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Abstract. Streamflow forecasting is a crucial component in the management and control of water resources. Decomposition-

based approaches have particularly demonstrated improved streamflow forecasting performance. However, it is not practical 

to firstly decompose the entire streamflow into several signal components and then divide the data samples of each component 

into training and validation sets for signal component prediction. This impracticality is due to the fact that some validation 10 

information, that is not available in practical streamflow forecasting, is used in that training process. Unfortunately, firstly 

dividing the entire streamflow into training and validation sets and then decomposing each set separately lead to undesirable 

boundary effects and complicated forecasting. Moreover, establishing a model for each signal component is quite laborious 

and summing the component predictions may lead to error accumulation. In addition, summing the decomposition results may 

sometimes lead to inaccurate reconstruction of the original streamflow. In order to address these shortcomings of 15 

decomposition-based models and improve the forecasting performance in basins lacking meteorological observations (e.g., 

precipitation and temperature), we propose a two-stage decomposition prediction (TSDP) framework, realize this framework 

using variational mode decomposition (VMD) and support vector machines (SVR), and refer to this realization as VMD-SVR. 

In the first stage of the TSDP framework, the entire streamflow data was divided into training and validation sets, each of 

which was then separately decomposed to avoid the influence of validation information on training. In the second stage, a 20 

single model for streamflow prediction was established using a set of mixed shuffled samples. This scheme saves the modelling 

time and reduces the influence of the boundary effects. We demonstrate experimentally the effectiveness, efficiency and 

reliability of the TSDP framework and its VMD-SVR realization in terms of the boundary effect reduction, decomposition 

performance, prediction outcomes, time consumption, overfitting, and forecasting capability for long leading times. 

Specifically, five comparative experiments were conducted based on the ensemble empirical mode decomposition (EEMD), 25 

singular spectrum analysis (SSA), discrete wavelet transform (DWT) and SVR. The experimental results on monthly runoff 

collected from three stations at the Wei River show the superiority of the TSDP framework compared to benchmark models. 
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Nomenclature 
TSDP Two-stage decomposition prediction VMD Variational mode decomposition 
TSDPE Three-stage decomposition ensemble SVR Support vector regression 
EEMD Ensemble empirical mode decomposition WA Wavelet transform 
SSA Singular spectrum analysis IMF Intrinsic mode function 
DWT Discrete wavelet transform PACF Partial autocorrelation coefficient 
VMD-SVR A TSDP model based on VMD and SVR ML Maximum likelihood 
EEMD-SVR A TSDP model based on EEMD and SVR NSE Nash–Sutcliffe efficiency 
SSA-SVR A TSDP model based on SSA and SVR NRMSE Normalized root mean square error 
DWT-SVR A TSDP model based on DWT and SVR PPTS Peak percentage of threshold statistic 
VMD-SVR-A A TSDPE model based on VMD and SVR with addition ensemble  
EEMD-SVR-A A TSDPE model based on EEMD and SVR with addition ensemble 
SSA-SVR-A A TSDPE model based on SSA and SVR with addition ensemble 
DWT-SVR-A A TSDPE model based on DWT and SVR with addition ensemble 

1 Introduction 

Reliable and accurate streamflow forecasting is of great significance for water resource management (Woldemeskel et al., 

2018). The first attempts for streamflow prediction were based on precipitation measurements, and date back to the 19th 

century (Mulvaney, 1850; Todini, 2007). Since then, streamflow forecasting models have been further developed by analyzing 35 

relevant physical processes and incorporating key hydrological terms into the formulation of mathematical models (Kratzert 

et al., 2018). These hydrological terms include physical characteristics and boundary conditions of the catchments, as well as 

spatial and temporal variabilities of hydrologic processes (Kirchner, 2006; Paniconi and Putti, 2015). In addition, the 

computing power and the availability of hydrometeorological and remote sensing data largely drive the development of 

physically-based models (Singh, 2018; Clark et al., 2015). 40 

However, modelling hydrologic processes with spatial and temporal variabilities at the catchment scale requires a lot of input 

meteorological data, parameters that define the boundary conditions and physical properties, as well as high-performance 

computational resources (Binley et al., 1991; Devia et al., 2015). Moreover, current physically-based models do not perform 

consistently on all scales and datasets because hydrological process models are mostly available for small watersheds only 

(Kirchner, 2006; Beven, 1989; Grayson et al., 1992; Abbott et al., 1986). Therefore, physically-based models have been rarely 45 

used for practical streamflow forecasting (Kratzert et al., 2018). In this context, numerous studies have explored and developed 

data-driven models such as time-series and machine-learning models (Wu et al., 2009). 

Previous studies predicted streamflow through the application of time-series models such as Box-Jenkins (Castellano-Méndez 

et al., 2004), autoregression (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive 

integrated moving average (ARIMA) (Li et al., 2015; Mohammadi et al., 2006; Kisi, 2010; Valipour et al., 2013). However, 50 

the linear hypothesis of time-series models makes them unsuitable for forecasting of nonstationary, nonlinear and variable 

streamflow patterns. Therefore, maximum likelihood (ML) models with nonlinear mapping capabilities have been applied to 
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forecast streamflow. These models include decision trees (DT) (Erdal and Karakurt, 2013; Solomatine et al., 2008; Han et al., 

2002), support vector regression (SVR) (Yu et al., 2006; Maity et al., 2010; Hosseini and Mahjouri, 2016), fuzzy inference 

systems (FIS) (Ashrafi et al., 2017; He et al., 2014; Yaseen et al., 2017) and artificial neural networks (ANN) (Kratzert et al., 55 

2018; Nourani et al., 2009; Tiwari and Chatterjee, 2010; Rasouli et al., 2012). 

However, pure ML models cannot always adequately handle highly nonstationary, complex, nonlinear, and multiscale 

streamflow series in catchments due to the lack of meteorological observations. Therefore, signal processing algorithms have 

been applied to transform the nonstationary series data into relatively stationary components, which can be analyzed more 

easily. The most common of these algorithms are those based on wavelet analysis (WA) (Liu et al., 2014; Adamowski and 60 

Sun, 2010), empirical mode decomposition (EMD) (Huang et al., 2014; Meng et al., 2019), ensemble empirical mode 

decomposition (EEMD) (Bai et al., 2016; Zhao and Chen, 2015), singular spectrum analysis (SSA) (Zhang et al., 2015; 

Sivapragasam et al., 2001), seasonal-trend decomposition based on loess (STL) (Luo et al., 2019) and variational mode 

decomposition (VMD) (He et al., 2019; Xie et al., 2019). These approaches show improved streamflow forecasting through 

flow decomposition. 65 

However, the aforementioned decomposition-based methods are based on an implicit assumption that the decomposition 

results are barely affected by boundary effects (Zhang et al., 2015). The boundary effects cause the decomposition results at 

the end of a streamflow series to deviate from the real streamflow decomposition data, which was obtained using the future 

observed data as input. In fact, each of these decomposition approaches firstly decomposed the entire streamflow data and then 

divided the decomposed components into training and validation sets for streamflow prediction. This generally leads to the 70 

incorporation of impractically-available validation information in the training process. The use of the validation information 

enables the reduction of the boundary effects, which is a crucial step for any operational streamflow forecasting algorithm. 

However, to avoid using impractically-available validation information, the streamflow time series data must be first divided 

into training and validation sets, where each set is separately decomposed, while the boundary effects are reduced. 

Other relevant research contributions are those of Zhang et al. (2015), Du et al. (2017) , Tan et al. (2018), Quilty and 75 

Adamowski (2018), and Fang et al. (2019) who recently pointed out and explicitly criticized the afore-mentioned unpractical 

(and even incorrect) usage of signal processing techniques. Zhang et al. (2015) evaluated and compared the outcomes of 

hindcast and forecast experiments (with and without validation information, respectively) for decomposition models based on 

WA, EMD, SSA, ARMA and ANN. The authors suggested that the decomposition-based models may not be suitable for 

practical streamflow forecasting. Du et al. (2017) demonstrated that the usage of SSA and the discrete wavelet transform 80 

(DWT) directly on the entire hydrological time series is incorrect. Tan et al. (2018) assessed the impractical usage of 

forecasting scheme based on the EEMD and ANN. Quilty and Adamowski (2018) addressed the incorrect usage of the wavelet-

based models for hydrological forecasting. Fang et al. (2019) demonstrated that EMD is not suitable for practical streamflow 

forecasting. In summary, these contributions have demonstrated that the incorrect usage often leads to much better performance 

which is practically unachievable. 85 
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However, the boundary effects constitute a great challenge in practical streamflow forecasting. Zhang et al. (2015) tested 

several extended mathematical models to reduce the boundary effects and suggested that a properly-designed extension model 

can improve the forecasting performance. Quilty and Adamowski (2018) proposed a new wavelet data-driven forecasting 

framework, in which boundary-affected coefficients were removed by adopting either the stationary wavelet transform (SWT) 

algorithm (also known as “algorithme à trous”) or the maximal-overlap discrete wavelet transform. Based on the 90 

abovementioned streamflow forecasting approaches, we would like to highlight three desirable improvements to attain more 

reliable and efficient decomposition-based models. In particular, these improvements are: (i) finding simpler and more efficient 

ways of reducing the boundary effects; (ii) reducing the computational and error accumulation costs that result from using one 

optimized data-driven model for each signal component and summing up the component predictions; and (iii) decreasing the 

streamflow reconstruction inaccuracy resulting from inadequate noise removal and summation of predictions from multiple 95 

components. 

To bridge the gap between the existing and desirable streamflow forecasting characteristics, we designed a two-stage 

decomposition prediction (TSDP) framework, proposed a TSDP realization based on VMD and SVR, and referred to this 

realization as VMD-SVR. The proposed scheme can reduce the boundary effects, save the modelling time, and improve the 

prediction performance. This practical streamflow forecasting framework can be outlined as follows: 100 

(1) Divide the entire streamflow data into training and validation sets and decompose each of these two sets separately into 

signal components. This procedure avoids using the validation information for training purposes. 

(2) Combine the predictors of individual signal components into a final predictors, and select the original streamflow data as 

the prediction target in order to build only one optimized prediction model. 

(3) Generate training and validation samples and divide the validation samples into development and testing samples. Mix and 105 

shuffle the training and the development samples to optimize the prediction model, and reduce the boundary effects. 

