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Abstract. Drought is a natural climate extreme phenomenon that presents great challenges in forecasting and monitoring for 10 

water management purposes. Previous studies have examined the use of Gravity Recovery and Climate Experiment (GRACE) 

terrestrial water storage anomalies to measure the amount of water ‘missing’ from a drought-affected region, and other studies 

have attempted statistical approaches to drought recovery forecasting based on joint probabilities of precipitation and soil 

moisture. The goal of this study is to combine GRACE data with historical precipitation observations to quantify the amount 

of precipitation required to achieve normal storage conditions in order to estimate a likely drought recovery time.  First, linear 15 

relationships between terrestrial water storage anomaly (TWSA) and cumulative precipitation anomaly are established across 

a range of conditions. Then, historical precipitation data are statistically modeled to develop simplistic precipitation forecast 

skill. Three different precipitation scenarios are simulated by using a standard deviation in climatology. Precipitation scenarios 

are convolved with precipitation deficit estimates to calculate best-estimate of a drought recovery period. The results show 

that in the regions of strong seasonal amplitude (like monsoon belt) drought continues even with the above-normal precipitation 20 

until its wet season. Historical GRACE-observed drought recovery period is used to validate the approach. Estimated drought 

for an example month demonstrated 80% similar recovery period as observed by the GRACE. 

1 Introduction 

Drought is a widespread recurring natural hazard with several direct and indirect impacts. Shortage of water in an ecosystem 

not only reduces water availability for human consumption but also causes extensive flora and fauna mortality. Dryland, with 25 

little vegetation on the surface, increases soil erosion, reduces water resilience time and enhances the possibility of forest fires, 

leading to many indirect disasters. Big historical droughts have affected millions of lives and cost billions of dollars in the last 

half a century. For example, the 1988 USA drought is estimated to cost $40 billion, 1999 drought in Asia affected 60 million 

people (Mishra and Singh, 2010). Severe water-crises can put society in turmoil and drive large-scale migrations particularly 

in the developing parts of the world for example 2011 East African drought, 2018 dry corridors of central America. 30 

There are different definitions of drought depending on the context, including agricultural (soil moisture deficit), 

meteorological (precipitation deficit), and hydrological (streamflow/groundwater deficit) droughts (AghaKouchak, 2014; 

Ahmadi et al., 2019; Behrangi et al., 2015b; Mishra and Singh, 2011). Furthermore, various drought indicators are developed 

based on different hydrological parameters (soil moisture, precipitation, and runoff) or for different application areas, like the 

Palmer drought severity index (PDSI) (Palmer, 1965), standardized precipitation index (SPI) (McKee et al., 1993), 35 

standardized precipitation evaporation index (SPEI) (Vicente-Serrano et al., 2009), etc. They heavily rely on the accuracy of 

meteorological inputs, hence become unreliable where ground observations are sparse (Zhao et al., 2017). Several drought 

indicies are based on remote sensed products like Normalized differential vegetation index (NDVI) (Keshavarz et al., 2014), 

Evaporation stress index (ESI) (Otkin et al., 2013), Soil moisture index (SMI) (Sridhar et al., 2008), Soil water deficit index 

(SWDI) (Martínez-Fernández et al., 2015). However, use of a consistent drought metrics for various climatic regimes is 40 

essential for global drought studies. A comprehensive study of severity of hydrological drought requires combining both 
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surface (snow and surface water), and subsurface (soil moisture and groundwater) information, which may be hard to obtain 

using in situ methods, especially for a large study region. 

Gravity Recovery and Climate Experiment (GRACE) mission enables us to measure the integrated water storage variation in 

a system, which includes surface water, soil moisture, and groundwater. Many studies have used GRACE to described the 45 

process and monitoring of drought (Awange et al., 2016; Forootan et al., 2019; Sun et al., 2017; Thomas et al., 2014; Yirdaw 

et al., 2008; Zhang et al., 2015). Yirdaw et al. (2008) were foremost in exploring the potential of GRACE in the drought 

monitoring in the Canadian Prairie region. Houborg et al. (2012) developed GRACE-based drought indicator by assimilating 

terrestrial water storage (TWS) into Catchment Land Surface Model (CLSM) over North America. Thomas et al. (2014), for 

the first time, used GRACE terrestrial water storage anomaly (TWSA) as an independent global drought severity index by 50 

considering negative deviations from the monthly climatology of the time series as storage deficits. This method can improve 

the characterization of drought because it provides both the total amount of missing water from an ecosystem and also clearly 

identifies the beginning and the end of a drought, on a monthly timescale. The ultimate benefit of this approach is that by 

quantifying the amount of water required in storage for a region to return to historical average conditions, the method allows 

for the identification of an explicit hydrological drought recovery target. Furthermore, the GRACE-based drought index is 55 

independent of other drought indices and the have global spatial coverage. While an increasing number of case studies have 

used GRACE to characterize drought in different regions, for example, Amazon (Chen et al., 2009; Frappart et al., 2012), 

Texas (Long et al., 2013), China (Zhao et al., 2018), a global gridded assessment of direct application of GRACE on drought 

are still a few. 

