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Abstract. Streamflow forecasting is a crucial component in the management and control of water resources. Decomposition-

based approaches have particularly demonstrated improved forecasting performance. However, direct decomposition of entire 

streamflow data with calibration and validation subsets is not practical for signal component prediction. This impracticality is 

due to the fact that the calibration process uses some validation information, that is not available in practical streamflow 10 

forecasting. Unfortunately, independent decomposition of calibration and validation sets lead to undesirable boundary effects 

and less accurate forecasting. To alleviate such boundary effects and improve the forecasting performance in basins lacking 

meteorological observations, we propose a two-stage decomposition prediction (TSDP) framework. We realize this framework 

using variational mode decomposition (VMD) and support vector regression (SVR), and refer to this realization as VMD-SVR. 

We demonstrate experimentally the effectiveness, efficiency and accuracy of the TSDP framework and its VMD-SVR 15 

realization in terms of the boundary effect reduction, computational cost, overfitting, in addition to decomposition and 

forecasting outcomes for different lead times. Specifically, four comparative experiments were conducted based on the 

ensemble empirical mode decomposition (EEMD), singular spectrum analysis (SSA), discrete wavelet transform (DWT), 

boundary-corrected maximal overlap discrete wavelet transform (BCMODWT), autoregressive integrated moving average 

(ARIMA), SVR, backpropagation neural network (BPNN) and long short-term memory (LSTM). The TSDP framework was 20 

also compared with the wavelet data-driven forecasting framework (WDDFF). Results of experiments on monthly runoff data 

collected from three stations at the Wei River show the superiority of the VMD-SVR model compared to benchmark models. 
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Nomenclature 
TSDP Two-stage decomposition prediction 
TSDE Three-stage decomposition ensemble 
WDDFF Wavelet data-driven forecasting framework 
VMD Variational mode decomposition 
EEMD Ensemble empirical mode decomposition 
SSA Singular spectrum analysis 
DWT Discrete wavelet transform 
BCMODWT Boundary-corrected maximal overlap discrete wavelet transform 
PCA Principal component analysis  
SVR Support vector regression 
ARIMA Autoregressive integrated moving average 
BPNN Backpropagation neural network 
LSTM Long short-term memory 
ADF Augmented Dickey Fuller 
IMF Intrinsic mode function 
PACF Partial autocorrelation coefficient 
PCC Pearson correlation coefficient 
MI Mutual information 
MSE Mean square error 
NSE Nash–Sutcliffe efficiency 
NRMSE Normalized root mean square error 
PPTS Peak percentage of threshold statistic 
CV Cross-validation 
BOGP Bayesian optimization based on Gaussian processes 
GS Grid search 
VMD-SVR A TSDP model based on VMD and SVR 
EEMD-SVR A TSDP model based on EEMD and SVR 
SSA-SVR A TSDP model based on SSA and SVR 
DWT-SVR A TSDP model based on DWT and SVR 
BCMODWT-SVR A WDDFF model based on BCMODWT and SVR. 
VMD-SVR-A A TSDE model based on VMD and SVR 
EEMD-SVR-A A TSDE model based on EEMD and SVR 
SSA-SVR-A A TSDE model based on SSA and SVR 
DWT-SVR-A A TSDE model based on DWT and SVR 

 

1 Introduction 25 

Reliable and accurate streamflow forecasting is of great significance for water resource management (Woldemeskel et al., 

2018). The first attempts for streamflow prediction were based on precipitation measurements that date back to the 19th century 
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(Mulvaney, 1850; Todini, 2007). Since then, streamflow forecasting models have been progressively developed through the 

analysis of relevant physical processes and the incorporation of key hydrological terms into those models (Kratzert et al., 2018). 

The investigated hydrological terms include physical characteristics and boundary conditions of catchments, as well as spatial 30 

and temporal variabilities of hydrological processes (Kirchner, 2006; Paniconi and Putti, 2015). Also, physics-based models 

have been largely developed through harnessing high computational power and exploiting hydrometeorological and remote 

sensing data (Singh, 2018; Clark et al., 2015). 

However, modeling hydrological processes with spatial and temporal variabilities at the catchment scale requires a lot of input 

meteorological data, information on boundary conditions and physical properties, as well as high-performance computational 35 

resources (Binley et al., 1991; Devia et al., 2015). Moreover, current physics-based models do not exhibit consistent 

performance on all scales and datasets because those models are constructed for small watersheds only (Kirchner, 2006; Beven, 

1989; Grayson et al., 1992; Abbott et al., 1986). Therefore, physics-based models have been rarely used for practical 

streamflow forecasting (Kratzert et al., 2018). Alternatively, numerous studies have explored and developed data-driven 

models based on time-series analysis and machine learning (Wu et al., 2009). 40 

In particular, streamflow prediction methods have been developed based on time-series models such as the Box-Jenkins 

(Castellano-Méndez et al., 2004), autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA) models (Li et al., 2015; Mohammadi et al., 2006; Kisi, 2010; Valipour et 

al., 2013). However, the underlying linearity assumption of conventional time-series models makes them unsuitable for the 

forecasting of nonstationary, nonlinear, or variable streamflow patterns. Therefore, maximum likelihood (ML) models with 45 

nonlinear mapping capabilities have been introduced for streamflow forecasting. These models include decision trees (DT) 

(Erdal and Karakurt, 2013; Solomatine et al., 2008; Han et al., 2002), support vector regression (SVR) (Yu et al., 2006; Maity 

et al., 2010; Hosseini and Mahjouri, 2016), fuzzy inference systems (FIS) (Ashrafi et al., 2017; He et al., 2014; Yaseen et al., 

2017) and artificial neural networks (ANN) (Kratzert et al., 2018; Nourani et al., 2009; Tiwari and Chatterjee, 2010; Rasouli 

et al., 2012). 50 

Nevertheless, traditional ML models cannot always adequately forecast highly nonstationary, complex, nonlinear, or 

multiscale streamflow time-series data in catchments due to the lack of meteorological observations. To handle this inadequacy, 

signal processing algorithms have been applied to transform nonstationary time-series data into relatively stationary 

components, which can be analyzed more easily. These algorithms are most commonly based on flow decomposition, and they 

include wavelet analysis (WA) (Liu et al., 2014; Adamowski and Sun, 2010), empirical mode decomposition (EMD) (Huang 55 

et al., 2014; Meng et al., 2019), ensemble empirical mode decomposition (EEMD) (Bai et al., 2016; Zhao and Chen, 2015), 

singular spectrum analysis (SSA) (Zhang et al., 2015; Sivapragasam et al., 2001), seasonal-trend decomposition based on 

locally-estimated scatter-plot smoothing or LOESS (STL) (Luo et al., 2019) and variational mode decomposition (VMD) (He 

et al., 2019; Xie et al., 2019). These approaches have generally demonstrated improved streamflow forecasting. 

However, the aforementioned decomposition-based methods don’t properly account for boundary effects on the decomposition 60 

results (Zhang et al., 2015). These boundary effects are effects that cause the boundary decompositions to be extrapolated. 
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This extrapolation is carried out due to the unavailability of historical and future data points which serve as decomposition 

parameters (Zhang et al., 2015; Fang et al., 2019). In fact, each of these decomposition-based models firstly decompose the 

entire streamflow data and then divide the decomposition components into calibration and validation sets for streamflow 

prediction. This generally augments the calibration process with validation information, that is impractically available for 65 

realistic streamflow forecasting. Such validation information is useful in the reduction of the boundary effects, and is hence 

crucial for any operational streamflow forecasting algorithm. In order to avoid using this impractically-available validation 

information in calibration, streamflow time-series data must be first divided into calibration and validation sets, where each 

set is separately decomposed and the boundary effects are effectively reduced. Otherwise, the developed models would use 

some validation information in the calibration process, and hence would show unrealistically good forecasting performance. 70 

Other relevant research contributions are those of Zhang et al. (2015), Du et al. (2017), Tan et al. (2018), Quilty and 

Adamowski (2018), and Fang et al. (2019) who recently pointed out and explicitly criticized the afore-mentioned impractical 

(and even incorrect) usage of signal processing techniques for streamflow data analysis. Zhang et al. (2015) evaluated and 

compared the outcomes of hindcast and forecast experiments (with and without validation information, respectively) for 

decomposition models based on WA, EMD, SSA, ARMA and ANN. The authors suggested that the decomposition-based 75 

models may not be suitable for practical streamflow forecasting. Du et al. (2017) demonstrated that the direct application of 

SSA and the discrete wavelet transform (DWT) to entire hydrological time-series data leads to incorrect outcomes. Tan et al. 

(2018) assessed the impracticality in streamflow forecasting with EEMD and ANN. Quilty and Adamowski (2018) addressed 

the pitfalls of using wavelet-based models for hydrological forecasting. Fang et al. (2019) demonstrated that EMD is not 

suitable for practical streamflow forecasting. In summary, these contributions have demonstrated that inadequate streamflow 80 

forecasting models often lead to practically unachievable performance. 

Boundary effects still constitute a great challenge for practical streamflow forecasting. These effects can lead to shift variance 

for signal components, sensitivity to the addition of new data samples, and hence significant errors for decomposition-based 

models (see Section 3.4). Zhang et al. (2015) examined several extension methods, which can correct the boundary-affected 

decompositions, to reduce the boundary effects on decomposition outcomes. It was suggested that a properly-designed 85 

extension method can improve the forecasting performance. Quilty and Adamowski (2018) proposed a new wavelet-based 

data-driven forecasting framework (WDDFF), in which boundary-affected coefficients were removed by adopting either the 

stationary wavelet transform (SWT) algorithm (also known as “algorithme à trous”) or the maximal-overlap discrete wavelet 

transform (MODWT) algorithm. Tan et al. (2018) proposed an adaptive decomposition-based ensemble model to reduce 

boundary effects by adaptively adjusting the model parameters as new runoff data is added. These solutions demonstrated 90 

effective reduction of boundary effects.  

