

1	A novel framework of deriving joint impoundment
2	rules for large-scale reservoir system based on a
3	classification-aggregation-decomposition approach
4 5 6 7	Shaokun He ^{1, 2, 3} , Shenglian Guo ^{1, *} , Chong-Yu Xu ^{1, 3} , Kebing Chen ¹ , Zhen Liao ¹ , Lele Deng ¹ , Huanhuan Ba ¹ , Dimitri Solomatine ^{2, 3}
8	¹ State Key Lab. of Water Resources & Hydropower Engineering Science, Wuhan Univ., 430072,
9	Wuhan, China;
10	² Hydro-informatics Group, IHE Delft Institute for Water Education, Delft, the Netherlands;
11	³ Water Resources Sect., Delft Univ. Technol., Delft, the Netherlands;
12	⁴ Dept. of Geosciences, University of Oslo, Oslo, Norway.
13	
14 15	*Correspondence author: Shenglian Guo (Email: slguo@whu.edu.cn).
16	Abstract: Joint and optimal impoundment operation of the large-scale reservoir system
17	has become more crucial for modern water management. Since the existing techniques
18	fail to optimize the large-scale multi-objective impoundment operation due to the
19	complex inflow stochasticity and high dimensionality, we develop a novel combination
20	of parameter simulation optimization and classification-aggregation-decomposition
21	approach here to overcome these obstacles. There are four main steps involved in our
22	proposed framework: (1) reservoirs classification based on geographical location and
23	flood prevention targets; (2) assumption of a hypothetical single reservoir in the same
24	pool; (3) the derivation of the initial impoundment policies by the non-dominated
25	sorting genetic algorithm-II (NSGA-II); (4) further improvement of the impoundment
26	policies via Parallel Progressive Optimization Algorithm (PPOA). The framework

27 potential is performed on China's mixed 30-reservoir system in the upper Yangtze River. Results indicate that our method can provide a series of schemes to refer to different 28 flood event scenarios. The best scheme outperforms the conventional operating rule, as 29 it increases impoundment efficiency from 89.50% to 94.16% and hydropower 30 31 generation by 7.70 billion kWh (or increase 3.79%) while flood control risk is less than 0.06. 32 33 Keywords: Large-scale reservoir system; Joint impoundment rules; Multi-objective operation; Classification-aggregation-decomposition; Yangtze River basin 34 **1** Introduction 35 Rapid economic development and the growth of the human population are 36 37 responsible for more serious and wider water-related challenges, which lead to greater

stress on water resources management. One of the most effective measures to alleviate 38 water issues is to regulate natural streamflow via reservoirs (Lauri et al., 2012;Ng et al., 39 40 2017). Cascade impoundment operation can properly achieve the goal since it stores 41 excess water during the wet season and depletes reservoir storage during the dry season (Afshar et al., 2010;Labadie, 2004). In recent decades, impoundment operation has been 42 one hot academic topic. Considerable research efforts (Liu et al., 2011;Paredes and 43 Lund, 2006;Xu et al., 2017;Yeh, 1985) frequently point out that its key to the scientific 44 operation is deriving effective operating policies. However, most of the literature 45 merely focuses on the small-scale reservoir system, yet fails to address the complex 46 inflow stochasticity and high dimensionality of the multi-objective trans-basin (Yan et 47 48 al., 2012) and trans-province impoundment problems (Jurasz and Ciapala, 2017), even if the latter large-scale impoundment operation is more necessary and suitable for 49

50 modern water resources management (Wang et al., 2014;Zhou et al., 2018). 51 As a matter of fact, the inherent scientific characteristics of inflow stochasticity for large-scale impoundment operation has no difference with the small-scale one, there 52 are three theoretical breakthroughs to cope with it: (1) implicit stochastic optimization 53 54 (ISO) (Feng et al., 2017), (2) explicit stochastic optimization (ESO) (Goor et al., 2010), and (3) parameter simulation optimization (PSO) (Zhang et al., 2019). ISO requires 55 56 'perfect inflow forecast' and ESO behaves in a more complex way to explicitly incorporate all inflow probabilities. PSO is relatively preferred for large-scale operation 57 58 (Celeste and Billib, 2009; Tan et al., 2017), which predefines a rule curve shape and then employs heuristic algorithms to identify the best parameter combination under all 59 possible inflow scenarios. Regarding another well-known 'high dimensionality' in the 60 61 PSO framework, the original simulation model is usually replaced by a surrogate model for simplification. The surrogate should preserve and describe the main features of the 62 original model (Chu et al., 2015;Shaw et al., 2017;Zhang et al., 2017). The subtle 63 combination of the PSO framework and a surrogate model has indeed made some 64 65 achievements in addressing inflow stochasticity and dimensional curse of multireservoir hydropower (Glotic and Zamuda, 2015; Valdes et al., 1992) and flood control 66 operations (Zhang et al., 2019), but is seldom utilized in large-scale impoundment 67 operation. 68

69 The major challenge lies in the reliability of the surrogate model. On the one hand,
70 it should highlight the reservoir storage state as the most vital indicator to track the
71 original system status, since the highest priority of impoundment operation is to ensure

72 certain storage for flood prevention during the operating horizon and to raise enough end reservoir storage for water demand during the following dry period (Li et al., 73 2018;Xu et al., 2017); Additionally, it also should reduce the number of decision 74 variables, making it possible to solve the curse of dimensionality. While it is noticed 75 76 that reservoirs can be classified into different pools according to the tributaries and flood prevention targets (Zhang et al., 2014), a novel idea of 'classification-77 78 aggregation-decomposition' is naturally introduced to structure the proper surrogate model. The reservoirs in the same pool are firstly aggregated in water units to capture 79 80 reservoir storage information, then a decomposition method is used to decentralize reservoir storage decisions into individual reservoirs in each pool. The salient feature 81 of this approach is to simplify the large-scale system into several equivalent hypothetic 82 83 reservoirs via aggregation, which caters to the replacement requirement of the 84 impoundment model.

Nevertheless, the current decomposition methods still have some degree of 85 drawbacks. Li et al. (2014a) and Zhang et al. (2019) allocated the virtual reservoir 86 87 output to individual reservoirs by using the empirical equations. Both made a quick decision on decomposition forms but did not consider the maximum utilization of water 88 resources. Tan et al. (2017) adopted an improved genetic algorithm to seek for the 89 optimal decomposition scheme in the water-supply systems, but it is more time-90 91 consuming since the calculation of the evaluation function goes to an exponential increase with the number of involved reservoirs (Castelletti et al., 2012;Zhao et al., 92 2012). These common techniques cannot balance computing efficiency and optimal 93

operating rules well. This limits their further application in practice. Actually, the recent
implementation of parallel computation has been proved able to reach a balance point
(Li et al., 2014b;He et al., 2019), although the parallelization technique attracts little
attention up to now. To this end, an emerging method-Parallel Progressive Optimization
Algorithm (PPOA) (Feng et al., 2018b) is introduced to assist our decomposition
strategy. It is a means of improving the quality of optimization while using a multi-core
configuration to enhance execution efficiency (Cheng et al., 2014).

101 To verify the feasibility of the proposed framework, we select a typical mixed 30-102 reservoir system in China as the case study, where two objectives of reservoir impoundment efficiency (IE) and flood control risk (FCR) are simultaneously 103 optimized, and then PPOA improves hydropower generation of individual reservoirs of 104 105 each pool without IE and FCR distortion. The remainder of the paper is structured as follows: Section 2 addresses the 30-reservoir system and describes their conventional 106 operating rules for impoundment operation; Section 3 introduces the framework in 107 detail; Section 4 and Section 5 provide the experimental results and the application 108 109 prospects of this method; Section 6 ends with the conclusions.