The aim of this paper is to demonstrate the effectiveness, efficiency and reliability of the designed TSDP framework and its 

VMD-SVR realization. Specifically, we design five comparative experiments which help in the assessment of different 

performance aspects including the reduction of the boundary effects, decomposition performance, predictability, time 

consumption, overfitting, and forecasting capabilities for long leading times. In the first experiment, data mixing and shuffling 110 

are carried out to reduce the boundary effects. In the second experiment, we compare the EEMD, SSA, DWT, and the VMD 

methods to demonstrate the superiority of the VMD method for one-month-ahead streamflow forecasting. In the third 

experiment, we establish a three-stage decomposition ensemble (TSDPE) model, in which one optimized SVR model is built 

for each signal component. This ensemble model demonstrates that the designed TSDP framework saves the modelling time 

and improves the prediction performance. For the fourth experiment, we demonstrate that the proposed VMD-SVR realization, 115 

which combines the predictors of the individual signal components for the final predictors, barely overfits the original 

streamflow data. In the last experiment, we present the VMD-SVR prediction capability for long leading times, which extend 

for more than one month. We use monthly runoff collected at three stations located in the Wei River of China to evaluate the 

performance of the proposed model against the benchmark models. 
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2 Methodologies 120 

2.1 Variational mode decomposition 

The VMD algorithm proposed by Dragomiretskiy and Zosso (2014) concurrently decomposes an input signal ( 𝑓𝑓(𝑡𝑡)) into 𝐾𝐾 

intrinsic mode functions (IMFs) with different center frequencies and limited bandwidths. An IMF ( 𝑢𝑢𝑘𝑘(𝑡𝑡)) is an amplitude-

modulated-frequency-modulated (AM-FM) signal, which is defined as: 

𝑢𝑢𝑘𝑘(𝑡𝑡) = 𝐴𝐴𝑘𝑘(𝑡𝑡) cos�𝜙𝜙𝑘𝑘(𝑡𝑡)�,          (1) 125 

where 𝐴𝐴𝑘𝑘(𝑡𝑡) and 𝜙𝜙𝑘𝑘(𝑡𝑡) are the instantaneous amplitude and phase, respectively. 

The VMD decomposition process is mainly divided into two steps, namely (a) constructing a variational problem and (b) 

solving this problem. The variational problem is constructed by the following scheme:  

(1) Use the Hilbert transform to compute the associated analytic signal and obtain a unilateral frequency spectrum. 

(2) Shift the frequency spectrum of each mode to a “baseband” by mixing with an exponential function tuned to the respective 130 

evaluated center frequency. 

(3) Assess the bandwidth by the H1 Gaussian smoothness of the demodulated signal, i.e., the squared L2-norm of the gradient. 

The constructed variational problem is expressed as follows: 

� min
{𝑢𝑢𝑘𝑘}{𝜔𝜔𝑘𝑘}

�∑ �𝜕𝜕𝑡𝑡 ��𝛿𝛿(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡
� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡�

2

2
𝑘𝑘 �

𝑠𝑠. 𝑡𝑡.   ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)𝑘𝑘

,        (2) 

where {𝑢𝑢𝑘𝑘} = {𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑘𝑘}  and {𝜔𝜔𝑘𝑘} = {𝜔𝜔1,𝜔𝜔2,⋯ ,𝜔𝜔𝑘𝑘}  are shorthand notations for the set of modes and their center 135 

frequencies, respectively. The symbol t  denotes time, 𝑗𝑗2 = −1 is the square of the imaginary unit, * denotes the convolution 

operator, and δ is the Dirac delta function. In addition, the expression �𝛿𝛿(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡
� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡) is the Hilbert transform of 𝑢𝑢𝑘𝑘(𝑡𝑡) , 

which can transform 𝑢𝑢𝑘𝑘(𝑡𝑡) into an analytical signal to form a one-sided frequency spectrum with only positive frequencies. In 

this manner, the spectrum of each mode can be shifted to a baseband signal with the index term 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡. 

To solve this variational problem, a Lagrangian multiplier (λ) and a quadratic penalty term (α) are introduced to transform the 140 

constrained optimization problem (2) into an unconstrained problem. The augmented Lagrangian ℓ is defined as follows: 

ℓ({𝑢𝑢𝑘𝑘}, {𝜔𝜔𝑘𝑘}, 𝜆𝜆) ∶= 𝛼𝛼∑ �𝜕𝜕𝑡𝑡 ��𝛿𝛿(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡
� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡�

2

2
+ ‖𝑓𝑓(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 ‖22 + 〈𝜆𝜆(𝑡𝑡), 𝑓𝑓(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 〉𝑘𝑘 . (3) 

For the VMD method, the alternate direction method of multipliers (ADMM) is used to solve Eq. (3). The mode 𝑢𝑢𝑘𝑘(𝜔𝜔) in the 

frequency domain, the center frequencies 𝜔𝜔𝑘𝑘 and the Lagrangian multiplier λ are iteratively and respectively updated by 

𝑢𝑢�𝑘𝑘𝑛𝑛+1(𝜔𝜔) =
�̂�𝑓(𝜔𝜔)−∑ 𝑢𝑢�𝑖𝑖

𝑛𝑛+1(𝜔𝜔)−∑ 𝑢𝑢�𝑖𝑖
𝑛𝑛(𝜔𝜔)+𝜆𝜆

�𝑛𝑛(𝜔𝜔)
2𝑖𝑖>𝑘𝑘𝑖𝑖<𝑘𝑘

1+2𝛼𝛼(𝜔𝜔−𝜔𝜔𝑘𝑘)2
,        (4) 145 

𝜔𝜔�𝑘𝑘𝑛𝑛+1 = ∫ 𝜔𝜔�𝑢𝑢�𝑘𝑘
𝑛𝑛+1(𝜔𝜔)�

2
𝑑𝑑𝜔𝜔∞

0

∫ �𝑢𝑢�𝑘𝑘
𝑛𝑛+1(𝜔𝜔)�

2
𝑑𝑑𝜔𝜔∞

0
,           (5) 

�̂�𝜆𝑛𝑛+1(𝜔𝜔) = �̂�𝜆𝑛𝑛(𝜔𝜔) + τ�𝑓𝑓(𝜔𝜔) − ∑ 𝑢𝑢�𝑘𝑘𝑛𝑛+1(𝜔𝜔)𝑘𝑘 �,        (6) 
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where 𝑛𝑛 is the iteration counter, τ is the noise tolerance, and 𝑢𝑢�𝑘𝑘𝑛𝑛+1(𝜔𝜔), 𝑓𝑓(𝜔𝜔) and �̂�𝜆𝑛𝑛(𝜔𝜔) represent the Fourier transforms of 

𝑢𝑢𝑘𝑘𝑛𝑛+1(𝑡𝑡)  𝑓𝑓(𝑡𝑡)  and 𝜆𝜆𝑛𝑛(𝑡𝑡) , respectively. The iterative procedure continues until a convergence condition, namely, 

∑ ‖𝑢𝑢�𝑘𝑘𝑛𝑛+1 − 𝑢𝑢�𝑘𝑘𝑛𝑛‖22/‖𝑢𝑢�𝑘𝑘𝑛𝑛‖22𝑘𝑘 < 𝜀𝜀 , is reached. The time-domain mode 𝑢𝑢𝑘𝑘(𝑡𝑡) can be obtained as the real part of the inverse Fourier 150 

transform of 𝑢𝑢𝑘𝑘(𝜔𝜔) expressed by Eq. (4). 

The decomposition level (𝐾𝐾), the secondary penalty parameter (α), the noise tolerance (τ) and the convergence tolerance (ε), 

affect the VMD decomposition performance. A value of 𝐾𝐾 that is too small may lead to poor IMF extraction from the input 

signal, whereas a too-large value of 𝐾𝐾 may cause information redundancy in the IMFs. A too-small value of α may lead to a 

large bandwidth, information redundancy and additional noise to be included in the IMFs. A too-large value of α may lead to 155 

a very small bandwidth and loss of some signal information. As shown in Eq. (6), the Lagrangian multiplier ensures optimal 

convergence when an appropriate value of τ > 0 is used and the signal has a low noise level. The Lagrangian multiplier hinders 

the convergence when  τ > 0 is used and the signal has a large noise level. This can be avoided by setting τ to 0. However, it 

is not possible to reconstruct the input signal precisely if τ equals 0. Additionally, the value of ε affects the reconstruction error 

of the VMD decomposition. 160 

2.2 Support Vector Regression 

Support vector machines were first designed by Vapnik (1995) for handling classification problems and later extended by 

Vapnik et al. (1997) to deal with regression problems. The essentials of support vector regression (SVR) are described here 

briefly. 

For N pairs of training samples {𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 , 𝒙𝒙𝒊𝒊 and 𝑦𝑦𝑖𝑖  indicate the input variables and the desired output targets, respectively. 165 

Linear regression is replaced by nonlinear regression, through the use of a nonlinear mapping function ϕ, as follows: 

𝑦𝑦𝑖𝑖 ≈ 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘) = 〈𝒘𝒘,𝜙𝜙(𝒙𝒙𝒊𝒊)〉 + 𝑏𝑏,          (7) 

where 𝒘𝒘 and 𝑏𝑏 represent the regression weights and bias, respectively, and 〈. , . 〉 is the inner product of two vectors (Zeng et 

al., 2011). SVR evaluates the error between 𝑦𝑦𝑖𝑖  and 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘) by using the following ε-insensitive loss function: 

|𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)|𝜀𝜀 = � 0,    𝑖𝑖𝑓𝑓 |𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)| < 𝜀𝜀
|𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)| − 𝜀𝜀,    𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.       (8) 170 

Indeed, the error is ignored if the gap between 𝑦𝑦𝑖𝑖  and 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘) is smaller than 𝜀𝜀. Otherwise, the excess of this gap above 𝜀𝜀 is 

used as the loss value. 