In this context, we believe that a problem worthy of investigation is to reduce the influence of the boundary effects without 

altering or removing the boundary-effect decompositions, while providing high-confidence testing results on unseen data. To 

attain these goals, we designed a two-stage decomposition prediction (TSDP) framework, and proposed a TSDP realization 

based on VMD and SVR (where this realization is denoted by VMD-SVR). The proposed framework eliminates the need for 95 
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validation information, reduces boundary effects, saves modeling time, avoids error accumulation, and improves the 

streamflow prediction performance. The key steps of this framework can be outlined as follows (see Section 3.4 for more 

details): 

1. Divide the entire time series-data into a calibration set (which is then concurrently decomposed into time-series 

components), and a validation set (which is sequentially appended to the calibration set and decomposed). 100 

2. Optimize and test a single data-driven forecasting model. For building a forecasting model, we use data samples that 

consist of input predictors (obtained by combining the predictors of different components of the signal decomposition), 

and output targets (selected from the original time series). The data samples can be divided into calibration samples 

(generated from the calibration-set decomposition), and validation samples (generated from the appended-set 

decomposition). The validation data samples are then divided into development samples (which are mixed and 105 

shuffled with the calibration samples to optimize the data-driven model), and testing samples (which are used to 

examine the confidence in the optimized data-driven model). 

This paper aims to find a general solution for dealing with time-series decomposition errors caused by boundary effects. We 

designed four comparative experiments to demonstrate the effectiveness, efficiency, and accuracy of the designed TSDP 

framework and its VMD-SVR realization. Performance comparisons were made in terms of the reduction in boundary effects, 110 

computational cost, overfitting, as well as decomposition and forecasting outcomes for different lead times. In the first 

experiment, we demonstrate that the influence of boundary effects can be reduced through generating validation samples from 

appended-set decompositions, and then mixing and shuffling calibration and development samples. In the second experiment, 

we compare the performance of the TSDP framework with that of the three-stage decomposition ensemble (TSDE) framework, 

in which one optimized SVR model is built for each signal component. This comparison demonstrates that the designed TSDP 115 

framework saves the modeling time and might improves the prediction performance. In the third experiment, we demonstrate 

that combines the predictors of the individual signal components as the final predictors, barely overfits the TSDP models. For 

the fourth experiment, we compared the EEMD, SSA, DWT, VMD methods in the TSDP framework and the boundary-

corrected maximal overlap discrete wavelet transform (BCMODWT) method in the WDDFF framework. Also, the 

decomposition-based models are compared to the no-decomposition ARIMA, SVR, BPNN and LSTM models. In order to 120 

evaluate the performance of the proposed model against the benchmark models, we used monthly runoff data collected at three 

stations which are located at the Wei River in China. 
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2 Monthly runoff data 

 

Figure 1: A geographical overview of the Wei River basin. 125 

In this work, we use the monthly runoff data of the Wei River basin (Huang et al., 2014; He et al., 2019; He et al., 2020; Meng 

et al., 2019). The Wei River (see Fig. 1), the largest tributary of the Yellow River in China, lies between 33.68ºN-37.39ºN and 

103.94ºE-110.03ºE and has a drainage area of 135,000 km2 (Jiang et al., 2019). The Wei River has a total length of 818 km 

and originates from the Niaoshu Mountains in the Gansu province and flows east into the Yellow River (Gai et al., 2019). The 

associated catchment has a continental monsoon climate with an annual average precipitation of more than 550 mm. The 130 

precipitation of the flood season from June to September accounts for 60% of the annual total flow (Jiang et al., 2019). In the 

Guanzhong Plain, the Wei River serves as a key source of water for agricultural, industrial and domestic purposes (Yu et al., 

2016). Therefore, robust monthly runoff prediction in this region plays a vital role in water resource allocation. 

The historical monthly runoff records from January 1953 to December 2018 (792 records) at the Huaxian, Xianyang and 

Zhangjiashan stations (see Fig. 1) were used to evaluate the proposed model and the other state-of-the-art models. The records 135 

were collected from the Shaanxi Hydrological Information Center and the Water Resources Survey Bureau. The monthly 

runoff records were computed from the instantaneous values (in m3/s) observed at 8 A.M. each day. The entire monthly runoff 

data was divided into calibration and validation sets. The calibration set covers the period from January 1953 to December 

1998, and represents approximately 70% of the entire monthly runoff data. The validation set corresponds to the remaining 

period from January 1999 to December 2018. The validation set was further evenly divided into a development set (covering 140 

the period from January 1999 to December 2008) for selecting the optimal forecasting model, and a testing set (covering the 

period from January 2009 to December 2018) for validating the optimal model. 
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3 Methodologies 

3.1 Variational mode decomposition 

The variational mode decomposition (VMD) algorithm proposed by Dragomiretskiy and Zosso (2014) concurrently 145 

decomposes an input signal 𝑓𝑓(𝑡𝑡) into 𝐾𝐾 intrinsic mode functions (IMFs). 

The VMD process is mainly divided into two steps, namely (a) constructing a variational problem and (b) solving this problem. 

The constructed variational problem is expressed as follows: 

� min
{𝑢𝑢𝑘𝑘}{𝜔𝜔𝑘𝑘}

�∑ �𝜕𝜕𝑡𝑡 ��𝛿𝛿(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡
� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡�

2

2
𝑘𝑘 �

𝑠𝑠. 𝑡𝑡.   ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)𝑘𝑘

,        (1) 

where {𝑢𝑢𝑘𝑘} = {𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑘𝑘}  and {𝜔𝜔𝑘𝑘} = {𝜔𝜔1,𝜔𝜔2,⋯ ,𝜔𝜔𝑘𝑘}  are shorthand notations for the set of modes and their center 150 

frequencies, respectively. The symbol t  denotes time, 𝑗𝑗2 = −1 is the square of the imaginary unit, * denotes the convolution 

operator, and δ is the Dirac delta function. 

To solve this variational problem, a Lagrangian multiplier (λ) and a quadratic penalty term (α) are introduced to transform the 

constrained optimization problem (1) into an unconstrained problem. The augmented Lagrangian ℓ is defined as follows: 

ℓ({𝑢𝑢𝑘𝑘}, {𝜔𝜔𝑘𝑘}, 𝜆𝜆) ∶= 𝛼𝛼∑ �𝜕𝜕𝑡𝑡 ��𝛿𝛿(𝑡𝑡) + 𝑗𝑗
𝜋𝜋𝑡𝑡
� ∗ 𝑢𝑢𝑘𝑘(𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝜔𝜔𝑘𝑘𝑡𝑡�

2

2
+ ‖𝑓𝑓(𝑡𝑡) −∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 ‖22 + 〈𝜆𝜆(𝑡𝑡), 𝑓𝑓(𝑡𝑡) − ∑ 𝑢𝑢𝑘𝑘(𝑡𝑡)𝑘𝑘 〉𝑘𝑘 . (2) 155 

For the VMD method, the alternate direction method of multipliers (ADMM) is used to solve Eq. (2). The frequency-domain 

modes 𝑢𝑢𝑘𝑘(𝜔𝜔), the center frequencies 𝜔𝜔𝑘𝑘 and the Lagrangian multiplier λ are iteratively and respectively updated by 

𝑢𝑢�𝑘𝑘𝑛𝑛+1(𝜔𝜔) =
�̂�𝑓(𝜔𝜔)−∑ 𝑢𝑢�𝑖𝑖

𝑛𝑛+1(𝜔𝜔)−∑ 𝑢𝑢�𝑖𝑖
𝑛𝑛(𝜔𝜔)+𝜆𝜆

�𝑛𝑛(𝜔𝜔)
2𝑖𝑖>𝑘𝑘𝑖𝑖<𝑘𝑘

1+2𝛼𝛼(𝜔𝜔−𝜔𝜔𝑘𝑘)2
,        (3) 

𝜔𝜔�𝑘𝑘𝑛𝑛+1 = ∫ 𝜔𝜔�𝑢𝑢�𝑘𝑘
𝑛𝑛+1(𝜔𝜔)�

2
𝑑𝑑𝜔𝜔∞

0

∫ �𝑢𝑢�𝑘𝑘
𝑛𝑛+1(𝜔𝜔)�

2
𝑑𝑑𝜔𝜔∞

0
,           (4) 

�̂�𝜆𝑛𝑛+1(𝜔𝜔) = �̂�𝜆𝑛𝑛(𝜔𝜔) + τ�𝑓𝑓(𝜔𝜔) − ∑ 𝑢𝑢�𝑘𝑘𝑛𝑛+1(𝜔𝜔)𝑘𝑘 �,        (5) 160 

where 𝑛𝑛 is the iteration counter, τ is the noise tolerance, while 𝑢𝑢�𝑘𝑘𝑛𝑛+1(𝜔𝜔), 𝑓𝑓(𝜔𝜔), and �̂�𝜆𝑛𝑛(𝜔𝜔) represent the Fourier transforms of 

𝑢𝑢𝑘𝑘𝑛𝑛+1(𝑡𝑡), 𝑓𝑓(𝑡𝑡), and 𝜆𝜆𝑛𝑛(𝑡𝑡), respectively. 