110 2 Case study

111 The Yangtze River (in Fig. 1a) basin possesses abundant water potential in China. 112 It drains a catchment of 1.80 million km² with a total length of 6,300km. Its main 113 tributaries include the Jinsha River, Yalong River, Min River, Jialing River, and Wu 114 River. Owing to the subtropical monsoon climate, the Yangtze River basin often suffers 115 from the uneven temporal and spatial distribution of flood hazards induced by heavy

116	rainfalls. A series of large reservoirs have been built along its mainstream and tributaries
117	to allocate water resources in recent decades. Among them, a 30-reservoir system
118	including the core Three Gorges Reservoir (TGR) (in Fig. 1b) is one of the most critical
119	water conservancy projects in China. Most reservoirs in the system serve multi-
120	purposes (e.g., flood control, energy generation, tourism), except for Ge-Zhou-Ba (GZB)
121	which is a run-of-river hydropower station. Particularly, TGR serves as the largest water
122	project around the world, which is not only equipped with 22.50 GW installed
123	hydropower capacity, but also prevents downstream flood disaster. The 30-reservoir
124	system usually implements an impoundment operation to develop water resources. The
125	characteristic parameters of the 30 reservoirs are shown in Table 1.
126	<please 1="" fig.="" here="" insert=""></please>
127	<please 1="" here="" insert="" table=""></please>
127 128	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules</please>
127 128 129	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir</please>
127 128 129 130	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir</please>
127 128 129 130 131	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir water level should rise linearly throughout the whole impoundment horizon until it is</please>
127 128 129 130 131 132	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir water level should rise linearly throughout the whole impoundment horizon until it is up to the top of the conservation pool. However, overlapping the impoundment time</please>
127 128 129 130 131 132 133	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir water level should rise linearly throughout the whole impoundment horizon until it is up to the top of the conservation pool. However, overlapping the impoundment time of cascade reservoirs makes them compete with each other. It results in reduced water</please>
127 128 129 130 131 132 133 134	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir water level should rise linearly throughout the whole impoundment horizon until it is up to the top of the conservation pool. However, overlapping the impoundment time of cascade reservoirs makes them compete with each other. It results in reduced water supplies to face the following non-flood season. In fact, two preset strategies of (1)</please>
127 128 129 130 131 132 133 134 135	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir water level should rise linearly throughout the whole impoundment horizon until it is up to the top of the conservation pool. However, overlapping the impoundment time of cascade reservoirs makes them compete with each other. It results in reduced water supplies to face the following non-flood season. In fact, two preset strategies of (1) advancing initial impoundment operation timing, but not earlier than Aug 1st; (2)</please>
127 128 129 130 131 132 133 134 135 136	<please 1="" here="" insert="" table=""> For the impoundment operation of these reservoirs, Conventional Operating Rules (CORs) are often individually predefined at the planning stage of reservoir construction to provide guidelines. As Fig. 2 shows, COR suggests that the reservoir water level should rise linearly throughout the whole impoundment horizon until it is up to the top of the conservation pool. However, overlapping the impoundment time of cascade reservoirs makes them compete with each other. It results in reduced water supplies to face the following non-flood season. In fact, two preset strategies of (1) advancing initial impoundment operation timing, but not earlier than Aug 1st; (2)</please>

138	River basin (He et al., 2019). The aim of the joint impoundment operation of the 30-
139	reservoir system is to make efficient water resources utilization, on the condition that
140	it reserves enough storage capacity for flood control. The restored inflow series from
141	Aug 1st to Dec 31st spanning over 57 years (i.e. 1956-2012) are collected from the
142	Yangtze River (Changjiang) Water Resources Commission. The time step used is ten
143	(or eleven) days, a traditional Chinese measure of time, and therefore there are 15
144	operating periods for the five months per year.
145	<please 2="" fig.="" here="" insert=""></please>
146	3 Methodology
147	Fig. 3 shows our research framework to derive the optimal impoundment rules for
148	the 30-reservoir system. The methodological modules are summarized below:
149	(1) All reservoirs are classified into different pools (in Table 1) according to their
150	geographic locations and flood prevention targets etc.;
151	(2) Reservoirs in the same pool are aggregated in water units to be a virtual
152	reservoir and the virtual reservoir storage is treated as the state variable during the
153	optimization process;
154	(3) PSO is employed to derive initial impoundment rules by considering the trade-
155	offs between IE and FCR;
156	(4) PPOA helps formulate the final impoundment rules by boosting hydropower
157	generation without IE and FCR distortion.
158	<please 3="" fig.="" here="" insert=""></please>
159	3.1 Reservoirs classification

160	During an impoundment optimization process, the dimensionality of decision
161	variables increases linearly with the number of reservoirs; meanwhile, the
162	computational burden of the objective function trends an exponential increase (Galelli
163	and Castelletti, 2013). The vast reservoir community results in 'dimensionality disaster',
164	which makes it tricky to derive effective joint rules. An attractive alternative to solve
165	dimensionality restrictions is to classify these reservoirs and reduce their decision
166	variables. The basic idea is to divide the 30-reservoir system into different pools
167	according to their geographic distributions in the same tributary and flood prevention
168	targets etc. (Heever and Grossmann, 2000;Saad et al., 1994).

169 **3.2 Aggregation and decomposition schemes**

Conceptually, these reservoirs in the same pool can be assembled into a virtual one.
The hypothetical reservoir should retain the main characteristics yet ignore its hydraulic
connection (Duran et al., 1985). As shown below, the reservoirs are aggregated in water
units to simplify guidance on impoundment optimization (Tan et al., 2017):

174
$$V_i^*(t) = \sum_{n=1}^{M_i} V_{i,n}(t)$$
(1)

175
$$I_i^*(t) = \sum_{n=1}^{M_i} I_{i,n}(t) - Eva_i(t)$$
(2)

where $V_i^*(t)$ and $I_i^*(t)$ are hypothetical reservoir storage and inflow of the *i*th pool at time *t*, respectively; $V_{i,n}(t)$ and $I_{i,n}(t)$ are the storage and inflow from external sources of the *n*th reservoir of the *i*th pool at time *t*, respectively; $Eva_i(t)$ is the sum loss of the *i*th pool at time *t* (e.g., evaporation, seepage); M_i is the total number of reservoirs in the *i*th pool.

181	As reservoir storage is often treated as the state variable for reservoir operation
182	(Feng et al., 2018a; Chang and Chang, 2006), the virtual storage $V_i^*(t)$ is chosen here
183	as the state variable for the optimization process. It can be easily formulated by Eq. (1)
184	in any case of reservoir topology (shown in Fig. 4). Fig. 4(a) and Fig. 4(b) are
185	considered in our case study.
186	<please 4="" fig.="" here="" insert=""></please>
187	The state variable $V_i^*(t)$ of each pool at all periods could be determined by the
188	aggregated impoundment rules. Another issue is how to allocate $V_i^*(t)$ to individual
189	reservoirs in the same pool. Some traditional decomposition strategies (e.g., fixed
190	proportions) have been experimented well (Turgeon, 1980;Zhang et al., 2019). In our
191	study, a similar decomposition way of the percentage of the allowable reservoir storage
192	is initially taken:

193
$$V_{i,n}(t) = SL_{i,n}(t) + (V_i^*(t) - \sum_{m=1}^{M_i} SL_{i,m}(t)) \times \frac{SS_{i,n}(t) - SL_{i,n}(t)}{\sum_{m=1}^{M_i} (SS_{i,m}(t) - SL_{i,m}(t))}$$
(3)

where $SL_{in}(t)$ is the lower boundary of the *n*th reservoir storage of the *i*th pool at time 194 $t; SS_{in}(t)$ is the *n*th reservoir storage of the *i*th pool at time t, which is relative to its 195 seasonal top of buffer pool. 196

3.3 Parameter simulation optimization (PSO) 197

The decomposition structure is embedded into the aggregation module, where the 198 latter combines with the multi-objective impoundment model to explore trade-offs 199 between the IE maximization and the FCR minimization (Liu et al., 2011;Zhou et al., 200 2015). We established the PSO framework (Giuliani et al., 2016;Celeste and Billib, 201 202 2009) here to identify the initial impoundment strategies. As there are seven pools for

- 203 the 30-reservoir system and 15 decision variables for each virtual reservoir (one
- decision variable corresponds to one operating period), there are a total of 105 (=7*15)
- decision variables for these seven virtual reservoirs rather than 450 (=30*15) decision
- 206 variables in real.
- 207 3.3.1 Objective functions and constraints
- 208 *IE* is a critical indicator for impoundment operation to assess water resources
- 209 potential in the case of controllable *FCR* (Zhou et al., 2018):