Based on the values of  𝒘𝒘 and 𝑏𝑏, a regularized risk function 𝑅𝑅 is determined as  

𝑅𝑅 = 𝐶𝐶
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)|𝜀𝜀𝑁𝑁
𝑖𝑖=1 + 1

2
‖𝒘𝒘‖2,         (9) 

where the first term indicates the empirical risk based on the 𝜀𝜀-insensitive loss function. The second term is a regularization 175 

term for penalizing the weight vector in order to limit the complexity of the SVR model. In other words, to minimize the risk 

function 𝑅𝑅, the regression weights 𝒘𝒘 will be forced to have small values when a large value of 𝐶𝐶 is used. 
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To avoid handling high-dimensional nonlinear features 𝜙𝜙(𝒙𝒙), SVR uses a kernel trick that substitutes the inner product 

〈𝜙𝜙(𝒙𝒙),𝜙𝜙(𝒙𝒙′)〉 in the optimization algorithm with a kernel function, namely, 𝐾𝐾(𝒙𝒙,𝒙𝒙′). Some Lagrange multipliers, namely, 𝛼𝛼𝑖𝑖 

and 𝛽𝛽, are introduced to solve the constrained optimization problem of minimizing 𝑅𝑅. The Lagrange form of the regression 180 

function is 

𝑓𝑓(𝒙𝒙) = ∑ 𝛼𝛼𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙′) + 𝛽𝛽𝑁𝑁
𝑖𝑖=1 .          (10) 

The SVR model relies heavily on the hyperparameters (parameters of the prior distribution) and the kernel function. A radial 

basis function (RBF), namely, 𝐾𝐾(𝒙𝒙,𝒙𝒙′) = 𝑒𝑒𝑒𝑒𝑒𝑒(−‖𝒙𝒙 − 𝒙𝒙𝒊𝒊‖2/2𝜎𝜎2), is used as a covariance function in this work. The parameter 

𝜎𝜎 is used to control the RBF width. For more details on SVR, see Vapnik et al. (1997) and Bishop (2006). 185 

2.3 Bayesian optimization based on Gaussian processes 

Bayesian optimization (BO) is a sequential model-based optimization (SMBO) approach typically used for the global 

optimization of black-box functions, for which the real distribution is unknown or the evaluation is extremely expensive. The 

motivation of the BO algorithm is putting a prior belief on the objective function, which forms the basis for the loss function  

in a learning model, and sequentially refining this model by gathering function evaluations along with updating the Bayesian 190 

posterior (James et al., 2011; Shahriari et al., 2016). 

To update our beliefs about the loss function and calculate the posterior expectation, a prior function is applied. Here, we 

assume that the real loss function distribution can be described by a Gaussian process (GP). Therefore, the loss function values 

{𝑓𝑓(𝒙𝒙𝒊𝒊)}𝑖𝑖=1𝑛𝑛  for an evaluation set {𝑒𝑒𝑖𝑖}𝑖𝑖=1𝑛𝑛  satisfy the multivariate Gaussian distribution over the function space 

𝑓𝑓1:𝑛𝑛~𝑁𝑁(𝑚𝑚(𝒙𝒙𝟏𝟏:𝒏𝒏),𝑲𝑲),           (11) 195 

where 𝑚𝑚(𝒙𝒙𝟏𝟏:𝒏𝒏)  is the GP mean function set and 𝑲𝑲  is the kernel matrix given by the covariance function 𝐾𝐾(𝒙𝒙,𝒙𝒙′) . An 

acquisition function, used to compute the posterior distribution, is applied to describe the utility of candidate points by 

maximizing this acquisition function. In other words, the point with the highest utility is selected as the candidate for the next 

evaluation of 𝑓𝑓. Many acquisition functions have been practically utilized for Bayesian optimization. These functions include 

the expected improvement (EI), the upper confidence bounds (UCB), the probability of improvement, the Thompson sampling 200 

(TS) and the entropy search (ES). However, the EI function is the most commonly used among these functions (James et al., 

2011; Shahriari et al., 2016). The expected improvement can be calculated under the GP model as 

𝐸𝐸𝐸𝐸(𝒙𝒙) = �
[𝜇𝜇(𝒙𝒙) − 𝑓𝑓(𝒙𝒙�)]Φ(𝔃𝔃) + 𝜎𝜎(𝒙𝒙)𝜙𝜙(𝔃𝔃)    𝑖𝑖𝑓𝑓 𝜎𝜎(𝒙𝒙) > 0

0    𝑖𝑖𝑓𝑓 𝜎𝜎(𝒙𝒙) = 0 ,       (12) 

𝔃𝔃 = 𝜇𝜇(𝒙𝒙)−𝑓𝑓(𝒙𝒙�)
𝜎𝜎(𝒙𝒙)

,            (13) 

where 𝑓𝑓(𝒙𝒙�) is the current lowest loss value, and 𝜇𝜇(𝒙𝒙) is the expected loss value, while Φ(𝔃𝔃) and 𝜙𝜙(𝔃𝔃) are the cumulative 205 

distribution and the probability density function, respectively. The Bayesian optimization based on Gaussian processes (BOGP)  

might be wrapped  up as follows: 
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Step 1 Given the training samples and hyperparameter searching space as input, define the loss function as mean square error 

(MSE), and initialize the first candidate 𝒙𝒙𝟎𝟎 by random sampling scheme. 

Step 2 Given previous evaluations, update the posterior expectation of 𝑓𝑓 using the GP model. 210 

Step 3 Track a new candidate 𝒙𝒙𝒏𝒏𝒏𝒏𝒘𝒘 that maximizes the EI function, i.e., 𝒙𝒙𝒏𝒏𝒏𝒏𝒘𝒘 = arg max𝐸𝐸𝐸𝐸(𝑒𝑒). 

Step 4 Compute the value of 𝑓𝑓 for the new candidate 𝒙𝒙𝒏𝒏𝒏𝒏𝒘𝒘. 

Step 5 Repeat Steps 1-3 until convergence is achieved or a pre-specified number of iterations is reached. 

Step 6 Output the last candidate as the optimized hyperparameters. 

2.4 The TSDP framework and the proposed VMD-SVR 215 

 
Figure 1: A block diagram of the two-stage VMD-SVR model. 

 

The TSDP framework is designed as follows. (i) Streamflow decomposition: the entire streamflow is first divided into training 

and validation sets, and then the training set is concurrently decomposed while the validation set is sequentially decomposed 220 

into several signal components. (ii) Streamflow prediction: the optimal lag times (measured in hours, days, months or years) 

of the decomposed signals components are initially combined as predictors. The original streamflow is selected as the desired 

predicted target so as to generate training and validation samples. Next, the validation samples are divided into development 
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samples for optimized model selection and testing samples for testing the optimized models. A single learning model is finally 

trained and tuned using a set of samples obtained by mixing and shuffling the training and development samples. The TSDP 225 

streamflow decomposition stage extracts hidden information of the original streamflow data and avoids using validation 

information that is not available in practical forecasting applications. The TSDP prediction stage builds one learning model 

only using a set of mixed and shuffled samples to reduce boundary effects, save modelling time, avoid error accumulation, 

and improve prediction performance. 

After each key framework module is discussed separately, the design details of the TSDP framework and its VMD-SVR 230 

realization are summarized as follows (See Fig. 1). Steps 1-4 represent the decomposition stage while Steps 5-8 represent the 

prediction stage. Note that the VMD and SVR schemes can be respectively replaced by other decomposition-based and data-

driven prediction models. 

Step 1 Collect original streamflow data 𝑄𝑄(𝑡𝑡) as input of VMD-SVR (𝑡𝑡 = 1,2,⋯𝑁𝑁 , 𝑁𝑁 is the length of original streamflow 

data). 235 

Step 2 Divide the original streamflow data into training and validation sets with 70% and 30% of the data samples, 

respectively. 

Step 3 Concurrently extract 𝐾𝐾  IMF signal components from the training set using the VMD scheme. The optimal 𝐾𝐾  is 

determined by observing whether the last extracted IMF component exhibits central-frequency aliasing. 

Step 4 Sequentially append the validation data to the training set to generate appended sets. Decompose each appended set 240 

into 𝐾𝐾 signal components using the VMD scheme. 

Step 5 Plot the partial autocorrelation function (PACF) of each signal component for the training set to select the optimal 

lag period for generating SVR training samples. We assume that the predicted target of the kth signal component is 𝑒𝑒𝑘𝑘(𝑡𝑡 + 1). 

If the PACF of the 𝑚𝑚th lag period lies outside the 95% confidence interval (�− 1.96
√𝑛𝑛

, 1.96
√𝑛𝑛
�, n is the signal component length) 

and is larger than 0.5, then 𝑒𝑒𝑘𝑘(𝑡𝑡), 𝑒𝑒𝑘𝑘(𝑡𝑡 − 1),⋯ , 𝑒𝑒𝑘𝑘(𝑡𝑡 + 1 −𝑚𝑚) are selected as input predictors for the kth signal component. 245 

Step 6 Combine the input predictors of each signal component as the SVR predictors, and select the original streamflow 

after the maximum lag period (𝑄𝑄(𝑡𝑡 + 1)) as the predicted target. 

Step 7 Based on the input variables and output targets obtained in Step 6, generate training samples using signal components, 

and generate appended samples using the appended signal components created in Step 4. Select the last sample of the appended 

samples as a validation sample. Divide the validation samples evenly into development and testing samples. 250 

Step 8 Mix and shuffle the training and development samples. Train and optimize the SVR model using the shuffled samples 

and the BOGP algorithm. For testing, predict the original streamflow by inputting the test sample predictors into the optimized 

SVR model. The output of VMD-SVR is the testing prediction data. 
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2.5 Comparative experimental setups 

We design five comparative experiments to evaluate the effectiveness, efficiency and reliability of the TSDP framework and 255 

its VMD-SVR realization in terms of the boundary effect reduction, decomposition performance, predictability, time 

consumption, overfitting and forecasting capabilities for long leading times. Experimental comparisons are made against 

benchmark models including the decomposition-based models of EEMD, SSA, DWT and SVR, as well as the no-

decomposition baseline SVR model. All these models are optimized by the BOGP. 