The VMD performance is affected by the 𝐾𝐾, α, τ, and ε. A value of 𝐾𝐾 that is too small may lead to poor IMF extraction from 

the input signal, whereas a too-large value of 𝐾𝐾 may cause IMF information redundancy. A too-small value of α may lead to 

a large bandwidth, information redundancy, and additional noise for the IMFs. A too-large value of α may lead to a very small 165 

bandwidth and loss of some signal information. As shown in Eq. (5), the Lagrangian multiplier ensures optimal convergence 

when an appropriate value of τ > 0 is used with a low-noise signal. The Lagrangian multiplier hinders the convergence when 

τ > 0 is used with a highly noisy signal. This drawback can be avoided by setting τ to 0. However, it is not possible to 

reconstruct the input signal precisely if τ equals 0. Additionally, the value of ε affects the reconstruction error of the VMD. 
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3.2 Support Vector Regression 170 

Support vector regression (SVR) was first proposed by Vapnik et al. (1997) for handling regression problems. The SVR 

mathematical principles are described here briefly. 

For N pairs of samples {𝒙𝒙𝒊𝒊,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁 , 𝒙𝒙𝒊𝒊 and 𝑦𝑦𝑖𝑖 denote the input variables and the desired output targets, respectively. Linear 

regression can be replaced by nonlinear regression, through the use of a nonlinear mapping function ϕ, as follows: 

𝑦𝑦𝑖𝑖 ≈ 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘) = 〈𝒘𝒘,𝜙𝜙(𝒙𝒙𝒊𝒊)〉 + 𝑏𝑏,          (6) 175 

where 𝒘𝒘 and 𝑏𝑏 represent the regression weights and bias, respectively, and 〈. , . 〉 is the inner product of two vectors. In the 

SVR framework, the error between 𝑦𝑦𝑖𝑖 and 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘) is evaluated using the following ε-insensitive loss function: 

|𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)|𝜀𝜀 = � 0,    𝑖𝑖𝑓𝑓 |𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)| < 𝜀𝜀
|𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)| − 𝜀𝜀,    𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.       (7) 

Based on the  𝒘𝒘 and 𝑏𝑏 values, a regularized risk function 𝑅𝑅 is defined as  

𝑅𝑅 = 𝐶𝐶
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝒙𝒙𝒊𝒊,𝒘𝒘)|𝜀𝜀𝑁𝑁
𝑖𝑖=1 + 1

2
‖𝒘𝒘‖2,         (8) 180 

where the first term indicates the empirical risk based on the 𝜀𝜀-insensitive loss function. The second term is a regularization 

term for penalizing the weight vector in order to limit the SVR model complexity. The parameter C is a weight penalty constant. 

To avoid high-dimensional nonlinear features 𝜙𝜙(𝒙𝒙), SVR uses a kernel trick that substitutes the inner product 〈𝜙𝜙(𝒙𝒙),𝜙𝜙(𝒙𝒙′)〉 

in the optimization algorithm with a kernel function, namely, 𝐾𝐾(𝒙𝒙,𝒙𝒙′). Some Lagrange multipliers, namely, 𝛼𝛼𝑖𝑖 and 𝛽𝛽, are 

introduced to solve the constrained risk minimization problem. The Lagrange form of the regression function is 185 

𝑓𝑓(𝒙𝒙) = ∑ 𝛼𝛼𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙′) + 𝛽𝛽𝑁𝑁
𝑖𝑖=1 .          (9) 

The SVR model relies heavily on the kernel function and the hyperparameters. In this work, a radial basis function (RBF), 

namely, 𝐾𝐾(𝒙𝒙,𝒙𝒙′) = 𝑒𝑒𝑒𝑒𝑒𝑒(−‖𝒙𝒙 − 𝒙𝒙𝒊𝒊‖2/2𝜎𝜎2), is used as the kernel function. The parameter 𝜎𝜎 is used to control the RBF width. 

In this study, the hyperparameters 𝜀𝜀, C, and 𝜎𝜎 are tuned by Bayesian optimization. 
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3.3 Bayesian optimization based on Gaussian processes 190 

 

Figure 2: A flowchart of the Bayesian optimization. 

Bayesian optimization (BO) is a sequential model-based optimization (SMBO) approach typically used for global optimization 

of black-box objective functions, for which the true distribution is unknown or the evaluation is extremely expensive. For such 

objective functions, the BO algorithm sets a prior belief on the loss function in a learning model, sequentially refines this 195 

model by gathering function evaluations, and updates the Bayesian posterior (James et al., 2011; Shahriari et al., 2016). 

To update the beliefs about the loss function and calculate the posterior expectation, a prior function is applied. Here, we 

assume that the real loss function distribution can be described by a Gaussian process (GP). Therefore, the loss function values 

{𝑓𝑓(𝒙𝒙𝒊𝒊)}𝑖𝑖=1𝑛𝑛  for an evaluation set {𝒙𝒙𝒊𝒊}𝑖𝑖=1𝑛𝑛  satisfy the multivariate Gaussian distribution over the function space 

𝑓𝑓1:𝑛𝑛~𝑁𝑁(𝑚𝑚(𝒙𝒙𝟏𝟏:𝒏𝒏),𝑲𝑲),           (10) 200 

where 𝑚𝑚(𝒙𝒙𝟏𝟏:𝒏𝒏) is the GP mean function set and 𝑲𝑲 is a kernel matrix given by the covariance function 𝐾𝐾(𝒙𝒙,𝒙𝒙′). An acquisition 

function is used to assess the utility of candidate points for finding the posterior distribution. In particular, the candidate point 

with the highest utility is selected as the candidate for the next evaluation of 𝑓𝑓. Many acquisition functions have been explored 

for Bayesian optimization. These functions include the expected improvement (EI), the upper confidence bounds (UCB), the 

probability of improvement, the Thompson sampling (TS), and the entropy search (ES). However, the EI function is the most 205 
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commonly used among these functions (James et al., 2011; Shahriari et al., 2016). For the GP model, the expected improvement 

can be calculated as 

𝐸𝐸𝐸𝐸(𝒙𝒙) = �
[𝜇𝜇(𝒙𝒙) − 𝑓𝑓(𝒙𝒙�)]Φ(𝔃𝔃) + 𝜎𝜎(𝒙𝒙)𝜙𝜙(𝔃𝔃)    𝑖𝑖𝑓𝑓 𝜎𝜎(𝒙𝒙) > 0

0    𝑖𝑖𝑓𝑓 𝜎𝜎(𝒙𝒙) = 0 ,       (11) 

𝔃𝔃 = 𝜇𝜇(𝒙𝒙)−𝑓𝑓(𝒙𝒙�)
𝜎𝜎(𝒙𝒙)

,            (12) 

where 𝑓𝑓(𝒙𝒙�) is the current lowest loss value, and 𝜇𝜇(𝒙𝒙) is the expected loss value, while Φ(𝔃𝔃) and 𝜙𝜙(𝔃𝔃) are the cumulative 210 

distribution function and the probability density function, respectively. Figure 2 shows a flowchart of the Bayesian 

optimization method based on Gaussian processes (BOGP). 

3.4 The TSDP framework and the VMD-SVR realization 

The boundary effects introduce errors into the construction of decomposition-based models. These errors arise from the 

extrapolation of the boundary decomposition components. In fact, this extrapolation is carried out due to the unavailability of 215 

historical and future data points which serve as decomposition parameters (Zhang et al., 2015; Fang et al., 2019). To find out 

the extent to which the boundary effects contribute to decomposition errors, we have evaluated the shift-copy variance and the 

data-addition sensitivity for each of the VMD, DWT, EEMD, and SSA methods. Given the monthly runoff data of the Huaxian 

station from January 1953 to November 2018, i.e., 𝒙𝒙𝟎𝟎 = [𝑞𝑞1,𝑞𝑞2,⋯ , 𝑞𝑞791], and a one-step-ahead (shift) copy of 𝒙𝒙𝟎𝟎, i.e., 𝒙𝒙𝟏𝟏 =

[𝑞𝑞2,𝑞𝑞3,⋯ , 𝑞𝑞792], assume the VMD method is applied to 𝒙𝒙𝟎𝟎 and 𝒙𝒙𝟏𝟏. Then, the  𝐸𝐸𝐼𝐼𝐼𝐼1(2: 791) for the VMD of 𝒙𝒙𝟎𝟎 should be 220 

maintained by 𝐸𝐸𝐼𝐼𝐼𝐼1(1: 790)  for the VMD of 𝒙𝒙𝟏𝟏  since 𝒙𝒙𝟎𝟎(2: 791)  is maintained by 𝒙𝒙𝟏𝟏(1: 790) . The IMF1 is the first 

decomposed signal component and “(2:791)” means the second data point to the 791st data point. However, the boundary 

decompositions of 𝒙𝒙𝟎𝟎(2: 791) and 𝒙𝒙𝟏𝟏(1: 790) are completely different (see Fig. 3a and b). Therefore, VMD is shift-variant. 

For the Huaxian station, given the monthly runoff data from January 1953 to November 2018, i.e., 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟏𝟏 = [𝑞𝑞1,𝑞𝑞2,⋯ , 𝑞𝑞791] 

and the monthly runoff data from January 1953 to December 2018/12, i.e., 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟕𝟕 = [𝑞𝑞1,𝑞𝑞2,⋯ , 𝑞𝑞792], the 𝐸𝐸𝐼𝐼𝐼𝐼1 for the VMD 225 

of 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟏𝟏 should be maintained by the 𝐸𝐸𝐼𝐼𝐼𝐼1(1: 791) for the VMD of 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟕𝟕, since 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟏𝟏 is maintained by 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟕𝟕(1: 791). 

However, the boundary decompositions of 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟏𝟏 and 𝒙𝒙𝟏𝟏−𝟕𝟕𝟕𝟕𝟕𝟕(1: 791) are completely different (see Fig. 3c and d). A similar 

result was obtained for the case in which several data points were appended to a given time series (see Fig. 3e and f). Therefore, 

VMD is also sensitive to the addition of new data. It can be demonstrated that the EEMD, DWT and SSA are also shift-variant 

and sensitive to addition of new data. The BCMODWT method developed by Quilty and Adamowski (2018) is shift-invariant, 230 

insensitive to the addition of new data, and also shows no decomposition errors. Thus we compared in this work the 

BCMODWT method of the WDDFF framework with the VMD, EEMD, SSA and DWT methods of the TSDP framework. 