Traditional drought monitoring indices (eg. SPI, PDSI) have no information about the drought recovery period. Recovery time 60 

can be a critical metric of drought impact, in showing how long an ecosystem requires to revert to its pre-drought functional 

state (Schwalm et al., 2017). With the increasing frequency of drought, it is essential for an ecosystem to recover completely 

before the successive drought, otherwise repeated exposure to stress can degrade the ecosystem for a long-term. A tentative 

estimate of expected recovery can help water management authorities to regulate the water supply until a system recovers 

completely from drought stress. Previous studies have analyzed historical drought events and different predictors like 65 

teleconnections, local climate variables (temperature, precipitation) for drought prediction (Behrangi et al., 2015a; Maity et 

al., 2016; Otkin et al., 2015; Yuan et al., 2013) but not much work has been done on drought recovery analysis. Many studies 

have analyzed causes and pattern of onset and termination of drought (Dettinger, 2013; Maxwell et al., 2013; Mo, 2011; Seager 

et al., 2019) but did not dwell into statistical evolution of drought recovery. Hao et al., (2018) reviewed a different kind of 

droughts and its prediction methods based on statistical, dynamical, and hybrid methods. (Pan et al., 2013) were the first to 70 

develop a probabilistic drought recovery framework based on an ensemble forecast. They used a Copula model to establish a 

joint distribution between cumulative precipitation and a soil-moisture-based drought index to fine-tune their correlation 

structure. They demonstrated that drought recovery estimates typically have significant uncertainty and that a probabilistic 

approach can offer better information on realized drought risk. However, above-average rain in a given month may replenish 

surface water/soil moisture and support recovery in vegetation, but the true impact of drought continues until all hydrological 75 

compartments, including deep soil moisture and groundwater recover. This type of integrated drought onset and recovery 

phenomenon can only be estimated using integrated terrestrial water storage observations. 

Here we explored drought recovery time at a 0.5-degree gridded framework. Building upon previous works, we apply GRACE-

observed storage deficits as a drought indicator and provide different probabilistic scenarios for drought recovery based on 

historical precipitation analysis. Specifically, we estimate the required-precipitation to fill a storage deficit by deriving a linear 80 

relationship between precipitation and storage variability. Here, we focus on sub-decadal drought only within the GRACE 

period. Different precipitation scenarios are generated for precipitation inputs based on the distribution of historical 

observations.  The required-precipitation estimates are validated by the duration of drought using GPCP and GRACE 

observations independently. 
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2 Data 85 

2.1 GRACE 

The GRACE mission operated from April 2002- June 2017 with a primary goal to track water redistribution on Earth and to 

improved our understanding of the global and regional water cycle. The GRACE-based TWSA includes integrated water mass 

changes in a vertical column which may consist of rivers, lakes, snow, ice, glaciers, soil moisture, permafrost, swamp, 

groundwater, etc. We downloaded the GRACE mascon (RL06) solutions from the Jet Propulsion Laboratory (JPL) website 90 

https://grace.jpl.nasa.gov (Wiese et al., 2018). The gravity field signals of the GRACE are pre-processed to monthly-gridded 

equivalent water height (EWH) variations by JPL (Watkins et al., 2015; Wiese et al., 2016). The mascon GRACE solutions 

are provided at 0.5-degree lon-lat grid, but they represent the 3x3 degree equal-area caps. Shape and size of the mascon caps 

vary with latitude. Therefore, the gridded mascon solutions are multiplied by a scaling factor grid 

(https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/), to improve the interpretation of signals at sub-mascon 95 

resolution. Since 2011, the GRACE dataset has data gaps of 1-2 months in every 5-6 months due to the aging batteries of the 

satellites. However, to compare precipitation and storage variability, a continuous monthly TWSA time-series is required. 

Therefore, the data gaps in the time-series are filled by cubic convolution interpolation.   