2.5.1 Experiment 1: Evaluation of the boundary effect reduction 260 

Predicting streamflow without using validation information is quite challenging due to the fact that the validation samples are 

seriously affected by the boundary effects. The boundary effects lead the deviation of the decomposition results from the real 

values. This occurs mainly at the end of a time series because the future values used as parameters for decomposing the 

boundary values of the time series are not observed. We give a detailed example of the boundary effects in Sec. 4.1. As stated 

in Sec. 2.4, the training set is concurrently decomposed to save time and the validation set is sequentially decomposed to avoid 265 

using future validation information. Therefore, only a few decomposition values of the training set are affected by the boundary 

effects. However, all decomposition values of the validation set are affected by the boundary effect because the last 

decomposition value of the appended series is selected as a validation decomposition value. Therefore, the boundary effect 

causes the smooth training samples and the oscillating validation samples to have different distributions. This reduces the 

generalization performance of the training-data-based optimized models on the validation samples. 270 

To reduce the boundary effects, we design a mixing-and-shuffling step, in which we further divide the validation samples into 

development and testing samples, training and development shuffled mixed samples. The SVR models are finally optimized 

using these shuffled samples based on a cross-validation strategy. Note that the mixing-and-shuffling step does not reduce the 

boundary effects themselves but reduces their ramifications, results and consequences. To demonstrate that this step can reduce 

the ramifications of the boundary effects, we design a comparative experiment in which we divide the entire streamflow data 275 

into a training-and-development set and a testing set with 85% and 15% of the entire streamflow, respectively. We concurrently 

decomposed the training-and-development set and sequentially decomposed the testing set, and finally generated samples for 

each set. The training-and-development samples were divided into training and development samples. The remaining 

procedures are identical to those of the TSDP framework. Note that the numbers of the training, development, and testing 

samples in this experiment are identical to those in the mixing-and-shuffling step of the TSDP framework. Also, the training 280 

and development samples have the same distribution. 

2.5.2 Experiment 2: Performance evaluation of the TSDP models 

For the second experiment, we test the VMD decomposition performance by comparing the prediction performance of VMD-

SVR scheme with those of three other TSDP models which combine EEMD (Wu and Huang, (2009), SSA (Golyandina et al., 
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(2001) and DWT (Sachindra et al., (2019) with SVR, namely EEMD-SVR, SSA-SVR and DWT-SVR. The modeling processes 285 

for the EEMD-SVR, SSA-SVR and DWT-SVR schemes are identical to that of the VMD-SVR scheme except for differences 

in the decomposition stage. 

The EEMD technique is developed based on the EMD one as follows: (1) add white noise with an amplitude of 𝜀𝜀 to the original 

series; (2) decompose the noise-contaminated series into IMF components using EMD; (3) repeat the aforementioned two 

steps with 𝑀𝑀  different levels of white noise; (4) obtain the final results by calculating the ensemble means of the 290 

aforementioned IMFs. Therefore, the white noise amplitude (𝜀𝜀) and the number of ensemble members (𝑀𝑀) are used to evaluate 

the standard deviation of error, i.e. the difference between the original time-series and the IMFs, and hence these parameters 

affect the EEMD decomposition performance. The value of 𝜀𝜀 should not be too small because a too-small amplitude may not 

produce the extrema change necessary for EMD (Wu and Huang, 2009). However, increasing 𝑀𝑀 can reduce the white noise 

effect to a negligible low level (Wu and Huang, 2009). In general, good decomposition results are obtained when 𝑀𝑀 is set to a 295 

few hundreds and less than 1% of the error may be caused by the remaining noise (Wu and Huang, 2009). In this work, we set 

𝑀𝑀 and 𝜀𝜀 to 100 and 0.2, respectively, as suggested by Wu and Huang (2009). 

Singular spectrum analysis (SSA) decomposes a given time-series into independent trend, periodic, or noise series components. 

The SSA method has four main steps, namely embedding, singular value decomposition (SVD), grouping and diagonal 

averaging. The embedding step maps the original series into a trajectory matrix of dimensions 𝑊𝑊𝐿𝐿  by 𝑁𝑁 −𝑊𝑊𝐿𝐿 + 1 with a 300 

window length of 𝑊𝑊𝐿𝐿 (2 ≤ 𝑊𝑊𝐿𝐿 ≤ 𝑁𝑁), where 𝑁𝑁 is the length of the original series. In the SVD step, the trajectory matrix is 

decomposed into 𝑊𝑊𝐿𝐿 elementary matrices. For the grouping step, the 𝑊𝑊𝐿𝐿 elementary matrices are divided into 𝑚𝑚 groups (where 

𝑚𝑚 is the decomposition level, and 𝑚𝑚 ≤ 𝑊𝑊𝐿𝐿). Finally, for the diagonal averaging step, 𝑚𝑚 subseries are extracted from the 

grouped matrices. Clearly, the values of 𝑊𝑊𝐿𝐿 and 𝑚𝑚 affect the SSA decomposition performance. In general, a value of 𝑊𝑊𝐿𝐿 of 

up to 30-45% of 𝑁𝑁 can adequately separate the underlying periodicities from the overall trend. However, if one of the subseries 305 

is periodic, 𝑊𝑊𝐿𝐿 can be set to the period of this subseries to get better decomposition performance (Zhang et al., 2015). The 

value of 𝑊𝑊𝐿𝐿 is defined as 12 in this work because we perform monthly runoff forecasting. The variance contribution of each 

subseries to the original series can decide the value of 𝑚𝑚. However, one can ignore the grouping step if the value of 𝑊𝑊𝐿𝐿 is 

small (e.g., 𝑊𝑊𝐿𝐿 ≤ 20) because grouping may sometimes cause information hiding in the grouped subseries. Therefore, we do 

not need to set  𝑚𝑚, and the grouping step is ignored in this work. In summary, 12 subseries are decomposed herein by SSA. 310 

The discrete wavelet transform (DWT) decomposes a given time-series into several subseries using a discrete mother wavelet 

function (𝜓𝜓). This transform decomposes the original series into several detail components which represent the frequencies, 

and one approximation component which represents the trends. For the first decomposition level, the original series, 𝑄𝑄(𝑡𝑡), is 

decomposed into one detail high-frequency component 𝐷𝐷1(𝑡𝑡), and one approximation low-frequency component 𝐴𝐴1(𝑡𝑡), such 

that 𝑄𝑄(𝑡𝑡) = 𝐷𝐷1(𝑡𝑡) + 𝐴𝐴1(𝑡𝑡). For the second decomposition level, the 𝐴𝐴1(𝑡𝑡) component is further decomposed into one detail 315 

component 𝐷𝐷2(𝑡𝑡)  and one approximation component 𝐴𝐴2(𝑡𝑡) , such that 𝐴𝐴1(𝑡𝑡) = 𝐷𝐷2(𝑡𝑡) + 𝐴𝐴2(𝑡𝑡) . In such a manner, this 

decomposition process can be continued until a predefined decomposition level (𝐿𝐿) is reached. The final decomposition 
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outcome can be expressed as 𝑄𝑄(𝑡𝑡) = 𝐷𝐷1(𝑡𝑡) + ⋯+ 𝐷𝐷𝐿𝐿(𝑡𝑡) + 𝐴𝐴𝐿𝐿(𝑡𝑡). Therefore, 𝜓𝜓 and 𝐿𝐿 are two vital parameters that affect the 

DWT decomposition performance. However, there is no theoretical method to select these parameters. Testing numerous 

combinations of 𝜓𝜓 and 𝐿𝐿 is quite laborious. In this work, we set 𝜓𝜓 to the Daubechies wavelet function with 10 vanishing 320 

moments (db 10) as suggested by Seo et al. (2015). Also, we set 𝐿𝐿 to 𝑖𝑖𝑛𝑛𝑡𝑡[log(𝑁𝑁)] following Nourani et al. (2009). 

2.5.3 Experiment 3: Performance evaluation of TSDPE models 

In the third experiment, we compare the prediction performance and the computational cost of the TSDP and TSDPE models 

based on the EEMD, SSA, VMD, DWT and SVR methods. In particular, we investigate four combined schemes, namely 

EEMD-SVR-A (‘A’ means the ensemble approach is addition ensemble), SSA-SVR-A, VMD-SVR-A and DWT-SVR-A. The 325 

TSDPE models include the extra ensemble stage compared to the TSDP models. The decomposition stages of the TSDP and 

TSDPE models are identical. In the TSDPE prediction stage, the PACF is also used for selecting the predictors and the 

predicted target for each signal component. However, one optimized SVR model will be trained for each signal component 

and used to predict this component in the testing phase. The remaining prediction procedures are identical to those of the TSDP 

models. For testing in the ensemble stage, the prediction results of each signal component are summed to predict the streamflow 330 

data. Since the TSDPE models build one SVR model for each signal component, the time cost of any of the TSDPE models is 

expected to be significantly higher than those of the TSDP models. 

2.5.4 Experiment 4: Evaluation of PCA-based dimensionality reduction  

Our fourth experiment tests whether dimensionality reduction (i.e. reduction of the number of predictors) improves the 

prediction performance of the TSDP models of Experiment 2. The TSDP models can save modelling time and sometimes may 335 

improve the prediction performance compared with the TSDPE models. However, combining the predictors of each signal 

component as the input predictors of the TSDP models may lead to an overfitting problem because the predictors increase a 

lot compared with those of the TSDPE models and predictors might be correlated. Therefore, it is necessary to test whether 

the reduction of the predictors of the two-stage decomposition models can help these models improve the prediction 

performance. Principal component analysis (PCA) is used to reduce the input predictors of the TSDP models. This analysis 340 

uses an orthogonal transformation to transform the correlated predictors into a set of linearly uncorrelated predictors called the 

principal components. For further details on PCA, see Jolliffe (2002). The number of principal components, which indicates 

the number of predictors retained by the PCA procedure, is the main PCA parameter. To find the optimal number of these 

predictors, numerous values might be tested. We can also guess the number of predictors using the method of Minka (2001). 

Since the number of predictors varies for different TSDP models, the (guessed) number of predictors is replaced by the 345 

(guessed) number of reduced predictors for convenience of comparison. In this paper, the number of reduced predictors ranges 

from 0 to 15. A zero number of reduced predictors indicates that all the predictors are retained (i.e. dimensionality is not 

reduced), but the correlated predictors are transformed into uncorrelated ones. 
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2.5.5 Experiment 5: Evaluation of runoff forecasting for long leading times 

For the fifth and last experiment, we test the prediction performance of the TSDP models for long leading times. Four levels 350 

of leading times are used, namely 3, 5, 7, and 9 months. Except for the sample generation process, the modelling processes of 

the TSDP models with long leading times (of more than one month) are identical to those of the TSDP models with a 1-month 

leading time. The predictors obtained in Section 4.2 cannot be used as the predictors for 3-, 5- , 7- and 9-month leading times 

because these inputs may not be mainly related to the streamflow of these leading times. In this work, we also induce a lag of 

20 months and calculate the Pearson correlation coefficient between the monthly runoff of each long leading time and the 20-355 

month lag. A month lag was selected as a predictor under the condition that the absolute value of the Pearson correlation 

coefficient was larger than a specific threshold. This threshold was selected based on whether or not the number of predictors 

approximately equals the number of predictors for the one-month-ahead streamflow forecasting. 