The results in Fig. 3 collectively indicate that the concurrent decomposition errors are extremely small except for those of the 

boundary decompositions. 
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 235 

Figure 3: Examples of the boundary effects for the VMD method on monthly runoff data at the Huaxian station: (a and b) shift 
variance, (c and d) sensitivity to appending one data point, (e and f) sensitivity to appending several data points, (g) differences 
between sequential and concurrent validation-data decompositions, and (h) differences between the summation of the sequential 
and concurrent validation-data decompositions. 

However, the boundary effects introduce small decomposition errors for the calibration set, but large such errors for the 240 

validation set. This is because the calibration set is concurrently decomposed whereas the validation set is sequentially 

appended to the calibration set and decomposed. Additionally, the last decompositions of an appended set are selected as the 

validation decompositions. Note that this procedure is followed for three reasons. (1) This procedure simulates practical 

forecasting scenarios in which a time series is observed and predicted incrementally. (2) The validation set should be 

decomposed on a sample-by-sample basis to avoid validation-data decomposition using future information. (3) The 245 

decomposition algorithms such as VMD, EEMD, SSA and DWT cannot decompose one validation data point each time (and 
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might output the “not a number” data type). The decomposition errors of the calibration set could be ignored because only few 

of the boundary decompositions have relatively large errors (see Fig. 3f). Unfortunately, the decomposition errors of the 

validation set cannot be ignored because all decompositions of this set are selected from the boundary decompositions of the 

appended sets. In this context, large decomposition errors (corresponding to the differences between the blue and green lines 250 

in Fig. 3g) will be introduced to the model validation process. Figure 4 shows that the error distribution of the validation set 

has a larger scale than that of the calibration set. Thus, models calibrated on the calibration samples might generalize poorly 

on the validation samples due to the difference in error distribution between the calibration and validation decompositions. 

 

Figure 4: Density estimates with Gaussian-type kernels for the calibration and validation error distributions of the monthly runoff 255 
decompositions of the Huaxian station. The real decompositions are the joint decompositions of the entire monthly runoff for the 
period from January 1953 to December 2018. 

Fortunately, the difference in error distribution between the calibration and validation decompositions can be handled without 

altering or removing the boundary decompositions. This is based on three key remarks: (1) the boundary-affected 

decompositions might contain some valuable information for building practical forecasting models, (2) the distribution of the 260 

validation samples can be different from that of the calibration samples (Ng, 2017), and (3) the validation decomposition errors 

can be eliminated by summing signal components into the original signal (see Fig. 3h). Note that the summation of the 

sequential validation decompositions of Fig. 3(h) cannot completely reconstruct the validation set. This is mainly caused by 

setting the VMD noise tolerance (𝜏𝜏) to 0 in this work (see Section 3.1) rather than the introduced validation decomposition 

errors. Therefore, the decomposition errors barely affect the prediction performance if the decomposition-based models are 265 

properly constructed to learn from the calibration set and generalize well to the validation set. 
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Figure 5: Absolute Pearson correlation coefficients (PCC) between predictors and predicted targets of validation samples generated 
from the VMD appended decompositions and validation decompositions. The samples were collected at the Huaxian station. 

One way to deal with the influences of boundary effects is to generate validation samples using decompositions of appended 270 

sets, i.e., appended decompositions. The last sample generated from appended decompositions is selected as a validation 

sample since the predicted target of this sample belongs to the validation period. The advantage is that the predictors selected 

from appended decompositions are more correlated with the prediction targets than the predictors selected from validation 

decompositions (see Fig. 5). This is because the appended set is decomposed concurrently. However, the validation 

decompositions are reorganized from the decompositions of appended sets, which leads to the relationships between a 275 

decomposition and its lagging decompositions are changed a lot. 

The other way to deal with boundary effects is to assess the validation error distribution during the calibration stage. A 

promising way to achieve this goal is to use the cross-validation (CV) based on the mixed and shuffled samples generated from 

the calibration and validation distributions. The key advantage is that the developed models are simultaneously calibrated and 

validated on these distributions. Additionally, enough validation samples should be allocated for testing the final optimized 280 

models in order to give users a high confidence level on unseen data. Therefore, the validation samples are further split into 

development samples for cross-validation and testing samples for testing the final optimized data-driven models. 

Based on the aforementioned key remarks, the TSDP framework is designed as follows: (i) Time series decomposition: divide 

the entire time series (monthly runoff data in this work) into a calibration set (which is then concurrently decomposed) and a 

validation set (which is then sequentially appended to the calibration set and decomposed). (ii) Time series prediction: optimize 285 

and test a single prediction model using calibration and validation samples generated from the calibration and appended 

decompositions. For these samples, the optimal lag times (measured in hours, days, months, or years) of the decomposed signal 

components are combined as predictors, while the original signal samples are used as the desired prediction targets. This is the 

direct approach which has already been used by Maheswaran and Khosa (2013), Du et al. (2017) and Quilty and Adamowski 

(2018). 290 
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Figure 6: A block diagram of the two-stage decomposition prediction (TSDP) framework with the VMD-SVR realization. 

The design details of the TSDP framework and its VMD-SVR realization are summarized as follows (see Fig. 6).  

Step 1 Collect time-series data 𝑄𝑄(𝑡𝑡) as the VMD-SVR input (𝑡𝑡 = 1,2,⋯𝑁𝑁, where 𝑁𝑁 is the length of the time-series data). 

Step 2 Divide the time-series data into calibration and validation sets (with 70% and 30% of the overall monthly runoff data, 295 

respectively, in this work). 

Step 3 Concurrently extract 𝐾𝐾 IMF signal components from the calibration set using the VMD scheme. For optimal selection 

of 𝐾𝐾, check whether the last extracted IMF component exhibits central-frequency aliasing. 
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Step 4 Sequentially append the validation data samples to the calibration set to generate appended sets. Decompose each 

appended set into 𝐾𝐾 signal components using the VMD scheme. 300 

Step 5 Plot the partial autocorrelation function (PACF) of each signal component for the calibration set in order to select the 

optimal lag period and hence generate modeling samples. The PACF lag count is set to 20. We assume that the predicted target 

of the kth signal component is 𝑒𝑒𝑘𝑘(𝑡𝑡 + 𝐿𝐿) (where L is the lead time which is measured in hours, days, months or years). If the 

PACF of the 𝑚𝑚th lag period lies outside the 95% confidence interval (i.e., �− 1.96
√𝑛𝑛

, 1.96
√𝑛𝑛
�, where n is the signal component length) 

and is insignificant after the 𝑚𝑚 th lag period, then the samples 𝑒𝑒𝑘𝑘(𝑡𝑡), 𝑒𝑒𝑘𝑘(𝑡𝑡 − 1),⋯ , 𝑒𝑒𝑘𝑘(𝑡𝑡 + 1 −𝑚𝑚)  are selected as input 305 

predictors and 𝑚𝑚 is selected as the optimal lag period for the kth signal component. 

Step 6 Combine the input predictors of each signal component to form the SVR predictors. Select the original time-series 

data sample after the maximum lag period (𝑄𝑄(𝑡𝑡 + 𝐿𝐿)) as the predicted target. 

Step 7 Based on the input predictors and output targets obtained in Step 6, generate calibration samples using the calibration 

signal components. Also, generate appended samples using the appended signal components obtained in Step 4. Select the last 310 

sample of the appended samples as a validation sample. Divide the validation samples evenly into development and testing 

samples. 

Step 8 Mix and shuffle the calibration and development samples. Train and optimize the SVR model using the shuffled 

samples and the BOGP algorithm. For testing, feed the test sample predictors into the optimized SVR model in order to predict 

time series samples and compare them against the original ones. The VMD-SVR output is the predicted samples for the test 315 

predictors. 

Steps 1-4 represent the decomposition stage of the proposed framework while Steps 5-8 represent the prediction stage. Note 

that the VMD and SVR schemes can be respectively replaced by other decomposition and data-driven prediction models. 

3.5 Comparative experimental setups 

As shown in Fig. 7, we design four comparative experiments to evaluate the effectiveness, efficiency, and accuracy of the 320 

TSDP framework and its VMD-SVR realization. The evaluation is carried on in terms of the boundary effect reduction (see 

Ex. 1), computational cost (see Ex. 2), overfitting (see Ex. 3) as well as decomposition and forecasting capabilities for different 

lead times (see Ex. 4). The previous experiments represent the baseline for the next ones. We first give a brief review of the 

EEMD, SSA, DWT, and BCMODWT methods. Then, we explain each experiment in detail. 