210 (1) *IE* represents future water resources utilization for the following non-flood

211 period, it can be defined as follows:

212
$$\max IE = \frac{1}{Y} \sum_{y=1}^{Y} \sum_{i=1}^{L} \sum_{n=1}^{M_i} (VE_{i,n}(y) - SD_{i,n}) \sum_{i=1}^{L} \sum_{n=1}^{M_i} (SU_{i,n} - SD_{i,n})$$
(4a)

213
$$IE_{i,n} = \frac{1}{Y} \sum_{y=1}^{Y} \frac{VE_{i,n}(y) - SD_{i,n}}{SU_{i,n} - SD_{i,n}}$$
(4b)

where $IE_{i,n}$ is the annual impoundment efficiency of the *n*th reservoir of the *i*th pool; $VE_{i,n}(y)$ is the end storage of the *n*th reservoir of the *i*th pool in the *y*th year; $SU_{i,n}$, and $SD_{i,n}$ is the *n*th reservoir storages of the *i*th pool, which corresponds to their top of conservation pool and inactive pool, respectively. *I* and *Y* are the number of all pools and years, respectively. *I* is 7 in our case.

219 (2) *FCR*, another critical objective to control the impoundment process, can be220 evaluated as follows:

221
$$\min FCR = \min \{\max \{FCR(t)\}\}, \quad (0 < t \le T \cdot Y)$$
(5a)

222
$$FCR(t) = max\{\frac{\sum_{i=1}^{l}\sum_{n=1}^{M_{i}}(V_{i,n}(t) - SS_{i,n}(t))}{\sum_{i=1}^{l}\sum_{n=1}^{M_{i}}(SU_{i,n} - SS_{i,n}(t))}, 0\}$$
(5b)

223
$$FCR_{i,n}(t) = max\{\frac{V_{i,n}(t) - SS_{i,n}(t)}{\sum_{i=1}^{l}\sum_{n=1}^{M_{i}}(SU_{i,n} - SS_{i,n}(t))}, 0\}$$
(5c)

224 where $FCR_{in}(t)$ is the FCR of the *n*th reservoir of the *i*th pool at time *t*; *T* is the number

of operating periods in one year.

226 3.3.2 Constraints

231

233

235

238

227 A reservoir operation model generally contains the following constraints:

228 (1) Mass balance equation:

229
$$V_{i,n}(t+1) = V_{i,n}(t) + (I_{i,n}(t) + \sum_{j \in \Phi_{j,i,n}} R_j(t) - R_{i,n}(t)) \cdot \Delta t$$
(6)

230 (2) Reservoir storage limits

$$SL_{i,n}(t) \le V_{i,n}(t) \le SS_{i,n}(t) \tag{7}$$

232 (3) Water discharge limits

$$RL_{i,n}(t) \le R_{i,n}(t) \le RU_{i,n}(t), \quad R_{i,n}(t) = Q_{i,n}(t) + QS_{i,n}(t)$$
(8)

234 (4) Hydropower generation limits

$$PL_{in}(t) \le N_{in}(t) \le PU_{in}(t) \tag{9}$$

236 (5) Boundary conditions

237
$$Z_{i,n}(t) = \begin{cases} Z_{i,n,begin}, \ t = 1, T+1, ..., (Y-1)T+1 \\ Z_{i,n,end}, \ t = T, 2T, ..., YT \end{cases}$$
(10)

	where	
	$V_{t}(t) V_{t}(t+1)$	the <i>n</i> th reservoir storage of the <i>i</i> th pool at the beginning and end
	i,n (*), i,n (* * *)	time t
	Φ	the upstream reservoir set which has a physical connection with the
	<i>J</i> , <i>t</i> , <i>n</i>	<i>n</i> th reservoir of the <i>i</i> th pool
	$I_{\rm c}(t)$	the <i>n</i> th reservoir inflow of the <i>i</i> th pool from external sources at
	1,n V	time t

$R_{i,n}(t)$	the <i>n</i> th reservoir release of the <i>i</i> th pool at time <i>t</i>
Δt	the time interval, day
$SL_{i,n}(t), SS_{i,n}(t)$	the lower and upper storage boundaries of the n th reservoir of the i th pool at time t
$RL_{i,n}(t), RU_{i,n}(t)$	the lower and upper water release boundaries of the n th reservoir of the i th pool at time t
$Q_{i,n}(t)$	the generation discharge of the <i>n</i> th reservoir of the <i>i</i> th pool at time <i>t</i>
$QS_{i,n}(t)$	the spillway water of the n th reservoir of the i th pool at time t
$PL_{i,n}(t), PU_{i,n}(t)$	the lower and upper hydropower output boundaries of the n th reservoir of the i th pool at time t
$Z_{i,n}(t)$	the water level of the n th reservoir of the i th pool at time t
$Z_{i,n,\textit{begin}}$, $Z_{i,n,\textit{end}}$	the annual top of buffer pool and top of conservation pool of the <i>n</i> th reservoir of the <i>i</i> th pool

239 3.3.3 Optimization algorithm

The NSGA-II algorithm (Deb et al., 2002) has made some successful 240 achievements in the PSO work of the reservoir field (Lei et al., 2018;Lotfan et al., 2016). 241 242 It realizes a fast convergence in Pareto frontiers with the crowding distance and the nondominated sorting rank (Deb et al., 2002). NSGA-II is implemented in this paper, even 243 if some other heuristic algorithms may also be able to handle it. The experimental 244 parameter is set as: the population size = 64, generation = 100, cross-over probability = 245 0.9 and mutation rate = 0.1. 246 **3.4 Coordination model** 247 248 The above procedures could realize a quick impoundment policy but fail to make 249 further water resource utilization. Finally, yet importantly, the problem is how to

- 250 excavate water potential.
- 251 **3.4.1 Objective function and constraints**

252

253	generates hydropower and then is transmitted to water consumers. As IE and FCR
254	occupy the highest priority, hydropower has to comply with the impoundment rules. A
255	good impoundment rule is to ensure that the impoundment quality of the reservoir is
256	achieved besides maximizing hydropower generation.
257	To this end, the corresponding coordination model is introduced below, which
258	maximizes the annual hydropower generation of the <i>i</i> th pool (E_i):
259	$max \ E_i = \frac{1}{Y} \sum_{n=1}^{M_i} \sum_{r=1}^{T\cdot Y} N_{i,n}(t) \cdot \Delta t, \ N_{i,n}(t) = A_{i,n} Q_{i,n}(t) H_{i,n}(t) $ (11)

For large-scale impoundment operations in China, reservoir release usually

where $A_{i,n}$ is the power coefficient of the *n*th reservoir of the *i*th pool; $H_{i,n}(t)$ is the powerhead of the *n*th reservoir of the *i*th pool at time *t*; other symbols refer to Section 3.3.2.

Except for the constraints described in Section 3.3.2, the additional constraints in Eq. 12 and Eq. 13(a-b) for each pool must be met during the whole period.

265
$$IE_{i} = \frac{1}{Y} \sum_{y=1}^{Y} \sum_{m=1}^{M_{i}} (VE_{i,n}(y) - SD_{i,n}) \ge IE_{i}^{*}$$
(12)

266

 $FCR_i \leq FCR_i^* \tag{13a}$

267
$$FCR_{i} = max\{\frac{\sum_{n=1}^{M_{i}} (V_{i,n}(t) - SS_{i,n}(t))}{\sum_{n=1}^{M_{i}} (SU_{i,n} - SS_{i,n}(t))}, 0\}, \quad (0 < t \le T \cdot Y)$$
(13b)

where initial IE_i^* and FCR_i^* of the *i*th pool are determined by Pareto Frontier in the PSO framework.