2.2 GPCP 

The latest global monthly precipitation data is obtained from the Global Precipitation Climatology Project (GPCP V2.3),  from 100 

their website https://www.esrl.noaa.gov/psd/ (Adler et al., 2003) for 1979-2017. It is a combined satellite-based product, 

adjusted by the rain gauge analysis. The downloaded 2.5-degree resolution data is re-gridded to 0.5 degrees to harmonize it 

with the grid resolution of the GRACE solutions. 

The spatial resolution of the original GRACE solution (3-degree mascon) and GPCP (2.5-degree) are comparable. However, 

as mascon size varies with latitude, therefore to improve the interpretation both datasets are brought to the 0.5-degree grid.   105 

3 Methods 

3.1 Storage deficit 

It is useful to know the total amount of missing water from an ecosystem in order to characterize a drought so that an explicit 

target can be assumed that defines a drought recovery. Currently, global gridded total water storage variations can only be 

obtained from GRACE TWSA. The TWSA is first smoothed by three months moving average filter, followed by the removal 110 

of a linear trend to reduce the impact of long-term signals in the storage. A linear trend in storage variability can be caused by 

other continuous/long term processes than just precipitation, like upstream water abstraction, groundwater pumping, 

increase/decrease in snowmelt, etc. The reduced TWSA is termed as dTWSA. The deviation of storage (dTWSA) from its 

normal water storage cycle (i.e., its historical climatology) can give an idea of the severity of drought phenomena.  Here, we 

define ‘recovery’ as a return to the climatological storage state for a given month.  The climatology of the time series is 115 

estimated over the 15-year GRACE record (April 2002-March 2017) by averaging values from the same months of each year 

(i.e., all Januaries, all Februaries, so on). The negative residuals of the dTWSA from its climatology are considered as water 

storage ‘deficit’ in a grid cell (Thomas et al., 2014). If the duration of negative residuals is longer than three months, we 

designated it as a drought event. If recurring drought happens within a month gap (i.e., recovery shorter than one-month 

duration), we considered it a continuation of the same drought. The green plot in Fig.1 shows the duration and severity of 120 

recurring drought in an example location in Australia (centered on 133.75°E 16.75°S). Using this approach, we produce a 

global gridded drought characteristics record, which includes the frequency, severity, and duration of drought, for the 2002-

2017 period. For any instance and location, the state of drought and its length can be identified by quantifying the water storage 
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deficit from dTWSA. Eventually, recovery duration for each drought can also be observed, i.e., how long negative residuals 

from climatology continued. For instance, Figure-1 shows three major droughts and their respective recovery periods (1.5, 1 125 

and 0.5 years) for a sample location in Australia.  

Figure 1 

3.2 Estimation of the required-precipitation for storage deficit 

The amount of required-precipitation to overcome a deficit is estimated using the association between precipitation and TWSA. 

Monthly GPCP observations are first reduced by their mean for the April 2002 – March 2017 period (i.e., the 15-year GRACE 130 

data record) to obtain precipitation anomaly. Then the relationship between precipitation and storage anomalies are derived. 

For this, first, both variables are smoothed by a three-month moving average low pass filter to remove high-frequency noise. 

Then, their linear trends are removed to reduce the impact of other processes like groundwater, upstream abstraction, glacier 

melts, etc (as discussed above) and to focus our analysis on sub-decadal drought events within the GRACE period. The 

smoothed and detrended precipitation anomaly is then integrated in time to obtain a cumulative detrended smoothed 135 

precipitation anomaly (cdPA) and compared with the smoothed and detrended storage anomaly (dTWSA). 

An ecosystem may behave differently under stress (a deficit period) than under an excess-water situation. In this study, the 

storage (dTWSA) and precipitation (cdPA) linear relationship have been analyzed only during historical deficit periods as the 

system behaves differently under stress (Famiglietti et al., 1998; Vereecken et al., 2007). Several researchers used rainfall-

runoff curve like soil conservation service curve number (SCS-CN) for the computation of surface runoff based on 140 

precipitation with an assumption of stable relation between rainfall and abstraction (Mishra et al., 2006; Singh et al., 2015; 

Verma et al., 2017). This study also assumes that precipitation intensity for a region does not change significantly over time, 

consequently, the relationship between precipitation and storage variability can be considered stable. 