3 Case study 

3.1 Study area and data observations 360 

 
Figure 2: A geographical overview of the Wei River basin.  

 

In this work, the Wei River basin (see Fig. 2) was selected as the location for a case study. The Wei River, the largest tributary 

of the Yellow River in China, lies between 33.68ºN-37.39ºN and 103.94ºE-110.03ºE and has a drainage area of 135,000 km2 365 

(Jiang et al., 2019). The Wei River has a total length of 818 km and originates from the Niaoshu Mountains in Gansu province 

and flows east into the Yellow River (Gai et al., 2019). The associated catchment has a continental monsoon climate with an 

annual average precipitation of more than 550 mm. The precipitation of the flood season from June to September accounts for 

60% of the annual total (Jiang et al., 2019). In the Guanzhong Plain, the Wei River serves as a source of water for agricultural, 

industrial and domestic purposes (Yu et al., 2016). Therefore, robust monthly runoff prediction in this region plays a vital role 370 

in water resource allocation. 
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The historical monthly runoff records from 1/1953 to 12/2018 (792 records) at the Huaxian, Xianyang and Zhangjiashan 

stations were used to evaluate the proposed model and the other state-of-the-art models. The locations of these hydrological 

stations are shown in Fig. 2. The records were collected from the hydrological information data center of Shaanxi Hydrographic 

and the Water Resources Survey Bureau. The monthly runoff records were computed from the instantaneous value (m3/s) 375 

observed at 8 A.M. each day. The entire monthly runoff was divided into a training set covering the period 1953/01-1998/12 

which represents approximately 70% of the entire monthly runoff, while the validation set corresponds to the remaining period 

1999/01-2018/12. The validation set was further divided evenly into a development set (covering the period 1999/01-2008/12) 

for selecting the optimal forecasting model and a testing set (covering the period 2009/01-2018/12) for validating the optimal 

model. 380 

3.2 Data normalization 

To make the BOGP algorithm converge faster, all the input variables in this work were normalized to the same scale ranging 

from -1 to 1 by the following equation: 

𝒚𝒚 = 2 ⊗ 𝒙𝒙−𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

,           (14) 

where the mathematical multiplication and subtraction are element-wise operations, while 𝒙𝒙 and 𝒚𝒚 are the raw and normalized 385 

vectors, respectively, and 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥  and 𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values of  𝒙𝒙 , respectively. The reason we used Eq. 

(14) to normalize the data samples is that the decomposition results contain negative values but no outliers and Eq. (14) will 

make sure the predictors and prediction target are equally normalized to [-1,1]. Note that 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥  and 𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 of the training samples 

are also used to normalize the development and testing samples to avoid using future information from the development and 

testing phases when training SVR models, and enforce all samples to follow the same distribution. 390 

3.3 Model evaluation criteria 

The Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), the normalized root-mean-square error (NRMSE), the peak 

percentage of threshold statistics (PPTS) (Bai et al., 2016; Stojković et al., 2017) and the time cost were employed to evaluate 

the performance of decomposition-based models and the pure SVR models. The NSE, NRMSE, and PPTS criteria are defined 

as follows: 395 

𝑁𝑁𝑁𝑁𝐸𝐸 = 1 − ∑ �𝑥𝑥(𝑡𝑡)−𝑥𝑥�(𝑡𝑡)�
2𝑁𝑁

𝑡𝑡=1

∑ �𝑥𝑥(𝑡𝑡)−�̅�𝑥(𝑡𝑡)�
2𝑁𝑁

𝑡𝑡=1
,          (15) 

𝑁𝑁𝑅𝑅𝑀𝑀𝑁𝑁𝐸𝐸 =
�∑ �𝑥𝑥(𝑡𝑡)−𝑥𝑥�(𝑡𝑡)�

2𝑁𝑁
𝑡𝑡=1 ∕𝑁𝑁

∑ 𝑥𝑥(𝑡𝑡)∕𝑁𝑁𝑁𝑁
𝑡𝑡=1

,          (16) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁(𝛾𝛾)=100
𝛾𝛾

1
𝑁𝑁
∑ �𝑥𝑥(𝑡𝑡)−𝑥𝑥�(𝑡𝑡)

𝑥𝑥(𝑡𝑡)
�𝐺𝐺

𝑡𝑡=1 ,          (17) 

 where 𝑁𝑁 is the number of samples, 𝑒𝑒(𝑡𝑡), �̅�𝑒(𝑡𝑡) and 𝑒𝑒�(𝑡𝑡) are the raw, average, and predicted data samples, respectively. The 

NRMSE facilitates the comparison between datasets or models at different scales. The lower NRMSE values indicate less 400 
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residual variance. The raw data samples are arranged in a descending order and the predicted data samples are arranged 

following the same order to calculate the PPTS criterion. The symbol 𝛾𝛾 denotes a threshold level that controls the percentage 

of the data selected from the beginning of the arranged data sequence and G is the number of values above this threshold level. 

For example, PPTS(5) means the top 5% flows, or the peak flows, which are evaluated by the PPTS criterion. 

3.4 Open-source software and hardware environments 405 

This work heavily relies on open-source software. We use Pandas (McKinney, 2010) and Numpy (van der Walt et al., 2011) 

to perform data preprocessing and management, Scikit-Learn (Pedregosa et al., 2011) to establish SVR models for forecasting 

monthly runoff and perform PCA for dimensionality reduction, Scikit-Optimize (Tim et al., 2018) to tune the SVR models and 

Matplotlib (Hunter, 2007) to draw the figures. All the models were developed and the time cost of each model was computed 

based on a 2.50-GHz Intel Core i7-4710MQ CPU with 16.0 GB of RAM. 410 

3.5 Modelling processes 

 

 

 

 415 

 

 

 

 
Figure 3: Center-frequency aliasing for the last signal component of the Huaxian station. 420 

 

The VMD-SVR model is employed as an example to illustrate the modelling processes of the TSDP and TSDPE models. The 

VMD-SVR decomposition stage obtains multiscale signal components from the original monthly runoff data. As stated in Sec. 

2.1, the decomposition level (𝐾𝐾), the secondary penalty parameter (α), the noise tolerance (τ) and the convergence tolerance 

(ε) are the four parameters that influence the VMD decomposition performance, which is particularly very sensitive to 𝐾𝐾. In 425 

this work, the values of α, 𝜏𝜏, and ε were set to 2000, 0, and 1e-9, respectively, based on experimental validation. In addition, 

we proposed an approach of setting the optimal 𝐾𝐾  by observing whether the last IMF had central-frequency aliasing as 

represented by the red rectangle area in Fig. 3. In other words, we vary 𝐾𝐾 from 𝐾𝐾 = 2 with a step size of 1, and if the center-

frequency aliasing of the last IMF is first observed when 𝐾𝐾 = 𝐿𝐿, then the optimal 𝐾𝐾 is set to 𝐿𝐿 − 1. As shown in Fig. 3, the 
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optimal decomposition level for the Huaxian station is 8. Additionally, we used VMD to extract 8 and 7 signal components 430 

from the training sets at the Xianyang and Zhangjiashan stations, respectively. 

 
Figure 4: PACF of the first VMD signal component at the Huaxian station. 

 

 435 
Figure 5: Pairwise partial dependence plot of the objective function (MSE) for the VMD-SVR scheme at the Huaxian station. 
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In the prediction stage, we first determined the predictors and the predicted target to generate the training samples. According 

to the procedure of Sec. 2.4, PACF is used to determine the optimal predictors for the VMD-SVR scheme. The first VMD IMF 

component, i.e., S1, at the Huaxian station is used as an example of tracking the optimal input predictors from the PACF of the 440 

S1. As shown in Fig. 4, the PACF of the third lag month exceeds the boundary of the 95% confidence interval illustrated by 

the red dashed line, and is larger than 0.5. Moreover, there is no lag month with a PACF larger than 0.5 when the lag time 

continues to increase. Thus 𝑒𝑒1(𝑡𝑡), 𝑒𝑒1(𝑡𝑡 − 1) and 𝑒𝑒1(𝑡𝑡 − 2) are selected as the optimal input predictors for S1. In such a manner, 

all the input predictors of each signal component are combined together as the VMD-SVR predictors. Then, the original 

monthly runoff, i.e., 𝑄𝑄(𝑡𝑡 + 1), is selected as the predicted target. Based on this process, the training, development, and testing 445 

samples are generated for each of the Huaxian, Xianyang, and Zhangjiashan stations. 

We then fine-tuned an SVR model using BOGP. As described in Sec. 2.2, the SVR hyperparameters, i.e. the weight penalty 

(𝐶𝐶), the error tolerance (𝜀𝜀), and the width control coefficient (𝜎𝜎) should be tuned to optimize the VMD-SVR model. To tune 

these hyperparameters, the maximum number of BOGP iterations was set to 100 and the mean square error (MSE) was selected 

as the objective function to obtain the SVR optimal parameter set (𝐶𝐶, 𝜀𝜀 and 𝜎𝜎). As well, a 6-fold cross-validation scheme was 450 

used for tuning these hyperparameters. We ran the BOGP procedure ten times to reduce the impact of random sampling, and 

the parameters with the lowest MSE in the development phase were selected. As illustrated in Fig. 5, the pairwise partial 

dependence of the hyperparameters at the Huaxian station shows that the tuned parameters (𝐶𝐶 = 200, 𝜀𝜀 = 0.0486 and 𝜎𝜎 =

0.1166) are globally optimized. This analysis indicates that the BOGP procedure provides reasonable results. 