270 3.4.2 Parallel progressive optimization algorithm (PPOA)

271 Recently, PPOA (Feng et al., 2018b) has emerged as a means of improving initial

272	solution quality. It can use abundant multi-core configuration to improve execution
273	efficiency while keeping the performance of the standard progressive optimization
274	algorithm (POA). The details of PPOA can be further referred to in other literature
275	(Feng et al., 2018b;Xie et al., 2015). Here is illustrated as an example of PPOA with 3-
276	reservoir and 3 levels per reservoir (in Fig. 5). Fig.5 shows that all the calculations of
277	the 27 $(=3^3)$ state combinations are completely independent of each other for a single
278	sub-problem. In other words, the fitness value of any one state combination has no
279	influence on other state combinations, which reveals the good parallelism features.
280	PPOA adopts a successive approximation strategy to gradually improve solution quality,
281	which will make more sense with the dimensional expansion.
282	<please 5="" fig.="" here="" insert=""></please>
283	4 Results
284	4.1 Pareto Frontiers of NSGA-II between <i>IE</i> and <i>FCR</i>
284 285	4.1 Pareto Frontiers of NSGA-II between <i>IE</i> and <i>FCR</i> With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is
284 285 286	4.1 Pareto Frontiers of NSGA-II between <i>IE</i> and <i>FCR</i> With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is explored within allowable impoundment storage capacity (in Table 2) and subsequently,
284 285 286 287	4.1 Pareto Frontiers of NSGA-II between <i>IE</i> and <i>FCR</i>With the help of the NSGA-II algorithm, a wide array of Pareto Frontier isexplored within allowable impoundment storage capacity (in Table 2) and subsequently,<i>COR</i> serves as the benchmark. The initial <i>IE</i> and <i>FCR</i> values of the extensively
284 285 286 287 288	 4.1 Pareto Frontiers of NSGA-II between IE and FCR With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is explored within allowable impoundment storage capacity (in Table 2) and subsequently, <i>COR</i> serves as the benchmark. The initial <i>IE</i> and <i>FCR</i> values of the extensively distributed Pareto Frontier and the <i>COR</i> result for the whole research basin are
284 285 286 287 288 288	 4.1 Pareto Frontiers of NSGA-II between <i>IE</i> and <i>FCR</i> With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is explored within allowable impoundment storage capacity (in Table 2) and subsequently, <i>COR</i> serves as the benchmark. The initial <i>IE</i> and <i>FCR</i> values of the extensively distributed Pareto Frontier and the <i>COR</i> result for the whole research basin are visualized in Fig. 6.
284 285 286 287 288 289 289	4.1 Pareto Frontiers of NSGA-II between IE and FCR With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is explored within allowable impoundment storage capacity (in Table 2) and subsequently, COR serves as the benchmark. The initial IE and FCR values of the extensively distributed Pareto Frontier and the COR result for the whole research basin are visualized in Fig. 6. Please insert Table 2 here>
284 285 286 287 288 289 289 290 291	4.1 Pareto Frontiers of NSGA-II between <i>IE</i> and <i>FCR</i> With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is explored within allowable impoundment storage capacity (in Table 2) and subsequently, <i>COR</i> serves as the benchmark. The initial <i>IE</i> and <i>FCR</i> values of the extensively distributed Pareto Frontier and the <i>COR</i> result for the whole research basin are visualized in Fig. 6. Please insert Table 2 here> <please 6="" fig.="" here="" insert=""></please>
284 285 286 287 288 289 290 291 291	4.1 Pareto Frontiers of NSGA-II between IE and FCR With the help of the NSGA-II algorithm, a wide array of Pareto Frontier is explored within allowable impoundment storage capacity (in Table 2) and subsequently, COR serves as the benchmark. The initial IE and FCR values of the extensively distributed Pareto Frontier and the COR result for the whole research basin are visualized in Fig. 6. Please insert Table 2 here> Fig. 6 shows that the improvement of one objective is bound to be followed by the

solution (Solution ① in Fig. 6) can be considered while a wet inflow scenario during
the impoundment horizon is predicted in advance; on the contrary, the optimal initial *IE* solution (Solution ③ in Fig. 6) could be more appropriate in a dry impoundment
scenario; at the end, the compromised initial solutions can be competent for different
impoundment scenarios with medium-scale inflow hydrograph.

We use the universal projection pursuit method (PP) (Friedman, 1987;He et al., 300 301 2020) to evaluate the quality of all the Pareto Frontiers. PP can transform the 2-302 dimensional values (IE and FCR values) to one-dimensional data with the help of the 303 projection vector and rank all solutions according to the one-dimensional value. Because the possibility of large-scale flood events decreases over impoundment time, 304 these Pareto solutions with latter FCR appearance time are more preferred by decision-305 makers. Finally, the Pareto Frontier (whose IE and FCR values are 94.16% and 0.06, 306 respectively) is selected as the initial optimal solution (Solution 2) in Fig. 6). Solution 307 (1) and (3) are also included in the next sections, as Solution (1) always produces 308 much higher *IE* than COR when there is no flood control risk (FCR = 0); Solution ③ 309 310 makes a better deal with joint impoundment operation in dry scenarios when the influence of flood control can be ignored. 311

4.2 Optimal results of the final impoundment policies

We improved these three alternatives (i.e., Solution ①, ②, and ③) by the PPOA and obtained the final three representative impoundment policies (I, II and III) accordingly.

316 4.2.1 Behavior performance between *IE* and *FCR*

317	The relationships between IE and FCR of the impoundment policies I, II, III as
318	well as COR for each of the 30 reservoirs are shown in Fig.7. Fig. 7 can easily
319	distinguish the numerical changes (i.e. the IE and FCR increment) of reservoirs. For
320	example, Reservoir D4 occupies the maximum IE value of 99.78% and Reservoir G1
321	occupies the maximum FCR value of 0.13. For Reservoir D4 with the maximum IE, it
322	illustrates that there is enough inflow in pool D to contribute to its small impoundment
323	storage, but upstream reservoirs with larger impoundment storage (Reservoirs D2 and
324	D3) in the same pool are difficult to fill up, even if their FCR value slightly increase.
325	Reservoir G1 has the maximum FCR value because Pool G fails to regulate massive
326	water from the upstream tributaries and large interval catchment area. Reservoir G1
327	also has an ideal IE result yet leaves inadequate storage to control flood risk, once it
328	activates the pre-set principle of raising the reservoir water level. In addition, it is
329	obvious that under the benchmark of COR, some of the other reservoirs can get better
330	IE improvement with a little or no FCR increase. For example, when the optimal
331	impoundment policy I is adopted, the IE increase of the four reservoirs in pool C varies
332	from 1.41% to 11.84%, while flood control standard remains unchanged (FCR is still
333	0). This means that: (1) these two pre-set strategies can have only positive effects on
334	impoundment operation when they are reasonably regulated; (2) the larger the required
335	impoundment storage of a reservoir, the better the potential impoundment prospect. The
336	sharp IE improvement of Reservoir G1 with the largest impoundment storage further
337	proves it. Reservoir G1 increases IE from 85.66% of COR to 94.64% of the
338	impoundment policy I (i.e. 1.99 billion m ³ increment of impoundment storage). By

339	contrast, the IE increment of reservoirs in pool A (except for Reservoir A6) and pool B
340	is relatively less, where these reservoirs with smaller impoundment storage are operated
341	by just lifting water level but remaining the initial impoundment timing unchanged.
342	<please 7="" fig.="" here="" insert=""></please>
343	Fig. 7 also contains other significant information. Pools A, B, and F are not
344	sensitive to FCR. Their maximum FCR values are still 0 under our proposed
345	impoundment policies. It implies that these pools have enough flood control storage to
346	deal with relatively easier flood control tasks. With the implement of the impoundment
347	policy III, the other four investigative pools (C, D, E, and G) suffers from different
348	degrees of flood control risk, especially Reservoir G1 (TGR) in pool G. Aiming at FCR
349	varieties of Reservoir D2, D3 and D4 (in the same tributary) which are equipped with
350	synchronous impoundment operations (i.e. all the impoundment timings start at Sep.
351	20th and end on Oct. 31st), it shows that the maximum FCR value decreases from
352	upstream to downstream. The geographic elevations of these reservoirs have a
353	substantial influence on their FCR distribution with the impact of spare reservoir
354	storage. When runoff flows along cascade reservoirs, the upstream reservoir gives
355	priority to storage volumes increment to lift water levels, which causes a decrease of
356	downstream reservoir inflow. Consequently, the maximum FCR value of the
357	downstream reservoir can be obviously reduced. Nevertheless, with the staggered
358	impoundment time, these FCR values (e.g., Pool C) do not follow the principle of
359	sequential decrease of Pool D. The FCR varieties of these reservoirs equipped with
360	asynchronous impoundment operations in the same pool are more complicated to be

361 analyzed.