 Figure 2 shows the strength of this relationship by correlation coefficients in the top panel and linear regression coefficients 

in the bottom panel. In addition to storage variability, precipitation is also lost in other hydrological processes like 145 

evapotranspiration, runoff, etc. Therefore, for most of the regions, required precipitation is more than the amount of missing 

water (i.e., regression coefficients greater than 1), except for the regions with frozen surfaces or weak precipitation-storage 

coupling (non-red regions in Figure 2a). For example, in higher latitudes, mass loss observed by GRACE during spring 

snowmelt is not directly linked to precipitation. Additionally, highly arid regions also have weak precipitation and storage 

signals. Therefore, the proposed method is not suitable for regions with weak precipitation-storage coupling. These regions of 150 

the weak association are identified based on regression coefficients below 1 (Figure 2b), as less than one or negative 

relationship between storage variability and precipitation may describe a case in which storage variability is not linked to a 

direct precipitation effect. Also, locations having less than five months of drought in 15 years are considered as regions of the 

weak association because we don’t have enough drought samples to derive their association. The regions of weak association, 

(regression coefficients less than 1) are considered as unsuitable for the GRACE based recovery analysis and have been masked 155 

out in this study. 

Figure 2 

Based on the derived linear relationship between cdPA and dTWSA (Figure 2, bottom plot), a required-precipitation is 

estimated for each regional drought period. The method for the estimation of required-precipitation is shown in Figure 3 at an 

example location (133.75°E 16.75°S) in Australia. The top panel shows an agreement between cdPA (black plot) and dTWSA 160 

(red plot). In the bottom panel, an absolute required-precipitation (blue plot) is calculated by adding precipitation climatology 

to the estimated surplus required-precipitation (magenta plot), to fill the storage deficit (green plot). Analogous to an 

accounting methodology, this approach applies the assumption that generally more precipitation than usual (climatology) is 

required to replenish the losses incurred during drought. The example location has a strong annual signal (5 - 150 mm, with 

predominantly winter rain), which led to a relatively high ratio of required precipitation to the amount of missing water.  165 

https://doi.org/10.5194/hess-2019-590
Preprint. Discussion started: 17 December 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

3.3 Historical Precipitation analysis 

Historical precipitation data from GPCP (1979 to 2017) are statistically analyzed in order to create a simplistic precipitation 

forecast. Note that the motivation for providing a precipitation forecast here is not to present a state-of-the-art precipitation 

prediction, but to demonstrate the potential utility of the terrestrial water storage deficit in determining required precipitation 

and estimating a likely time to recovery. This methodology could be augmented with any type of more complex precipitation 170 

forecasting approaches. 

3.3.1 Precipitation signal decomposition 

Historical precipitation data is decomposed into a linear trend, as well as seasonal, inter-annual and sub-seasonal components 

in order to explore temporal variability. First, an annual signal/climatology (mean of each month, e.g., all January, February, 

etc.) and a linear trend are extracted from the original signal. They are directly used for signal reconstruction with the 175 

assumption that a similar long-period trend will continue. Then, the residual signal is filtered by a 12-month low-pass window 

to split it into a smooth inter-annual signal and a high-frequency sub-seasonal signal. The linear trend and inter-annual signal 

together are considered to contribute to long-term variability. The individual variance of the annual, long-term and sub-

seasonal signals is normalized by their sum, in order to get their fractional contribution to local variability (Figure 4). This 

provides an overview of the relative importance and spatial distribution of these components in global temporal variability.  180 

As figure 4 shows, most regions are dominated by a seasonal cycle in precipitation.  

Figure 4 

3.3.2 Signal reconstruction and forecasting skill 

Based on the above findings, we formulate a statistical model for hindcasting precipitation. The extracted annual signal and 

the linear trend by signal decomposition (section 3.3.1) are directly used for the precipitation reconstruction, with the 185 

assumption of the continuation of the similar variability. Further, interannual variability in the precipitation data is added by 

autoregression for 10-14 months depending on the length of significant autocorrelation. Finally, the sub-seasonal signal is 

added, which can only be reconstructed for 0-3 months due to the lack of significant temporal autocorrelation.  

Figure 5 shows the precipitation hindcast for January 2016-December 2017 at an example location (56.25°W 27.75°S) in the 

La-Plata basin. Figure 5a shows that the estimated precipitation (red plot) compared to its climatology (blue plot) and GPCP 190 

observations (black plot) for the same duration. Figure 5b shows the reconstructed interannual precipitation by autoregression. 