 455 
Figure 6: Pearson correlation coefficients of signal components obtained by different decomposition methods. Si and Sj represent 
the ith and jth signal components, respectively. 
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The modelling processes of the DWT-SVR, SSA-SVR and EEMD-SVR schemes are identical to that of VMD-SVR, except 

for the decomposition stage. According to the parameters settings of Sec. 2.5.2, nine IMFs were extracted from the original 460 

monthly runoff data for all the three stations using EEMD, while 12 signal components including several trend, periodic and 

noise terms were obtained by SSA for all the three stations, and 3 signals components including 2 detail components and an 

approximation component were extracted by DWT for all the three stations. The Pearson correlation coefficients between the 

components obtained by these four decomposition methods are illustrated in Fig. 6. The coefficients between the following 

pairs at the Huaxian station are larger than 0.4: S2 (the second signal component) and S3, S5 and S6, S8 and S9 of EEMD, S2 465 

and S3, S4 and S5, S6 and S7, S7 and S8, S9 and S10, S8 and S12, S8 and S11, S11 and S12 of SSA. This indicates that the signal 

components of EEMD and SSA have redundant information. The coefficients between the VMD signal components of VMD 

are less than 0.1, which indicates that these components are barely correlated. The same conclusion can be made for the DWT 

components whose correlation coefficients are below 0.001. Similar results were obtained at the Xianyang and Zhangjiashan 

station. 470 

 
Figure 7: Frequency spectrum for (a) S1 of EEMD, (b) S6 of SSA, (c) S8 of VMD and S1 of DWT at the Huaxian station. 

 

The modelling processes of the TSDPE models are identical to those of the TSDP models, except for establishing one 

optimized SVR model for each signal component. Take the first VMD component, S1, at the Huaxian station as an example: 475 

𝑒𝑒1(𝑡𝑡), 𝑒𝑒1(𝑡𝑡 − 1) and 𝑒𝑒1(𝑡𝑡 − 2) are selected as input predictors, while 𝑒𝑒1(𝑡𝑡 + 1) is selected as the predicted target. The TSDPE 

models use the input predictors and the predicted target of each signal component as the inputs and output, respectively. The 

final TSDPE prediction results are obtained by summing the predictions of each signal component. 

The frequency spectrum of the difficultly-predicted signal component for each decomposition algorithm is shown in Fig. 7. 

Fig. 7(a) shows that the EEMD S1 component has a large noise level along the entire frequency domain. Fig. 7(b) shows that 480 

the SSA S6 component also has a low noise level along the entire frequency domain. Fig. 7(c) shows that the VMD S8 

component has a low noise level in the low-frequency domain. Fig. 7(d) shows that the DWT S1 component has a large noise 

level in the low-frequency domain. These results indicate that the VMD scheme is much more robust to noise than the EEMD, 

SSA and DWT schemes. 
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4 Experimental Results and Analysis 485 

4.1 Reduction of the boundary effects in TSDP models 

 
Figure 8: Boundary effect of the VMD S1 for (a) the training set and (b) the validation set at the Huaxian station. 

 

 490 
Figure 9: Violin plots of the NSE criterion for TSDP models. (a) The development and testing samples come from different 
distributions (without mixing and shuffling). (b) The development and testing samples come from the same distribution (with the 
mixing-and-shuffling step). 
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The boundary effect of the VMD S1 component at the Huaxian station is illustrated in Fig. 8. Both of the training and the entire 495 

sets were concurrently decomposed. The decomposition results for the first component (S1) of the entire set represent the real 

decomposition values. Figure 8(a) shows that a deviation occurs at the end of the training period for only about 20 

decomposition values. This indicates that the training samples are barely affected by the boundaries. Figure 8(b) shows that 

the decomposition results of the validation set exhibit time oscillations demonstrating that the validation samples (including 

the development and testing samples) have different distributions from the training samples. Similar results were obtained for 500 

the other signal components obtained by VMD, EEMD, SSA, and DWT at the Huaxian, Xianyang, and Zhangjiashan stations. 

Comparative analysis results of the TSDP models with and without the mixing-and-shuffling step are illustrated in Fig. 9. 

Figure 9(a) shows that the NSE of every optimized TSDP model without mixing and shuffling has a larger interquartile range 

and a smaller mean than the development-phase NSE. This indicates that the optimized model approximates the training 

distribution reasonably well, though it poorly generalizes to the testing distribution. Figure 9(b) shows that compared with the 505 

testing-phase NSE of the TSDP models without the mixing-and-shuffling step, the NSE interquartile range with this step 

decreased substantially, while the NSE mean increased considerably. This demonstrates the importance of the mixing-and-

shuffling step in improving the prediction performance on the test samples, and reducing the consequences of the boundary 

effects. 

4.2 Performance Evaluation for the TSDP models 510 

Figure 10 shows the prediction results during the testing phase for the monthly runoff collected from 2009/01 to 2018/12 for 

the Huaxian, Xianyang, and Zhangjiashan stations. Quantitative evaluation results are presented in Fig. 11. As shown in Fig. 

10 (a1, b1 and c1), the prediction values of the VMD-SVR and DWT-SVR schemes are consistent with the records from the 

three stations. While the SSA-SVR model generally captures random variations, achieving obvious success in fitting both of 

the trend and the periodicity components, it suffers from poor tracking for the peak runoff. The EEMD-SVR and SVR models 515 

barely capture random variations, and show very poor performance in fitting trend and periodicity components. Fig. 10 (a2, 

b2 and c2) show that the correlation values of the VMD-SVR and DWT-SVR models are concentrated around the ideal fit, 

with a small angle between the ideal and linear fits. This indicates that the raw measurements and the predictions of these two 

models have a high degree of agreement. The correlation values of the EEMD-SVR and SVR models are less concentrated 

than those of the VMD-SVR, DWT-SVR and SSA-SVR models. However, the correlation values of the EEMD-SVR model 520 

are more concentrated than those of the SVR one. This indicates that the decomposition of the original monthly runoff data 

can sometimes help improve the prediction performance. Overall, these findings indicate that the VMD-SVR and DWT-SVR 

models possess good prediction performance and satisfactory generalization capabilities for different stations. The SSA-SVR 

model also enjoys good prediction performance and satisfactory generalization capability but it suffers from slightly poor 

prediction performance for the peak runoff. 525 
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Figure 10: Prediction results of the TSDP framework during the testing phase:(a1 and a2) Huaxian, (b1 and b2) Xianyang and (c1 
and c2) Zhangjiashan stations. 

 

 530 
Figure 11: Violin plots of the evaluation criteria for the TSDP models. 
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Figure 11 shows that the VMD-SVR, DWT-SVR, SSA-SVR and EEMD-SVR models perform better than the SVR model in 

all aspects except for the time cost. Figure 11 also indicates that exploiting the decomposition methods including VMD, DWT, 

SSA and EEMD improves the prediction accuracy. Fig. 11(a) shows that the mean NSE for the EEMD-SVR, VMD-SVR, 535 

DWT-SVR and SSA-SVR model increased by 145%, 408%, 423% and 423% compared to the SVR scheme. This indicates 

that the VMD-SVR scheme has prediction performance similar to that of the DWT-SVR one, better prediction performance 

than that of the SSA-SVR one and much better prediction performance than those of the EEMD-SVR and SVR schemes. The 

mean NSE scores of the SSA-SVR, VMD-SVR and DWT-SVR schemes are larger than 0.94. This illustrates that the 

predictions of these TSDP models closely match the actual measurements. The mean NSE scores of the EEMD-SVR and SVR 540 

schemes are less than 0.8, which is often taken as a threshold value for reasonably well-performing models (Newman et al., 

2015). This result indicates that the measurements are not reasonably matched by the predictions of the EEMD-SVR and SVR 

schemes. Figure 11(b) shows that compared with the SVR model, the mean NRMSE of the EEMD-SVR, SSA-SVR, VMD-

SVR and DWT-SVR schemes are reduced by 18%, 75%, 82%, and 82%, respectively. This figure also indicates that the VMD-

SVR model has similar prediction performance to the DWT-SVR model and has better performance than that of the SSA-SVR 545 

model and much better prediction performance than those of the EEMD-SVR and SVR schemes. Figure 11(c) shows that the 

values of the mean PPTS(5) of the EEMD-SVR, SSA-SVR, VMD-SVR and DWT-SVR schemes are reduced by 27%, 76%, 

89% and 93%, respectively, compared to the SVR scheme. This indicates that the DWT-SVR model has the best prediction 

performance for the peak runoff and that the VMD-SVR model has a peak streamflow prediction capability, which is slightly 

worse than that of the DWT-SVR model. However, the VMD-SVR model has a PPTS(5) interquartile range that is smaller 550 

than that of DWT-SVR. Thus, the VMD-SVR model has a better generalization ability than that of the DWT-SVR one. 

Additionally, the interquartile ranges of the NSE, NRMSE and PPTS(5) criteria for the SSA-SVR, VMD-SVR and DWT-SVR 

schemes are much less than those of the EEMD-SVR and SVR schemes. This indicates that the SSA-SVR, VMD-SVR and 

DWT-SVR schemes have much better generalization performance. These analyses indicate that the prediction performance of 

the proposed VMD-SVR model is similar to that of the DWT-SVR model, better than that of the SSA-SVR model, and much 555 

better than those of the EEMD-SVR and SVR schemes for the overall streamflow. In addition, Fig. 11(d) shows that the TSDP 

models and the SVR one have similar time costs ranging from 210 s to 270 s. This indicates that the TSDP models do not 

obviously increase the modelling time cost. 

4.3 Performance gap between the TSDP and TSDPE models 

The predictions, records and scatter plots of the TSDPE models are presented in Fig. 12, while the corresponding quantitative 560 

evaluation results are illustrated in Fig. 13. Comparisons of prediction scatters for the TSDP and TSDPE models are displayed 

in Fig. 14.  
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Figure 12: Prediction results of the TSDPE framework during the testing phase:(a1 and a2) Huaxian, (b1and b2) Xianyang and (c1 
and c2) Zhangjiashan stations. 565 

 

 
Figure 13: Violin plots of the evaluation criteria for the TSDPE models. 
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As shown in Fig. 12 (a1, b1 and c1), the DWT-SVR-A scheme captures the random variations, with a good capability for 

fitting both of the trend and periodicity components for all three stations. While the VMD-SVR-A and SSA-SVR-A models 570 

generally capture random variations, with a certain capability for fitting both the trend and periodicity components, these 

models suffer from slightly poor tracking for the peak runoff. However, the predictions of the EEMD-SVR-A and SVR 

schemes cannot follow variations in the test records. Moreover, the scatter plots in Fig. 12 (a2, b2 and c2) show that the 

correlation values of the DWT-SVR-A, VMD-SVR-A and SSA-SVR-A schemes have high agreement, and are concentrated 

near the ideal fit. As well, there is a small angle between the linear and ideal fit curves for the DWT-SVR-A scheme. Also, the 575 

correlation values of the VMD-SVR-A and SSA-SVR-A models are concentrated around the linear fit. However, these two 

models have a relatively large angle between the ideal and linear fit curves. This observation supports the conclusion that 

the prediction performance of these two models for the peak runoff is slightly poor. The correlation values of the EEMD-SVR-

A and SVR schemes are scattered around the ideal fit. While most of the EEMD-SVR-A scatters are under the ideal fit, most 

of the SVR scatters are above the ideal fit. This behaviour reflects data overestimation by the EEMD-SVR-A method and data 580 

underestimation by the SVR one. Overall, these findings indicate that the DWT-SVR-A scheme shows good forecasting and 

generalization performance for the monthly runoff at different stations. The VMD-SVR-A and SSA-SVR-A models show 

similar good performance but suffer from poor prediction performance for the peak runoff. 