362 4.2.2 Impact of optimal impoundment policies on hydropower generation

In this study, hydropower generation is the only indicator to assess water resource utilization of each pool. It is necessary to analyze the impact of the optimal impoundment policies on hydropower generation with comparison to COR. For the COR rule, the total simulated hydropower of the seven pools is 203.3 billion kWh. The top three are Pool C, G, and A, whose proportions are 43.04%, 20.78% and 14.18% (in Fig. 8), respectively. The sum of them is more than 75%. Hence, these three pools should be more focused when the PPOA algorithm coordinates individual reservoirs.

370 <Please insert Fig. 8 here>

We set the maximum number of iterations of the PPOA algorithm for Pool A, C, 371 372 and G larger than other pools. Fig. 9 gives the hydropower generation results of seven pools with three different impoundment rules. It indicates that the optimal 373 impoundment rules I, II and III can increase hydropower generation of the COR rule 374 by 3.11%, 3.79%, and 3.89%, respectively. The top three growth rates are Pool G, C, 375 376 and A. Especially, we can realize the huge potential hydropower of Pool G as its growth rate ranging from 5.26% to 7.41%. The reason owes to that Pool G possesses abundant 377 water resources, where Reservoir G1 (TGR) is the largest hydropower plant in the word 378 and Reservoir G2 (GZB) is one run-of-river hydropower plant. They can generate 379 380 hydropower by converting kinetic energy into electricity more efficiently. Pool C can also increase hydropower by 3.27%~4.07%. It increases so much hydropower outputs 381 because its four reservoirs located along the mainstream of the Yangtze River are 382

equipped with large installed hydropower capacity (47.81 GW in total, see Table 1), thereinto, Reservoir C2 (BHT) is the second-largest hydropower station in China. However, the growth rates of hydropower of the other five pools are not obvious, even if there are six reservoirs in Pool A and seven reservoirs in Pool G. They stay low efficiency from potential energy to electricity, since they store limited water resources for future use.

389

<Please insert Fig. 9 here>

390 Moreover, Fig. 10 visualizes the hydropower increment of each pool in different 391 streamflow scenarios (assumed that one year represents one scenario). It shows more hydropower details. It can be inferred that the optimal impoundment policy II is more 392 suitable for all scenarios in comparison with the impoundment I or III. Policy II and III 393 tap more hydropower potential of Pool C, G than I, but the flood control risk of II is 394 smaller than III. The hydropower increments of Pool A for policy II level off, which 395 illustrates that its impoundment rule is suitable for all the (wet, normal and dry) 396 scenarios. The hydropower increments of Pool B, D, E, and F incur a negative loss in 397 398 several dry scenarios, despite their annual average output present an increase. The slight adverse changes in these dry years are due to when the upstream reservoirs in these 399 pools need more water to fill up their impoundment storage, the negative effect of the 400 reduced generation discharge overweight the positive effect of the raising water head 401 402 in the same time.

In addition, the hydropower growths of Pool C and G vary greatly with scenarios.It further reveals that due to the complex hydraulic connections among the pools, the

405	single impoundment rule of Pool C and G cannot deal with all scenarios.
406	<please 10="" fig.="" here="" insert=""></please>
407	4.3 Other evaluation indicators
408	Advanced joint impoundment operation will not only enhance water supply and
409	hydropower generation but also make other benefits including economy, CO ₂ emission
410	reduction and so on, since it involves many factors directly or indirectly related to
411	impoundment efficiency (Zhou et al., 2018). Here we present the boxplot of the outflow
412	of all the seven pools (A~G) during the impoundment horizon to reveal its positive
413	influence on downstream.
414	Fig. 11 intuitively shows that the optimal impoundment policy II can improve
415	downstream streamflow requirements by altering its outflow distribution. For example,
416	it keeps the minimum downstream streamflow in Pool G no lower than 8000 m ³ /s in
417	order to meet ecological needs, but the COR rule fails to satisfy this requirement in
418	some dry scenarios. Moreover, it ensures downstream streamflow no higher than 39,900
419	m^3/s for downstream flood control in most years and 54,000 m^3/s for its own flood
420	control safety in a few wet scenarios. It still behaves well than the COR rule to alleviate
421	pressure on downstream flood control, where its maximum downstream streamflow is
422	lower than that of the COR rule.
423	<please 11="" fig.="" here="" insert=""></please>
424	5 Discussion

425 Due to the classification-aggregation-decomposition approach we put forward in 426 this study, the novel framework of deriving joint impoundment rules can effectively

427	overcome the tricky 'curse of dimensionality'. In order to explore the computational
428	efficiency of this method, we work in a Matlab environment equipped with a Windows
429	system (Intel ^R Core TM i5-4590 CPU @ 3.30 GHz and 8.00 GB of RAM) and list the
430	results of calculation time for different numbers of pools (shown in Fig. 12). Fig. 12
431	indicates that computational time increases with the number of pools, but does not
432	increase exponentially with the number of reservoirs. It owes to the fact that in our
433	method, the number of decision variables depends on the number of pools rather than
434	the number of reservoirs. Its outstanding performance will become more prominent as
435	the scale of the research reservoir is expanded. More specifically, time increases from
436	499 seconds to 8448 seconds when the number of reservoirs is from 6 to 30, which
437	provides new possibilities for optimizing the so vast reservoir community in 10-days
438	timescale. But actually, our proposed method can also optimize the daily impoundment
439	operation of the mixed 30-reservoir system by taking about 39700 seconds (almost 11
440	hours), when we make several experiments assuming that daily runoff value of each
441	reservoir can be discretized to be the same as its 10-day (11-day) runoff value.

442

<Please insert Fig. 12 here>

In addition, the novel method also inherits the inherent advantages of the multiobjective optimization algorithm (NSGA-II here). Aiming at multi-objective reservoir management, it not only produces the most optimal solutions as we referred to in Section 4 but also generates a series of optimal strategies that can compromise well on each objective. In our case, it gives rise to the operational alternatives available to decision-makers in terms of the *IE* results.

449	Last but not least, we have to emphasize the benefits due to the introduction of the
450	PPOA mechanism. Compared to the final optimization results of traditional
451	decomposition strategies (i.e. Eq. (3)) (Zhang et al., 2017;Zhang et al., 2019), this
452	method can use PPOA to boost hydropower generation of the mixed 30-reservoir
453	system without IE and FCR distortion. The results between impoundment policies (I, II
454	and II) and the traditional optimal solutions (1) , 2 , and 3) are compared. The final
455	optimal IE and FCR results of impoundment policy I, II, III are 93.47% and 0, 94.16%
456	and 0.06, 94.22% and 0.14, respectively. It can be seen that the FCR value can further
457	be reduced (e.g., <i>FCR</i> of III is 0.14, less than that of Solution ③, 0.18). However, all
458	three policies increase hydropower generation to varying degrees: 209.65 billion of I vs
459	206.34 billion of ①, 211.02 billion of II vs 208.77 billion of ②, and 211.22 billion of
460	III vs 208.98 billion of ③. It also has a positive reference on future work of large-scale
461	flood control and hydropower operations.