The figure shows that interannual autoregression (blue plot) signals have a good association with the observed interannual 

signal (black plot) until the first 11 months. The sub-seasonal auto autoregression is significant only for two months in the 

example location. The final hindcast is an integration of a linear trend, climatology, sub-seasonal and interannual auto 

autoregression. 195 

Figure 5 

3.3.3 Hindcast evaluation 

The statistically reconstructed global precipitation time series for two years (January 2016 - December 2017) is evaluated by 

GPCP observations using Nash-Sutcliffe efficiency (NSE). NSE illustrates the model efficiency over the mean, i.e., if Nash- 

Sutcliffe coefficients are zero or less than zero, then the model is equal or worst than the observational mean respectively. 200 

Figure 6 (red region) shows that the reconstructed full signal is in good agreement with GPCP observations. In these regions, 

fractional variability in the climatology and long-term signal are most robust (Figure 4a & 4b). Regions dominated by the 

high-frequency fractional variance (Figure 4c) are not well represented in our model (the white and blue area of Figure 6).  

Figure 6 
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3.4 Probabilistic recovery 205 

Precipitation is the major control on drought dynamics. Knowing the amount of precipitation required to overcome a drought 

(at any instance and any location globally), presents the opportunity for the estimation of a likely drought recovery period. We 

can apply a probabilistic approach by using the historical precipitation forecast model to simulate different precipitation 

scenarios based on the historical distribution of precipitation for each region. Here, we propose three precipitation scenarios: 

1) normal precipitation (as described in section 3.3.2), 2) one standard deviation wetter than normal precipitation (wet year) 210 

and 3) three standard deviations wetter than normal precipitation (exceptionally wet year). The latter two scenarios are based 

on a standard deviation from the local precipitation climatology, to simulate average rainy and extremely rainy months, 

respectively. Again, we assume that in order to overcome a deficit due to drought, the ecosystem needs to receive a surplus of 

water that surpasses the climatological average. It follows that if drier than normal conditions were to persist indefinitely, then 

a drought could theoretically go on forever. The climatological average is integrated with the estimated surplus required 215 

precipitation (Figure 3b, magenta plot) to obtain the absolute required precipitation (Figure 3b, blue plot). Whenever 

precipitation is more than the absolute required precipitation; the system advances in recovery to its pre-drought state. Based 

on this hypothesis, we simulated the three scenarios for how long any instance of drought will continue, given the expected 

three precipitation cases. Note that the scenarios suggest the needed recovery time for normal, wet, and exceptionally wet 

years, hence providing a minimum baseline for the duration of drought recovery. 220 

4 Results 

4.1 Observed recovery time based on GRACE and GPCP observation  

In this study, drought is defined by the negative deviation of TWSA from its record-length climatology. The observed recovery 

duration is measured directly from the storage deficit, as described previously (Figure 1, Thomas et al., 2014). For our 

approach, we need to know when the observed precipitation is more than the absolute required precipitation (Section 3.2). 225 

Figure 7 shows the recovery estimation of all the droughts occurred during 2002-2017 at four random example locations: 

Northwest tropical Australia (123.25°E 17.75°S), Northeast Argentina in La-Plata basin (56.25°W and 27.75°S), North India 

in Ganges Basin (78.75°E and 27.75°N), North Brazil in Amazon basin (57.25°W and 2.25°S). Whenever the observed 

precipitation (Figure 7, red plot i.e. GPCP) is larger than the required precipitation (blue plot) for its respective month, the 

drought should end. Ideally, GRACE should also observe it simultaneously.  230 

Figure 7 

In Figure 7, observed precipitation (red dashed line) and absolute required precipitation (blue line) are shown only during 

drought periods (green shaded area).  The figure shows that the precipitation during a drought typically stays below its monthly 

required-precipitation until the end of the drought. In most cases, precipitation crossed the required-precipitation limit in 

precisely the same month when GRACE observed the end of storage deficit. Even for the case of recurring droughts with two 235 

or more months gap, both methods observed the end of drought on approximately the same month. To examine our method in 

detail we randomly selected a drought month and validated our approach and estimated the recovery time based on different 

precipitation scenario in the following section. 

4.2 Example of storage deficit and required precipitation 

In this section, we discuss drought in an example month of January 2016. During the study period (2002-2017), the year 2015-240 

2016 was the strongest El-Nino on record and many regions experienced some drought. Nevertheless, it is a random selection 

of the month for the demonstration of recovery analysis and can be applied to any other time window. Figure 8 shows the 

regions under drought in January 2016 (Figure 8a) and the estimated required-precipitation to overcome the drought (Figure 

8b). All colors other than white in the figure are drought-affected regions within the region of strong precipitation-storage 
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relations (discussed in section 3.2). The color bar demonstrates the severity of the drought, i.e., the amount of missing water 245 

(top panel) and the respective amount of required precipitation (bottom panel). Figure 8a shows the eastern Amazon, southern 

Australia, south-east Africa, and north India were under severe drought in 2016. 