Fig. 13 (a) shows that, the mean NSE scores of the EEMD-SVR-A, SSA-SVR-A, VMD-SVR-A and DWT-SVR-A schemes 

increased by -58%, 369%, 380%, and 431%, respectively, compared to the SVR one. This indicates that the DWT-SVR-A 585 

scheme has better prediction performance than the VMD-SVR-A and SSA-SVR-A ones, and much better prediction 

performance than the SVR and EEMD-SVR-A schemes. Additionally, the decomposition methods used in the TSDPE models 

do not always improve the prediction performance. The mean NSE values of the VMD-SVR-A, DWT-SVR-A and SSA-SVR-

A schemes are larger than 0.8. This shows that the predictions of these models can match the actual measurements reasonably 

well. The mean NSE values of the EEMD-SVR-A and SVR models are less than 0.5, illustrating that these two models have 590 

worse prediction performance. In addition, the EEMD-SVR-A model has an NSE value less than 0, indicating that the recorded 

mean is sometimes better than using this model. Fig. 13 (b) shows that the mean NRMSE values of the EEMD-SVR-A, SSA-

SVR-A, VMD-SVR-A and DWT-SVR-A models are reduced by -8%, 61%, 63% and 88%, respectively, compared to the SVR 

model. This indicates that the VMD-SVR-A and SSA-SVR-A models are similar in prediction performance, the EEMD-SVR-

A model has the worst performance, while the DWT-SVR-A model has the best prediction performance among these models. 595 

This result also demonstrates that the decomposition of the raw streamflow data do not always improve the prediction 

performance. Fig. 13 (c) shows that the mean PPTS(5) scores of the EEMD-SVR-A, SSA-SVR-A, VMD-SVR-A and DWT-

SVR-A models are reduced by 60%, 63%, 68% and 95%, respectively, compared to the SVR model. These results indicate 

that the DWT-SVR-A model has the best prediction performance for the peak runoff while the VMD-SVR-A model has a 

better prediction performance for the peak runoff in comparison to the SSA-SVR-A and EEMD-SVR-A models. Overall, these 600 

analyses indicate that the DWT-SVR-A scheme has the best prediction performance. Also, the prediction performance of the 

VMD-SVR-A scheme is similar to that of the SSA-SVR-A scheme, and is much better than those of the EEMD-SVR-A and 
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SVR schemes. In addition, Fig. 13(d) shows that the mean time costs of the EEMD-SVR-A, SSA-SVR-A, VMD-SVR-A and 

DWT-SVR-A schemes are increased by 790%, 1005%, 627% and 187%, respectively, compared to the SVR scheme. This 

clarifies that these TSDPE models obviously increase the modelling time cost and that the increase in this cost depends on the 605 

decomposition level of the data preprocessing techniques. 

 
Figure 14: Comparison of the prediction scatters for (a1-a4) Huaxian, (b1-b4) Xianyang and (c1-c4) Zhangjiashan stations. 

 

Figure 14 shows that the correlation values of the VMD-SVR, SSA-SVR and EEMD-SVR schemes are much more 610 

concentrated than those of the VMD-SVR-A, SSA-SVR-A and EEMD-SVR-A schemes. The angles between the ideal and 

linear fit curves of the VMD-SVR, SSA-SVR and EEMD-SVR schemes are smaller than those of the VMD-SVR-A, SSA-

SVR-A and EEMD-SVR-A schemes. However, the correlation values of the DWT-SVR scheme are similar to those of the 

DWT-SVR-A one and the linear fit curves of the DWT-SVR-A scheme at the Xianyang and Zhangjiashan stations are closer 

to the ideal fit than those of the DWT-SVR scheme. Overall, these analyses indicate that the TSDP models can significantly 615 
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reduce the modelling time and improve the prediction performance (especially for the peak runoff), except only for the DWT-

SVR model. 

4.4 Effect of dimensionality reduction on the TSDP models 

 
Figure 15: NSE values of different reduced components for the (a) EEMD-SVR, (b) SSA-SVR, (c)VMD-SVR and (d) DWT-SVR 620 
schemes. 

 

The NSE values for different numbers of reduced predictors and for all three stations are illustrated in Fig. 15. The number of 

reduced predictors was set based on Minka’s MLE (Minka, 2001) method for estimating the optimal reduced dimension. The 

results are also presented in Fig. 15. As shown in Fig. 15, dimensionality reduction can significantly improve the NSE score 625 

of the TSDP models except for the EEMD-SVR and SSA-SVR models. This indicates that it is difficult to confirm without 

dimensionality reduction whether the EEMD-SVR and SSA-SVR predictors contain redundant information. The NSE score 

of the VMD-SVR scheme with dimensionality reduction (the reduced predictors are less than the guessed reduced predictors 

obtained by MLE method) is larger than that of the same scheme without dimensionality reduction for all three stations. The 

same conclusion applies to the DWT-SVR scheme. This demonstrates that some of the VMD-SVR and DWT-SVR predictors 630 

obtained as discussed in Sec. 4.1 are linearly correlated and that making these predictors uncorrelated improves the prediction 

performance. However, the NSE scores of these two schemes for the three stations generally decrease as the number of reduced 

predictors is increased from 0 to 15. This indicates that eliminating predictors leads to some loss of information. In addition, 

the NSE scores associated with the guessed numbers of reduced predictors of the two schemes are larger than those of the 

same schemes without PCA. Again, this indicates that the guessed dimensionality reduction also improves the prediction 635 

performance. Compared with the NSE score of the VMD-SVR scheme without PCA, the maximal NSE scores at the Huaxian, 
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Xianyang, and Zhangjiashan stations are increased by 1.7%, 1.7% and 2.6%, respectively. Compared with the NSE score of 

the DWT-SVR scheme without PCA, the maximal NSE scores at the same stations are increased by 2.0%, 2.8% and 2.3%, 

respectively. The NSE scores of the EEMD-SVR and SSA-SVR schemes have no obvious increase or decrease when the 

reduced dimension varies from 0 to 15. Overall, these analyses indicate that the VMD-SVR and DWT-SVR predictors contain 640 

a small but significant information redundancy. 

4.5 Runoff forecasting of long leading times for the TSDP models 

 
Figure 16: Number of predictors versus threshold at the Huaxian station for the (a) EEMD, (b) SSA, (c) VMD and (d) DWT methods. 

 645 

We tested five thresholds ranging from 0.1 to 0.5 with a step of 0.1 to select the predictors for long leading times exceeding 

one month. Figure 16 shows that the number of predictors is reduced as the threshold increases. We can see that the predictor 

numbers for leading times exceeding one month for the EEMD, SSA and VMD methods are close to that of a 1-month leading 

time when the threshold is set to 0.2. Therefore, the threshold level was set to 0.2 for convenience of comparison. 

The TSDP models for long leading times of 3-, 5-, 7- and 9-month leading times were established to further evaluate the 650 

prediction performance of these models. Three performance evaluation criteria, namely NSE, NRMSE and PPTS(5), were 

used to assess the TSDP model performance for long leading times. The scatter plots and evaluation results for leading times 

of 1, 3, 5, 7 and 9 months are illustrated in Fig. 17 and Fig. 18, respectively.  

Figure 17 shows that as the leading time increases, the correlation values of the TSDP models become gradually more scattered 

around the ideal fit, and hence the forecasting performance decreases gradually. In addition, the correlation values of the VMD-655 

SVR scheme with leading times exceeding one month are much more concentrated than those of other TSDP models. This 

indicates that the VMD-SVR scheme has the best prediction performance. The correlation values of the SSA-SVR and DWT-
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SVR models for 3-, 5- , 7- and 9-month runoff forecasting are much more scattered around the ideal fit compared to the 

correlation values of the SSA-SVR and DWT-SVR models for 1-month runoff forecasting. This indicates that these models 

have the worst long-leading-time forecasting performance. 660 

 
Figure 17: Scatter plots of EEMD (a1,b1 and c1), SSA (a2, b2 and c2), VMD-SVR (a3, b3 and c3) and DWT-SVR (a4, b4 and c4) for 
different leading times at the Huaxian station (a1-a4), the Xianyang station (b1-b4) and the Zhangjiashan station (c1-c4). 

 

Figure 18 shows that as the leading time increases, the mean NSE gradually decreases, while the mean NRMSE and the mean 665 

PPTS(5) gradually increase for a variety of models except for the SSA-SVR one. The results show that the prediction 

performance for each of the VMD-SVR, DWT-SVR and EEMD-SVR schemes decreases gradually. Compared with the 

evaluation results of the SSA-SVR scheme for one-month-ahead runoff forecasting, the mean NSE of the SSA-SVR scheme 

for 3-, 5- ,7- and 9-month-ahead runoff forecasting decreases substantially. However, the mean NSE of the SSA-SVR scheme 
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slightly increases as the leading time increases from 5 to 9 months, indicating that the prediction performance of this scheme 670 

for longer leading times is generally worse but not monotonic. The reason is that most SSA signal components are periodic 

and there might be periodic similarities between the selected predictors and the monthly runoff for long leading times. Similar 

conclusions can be reached based on the NRMSE and PPTS(5) criteria whose increase and decrease patterns are opposite to 

those of the NSE criterion. 