462 6 Conclusions

This study attempts to structure an adept framework of deriving joint impoundment rules, in which the classification-aggregation-decomposition and parameter-simulation-optimization approach are coupled to deal with the complex inflow stochasticity and high dimensionality in the large-scale cascade reservoirs, and then PPOA algorithm further improves the performance of operating rules. With a case study of the mixed 30-reservoir system in the upper Yangtze River, some vital conclusions are summarized below:

470 (1) A large number of reservoirs can be classified into several pools and the

- 471 reservoirs in the same pool can be assembled to be an equivalent hypothetical reservoir.
- 472 It proves another feasible pathway to overcoming the classical dimensionality issue in
- 473 such a giant impoundment system via reducing decision variables.
- 474 (2) The multi-objective evolutionary algorithm coupled with the classification-475 aggregation-decomposition approach has powerful capabilities for the complicated 476 cascade impoundment operation. With the help of the NSGA-II algorithm, the widely 477 distributed Pareto Frontiers enable water resources managers to favorably decide the 478 appropriate initial operating policies for a perfect compromise among the conflicting 479 objectives.
- (3) The PPOA method can help further increase hydropower generation of each
 pool without *IE* and *FCR* distortion. In comparison to the COR rule, our selected
 optimal impoundment rule can increase reservoir impoundment efficiency from 89.50%
 to 94.16% and hydropower generation by 7.70 billion kWh (or increase 3.79%) while
 the flood control risk is less than 0.06.

485

486 Data availability

The inflow data and reservoir characteristics parameters of the 30-reservoir system
can be accessed by writing to the authors and filling a non-disclosure agreement under
certain conditions.

490

491 Author contributions

492 SLG and SKH conceived the original idea, and they designed the methodology.

493	SKH and KBC collected the data. SKH developed the model code and performed the
494	simulations, with some contributions from ZL, LLD, and HHB. SKH wrote the paper,
495	SLG, CYX, and DS revised the paper.
496	
497	Competing interests
498 499 500	The authors declare that they have no conflict of interest.
501	Acknowledgments
502	We would like to thank the Yangtze River Commission for providing research data
503	for the reservoir community.
504	
505	Financial support
506	Our sincere gratitude goes to the fundings from the National Key Research and
507	Development Plan (NO. 2016YFC0402206) of China, the National Natural Science
508	Foundation of China (NO. 51879192, NO. 51879194) and China Scholarship Council

509 (CSC).

510 **Reference**

- 511 Afshar, A., Zahraei, A., and Marino, M. A.: Large-scale nonlinear conjunctive use
- 512 optimization problem: decomposition algorithm, J Water Res Pl-Asce, 136, 59-71,
- 513 10.1061/(Asce)0733-9496(2010)136:1(59), 2010.
- 514 Castelletti, A., Pianosi, F., Quach, X., and Soncini-Sessa, R.: Assessing water reservoirs
- 515 management and development in Northern Vietnam, Hydrol Earth Syst Sc, 16, 189-199,
- 516 10.5194/hess-16-189-2012, 2012.
- 517 Celeste, A. B., and Billib, M.: Evaluation of stochastic reservoir operation optimization
- 518 models, Adv Water Resour, 32, 1429-1443, 10.1016/j.advwatres.2009.06.008, 2009.
- 519 Chang, F. J., and Chang, Y. T.: Adaptive neuro-fuzzy inference system for prediction of
- 520 water level in reservoir, Adv Water Resour, 29, 1-10, 10.1016/j.advwatres.2005.04.015,

521 2006.

- 522 Cheng, C. T., Wang, S., Chau, K. W., and Wu, X. Y.: Parallel discrete differential
- 523 dynamic programming for multireservoir operation, Environmental Modelling &
- 524 Software, 57, 152-164, 10.1016/j.envsoft.2014.02.018, 2014.
- 525 Chu, J., Zhang, C., Fu, G., Li, Y., and Zhou, H.: Improving multi-objective reservoir
- 526 operation optimization with sensitivity-informed dimension reduction, Hydrol Earth
- 527 Syst Sc, 19, 3557-3570, 10.5194/hess-19-3557-2015, 2015.
- 528 Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and elitist multiobjective
- 529 genetic algorithm: NSGA-II, Ieee T Evolut Comput, 6, 182-197, 10.1109/4235.996017,
- 530 2002.
- 531 Duran, H., Puech, C., Diaz, J., and Sanchez, G.: Optimaloperation of multireservoir

- 532 systems using an aggregation-decomposition approach, Ieee Transactions on Power
- 533 Apparatus and Systems, 104, 2086-2092, 10.1109/Tpas.1985.318785, 1985.
- 534 Feng, Z. K., Niu, W. J., Cheng, C. T., and Wu, X. Y.: Optimization of hydropower
- 535 system operation by uniform dynamic programming for dimensionality reduction,
- 536 Energy, 134, 718-730, 10.1016/j.energy.2017.06.062, 2017.
- 537 Feng, Z. K., Niu, W. J., and Cheng, C. T.: Optimizing electrical power production of
- 538 hydropower system by uniform progressive optimality algorithm based on two-stage
- 539 search mechanism and uniform design, J Clean Prod, 190, 432-442,
- 540 10.1016/j.jclepro.2018.04.134, 2018a.
- 541 Feng, Z. K., Niu, W. J., Cheng, C. T., and Wu, X. Y.: Peak operation of hydropower
- 542 system with parallel technique and progressive optimality algorithm, Int J Elec Power,
- 543 94, 267-275, 10.1016/j.ijepes.2017.07.015, 2018b.
- Friedman, J. H.: Exploratory projection pursuit, J Am Stat Assoc, 82, 249-266,
 10.2307/2289161, 1987.
- 546 Galelli, S., and Castelletti, A.: Tree-based iterative input variable selection for
- 547 hydrological modeling, Water Resour Res, 49, 4295-4310, 10.1002/wrcr.20339, 2013.
- 548 Giuliani, M., Li, Y., Cominola, A., Denaro, S., Mason, E., and Castelletti, A.: A matlab
- 549 toolbox for designing multi-objective optimal operations of water reservoir systems,
- 550 Environ Modell Softw, 85, 293-298, 10.1016/j.envsoft.2016.08.015, 2016.
- 551 Glotic, A., and Zamuda, A.: Short-term combined economic and emission hydrothermal
- 552 optimization by surrogate differential evolution, Appl Energ, 141, 42-56,
- 553 10.1016/j.apenergy.2014.12.020, 2015.

- 554 Goor, Q., Halleux, C., Mohamed, Y., and Tilmant, A.: Optimal operation of a
- 555 multipurpose multireservoir system in the Eastern Nile River Basin, Hydrol Earth Syst
- 556 Sc, 14, 1895-1908, 10.5194/hess-14-1895-2010, 2010.
- 557 He, S. K., Guo, S. L., Chen, K. B., Deng, L. L., Liao, Z., Xiong, F., and Yin, J. B.:
- 558 Optimal impoundment operation for cascade reservoirs coupling parallel dynamic
- 559 programming with importance sampling and successive approximation, Adv Water
- 560 Resour, 131, 10.1016/j.advwatres.2019.07.005, 2019.
- 561 He, S. K., Guo, S. L., Yang, G., Chen, K. B., Liu, D. D., and Zhou, Y. L.: Optimizing
- 562 operation rules of cascade reservoirs for adapting climate change, Water Resour Manag,
- 563 34, 101-120, 10.1007/s11269-019-02405-6, 2020.
- 564 Heever, S. A. V. D., and Grossmann, I. E.: An iterative aggregation/disaggregation
- 565 approach for the solution of a mixed-integer nonlinear oilfield infrastructure planning
- 566 model, Ind Eng Chem Res, 39, 1955-1971, 10.1021/ie9906619, 2000.
- 567 Jurasz, J., and Ciapala, B.: Integrating photovoltaics into energy systems by using a
- run-off-river power plant with pondage to smooth energy exchange with the power gird,
- 569 Appl Energ, 198, 21-35, 10.1016/j.apenergy.2017.04.042, 2017.
- 570 Labadie, J. W.: Optimal operation of multireservoir systems: State-of-the-art review, J
- 571 Water Res Plan Man, 130, 93-111, 10.1061/(Asce)0733-9496(2004)130:2(93), 2004.
- 572 Lauri, H., de Moel, H., Ward, P. J., Rasanen, T. A., Keskinen, M., and Kummu, M.:
- 573 Future changes in Mekong River hydrology: impact of climate change and reservoir
- 574 operation on discharge, Hydrol Earth Syst Sc, 16, 4603-4619, 10.5194/hess-16-4603-

575 2012, 2012.