The EEMD method decomposes a time series into several IMFs and one residual (R) given the white noise amplitude (𝜀𝜀) and 325 

the number of ensemble members (𝐼𝐼). In this work, we set 𝐼𝐼 and 𝜀𝜀 to 100 and 0.2, respectively, as suggested by Wu and 

Huang (2009). The singular spectrum analysis (SSA) method decomposes a time series into independent trend, oscillation, and 

noise components ({𝑆𝑆1,⋯ , 𝑆𝑆𝐿𝐿})). This decomposition is parameterized by the window length (𝑊𝑊𝐿𝐿) and the number of groups 

(𝑚𝑚). The SSA method has four main steps, namely embedding, singular value decomposition (SVD), grouping, and diagonal 

averaging. If one of the subseries is periodic, 𝑊𝑊𝐿𝐿  can be set to the period of this subseries to enhance decomposition 330 
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performance (Zhang et al., 2015). However, the grouping step can be ignored (i.e., we do not need to set 𝑚𝑚) if the value of 𝑊𝑊𝐿𝐿 

is small (e.g., 𝑊𝑊𝐿𝐿 ≤ 20) because grouping may hide information in the grouped subseries. In this work, 𝑊𝑊𝐿𝐿 was set to 12 

because we perform monthly runoff forecasting. The discrete wavelet transform (DWT) decomposes a time series into several 

detail series ({𝐷𝐷1,⋯ ,𝐷𝐷𝐿𝐿}) and one approximation series (𝐴𝐴𝐿𝐿) given a discrete mother wavelet function (𝜓𝜓) and a decomposition 

level (L). These parameters are typically selected experimentally. In this work, we set 𝜓𝜓 to the db10 as suggested by Seo et al. 335 

(2015). Also, we set 𝐿𝐿 to 𝑖𝑖𝑛𝑛𝑡𝑡[log(𝑁𝑁)] following Nourani et al. (2009). Given 𝜓𝜓 and L, the BCMODWT method decomposes 

a given time-series into wavelets ({𝑊𝑊1,𝑊𝑊2,⋯ ,𝑊𝑊𝐿𝐿}) and scaling coefficients (𝑉𝑉𝐿𝐿). The number of boundary-affected wavelets 

and scaling coefficients is given by (2𝐿𝐿 − 1)(𝐽𝐽 − 1) + 1 (where 𝐽𝐽  is the length of the given wavelet filter) (Quilty and 

Adamowski, 2018). These boundary-affected wavelets and scaling coefficients are finally removed by BCMODWT. In this 

work, several wavelet functions were evaluated including haar, db1, fk4, coif1, sym4, db5, coif2 and db10 (with wavelet filter 340 

lengths of 2, 2, 4, 6, 8, 10, 12, and 20, respectively). Since we have only 792 monthly runoff values and the BCMODWT 

method removes some wavelet and scaling coefficients, the maximum decomposition level was set to 4 (286 wavelets and 

scaling coefficients were removed for db10). 

 

Figure 7: A block diagram of the comparative experimental setups. 345 
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3.5.1 Experiment 1: Evaluation of the boundary effect reduction 

 

Figure 8: A block diagram for different methods of generating the calibration, development and test samples. 

First, we show how boundary effects can be reduced through the generation of validation samples from appended 

decompositions, and then mixing and shuffling the calibration and development samples. As shown in Fig .8, we compare four 350 

TSDP schemes for one-month-ahead runoff forecasting in the first experiment. The development samples of the schemes 1 

and 2 come from the calibration distribution whereas those of the schemes 3 and 4 come from the validation distribution. The 

testing samples of the schemes 1 and 3 are generated from validation decompositions whereas those of schemes 2 and 4 are 

generated from appended decompositions. The comparisons between the first and second TSDP schemes and between the third 

and fourth TSDP schemes are carried out to verify whether generating samples from appended decompositions reduces 355 

boundary effects. Moreover, the comparisons between the first and third TSDP schemes and between the second and fourth 

TSDP schemes are performed to check whether the mixing-and-shuffling step reduces boundary effects. 
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3.5.2 Experiment 2: Evaluation of TSDE models 

In the second experiment, we compare the prediction performance and the computational cost of the TSDP and TSDE models 

for one-month-ahead runoff forecasting. Those models are implemented based on the EEMD, SSA, VMD, DWT and SVR 360 

methods. In particular, we investigate four combined schemes for TSDE models, namely EEMD-SVR-A (‘A’ means the 

ensemble approach is the addition ensemble), SSA-SVR-A, VMD-SVR-A, and DWT-SVR-A. The TSDE models include the 

extra ensemble stage compared to the TSDP models. The decomposition stages of the TSDP and TSDE models are identical. 

In the TSDE prediction stage, PACF is also used for selecting the predictors and the predicted target for each signal component. 

However, one optimized SVR model will be trained for each signal component. In the test phase, this model will be used for 365 

component prediction. The remaining prediction procedures are identical to those of the TSDP models. For testing in the 

ensemble stage, the prediction results of all signal components are fused to predict the streamflow data. Since the TSDE models 

build one SVR model for each signal component, the computational cost of each TSDE model is expected to be significantly 

higher than that of the corresponding TSDP model. 

3.5.3 Experiment 3: Evaluation of the PCA-based dimensionality reduction 370 

Our third experiment tests whether dimensionality reduction (i.e. reduction of the number of predictors) improves the 

prediction performance of the TSDP models. The TSDP models can reduce the modeling time and possibly improve the 

prediction performance compared with the TSDE models. However, combining the predictors of all signal components as the 

TSDP input predictors may lead to overfitting. This is because the TSDP predictors might be correlated and are typically much 

more than the TSDE ones. Therefore, it is necessary to test whether the reduction of the number of the TSDP predictors can 375 

help improve the prediction performance. 

Principal component analysis (PCA) has been a key tool for addressing the overfitting problem of redundant predictors 

(Wangmeng Zuo et al., 2005; Musa, 2014). Therefore, PCA is used in this work to reduce the TSDP input predictors. This 

analysis uses an orthogonal transformation in order to transform the correlated predictors into a set of linearly uncorrelated 

predictors or principal components. For further details on PCA, see Jolliffe (2002). The main PCA parameter is the number of 380 

principal components, which indicates the number of predictors retained by the PCA procedure. The optimal number of 

predictors is found through grid search. We also estimate this number using the MLE method of Minka (2001). Since the 

number of predictors varies for different TSDP models, the (guessed) number of predictors is replaced by the (guessed) number 

of excluded predictors for convenience of comparison. In this paper, the number of excluded predictors ranges from 0 to 16. 

A value of 0 indicates that all predictors are retained (i.e. the dimensionality is not reduced), but the correlated predictors are 385 

transformed into uncorrelated ones. The PCA-based and no-PCA TSDP models for one-month-ahead runoff forecasting are 

finally compared. 
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3.5.4 Experiment 4: Evaluation of the TSDP models for different lead times 

For the four experiments, we test the VMD decomposition performance by comparing the prediction outcomes of the VMD-

SVR scheme with those of three other TSDP schemes which combine the EEMD, SSA and DWT methods, respectively, with 390 

SVR. Meanwhile, the TSDP models were compared with the BCMODWT-SVR realization of the WDDFF framework, which 

was proposed by Quilty and Adamowski (2018). Additionally, the no-decomposition ARIMA, SVR, BPNN, and LSTM 

models are compared with TSDP and WDDFF realizations. For each of these data-driven models, the associated 

hyperparameter settings or search ranges are shown in Table 1. Each hyperparameter is fine-tuned to minimize the mean-

square error (MSE). The data-driven model with the lowest MSE is finally selected. The degree of differencing (d) of the 395 

ARIMA model is determined by the minimum differencing required to get a stationary time series from the original monthly 

runoff data. In our work, stationarity testing is performed by the augmented Dickey Fuller (ADF) test (Lopez, 1997). 

Table 1 The hyperparameters, tuning strategies, and search ranges for the compared data-driven models. 

Data-driven model Tuning strategy Hyperparameter Search space 

ARIMA GS Degree of differencing (𝑑𝑑) Determined by ADF test 

Autoregressive lags (𝑒𝑒) [1, 20] 

Moving-average lags (𝑞𝑞) [1, 20] 

SVR BOGP Weight penalty (𝐶𝐶) [0.1, 200] 

Error tolerance (𝜀𝜀) [1𝑒𝑒 − 6, 1] 

Width control coefficient (𝜎𝜎) [1𝑒𝑒 − 6, 1] 

BPNN&LSTM BOGP Batch size 256 

Optimizer Adam 

Learning rate [1𝑒𝑒 − 4, 1𝑒𝑒 − 1] 

Activation function Relu 

Number of hidden layers [1, 2] 

Number of hidden units [8, 32] 

Dropout rate [0.1, 0.5] 

 

The single-hybrid method of the WDDFF framework has shown the best forecasting performance according to Quilty and 400 

Adamowski (2018). Therefore, in this work, the WDDFF models were built based on BCMODWT and SVR using the single-

hybrid method. In the single-hybrid method, the explanatory variables are decomposed by BCMODWT. The decomposed 

signal components are selected jointly with the explanatory variables as input predictors. Since our work focuses on time-

series forecasting using autoregressive patterns, the explanatory variables are extracted from historical time-series data. Twelve 
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monthly runoff series lagging from one month to twelve months were selected as explanatory variables. Since these series 405 

have obvious inter-annual variations, they are also selected as the input predictors for the no-decomposition SVR, BPNN and 

LSTM models. The BCMODWT-SVR scheme was implemented as follows: (1) select the monthly runoff data (𝑄𝑄(𝑡𝑡 + 1), 

𝑄𝑄(𝑡𝑡 + 3), 𝑄𝑄(𝑡𝑡 + 5), and 𝑄𝑄(𝑡𝑡 + 7)) as prediction targets and the twelve lagging monthly runoff series (𝑄𝑄(𝑡𝑡 − 11),𝑄𝑄(𝑡𝑡 −

10),⋯ ,𝑄𝑄(𝑡𝑡 − 1),𝑄𝑄(𝑡𝑡)) as explanatory variables; (2) decompose each explanatory variable using the BCMODWT method; 

(3) combine the explanatory variables and the decomposed components to form the model predictors; (4) select the final input 410 

predictors of the BCMODWT-SVR scheme based on the mutual information (MI) criterion (Quilty et al., 2016) (5) train and 

optimize the SVR model based on the CV strategy and the calibration and development samples; (6) test the optimized 

BCMODWT-SVR scheme using the test samples. 