 675 
Figure 18: Violin plots of the evaluation criteria with different leading times for the TSDP models. 

 

Figure 18(a) shows that, compared to the VMD-SVR scheme for 1-month ahead runoff forecasting, the mean NSE values of 

the VMD-SVR, SSA-SVR, EEMD-SVR and DWT-SVR schemes are reduced, respectively, by 7%, 60%, 88% and 84% for a 

3-month leading time. For a 5-month leading time, the respective reduction is by 8%, 61%, 72% and 85%. The respective 680 

reduction is by 10%, 59%, 76% and 86% for a 7-month leading time. Finally, the corresponding reduction for a 9-month 

leading time reaches 13%, 57%, 79% and 87%. This analysis indicates that the VMD-SVR scheme has the best prediction 

performance for leading times exceeding one month. Indeed, the performance is ranked from the highest to the lowest as: 

VMD-SVR>SSA-SVR>EEMD-SVR>DWT-SVR. The same results could be observed from Fig. 18(b) and Fig. 18(c). 

Additionally, the VMD-SVR scheme generally has a smaller interquartile range, and also has a good generalization capability 685 

for different watersheds. Overall, these findings indicate that the VMD-SVR scheme has the best performance, while the DWT-

SVR one has the worst prediction performance for leading times exceeding one month. 
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5 Discussion 

As we can see from the experimental results discussed in Sec. 4, the designed TSDP framework and its VMD-SVR realization 

do achieve the aforementioned desirable features (See Sec. 1). We now discuss why and how the TSDP framework and the 690 

VMD-SVR realization are superior to other decomposition-based streamflow forecasting frameworks and models. 

The results in Sec. 4.1 indicate that mixing and shuffling the training and development samples in the TSDP framework 

improve the prediction performance on the testing samples (See Fig. 9). The training samples and the validation samples 

(which contain development and testing samples) in the designed TSDP framework have quite different distributions. This 

distribution disparity is caused by the boundary effects (Fig. 8). Mixing and shuffling the training and development samples 695 

help the SVR models to be trained using a cross-validation strategy, and enable the assessment of the validation distribution 

under boundary effects in the training phase without using testing information. Therefore, the mixing-and-shuffling step helps 

the TSDP framework enhance its generalization capability. However, one may sequentially append the training set to the first 

streamflow data and decompose the appended sets to force the training and validation samples to follow approximately the 

same distribution. We refrain from doing this (and strongly advise against it) because the modelling process will become quite 700 

laborious and the distribution may not be approximately the same as when one sequentially decomposes the training set. 

The results of Sec. 4.2 indicate that the VMD-SVR and DWT-SVR schemes are superior to the SSA-SVR and EEMD-SVR 

ones. Although the VMD-SVR scheme has a slightly worse peak runoff forecasting capability than the DWT-SVR one, the 

former possesses a better generalization capability for different watersheds (See Fig. 11). Reasons justifying and leading to 

these results are: (1) the EEMD and SSA signal components have redundant information (Fig. 6), and therefore chaotically 705 

represent the trend, period and noise terms; (2) the EEMD scheme has limitations such as sensitivity to noise and sampling 

(Dragomiretskiy and Zosso, 2014), which result in larger noise levels for the first EEMD signal component and thus lower 

predictability (Fig. 7); (3) the number of lag months larger than 0.5 of the DWT method is much more than that of the VMD 

one (Fig. 16) and the DWT signal components are more orthometric than those of the VMD method (Fig. 6). This sometimes 

leads to better DWT-SVR prediction performance. However, the VMD method is more robust to sampling and noise. We can 710 

manually control the VMD modes to avoid the mode mixing problem (Fig. 3). We can restrict the noise to be included in the 

signal components by setting the noise tolerance to 0, and therefore easily find the VMD signal components. However, this 

step does not enable the summation of the VMD signal components to reconstruct the original streamflow. However, the TSDP 

framework perfectly solves this problem by building a single SVR model to predict the original streamflow instead of summing 

the predictions of each signal component. 715 

The results in Sec. 4.3 indicate that the TSDP framework saves modelling time and improves prediction performance compared 

to the TSDPE framework. This is because the TSDP models avoid the error accumulation problem and simulate not only the 

predictor-runoff relationship but also the decomposition-runoff relationship. Additionally, the DWT-SVR scheme does not 

improve the performance considerably compared with the DWT-SVR-A scheme due to the fact that only three signal 

components, which can precisely reconstruct the original monthly runoff, are extracted from the original series such that each 720 
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signal component is predicted very well. Therefore, the performance gap between the TSDP and TSDPE frameworks is quite 

small for DWT-based monthly runoff forecasting models. However, the mother wavelet function and the empirical equation 

of the decomposition level given in Sec. 2.5.2 might be not suitable for daily or annual streamflow forecasting. Therefore, 

using DWT in the TSDP and TSDPE frameworks needs a substantial prior experience with the mother wavelet function and 

the decomposition level. 725 

The results in Sec. 4.4 indicate that combining the input predictors of the individual signal components as the ultimate 

predictors overfits the original streamflow slightly for the VMD-SVR and DWT-SVR schemes (Fig. 15). The reason is that 

some VMD-SVR and DWT-SVR predictors are correlated. However, since the prediction performance of the VMD-SVR and 

DWT-SVR schemes for one-month-ahead forecasting is already good enough and dimensionality reduction improves the 

prediction performance a little bit, we suggest predicting the original streamflow directly based on the VMD-SVR scheme 730 

using the combined predictors without dimensionality reduction. However, we suggest employing dimensionality reduction 

analysis when trying different decomposition algorithms and data-driven models on different streamflow series due to the 

unknown effect of overfitting. 

The results in Sec. 4.5 indicate that the VMD-SVR scheme has the best performance while the DWT-SVR scheme has the 

worst prediction performance for leading times exceeding one month. The DWT-SVR model performs the worst for 3-, 5- , 7- 735 

and 9-month runoff forecasting because the selected predictors with a threshold of 0.2 have a weak correlation with the 

predicted runoff (Fig. 16). Therefore, we deem that DWT is not suitable for the TSDP framework. The reasons given above in 

this section also lead to better VMD-SVR prediction performance and worse prediction performance of both of the SSA-SVR 

and EEMD-SVR schemes for leading times exceeding one month. 

In summary, we would like to highlight three major contributions of the TSDP framework and its VMD-SVR realization:  740 

(i)  The TSDP framework (or its VMD-SVR variant) first divides the entire monthly runoff into training and 

validation sets, then concurrently decomposes the training set and sequentially decomposes the validation set, in 

such a way that the validation information (which is not available in practical hydrological applications) is not 

included in the training samples. Therefore, the TSDP framework and its VMD-SVR model are practical for 

streamflow forecasting. 745 

(ii)  The TSDP framework (or the VMD-SVR model) only establishes one optimized SVR-based training model 

instead of an optimized model for each signal component to predict the original streamflow and simultaneously 

infer the predictor-runoff relationship and the decomposition-runoff relationship. Therefore, the TSDP 

framework, as well as the VMD-SVR model, are efficient. 

(iii)  The TSDP framework (or its VMD-SVR variant) mixes and shuffles the training and development samples to 750 

reduce the ramifications, results, or consequences of the boundary effects. This is a key step in the TSDP and 

TSDPE frameworks for improving the prediction performance. 

The boundary effect is a barrier for practical streamflow forecasting using decomposition-based models. Previous researchers 

handled the boundary effects by improving the decomposition algorithms (Quilty and Adamowski, 2018) or fixing the 
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deviation of the boundary decompositions (Zhang et al., 2015). However, as far as we know, approaches of building a 755 

forecasting framework that is adapted to the boundary effect never be tried. In this work, we focus on living with rather not 

eliminating the boundary effects to develop an effective, efficient, and reliable decomposition-based forecasting framework. 

Note that we do not need a lot of prior experience of signal processing algorithms or mathematical extension methods for 

correcting boundary deviation. We just make the models assess the validation distribution during the training phase. Hence, 

this operational streamflow forecasting framework is quite simple and easy to implement. 760 

6 Conclusions 

This work investigated the potential of the proposed TSDP framework and its VMD-SVR realization for simulating runoff in 

basins lacking meteorological observations. The TSDP framework (or its VMD-SVR model) simultaneously simulates the 

predictor-runoff relationship and the decomposition-runoff relationship to save modelling time and improve prediction 

performance. With five experiments, we explored the effectiveness, efficiency and reliability of the TSDP framework and its 765 

VMD-SVR variant in terms of reducing the boundary effects, decomposition success, prediction performance, time 

consumption, overfitting, and forecasting capabilities for long leading times. We demonstrated that the TSDP framework (or 

the VMD-SVR scheme) is able to simulate monthly runoff with competitive performance compared to reference models. With 

the first experiment, we evaluated the reduction of the boundary effect in the TSDP framework. In the second experiment, we 

evaluated the TSDP model performance. For the third experiment, we assessed the performance gap between the TSDP and 770 

TSDPE models. Our fourth experiment empirically tested the overfitting of the TSDP models. Additionally, we evaluated the 

prediction performance of the TSDP models for long leading times in the fifth and last experiment. 

The goal of this research was to establish a practical, effective, efficient and reliable decomposition-based framework (or 

model) without focusing on optimizing the system parameters. Therefore, it is likely that better prediction performance can be 

obtained by exhaustive optimization steps of the BOGP method. However, with 100 iterations of optimization, we were able 775 

to obtain reasonably good prediction performance that showed superiority over reference models. 

In summary, the major conclusions of this work are the following: 

a. The TSDP framework can significantly reduce the boundary effects and improve the prediction efficiency and 

performance compared to the TSDPE framework (except for the DWT-based TSDP models). 

b. The VMD-SVR scheme can simulate and generalize the one-month-ahead runoff very well, and it saves modelling time 780 

and improves the prediction performance compared to the VMD-SVR-A scheme. 

c. The VMD-SVR scheme overfits the monthly runoff a little bit. Nevertheless, we do believe that the effect of this slight 

overfitting can be ignored. 

d. The VMD-SVR scheme is able to simulate the 3-, 5-, 7- and 9-month-ahead runoff reasonably well. 

The boundary effect is a potential barrier for practical streamflow forecasting. We do believe that mixing and shuffling the 785 

training and development samples is a promising way to reduce the influences of the boundary effect and improve the VMD-

https://doi.org/10.5194/hess-2019-565
Preprint. Discussion started: 20 December 2019
c© Author(s) 2019. CC BY 4.0 License.



33 
 

SVR prediction performance on the testing samples (i.e. the future monthly runoff). Ultimately, however, the black-box nature 

of the TSDP framework and the VMD-SVR model (or any data-driven model) is a justifiable barrier of making decisions of 

water resource management using the prediction results. Further research is needed on the VMD-SVR result interpretability 

based on statistical analysis. 790 
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