extent, how-
ever in order to fully avoid issues with auto-correlation, we would need to employ a
strategy of removing stations/periods which are consistently correlated, and this would
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introduce new biases in the training dataset for our model. Overall, stations are usually
selected in a representative manner by the Conservation Authorities who collect mea-
surements throughout the region, and we trust in the integrity of the station network to
help mitigate this issue.

Specific Comment 5:

In Table 2, what are Year Id and Month Id? Are you using straight numerical values,
cyclical temporal sin-cos pairs, 1-of-c indicators (Bishop, 1995)?

Specific Response 5:

The Year Id and Month Id predictors are 1-of-c indicators (numerical values of 0 or 1)
with 0 representing the absence of either a month/year and 1 representing the pres-
ence of a month/year.

Specific Comment 6:

The water balance analysis averages melt over a watershed associated with a given
stream gauge, asserting the stream gauge provides a reasonable estimate of snowmelt
while at the same time neglecting evapotransportation and rainfall (actually any precip-
itation). Such an assertion requires that evapotransportation and subsequent precip-
itation are not as significant a signal as snowmelt to runoff. This may be true, but it
should be backed up by analysis and references, or minimally one of these. Baseflow
should also be at a minimum mentioned.

Specific Response 6:

These are fair comments and we agree that the argument can be strengthened by
quantitative data. We have conducted an analysis of the dominant hydrological com-
ponents across all three catchment areas, based on climate normals obtained from
NRCan/CFS for the period of 1980-2010. The figure is included in this response (Fig.1
below) and could be included in supplementary material if required. It shows that in all
cases average liquid precipitation (rain) during the spring freshet season exceeds po-
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tential evapotranspiration, so that it can be argued that snowmelt places a lower bound
on the spring freshet volume. A nuance here is that the snowmelt peak estimated fol-
lowing the method of Erler et al. (2019) can (and does) exceed the streamflow peak
due to routing delay within the catchment area. The peak of negative SWE differences
(which is shown in Fig. 7 of the manuscript) is shown in the Figure for comparison: it
is evident that the value is significantly lower than the former snowmelt estimate and
does not exceed the streamflow peak. The reason is that negative SWE differences do
not include water from additional snowfall during the melt period. Comparing SnoDAS
SWE differences with those estimated from NRCan climate normals and streamflow, it
is clear that the uncorrected SnoDAS values are unphysical, while the bias-corrected
values appear reasonable. For a detailed discussion of the variables shown in the Fig-
ure and how they were processed, see section 3.2 and S2 of Erler et al. (2019); the
Figure is analogous to their Fig. 2 and the datasets and methods employed are the
same. The reason that this figure was not included initially is that it is based on cli-
mate normals for a period before our analysis period. Unfortunately the PET and snow
depth data used in the figure are not available past 2010, so that it was not possible to
update the figure. Curation of a new PET dataset (for just this figure) would be beyond
the scope of this study.

Specific Comment 7:

You conclude that MBS and SLR exhibit an inability to capture year-to-year variabil-
ity present in the bias, but interannual correlations are not present in the analysis.
The ability of bias-correction methods particularly of the non-linear flavor to capture
changes over time is arguably one of their greatest strengths, as simple offsets are
more easily calculated, as you have done. A simple correlation calculation may serve
as further evidence of the utility of the nonlinear method.

Specific Response 7:

We thank the reviewer for this comment and agree that the inclusion of interannual
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correlations between in situ the bias corrected SWE datasets would further highlight
the utility of nonlinear techniques. These results have been included in section 3.3 of
the manuscript.

Specific Comment 8:

Fig 5 is hard to read with the scales and lines used, especially the in situ values, which
are key to the plot. No description of shading used is given in the figure caption. Sug-
gest changing line thicknesses/colors and/or adjusting scales, orientation, or paneling
to make better use of available space.

Specific Response 8:

The Fig. 5 caption has been updated to include a description of the shaded regions
(95% sampling confidence intervals). We have also updated line thickness for the in
situ data to improve visibility for the reader.
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Fig. 1. Catchment water flux climatology (1981-2010) for NRCan data and stream gauge data
from the Water Survey of Canada.
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