4 Case study 

4.1 Data normalization 415 

To promote faster convergence of the BOGP algorithm, all predictors and prediction targets in this work were normalized to 

the [-1,1] range by the following equation: 

𝒚𝒚 = 2 ⊗ 𝒙𝒙−𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

,           (13) 

where 𝒙𝒙 and 𝒚𝒚 are the raw and normalized vectors, respectively, while 𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values 

of  𝒙𝒙 , respectively. Also, the multiplication and subtraction are element-wise operations. Note that the parameters  𝑒𝑒𝑚𝑚𝑚𝑚𝑥𝑥 and 420 

𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 are computed based on the calibration samples. These parameters are also used to normalize the development and test 

samples in order to avoid using future information from the development and test phases, and enforce all samples to follow 

the calibration distribution. 

4.2 Model evaluation criteria 

For evaluating the forecasting performance, we employed four criteria, namely the Nash–Sutcliffe efficiency (NSE) (Nash and 425 

Sutcliffe, 1970), the normalized root-mean-square error (NRMSE), the peak percentage of threshold statistics (PPTS) (Bai et 

al., 2016; Stojković et al., 2017) and the time cost. The NSE, NRMSE, and PPTS criteria are respectively defined as follows: 
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where 𝑁𝑁 is the number of samples, and 𝑒𝑒(𝑡𝑡), �̅�𝑒(𝑡𝑡) and 𝑒𝑒�(𝑡𝑡) are the raw, average, and predicted data samples, respectively. 

The NSE evaluates the prediction performance of a hydrological model. Larger NSE values reflect more powerful forecasting 

models. The NRMSE criterion facilitates comparison between datasets or models at different scales. Lower NRMSE values 

indicate less residual variance. To calculate the PPTS criterion, raw data samples are arranged in descending order and the 

predicted data samples are arranged following the same order. The parameter 𝛾𝛾 denotes a threshold level that controls the 435 

percentage of the data samples selected from the beginning of the arranged data sequence. The parameter G is the number of 

values above this threshold level. For example, PPTS(5) means the top 5% flows, or the peak flows, which are evaluated by 

the PPTS criterion. Lower PPTS values indicate more accurate peak-flow predictions. 

4.3 Open-source software and hardware environments 

In this work, we utilize multiple open-source software tools. We use Pandas (McKinney, 2010) and Numpy (Stéfan et al., 2011) 440 

to perform data preprocessing and management, Scikit-Learn (Pedregosa et al., 2011) to create SVR models for forecasting 

monthly runoff data and perform PCA-based dimensionality reduction, Tensorflow (Abadi et al., 2016) to build BPNN and 

LSTM models, Keras-tuner  to tune BPNN and LSTM, Scikit-Optimize (Tim et al., 2018) to tune the SVR models, and 

Matplotlib (Hunter, 2007) to draw the figures. The MATLAB implementations of the EEMD and VMD methods are derived 

from Wu and Huang (2009) and Dragomiretskiy and Zosso (2014), respectively. The Python-based SSA implementation is 445 

adapted from Jordan D'Arcy (2018). The DWT and ARIMA methods were performed based on the MATLAB built-in 

“Wavelet Analyzer Toolbox” and “Econometric Modeler Toolbox”, respectively. As well, Dr. John Quilty of McGill 

University, Canada, provided the MATLAB implementation of the BCMODWT method. All models were developed and the 

computational cost of each model was computed based on a 2.50-GHz Intel Core i7-4710MQ CPU with a 32.0 GB of RAM. 

4.4 Modeling stages 450 

The VMD-SVR model for one-month-ahead runoff forecasting of the Huaxian station is employed as an example to illustrate 

the modeling stages of the TSDP, TSDE, WDDFF, and no-decomposition models. 

As stated in Section 3.1, the decomposition level (𝐾𝐾), the quadratic penalty parameter (α), the noise tolerance (τ) and the 

convergence tolerance (ε) are the four parameters that influence the VMD decomposition performance. In particular, this 

performance is very sensitive to 𝐾𝐾 (Xu et al., 2019). As suggested by Zuo et al. (2020), the values of α, 𝜏𝜏, and ε were set to 455 

2000, 0, and 1e-9, respectively. The optimal 𝐾𝐾 value was determined by checking whether the last IMF had central-frequency 

aliasing (as represented by the red rectangle area in Fig. 9). Specifically, we increase 𝐾𝐾 starting from 𝐾𝐾 = 2 with a step size 

of 1. If the center-frequency aliasing of the last IMF is first observed when 𝐾𝐾 = 𝐿𝐿, then the optimal 𝐾𝐾 is set to 𝐿𝐿 − 1. As shown 

in Fig. 9, the optimal decomposition level for the Huaxian station is 𝐾𝐾 = 8. 
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 460 

Figure 9: Center-frequency aliasing for the last signal component of time-series data collected from the Huaxian station. 

According to the procedure of Section 3.4, PACF is used to determine the optimal predictors for the VMD-SVR scheme. For 

the time-series data of the Huaxian station, the first VMD IMF component is used as an example of tracking the optimal input 

predictors from PACF. Figure 10 shows that the PACF of the third lag month exceeds the boundary of the 95% confidence 

interval (illustrated by the red dashed line) and is insignificant after the third lag month. Thus 𝑒𝑒1(𝑡𝑡), 𝑒𝑒1(𝑡𝑡 − 1) and 𝑒𝑒1(𝑡𝑡 − 2) 465 

are selected as the optimal input predictors for IMF1. In such a manner, the input predictors of all signal components are 

combined together to form the VMD-SVR predictors. Then, the original monthly runoff data, i.e., 𝑄𝑄(𝑡𝑡 + 1), is selected as the 

predicted target. 

 

Figure 10: PACF of the first VMD signal component for the time-series data collected from the Huaxian station. 470 

As described in Section 3.2, the VMD-SVR model performance can be optimized by tuning the SVR hyperparameters, namely 

the weight penalty (𝐶𝐶), the error tolerance (𝜀𝜀), and the width control coefficient (𝜎𝜎). To tune these hyperparameters (𝐶𝐶, 𝜀𝜀, and 

𝜎𝜎), the maximum number of BOGP iterations was set to 100. The search space of SVR parameters is shown in Table 1. 

Moreover, the CV fold number is a vital parameter that influences the TSDP model performance. In fact, the 10-fold CV and 
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leave-one-out CV (LOOCV) are two frequently-used schemes (Zhang and Yang, 2015; Jung, 2018). Zhang and Yang (2015) 475 

show that the LOOCV scheme has a better performance than a 10-fold or a 5-fold CV scheme. However, LOOCV is 

computationally expensive. Additionally, Hastie et al. (2009) empirically demonstrated that 5-fold CV sometimes has lower 

variance than LOOCV. Therefore, the selection of the number of CV folds should be made while taking the specific application 

scenario into consideration. In this work, a 10-fold CV scheme was used for tuning the SVR hyperparameters due to the limited 

computational resources. We ran the BOGP procedure ten times to reduce the impact of random sampling, and the parameters 480 

associated with the lowest MSE on development samples were selected. As shown in Fig. 11 for the time-series data of the 

Huaxian station, the pairwise partial dependence of the SVR hyperparameters shows that the tuned parameters (𝐶𝐶 = 18.97, 

𝜀𝜀 = 1𝑒𝑒 − 6 and 𝜎𝜎 = 0.22) are globally optimized. This analysis indicates that the BOGP procedure provides reasonable results. 

 

Figure 11: Pairwise partial dependence plot of the MSE objective function for the VMD-SVR scheme based on time-series data of 485 
the Huaxian station. 
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Figure 12: NSE of the BCMODWT-SVR scheme for different wavelet types and decomposition levels. The horizontal axis represents 
the wavelet types while the two vertical axes respectively represent the decomposition level and the modeling stage (e.g., “Cal, 1” 
and “Dev, 1” respectively represent the calibration and development stages with a decomposition level of 1). 490 

As stated in Section 3.5.4, the input predictors of the BCMODWT-SVR scheme were generated from the explanatory variables 

and further filtered by the MI criterion. The input predictors with a MI value larger than 0.1 were retained to train the 

BCMODWT-SVR scheme. This choice was made since the number of predictors is close to 0 if the MI value is larger than 

0.2. Figure 12 shows the NSE values of the BCMODWT-SVR scheme for different wavelets and decomposition levels at the 

calibration-and-development stage. The db1 wavelet with a decomposition level of 4 lead to higher calibration and 495 

development NSE compared to other combinations of wavelet types and decomposition levels. Therefore, the wavelet type 

and decomposition level of the BCMODWT-SVR models were set to db1 and 4, respectively. 

 

Figure 13: Absolute Pearson correlation coefficients of signal components obtained by different decomposition methods for the time-
series data of the Huaxian station. 500 
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In this section, we compare the performance of the decomposition algorithms through the analysis of the absolute PCC between 

each signal component and the original monthly runoff data (see Fig. 13), the frequency spectrum of each signal component 

(see Fig. 14), and the MI between each predictor and the prediction target (see Fig. 15). The absolute PCCs for only the first 

explanatory variables of the BCMODWT method are presented in Fig. 13. This figure shows that the coefficients of the EEMD, 

SSA, and BCMODWT methods are much larger than 0, indicating that most of the signal components of these methods are 505 

highly correlated and redundant. The coefficients of the VMD and DWT signal components are less than 0.1 and 0.001, 

respectively. This indicates that these components are highly uncorrelated. Similar results were obtained for the time-series 

data of the Xianyang and Zhangjiashan stations. In general, these findings demonstrate that the SVR models established based 

on the BCMODWT, EEMD, SSA signal components might poorly forecast original monthly runoff data. On the contrary, 

SVR models based on the DWT and VMD signal components have great potential to accurately forecast monthly runoff data. 510 

 

Figure 14: Frequency spectra of the signal components for the time-series data of the Huaxian station. The spectra are shown for 
the SSA, EEMD, VMD, BCMODWT, and DWT decomposition methods.  