Figure 8 

4.2.1 Validation 

To validate our approach, we compared recovery periods in Figure 9. The figure shows the recovery period from the January 250 

2016 drought state, observed by GRACE (Figure 9a) and estimated recovery based on absolute required precipitation and 

GPCP observations (Figure 9b). Figure 9c highlights the consistency in the estimated recovery period where one indicates 1– 

2 months difference, 2 indicates 3–4 months difference, 3 indicates 5–8 months difference and 4 indicates 9+ months 

difference. The blue area in the figure is the region with extremely different recovery estimates, which can be accounted to an 

error in datasets. For the January 2016 drought, approximately 80% of the global land area demonstrated a similar recovery 255 

period (+/- 1-2 months) to what was predicted (category 1 in Figure 9c). 

Figure 9 

4.2.2 Different precipitation scenario 

This section demonstrates the probability of recovery duration in different precipitation scenarios. In the first section, we talk 

about the expected recovery percentage within a month in three different precipitation scenarios. And in the second section, 260 

we projected the duration needed to overcome the January 2016 drought within the study period (until March 2017).  

4.2.2.1 The expected one-month recovery state 

Spatiotemporal patterns of drought at the global scale are largely uncharacterized. Often, one-month of surplus precipitation 

is not enough to fill the entire deficit. However, if it rains significantly above average immediately after/during the drought, 

the recovery time decreases dramatically. We stimulated one-month (February 2016) recovery percentage for the January 2016 265 

drought, given the three different precipitation scenarios (discussed in section 3.4). The surplus precipitation within a month 

(February) is divided by the required estimated precipitation to calculated percentage recovery. In most of the drought-affected 

regions, recovery percentage of our forecasted normal precipitation (Section 3.3.2) for February 2016 is more than the recovery 

percentage of observed GPCP precipitation (Figure 8d). This indicates, February 2016 was drier than our estimated normal.  

Most of the region recovered in extremely wet scenario (Figure 8c) within a month, except, regions dominated by summer 270 

monsoon (Figure 8c, blue/cyan colored area) with less than 30 % recovery, as February is not a rainy season for this region. 

This shows a case that regions with high amplitude seasonal cycles in precipitation mostly recover during their rainy season, 

which varies globally. 

Figure 8 

4.2.2.2 Best estimated time for recovery 275 

Recovery time varies from immediate (i.e., one month) to several years across different climate zones and depending on the 

severity of the drought. Figure 10 shows the predicted recovery duration of the January 2016 drought state, which ranges from 

a month (blue color) to not recoverable within the study period of 15 months (dark red color). Figure 10d shows the recovery 

duration observed by GRACE, which is considered as truth. Figure 10a & 10b show that most of the region under severe 

drought in 2016 did not recover with even one standard deviation wetter than normal precipitation and the drought in these 280 

regions continued beyond a year. In the extremely wetter (three standard deviations) than normal situation (Figure 10c) most 

of the regions recovered within 4-5 months, except for regions of most severe drought, such as the South East Amazon, and 

Southern Africa. Even in the extremely wet scenario, the monsoon region (Figure 10c, cyan color) recovered only during their 

rainy season (in 6-7 months from January 2016). This demonstrates that information on the state of precipitation compared to 

its usual can provide an idea of the expected drought recovery duration provided we know the amount of precipitation required.  285 
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Figure 10 

5 Discussion 

Here we define drought using the observed storage deficit from GRACE TWSA, which is a 3-months or greater negative 

deviation from the historical, record-length climatology for each region, following Thomas et al. (2014). Generally, we 

considered this to be a better metric of integrated drought effects than a negative departure from climatology in precipitation 290 

or soil moisture because the former includes all components of the water cycle and represents the integrated state of the local 

the water budget closure, dS/dt. We observe that occasionally precipitation anomalies are depressed a couple of months before 

GRACE sees the beginning of drought onset because the net water mass balance can stay stable for some time by a 

compensating decrease in ET and runoff. Similarly, precipitation shows a positive deviation from climatology (i.e., excess 

precipitation) well before GRACE observes the end of the drought because of the time-lag to fill the rootzone soil moisture 295 

(Eltahir and Yeh, 1999). (Dettinger, 2013; Maxwell et al., 2013) also argued that drought onset is quicker than drought 

termination. Sometimes very heavy rain can quickly bring a region entirely out of a drought, but in many cases, continuous 

surplus precipitation is needed to bring the entire soil water column (i.e., from the surface to groundwater) to fully recover. 