- 576 Lei, X. H., Zhang, J. W., Wang, H., Wang, M. N., Khu, S. T., Li, Z. J., and Tan, Q. F.:
- 577 Deriving mixed reservoir operating rules for flood control based on weighted non-
- 578 dominated sorting genetic algorithm II, J Hydrol, 564, 967-983,
- 579 10.1016/j.jhydrol.2018.07.075, 2018.
- 580 Li, H., Liu, P., Guo, S. L., Ming, B., Cheng, L., and Zhou, Y. L.: Hybrid two-stage
- 581 stochastic methods using scenario-based forecasts for reservoir refill operations, J
- 582 Water Res Plan Man, 144, 10.1061/(Asce)Wr.1943-5452.0001013, 2018.
- 583 Li, L. P., Liu, P., Rheinheimer, D. E., Deng, C., and Zhou, Y. L.: Identifying explicit
- 584 formulation of operating rules for multi-reservoir systems using genetic programming,
- 585 Water Resour Manag, 28, 1545-1565, 10.1007/s11269-014-0563-9, 2014a.
- 586 Li, X., Wei, J. H., Li, T. J., Wang, G. Q., and Yeh, W. W. G.: A parallel dynamic
- 587 programming algorithm for multi-reservoir system optimization, Adv Water Resour, 67,
- 588 1-15, 10.1016/j.advwatres.2014.01.002, 2014b.
- 589 Liu, X. Y., Guo, S. L., Liu, P., Chen, L., and Li, X. A.: Deriving optimal refill rules for
- 590 multi-purpose reservoir operation, Water Resour Manag, 25, 431-448, 10.1007/s11269-
- 591 010-9707-8, 2011.
- Lotfan, S., Ghiasi, R. A., Fallah, M., and Sadeghi, M. H.: ANN-based modeling and
 reducing dual-fuel engine's challenging emissions by multi-objective evolutionary
- algorithm NSGA-II, Appl Energ, 175, 91-99, 10.1016/j.apenergy.2016.04.099, 2016.
- 595 Ng, J. Y., Turner, S. W. D., and Galelli, S.: Influence of El Nino Southern Oscillation
- on global hydropower production, Environ Res Lett, 12, 10.1088/1748-9326/aa5ef8,
- 597 2017.

- 598 Paredes, J., and Lund, J. R.: Refill and drawdown rules for parallel reservoirs: Quantity
- and quality, Water Resour Manag, 20, 359-376, 10.1007/s11269-006-0325-4, 2006.
- 600 Saad, M., Turgeon, A., Bigras, P., and Duquette, R.: Learning disaggregation technique
- for the operation of long-term hydroelectric power-systems, Water Resour Res, 30,
- 602 3195-3202, 10.1029/94wr01731, 1994.
- 603 Shaw, A. R., Sawyer, H. S., LeBoeuf, E. J., McDonald, M. P., and Hadjerioua, B.:
- 604 Hydropower optimization using artificial neural network surrogate models of a high-
- fidelity hydrodynamics and water quality model, Water Resour Res, 53, 9444-9461,
- 606 10.1002/2017wr021039, 2017.
- 607 Tan, Q. F., Wang, X., Wang, H., Wang, C., Lei, X. H., Xiong, Y. S., and Zhang, W.:
- 608 Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-
- 609 supply system, J Hydrol, 551, 253-264, 10.1016/j.jhydrol.2017.06.009, 2017.
- 610 Turgeon, A.: Optimal operation of multi-reservoir power-systems with stochastic
- 611 inflows, Water Resour Res, 16, 275-283, 10.1029/WR016i002p00275, 1980.
- 612 Valdes, J. B., Montbrundifilippo, J., Strzepek, K. M., and Restrepo, P. J.: Aggregation-
- 613 disaggregation approach to multireservoir operation, J Water Res Pl-Asce, 118, 423-
- 614 444, 10.1061/(Asce)0733-9496(1992)118:4(423), 1992.
- 615 Wang, X. M., Zhou, J. Z., Ouyang, S., and Li, C. L.: Research on joint impoundment
- 616 dispatching model for cascade reservoir, Water Resour Manag, 28, 5527-5542,
- 617 10.1007/s11269-014-0820-y, 2014.
- 618 Xie, M. F., Zhou, J. Z., Li, C. L., and Zhu, S.: Long-term generation scheduling of
- 619 Xiluodu and Xiangjiaba cascade hydro plants considering monthly streamflow

- 620 forecasting error, Energ Convers Manage, 105, 368-376,
- 621 10.1016/j.enconman.2015.08.009, 2015.
- 622 Xu, B., Boyce, S. E., Zhang, Y., Liu, Q., Guo, L., and Zhong, P. A.: Stochastic
- 623 programming with a joint chance constraint model for reservoir refill operation
- 624 considering flood risk, J Water Res Plan Man, 143, 10.1061/(Asce)Wr.1943-
- 625 5452.0000715, 2017.
- 626 Yan, D. H., Wang, H., Li, H. H., Wang, G., Qin, T. L., Wang, D. Y., and Wang, L. H.:
- 627 Quantitative analysis on the environmental impact of large-scale water transfer project
- on water resource area in a changing environment, Hydrol Earth Syst Sc, 16, 2685-
- 629 2702, 10.5194/hess-16-2685-2012, 2012.
- 630 Yeh, W. W. G.: Reservoir management and operations models a State-of-the-Art
- 631 review, Water Resour Res, 21, 1797-1818, 10.1029/WR021i012p01797, 1985.
- 632 Zhang, J. W., Wang, X., Liu, P., Lei, X. H., Li, Z. J., Gong, W., Duan, Q. Y., and Wang,
- 633 H.: Assessing the weighted multi-objective adaptive surrogate model optimization to
- derive large-scale reservoir operating rules with sensitivity analysis, J Hydrol, 544, 613-
- 635 627, 10.1016/j.jhydrol.2016.12.008, 2017.
- 636 Zhang, J. W., Li, Z. J., Wang, X., Lei, X. H., Liu, P., Feng, M. Y., Khu, S. T., and Wang,
- 637 H.: A novel method for deriving reservoir operating rules based on flood classification-
- 638 aggregation-decomposition, Journal of Hydrology, 568, 722-734,
- 639 10.1016/j.jhydrol.2018.10.032, 2019.
- 640 Zhang, R., Zhou, J. Z., Zhang, H. F., Liao, X., and Wang, X. M.: Optimal operation of
- 641 large-scale cascaded hydropower systems in the upper reaches of the Yangtze river,

- 642 China, J Water Res Plan Man, 140, 480-495, 10.1061/(Asce)Wr.1943-5452.0000337,
- 643 2014.
- 644 Zhao, T. T. G., Cai, X. M., Lei, X. H., and Wang, H.: Improved dynamic programming
- 645 for reservoir operation optimization with a concave objective function, J Water Res Pl-
- 646 Asce, 138, 590-596, 10.1061/(Asce)Wr.1943-5452.0000205, 2012.
- 647 Zhou, Y. L., Guo, S. L., Xu, C. Y., Liu, P., and Qin, H.: Deriving joint optimal refill
- rules for cascade reservoirs with multi-objective evaluation, J Hydrol, 524, 166-181,
- 649 10.1016/j.jhydrol.2015.02.034, 2015.
- 650 Zhou, Y. L., Guo, S. L., Chang, F. J., and Xu, C. Y.: Boosting hydropower output of
- 651 mega cascade reservoirs using an evolutionary algorithm with successive
- approximation, Appl Energ, 228, 1726-1739, 10.1016/j.apenergy.2018.07.078, 2018.
- 653

654 List of Table

- 655
- **Table 1** Impounding times and characteristic parameters of the 30-reservoir system in
- 657 seven pools (A-G) in the upper Yangtze River
- **Table 2** The sum storage capacity of $SS_{i,n}(t)$ of all reservoirs in the same pool at different
- 659 periods (billion m³)