Figure 14 shows that the VMD components have a very low noise level around the main frequency. The EEMD IMF1 has a 

large noise level over the entire frequency domain while the EEMD IMF2 has large noise levels around the main frequency. 515 
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The noise level of SSA S6-S12 around the main frequency is larger than that of the VMD signal components. The DWT D1 has 

a large noise level for low frequencies and DWT D2 has a large noise level around the main frequency. The BCMODWT W1 

has a large noise level over the entire frequency domain and BCMODWT W2 has a large noise level around the main frequency. 

These results indicate that (1) the VMD scheme is much more robust to noise than the EEMD, SSA, DWT and BCMODWT 

schemes, (2) the main components of other schemes (e.g. W1 and W2 of BCMODWT, IMF1 and IMF2 of EEMD, D1 and D2 of 520 

DWT, and S6-S12 of SSA) might lead to poor forecasting performance. Similar results were obtained for the time-series data 

of the Xianyang and Zhangjiashan stations. 

Figure 15(d) and (e) show that the DWT and BCMODWT predictors for the one-month-ahead runoff forecast have higher MI 

values than that for 3-, 5-, and 7-month-ahead forecasts. Figure 15(a)-(c) show that the MI values of the VMD, SSA, and 

EEMD predictors for the 1-, 3-, 5- and 7-month-ahead runoff forecasts are very close. This indicates that the prediction 525 

performance of the DWT-SVR and BCMODWT-SVR schemes for the one-month-ahead runoff forecast may be much better 

than that for the 3-, 5- and 7-month-ahead runoff forecasts. Also, the results indicate that the prediction performance of the 

VMD-SVR, SSA-SVR, and EEMD-SVR schemes for all four lead times may not significantly vary. Overall, the findings 

obtained from Fig. 13-15 show that VMD has the best decomposition performance and a great potential to achieve a good 

prediction performance. 530 

 

Figure 15: Mutual information between each predictor and the predicted target for the time-series data of the Huaxian station. 

5 Experimental Results 

5.1 Reduction of boundary effects in the TSDP models 

An experimental comparison of TSDP models established with and without the appended decompositions and the mixing-and-535 

shuffling step is illustrated in Fig. 16. Figure 16(a) shows that the calibration and development NSE values of the scheme 1 

are very close but larger than the test NSE value. This indicates that the optimized model based on samples generated without 

the appended decompositions and the mixing-and-shuffling step approximates the calibration distribution reasonably well, 

though this model poorly generalizes to the test distribution. Figure 16(b) shows that the NSE interquartile range decreased 
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substantially compared to the test NSE of the scheme 1. Also, the NSE mean value increased considerably except for the 540 

EEMD-SVR scheme. This demonstrates the importance of generating test samples from appended decompositions in order to 

improve the prediction performance on the test samples. As well, Fig. 16(c) shows that the NSE interquartile range increased 

substantially compared to the NSE of the scheme 1, while the NSE mean decreased considerably. This demonstrates that the 

mixing-and-shuffling step does not improve the generalization performance if the validation samples are not generated from 

appended decompositions. Moreover, Fig. 16(d) shows that the NSE interquartile range decreased substantially in comparison 545 

with the NSE of the scheme 3, while the NSE mean increased considerably. These results also demonstrate the importance of 

generating validation samples from appended decompositions in order to improve the TSDP generalization capability. Figure 

16(d) also shows that the NSE interquartile range decreased substantially compared with the test NSE of the scheme 2, while 

the NSE mean increased considerably. This demonstrates the importance of the mixing-and-shuffling step in improving the 

prediction performance on test samples under the condition that the validation samples are generated from appended 550 

decompositions. Similar results were obtained for the NRMSE and PPTS criteria. In general, generating validation samples 

from appended decompositions, and also mixing and shuffling the calibration and development samples help a lot with 

boosting prediction performance. Nevertheless, generating samples from appended decompositions is more important than the 

mixing-and-shuffling step for reducing the boundary effect consequences. 

 555 

Figure 16: Violin plots of the NSE criterion for TSDP models and one-month-ahead runoff forecasting (See Fig. 8 for the details of 
each scheme). 
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5.2 Performance gap between the TSDP and TSDE models 

The performance gap between the TSDP and TSDE models is illustrated in Fig. 17. Figure 17(a), (b) and (c) show that the 

mean NSE for the DWT-SVR-A scheme is larger than that of the DWT-SVR one, while the mean NRMSE and PPTS values 560 

of DWT-SVR-A are smaller than that of DWT-SVR. The DWT-SVR-A scheme also has smaller NSE, NRMSE and PPTS 

interquartile ranges than those of the DWT-SVR one. This indicates that the DWT-SVR scheme does not improve prediction 

performance in comparison to the DWT-SVR-A one. Similar results and conclusions were obtained for the EEMD-SVR and 

EEMD-SVR-A schemes. Figure 17 (a), (b) and (c) also show that the mean NSE of the VMD-SVR scheme is larger than that 

of the VMD-SVR-A one, while the mean NRMSE and PPTS values of VMD-SVR are smaller than those of VMD-SVR-A. 565 

The NSE, NRMSE and PPTS interquartile ranges of VMD-SVR are smaller than those of VMD-SVR-A. This shows that 

VMD-SVR improves prediction performance compared with VMD-SVR-A. Similar results and conclusions were obtained for 

SSA-SVR and SSA-SVR-A. Figure 17(d) shows that the computational cost of the TSDE models is much larger than that of 

the TSDP models, and that the computational cost of the TSDE models is positively correlated to the decomposition level. 

Overall, these findings demonstrated that the TSDP models do not always improve the prediction performance but are generally 570 

of smaller computational cost compared to the TSDE models. 

 

Figure 17: Violin plots of the evaluation criteria for one-month-ahead runoff forecasting during the test phase of the TSDP and 
TSDE models. 

5.3 Effect of dimensionality reduction on the TSDP models 575 

The violin plots of NSE values for different (guessed) numbers of excluded predictors and all three data collection stations are 

illustrated in Fig. 18. Figure 18(a) and (b) show that dimensionality reduction generally reduces the NSE scores of the EEMD-
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SVR and SSA-SVR schemes. This indicates that dimensionality reduction causes these schemes to lose some valuable 

information. Figure 18(c) shows that the NSE scores of the DWT-SVR scheme are slightly larger than the mean NSE without 

PCA. Figure 18(d) shows that the NSE scores of the VMD-SVR scheme are slightly larger than the mean NSE without PCA 580 

when the number of excluded predictors is less than 8. The NSE score generally decreased as the number of excluded predictors 

is increased from 0 to 16. These results demonstrate that the DWT-SVR and VMD-SVR schemes have overfitting to some 

extent, and the predictors of these schemes are slightly linearly correlated. Figure 18 shows that the associated NSE scores of 

the guessed number of excluded predictors for the EEMD-SVR and SSA-SVR schemes are smaller than the mean NSE score 

without PCA. On the contrary, the corresponding NSE scores for the DWT-SVR and VMD-SVR schemes are slightly larger 585 

than the mean NSE score without PCA This indicates that the guessed number of principal components obtained by the MLE 

method reduces the prediction performance of the EEMD-SVR and SSA-SVR schemes but slightly improves the performance 

for the DWT-SVR and VMD-SVR schemes. In fact, we chose not to perform the dimensionality reduction on the subsequent 

TSDP models to avoid the risk of information loss. 

 590 

Figure 18: Violin plots of the NSE values for different numbers of excluded components and one-month-ahead runoff forecasting. 

5.4 Performance of the TSDP models for different lead times 

Figure 19 shows that the correlation values of the VMD-SVR scheme for 1-, 3-, 5- and 7-month-ahead runoff forecasting are 

concentrated around the ideal fit, with a small angle between the ideal and linear fits. This indicates that the raw measurements 

and the VMD-SVR predictions have a high degree of agreement. Also, the DWT-SVR correlation values are concentrated 595 

around the ideal fit with a small angle between the ideal and linear fits for forecasting runoff data one month ahead (see Fig. 

19a). However, the correlation values are dispersed around the ideal fit with a large angle between the ideal and linear fits for 

forecasting runoff 3, 5, and 7 months ahead (see Fig. 19b, c and d). This indicates that the DWT-SVR model has good 

prediction performance for forecasting runoff data one month ahead but not for 3, 5 and 7 months ahead. While similar results 

can be observed for SSA-SVR, the correlation values of this scheme are less concentrated for forecasting runoff one month 600 

ahead and more concentrated for forecasting runoff 3, 5 and 7 months ahead in comparison to the DWT-SVR correlation 

values. This demonstrates that DWT-SVR is better than SSA-SVR in 1-month-ahead prediction but worse in 3-, 5-, and 7-

month-ahead prediction. Figure 19 also shows that the correlation values of the EEMD-SVR and BCMODWT-SVR schemes 
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are less concentrated than those of the VMD-SVR, DWT-SVR and SSA-SVR schemes for forecasting runoff one month ahead, 

and also less concentrated than those of the VMD-SVR and SSA-SVR schemes for forecasting runoff 3, 5 and 7 months ahead. 605 

This demonstrates that the EEMD and BCMODWT methods have poor prediction performance for all lead times. As shown 

in Fig. 19(a), the correlation values of the EEMD-SVR model are more concentrated than those of the ARIMA, SVR, BPNN 

and LSTM models, and the angle between the ideal and linear fits of BCMODWT-SVR is larger than that of the ARIMA, 

SVR, BPNN and LSTM models. This indicates that the decomposition of the original monthly runoff data cannot always help 

improve the prediction performance. As shown in Fig. 19, similar results were obtained for the time-series data of the Xianyang 610 

and Zhangjiashan stations. 