Only GRACE can measure total variations in all of the hydrological compartments in a region.   

The critical feature of the GRACE-based drought recovery framework is the estimation of required-precipitation to fill a 300 

storage deficit. Figure 2 shows that TWSA is closely associated with cumulative precipitation anomaly for most regions, except 

in deserts and high-latitudes. In large arid regions, monthly storage variability is significantly low due to low rainfall. In high-

latitudes, seasonal water storage variability is mainly driven by temperature because of snow accumulation and melt. Typically 

in cold regions, winter snow accumulation and spring snowmelt drive increases and declines in TWSA, decoupling the storage 

variability from precipitation variability, which leads to a phase shift in their seasonality and weak correlation between them 305 

(Reager and Famiglietti, 2013).  For these reasons, a storage-based drought recovery metric is not as capable in desert and 

high-latitude areas and have been masked out in the results section. 

Variability in the historical precipitation data is analyzed by signal decomposition to develop a simple precipitation forecast 

model. Precipitation signals are hindcast by combining the climatology with the linear trend and an interannual signal estimated 

from autoregression. Figure 4 shows that in most regions seasonal variability is the strongest signal, except in big deserts, 310 

Eurasia and northwest America. These regions have high monthly sub-seasonal variability in precipitation which is hard to 

reconstruct. Additionally, due to the contribution of snowfall in higher latitudes and very low rainfall in deserts, bias correction 

in precipitation data are relatively less reliable. Consequently, we have less confidence in precipitation simulations in those 

regions (Figure 6).  

In addition to the normal precipitation forecast, two more precipitation scenarios are simulated based on one and three standard 315 

deviations from the climatology, assuming that a system recovers from drought only when the precipitation is more than the 

usual (climatological) precipitation of the corresponding month. Figure 10 demonstrates percentage recovery given these three 

different precipitation scenarios. The figure shows that most regions show significant recovery within a month in three standard 

deviations wetter than normal scenario, except for regions which are not in their respective rainy season. As precipitation can 

be scarce in non-rainy-season months, even three standard deviations wetter than the historical average precipitation would 320 

not be a substantial amount of rain to replenish the water deficit in these periods. We further investigate the recovery duration 

based on different precipitation scenario (Figure 11) and find that under normal precipitation, most regions will not recover 

significantly within the study duration, but for three standard deviations wetter-than-normal rain, they recover within 3-4 

months. However, for the regions with strong seasonal intensity of precipitation (monsoonal region), the figure showed 

recovery only during its rainy season (after 6-7 months) even in extreme wet scenario. 325 

a) Recovery period observed by GRACE  
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We validated our required precipitation estimates by comparing the recovery period observed by GRACE and estimated by 

our method on the GPCP observations (Figure 8) at different locations, which showed good concurrence. Also in Figure 11, 

the drought recovery duration for an example month of January 2016 demonstrated a good agreement between the observed 

recovery by GRACE and estimated recovery by GPCP for most of the regions (80% within +/- 1 month).  

Knowing the present state of precipitation, i.e., how much surplus we have over usual climatology of a region can give an idea 330 

of expected recovery duration, provided we know the amount of precipitation needed to fill the deficit. With the improved 

precipitation forecasting skills, more accurate drought recovery estimates can be obtained. Nevertheless, the study 

demonstrates a case of application of GRACE for the estimation of required precipitation for drought recovery. 

6 Conclusions 

Increasing water-demand and future uncertainties in climate necessitate the assessment of the potential impact of drought and 335 

its expected recovery duration. The consequences of drought can be minimized through adaptation and risk management 

efforts, informed by the amount of missing water in a system and required-precipitation needed to bring it back to normal. 