1mpounding time	s and charac	teristic parai	meters of the .	ou-reservoir syster	m in seven poois	A-U) in the upp.	er vangtze Ki	ver	
		Initial t	time of	End time of	Annual top of	Top of	Total storage	Storage capacity	Installed
Pool	Reservoir	impour	ndment	impoundment	buffer pool	conservation pool	capacity	for flood control	hydropower capacity
		COR^{a}	PSO^{b}	(COR, PSO)	(m)	(m)	(billion m ³)	$(billion m^3)$	(GW)
	(A1) LY	Aug. 1 st	Aug.1 st	Sep. 30 th	1605	1618	0.81	0.17	2.40
	(A2) AH	Aug. 1 st	Aug.1 st	Sep. 30 th	1493.3	1504	0.89	0.22	2.00
Pool A ^c	(A3) JAQ	Aug. 1 st	Aug.1 st	Sep. 30 th	1410	1418	0.91	0.16	2.40
Jinsha River)	(A4) LKK	Aug. 1 st	Aug.1 st	Sep. 30 th	1289	1298	0.56	0.13	1.80
	(A5) LDL	Aug. 1 st	Aug.1 st	Sep. 30 th	1212	1223	1.72	0.56	2.16
	(A6) GYY	Oct. 1 st	$\mathrm{Sep.20^{th}}$	Oct. 31 st	1128.8	1134	2.25	0.25	3.00
4 - 4	(B1) LHK	Aug. 1 st	Aug. 1 st	Sep. 30 th	2845	2865	10.15	2.00	3.00
Pool B (Valong River)	(B2) JP	Aug. 1 st	Aug. 1 st	Sep. 30 th	1859	1880	7.99	1.60	3.60
(man Shorn I)	(B3) ET	Aug. 1 st	Aug. 1 st	Sep. 30 th	1190	1200	5.80	06.0	3.30
	(C1)WDD	Aug. 10 st	Aug.1 st	Sep. 10 th	952	975	3.94	2.44	10.20
Pool C	(C2) BHT	Aug. 10 st	Aug.1 st	Sep. 30 th	785	825	20.60	7.50	16.00
Jinsha River)	(C3) XLD	Sep. 1 st	Aug. 20 th	Sep. 30 th	560	600	12.67	4.65	13.86
	(C4) XJB	Sep. 10 th	Aug. 20 th	Sep. 30 th	370	380	5.16	06.0	7.75
	(D1) ZPP	Oct. 1 st	Sep.20 th	Oct. 31 st	850	877	1.11	0.17	0.76
Pool D	(D2) XEX	Oct. 1 st	Sep.20 th	Oct. 31 st	3105	3120	2.80	0.87	0.54
(Min River)	(D3) SJK	Oct. 1 st	Sep.20 th	Oct. 31 st	2480	2500	2.90	0.66	2.00
	(D4) PBG	Oct. 1 st	Sep.20 th	Oct. 31 st	841	850	5.33	0.73	3.60

33

Hydrology and Connection Action Connection Connectica C

Discussions

	(E1) BK	Oct. 1 st	Sep.20 th	Oct. 31 st	695	704	0.22	0.10	0.30
Pool E	(E2) BZS	Oct. 1 st	$\mathrm{Sep.20^{th}}$	Oct. 31 st	583	588	2.55	0.28	0.70
(Jialing River)	(E3) TZK	Sep. 1 st	Aug. 20 th	Sep. 30 th	447	458	4.07	1.44	1.10
	(E4) CJ	Sep. 1 st	Aug. 20 th	Sep. 30 th	200	203	2.22	0.20	0.50
	(F1) HJD	Sep. 1 st	Aug. 20 th	Sep. 30 th	1138	1140	4.95	0.15	0.60
	(F2) DF	Sep. 1 st	Aug. 20 th	Sep. 30 th	968	026	1.02	0.04	0.57
; ; ;	(F3) WJD	Sep. 1 st	Aug. 20 th	Sep. 30 th	756	760	2.30	0.18	1.25
Pool F	(F4) GPT	Sep. 1 st	Aug. 20 th	Sep. 30 th	628.1	630	6.45	0.20	3.00
(12ATV n M)	(F5) SL	Sep. 1 st	Aug. 20 th	Sep. 30 th	435	440	1.59	0.18	1.05
	(F6) ST	Sep. 1 st	Aug. 20 th	Sep. 30 th	357	365	0.92	0.21	1.12
	(F7) PS	Sep. 1 st	Aug. 20 th	Sep. 30 th	287	293	1.47	0.23	1.75
Pool G	(G1) TGR	Sep. 10 th	Aug. 20 th	Oct. 31 st	145	175	45.07	22.15	22.50
(TGR-GZB)	(G2) GZB	ı		·		66	1.58		2.72

Note:

(a) COR: Conventional Operating Rule; (b) PSO: Parameterization Simulation Optimization. 663 664

665

- 666
- 667 **Table 2**

668 The sum storage capacity $SS_{i,n}(t)$ of all reservoirs in the same pool at different periods

 $(billion m^3)$

Pool	Aug.10 th	Aug.20 th	Aug.31st	Sep.10 th	Sep.20 th	Sep.30 th	Oct.10 th	Oct.20 th	Oct.31st
А	5.40	5.73	6.16	6.29	6.41	6.51	6.51	6.51	6.51
В	20.05	21.74	22.65	23.68	23.68	23.68	23.68	23.68	23.68
С	29.21	33.50	35.95	38.85	41.13	41.40	41.40	41.40	41.40
D	9.29	9.29	9.61	9.94	10.38	11.16	11.44	11.66	11.66
Е	4.82	4.97	5.52	6.34	6.40	6.42	6.53	6.56	6.56
F	15.37	15.71	16.04	16.26	16.26	16.26	16.26	16.26	16.26
G	18.12	19.75	21.51	24.76	30.04	32.60	39.31	39.31	39.31

670 Note: the meaning of $SS_{i,n}(t)$ is referred in Eq. (3).

671 672	List of Figures
673 674	Fig. 1 Location information of the mixed 30 reservoirs in the upper Yangtze River
675 676	Fig. 2 The schematic diagram of two activate strategies for advanced impoundment
677 678 679	Fig. 3 Flowchart of deriving joint impoundment rules for the large-scale reservoir system
680 681	Fig. 4 Three general topological cases of reservoir location
682 683 684	Fig. 5 Sketch map of the PPOA algorithm for a sub-problem with 3-reservoir and 3 levels per reservoir
685 686	Fig. 6 Comparison of the <i>IE</i> and <i>FCR</i> results of different initial optimal solutions
687 688 689	Fig. 7 Spatial varieties of <i>IE</i> and <i>FCR</i> of each reservoir relative to the different optimal impoundment rules
690 691	Fig. 8 Hydropower proportion of each pool for the COR rule
692 693 694	Fig. 9 The hydropower results of the 30 reservoirs in seven pools for different impoundment rules
695 696 697	Fig. 10 Hydropower increment of seven pools (A-G) for three optimal impoundment policies compared to the COR rule in different streamflow scenarios (Unit: billion kWh)
698 699	Fig. 11 Outflow distribution of all Pools (A~F) during the impoundment period
700 701	Fig. 12 Computational efficiency for different numbers of pools
702	

709 Fig. 1 Location information of the mixed 30 reservoirs in the upper Yangtze River

- **Fig. 3** Flowchart of deriving joint impoundment rules for the large-scale reservoir system
- 717

720 Fig. 4 Three general topological cases of reservoir location

- Fig. 5 Sketch map of the PPOA algorithm for a sub-problem with 3-reservoir and 3 725
- levels per reservoir 726

> 727 728

730 Fig. 6 Comparison of the IE and FCR results of different initial optimal solutions

Fig. 7 Spatial varieties of IE and FCR of each reservoir relative to the different optimal impoundment rules

732

734 Fig. 8 Hydropower proportion of each pool based on the COR rule

738

739 Fig. 9 The hydropower results of the 30 reservoirs in seven pools for different

740 impoundment rules

741

742

Fig. 10 Hydropower increment of seven pools (A-G) for three optimal impoundment policies compared to the COR rule in different streamflow scenarios (Unit: billion kWh)

745

747 Fig. 11 Outflow distribution of all Pools (A~F) during the impoundment period

748 749

751 Fig. 12 Computational efficiency for different numbers of pools