Recurring droughts due to insufficient recovery can be minimized to a large extent by managing water resources wisely 

particularly during the deficit period until all of the hydrological components revert to the pre-drought state. The study 

demonstrates the utility of GRACE terrestrial water storage anomalies (TWSA) in obtaining statistics of hydrologic drought, 340 

i.e., its recovery period and required precipitation to recover with sensitivity test to different precipitation scenarios. The 

benefits of the GRACE-based drought index for drought analysis are: 1) the independency from other drought indices and 2) 

the spatial coverage of the GRACE data (much of the globe). However, recovery analysis is limited to the area where linear-

relationships between TWSA and cumulative precipitation anomaly exhibit strong linkages  

The findings of this study are 1) the GRACE based drought index is valid to estimate the required precipitation for drought 345 

recovery and 2) the period of drought recovery depends on the intensity of precipitation i.e. in the dry season of the year 

drought continues even with above-normal precipitation. The recovery period estimated by our approach matches well with 

the recovery observed by GRACE for most regions (80%) for the demonstrated drought month. This approach can be extended 

with the availability of new GRACE follow-on (GRACE-FO) datasets, launched in May 2018. The proposed method and 

analyses in this study are applicable to the development of operational drought monitoring system that can provide the 350 

actionable information for drought recovery given that the skillful precipitation prediction is available. 
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 480 
Figure 1: Water storage deficit from GRACE: The smoothed and detrended TWSA (dTWSA in red plot) is reduced by its 
climatology (black plot), to estimate deviation from the climatology. The negative residuals from the climatology are plotted on the 
upper axis as a green shaded area and scaled on the right side. The grey shade indicates ±1 standard deviation of the climatology. 

  

https://doi.org/10.5194/hess-2019-590
Preprint. Discussion started: 17 December 2019
c© Author(s) 2019. CC BY 4.0 License.



14 
 

a) Correlation coefficients 
 

 
b) Regression coefficients 

 
Figure 2: a) Correlation coefficients and, b) regression coefficients between cumulative detrended precipitation anomalies 

(cdPA) and detrended terrestrial water storage anomaly (dTWSA). 
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Figure 3: Estimation of the required-precipitation at an example location. a) Cumulative detrended 
precipitation anomaly (cdPA) compared with the detrended storage anomaly (dTWSA). b) Surplus 
required-precipitation is estimated (magenta plot) from the linear relationship between dTWSA and 
cdPA, to fill the storage deficit (green plot). Then precipitation climatology is added to obtain absolute 
required-precipitation (blue plot). 

 

a) Precipitation-storage association 

b) Estimation of required precipitation 
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Figure 4: Fractional variance of the decomposed precipitation signal. a) Annual signal. b) long-term 

signal. c) sub-seasonal signal 
 

a) Annual signal 

b) Linear trend + inter-annual signal 

c) High-frequency signal 
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Figure 5: Reconstruction of precipitation signal for 2016-2017. a) The reconstructed signal compared 

with GPCP observations and its climatology. b) The reconstruction of a long-term secular signal from the 
linear trend, and inter-annual and sub-seasonal autoregression, compared to GPCP interannual signal. 
 

  

a) Improvement over climatology  

b) Reconstruction of non-climatological signals 
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Figure 6: Nash-Sutcliffe coefficients for 2016-17 precipitation hindcasting. 
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Figure 7 Validation of the required precipitation estimate by drought recovery estimates at example 

locations. The different instances of drought show that drought ends (from the perspective of TWSA) 
whenever observed precipitation (red plot) exceeds the required-precipitation (blue plot). 
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Figure 8:  a) Storage deficit in an example month (January 2016). b) the amount of required-

precipitation to fill the deficit.  
 495 
  

a) Storage deficit  

b) Required precipitation 
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Figure 9: Validation of the estimated required-precipitation by the recovery duration from January 2016 drought observed 
from: a) GRACE and b) estimated by the discussed method using GRACE and GPCP observations (middle panel). c) 
consistency in the observed recovery duration by GRACE and GPCP (1 = 1-2 months difference, 2 = 3-4 months 
difference, 3 = 5-8 months difference and 4 = 9+ months difference). 

  

b) Recovery period estimated by the discussed method 

c) Consistency in the recovery period  

a) Recovery period observed by GRCAE 
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a) Normal precipitation 

 
b) 1 s wetter than normal precipitation 

 
c) 3 s wetter than normal precipitation 

 
d) Observed (GPCP) precipitation 

 
Figure 10: Expected percent recovery in a month given the three different precipitation scenarios and the 

observed GPCP precipitation. 
 

 

  

https://doi.org/10.5194/hess-2019-590
Preprint. Discussion started: 17 December 2019
c© Author(s) 2019. CC BY 4.0 License.



23 
 

 500 

a) Normal precipitation 

 
b) 1 s wetter than normal precipitation 

 
c) 3 s wetter than normal precipitation 

 
d) Observed (GRACE) recovery duration 

 
Figure 11: Duration of drought recovery, from January 2016, given the three different precipitation scenario 

and as observed by GRACE. 
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