Quantitative evaluation results are presented in Fig. 20. Compared with the SVR, BPNN and LSTM models, the ARIMA 

models have larger mean NSE, and smaller mean NRMSE and mean PPTS. This indicates that the ARIMA models have better 

prediction performance than the SVR, BPNN and LSTM ones. The VMD-SVR scheme is the only scheme with a mean NSE 

exceeding 0.8 for all three stations and four lead times. This NSE value is often taken as a threshold value for reasonably well-615 

performing models (Newman et al., 2015). This result indicates that the measurements are reasonably matched by the VMD-

SVR predictions. Compared with the no-decomposition ARIMA model for forecasting runoff data one month ahead, the mean 

NSE values of VMD-SVR for forecasting runoff data 1, 3, 5 and 7 months ahead are respectively increased by 139%, 135%, 

134%, and 132%. For the SSA-SVR scheme, the corresponding increases are 136%, 103%, 101% and 104%, respectively. For 

the DWT-SVR scheme, the mean NSE values respectively increased by 134%, 2%, -71% and -93%. For the EEMD-SVR 620 

scheme, the respective decrements are -48%, -55%, -88% and -125%. For BCMODWT-SVR, the respective changes are -51%, 

-90%, -79% and -84%. These findings indicate that (1) VMD-SVR and SSA-SVR play a positive role while EEMD-SVR and 

BCMODWT-SVR play a negative role in improving the prediction performance of decomposition-based models for all lead 

times; (2) DWT-SVR has a positive impact on the prediction performance for forecasting runoff 1 and 3 months ahead but a 

negative impact on the prediction performance for forecasting runoff 5 and 7 months ahead; (3) as the lead time increased, the 625 

VMD-SVR prediction performance slightly decreased, the SSA-SVR and BCMODWT-SVR prediction performance slowly 

decreased, while the prediction performance of DWT-SVR and EEMD-SVR dramatically decreased. Indeed, the overall 

performance is ranked from the highest to the lowest as follows: VMD-SVR>SSA-SVR>DWT-SVR>EEMD-

SVR≈BCMODWT-SVR. Additionally, the VMD-SVR scheme generally has a smaller interquartile range and a good 

generalization capability for different watersheds. Similar results were obtained for the NRMSE and PPTS criteria (as shown 630 

in Fig. 20b and c). Overall, the results obtained from Fig. 19 and 20 demonstrate that the proposed VMD-SVR scheme has the 

best prediction performance as well as satisfactory generalization capabilities for different data collection stations and lead 

times. The results also show that the BCMODWT-SVR scheme may not be feasible for our case study. 
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Figure 19: Scatter plots of the TSDP and benchmark models during the test phase for forecasting runoff (a)1 month ahead, (b) 3 635 
months ahead, (c) 5 months ahead and (d) 7 months ahead at the Huaxian station. 
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Figure 20: Violin plots of the evaluation criteria during testing for the TSDP and benchmark models (the horizontal axes represent 
the model and lead time, e.g., “VMD-SVR, 1” represents the VMD-SVR model for 1-month-ahead runoff forecasting). 

6 Discussion 640 

As we can see from the experimental results of Section 5, the designed TSDP framework and its VMD-SVR realization attain 

the aforementioned desirable goals (see Section 1). We now discuss why and how the TSDP framework and its VMD-SVR 

realization are superior to other decomposition-based streamflow forecasting frameworks and models. 

The results in Section 5.1 show that generating samples from appended decompositions, as well as mixing and shuffling the 

calibration and development samples improve the prediction performance on test samples (see Fig. 16). The calibration and 645 

the validation samples have quite different error distributions due to boundary effects (see Fig. 4). The predictors of validation 

samples generated from appended decompositions are more correlated to the predicted targets than the predictors of validation 

samples directly generated from validation decompositions (see Fig. 5). Therefore, generating validation samples from 

appended decompositions helps the TSDP framework improve its generalization capability. Mixing and shuffling the 

calibration and development samples and training SVR model based on a CV strategy using the mixed and shuffled samples 650 

enable the assessment of the validation distribution during calibration with no test information. In other words, the SVR models 
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can be calibrated and validated on the calibration and validation distributions simultaneously. Therefore, the mixing-and-

shuffling step helps the TSDP framework enhance its generalization capability. Nevertheless, this step does not help much if 

the validation samples are generated from validation decompositions (see Fig.16). This because the relationship between 

predictors and prediction targets presented in validation samples is changed a lot compared to that of calibration samples. 655 

However, one may sequentially append the calibration set to the first streamflow data samples and decompose the appended 

sets to force the calibration and validation samples to follow approximately the same distribution. We refrain from doing this 

(and strongly advise against it) because the modeling process will become quite laborious and large decomposition errors will 

be also introduced into the calibration samples. 

The experimental outcomes of Section 5.2 indicate that the TSDP framework saves modeling time and sometimes improves 660 

the prediction performance compared to the TSDE framework (see Fig. 17). This improvement can be ascribed to the fact that 

the TSDP models avoid the error accumulation problem and also simulate the relationship between signal components and the 

original monthly runoff data as well as the relationship between the predictors and the predicted target. This simulation 

improves the prediction performance because the summation of the signal components (summation is the ensemble strategy 

used by TSDE) obtained by some decomposition algorithms cannot precisely reconstruct the original monthly runoff data (e.g., 665 

VMD in this work, see Fig. 3h). However, the TSDP framework accounts for the noise when the predictors are fused. Therefore, 

the TSDP framework might be outperformed by the TSDE framework if some signal components have a large noise level. The 

DWT-SVR and EEMD-SVR schemes do not improve the performance considerably compared with the DWT-SVR-A and 

EEMD-SVR-A schemes (see Fig.17) since the respective main decomposition components (i.e., DWT D1 and D2, and EEMD 

IMF1 and IMF2) have large noise levels (see Fig.14). However, compared with the EEMD-SVR and EEMD-SVR-A schemes, 670 

the performance gap between DWT-SVR and DWT-SVR-A is quite small (see Fig.17) because the DWT has fewer signal 

components which are more uncorrelated than the EEMD signal components (see Fig 13). Overall, we still suggest using the 

DWT-SVR scheme rather than the DWT-SVR-A one to predict runoff one month ahead and save modeling time. 

The results of Section 5.3 indicate that combining the predictors of the individual signal components causes overfitting in the 

VMD-SVR and DWT-SVR schemes but does not overfit the EEMD-SVR and SSA-SVR schemes at all (see Fig. 18). The 675 

reason is that the predictors and prediction targets come from the same source (the monthly runoff data in this work) and the 

TSDP models simulate the relationship inside the original monthly runoff data rather than the relationship between the 

precipitation, evaporation, temperature, and monthly runoff data. Therefore, the TSDP models focus on simulating the 

relationship between historical and future monthly runoff data rather than fitting noise (random sampling error). Although the 

predictors of the VMD-SVR and DWT-SVR schemes are slightly correlated, the prediction performance of these schemes for 680 

one-month-ahead forecasting is already good enough and the dimensionality reduction improves the prediction performance a 

little bit. Therefore, we suggest predicting the original streamflow directly based on the proposed TSDP framework (see 

Section 3.4 and Fig. 6) without dimensionality reduction in the autoregression cases. However, Noori et al. (2011) have 

demonstrated that, compared with the no-PCA SVR model, PCA enhances considerably the prediction performance for the 
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monthly runoff with rainfall, temperature, solar radiation, and discharge. Therefore, performing PCA on the TSDP framework 685 

is necessary if the predictors come from different sources. 

The experimental outcomes of Section 5.4 indicate that the VMD-SVR scheme has the best performance (see Fig. 19 and 20). 

This validates the guess we made in Section 4.4. This performance improvement is due to the fact that the VMD signal 

components are barely correlated (see Fig. 13) and have a low noise level (see Fig. 14). Determining the VMD decomposition 

level by observing the center-frequency aliasing (see Fig. 9) helps avoid mode mixing, and hence leads to uncorrelated signal 690 

components. Setting the VMD noise tolerance (𝜏𝜏) to 0 removes some noise components inside the original monthly runoff data 

(see Section 3.1), and thus allows signal components with a low noise level. Although setting the noise tolerance to 0 does not 

enable the summation of the VMD signal components for the original streamflow reconstruction (see Fig. 3h), the TSDP 

framework perfectly solves this problem by building a single SVR model to predict the original streamflow instead of summing 

the predictions of all signal components. Also, results from Section 5.4 show that DWT-SVR exhibits prediction performance 695 

that is better than that of SSA-SVR for one-month-ahead runoff forecasting but worse than that of SSA-SVR for 3-, 5- and 7-

month-ahead runoff forecasting (see Fig. 19 and 20). Once again, this result verifies the guess we gave in Section 4.4. This is 

because, in comparison with SSA, the DWT predictors for one-month-ahead runoff forecasting have higher MI than those for 

3-, 5-, and 7-month-ahead runoff forecasting (see Fig. 15). The SSA-SVR scheme shows prediction performance that is inferior 

to that of VMD-SVR, but shows better prediction performance compared to other models. These outcomes are due to the fact 700 

that the SSA signal components are correlated (see Fig. 13) and have a larger noise level than VMD but a lower noise level 

than that of the EEMD, DWT, BCMODWT signal components (see Fig. 14). The EEMD-SVR poor prediction performance 

(see Fig.19 and 20) is because of the EEMD limitations such as sensitivity to noise and sampling (Dragomiretskiy and Zosso, 

2014). These limitations lead to large-noise EEMD components IMF1 and IMF2 (see Fig. 14) with component correlation, 

redundancy, and chaotically represented trend, period and noise terms (see Fig. 13). The BCMODWT-SVR scheme failed to 705 

provide reasonable forecasting performance due to: (1) the limited sample size (only 792 data points in the original monthly 

runoff data), of which the wavelet and scaling coefficients are further removed by the BCMODWT method, (2) the limited 

information explained by the explanatory variables of the original monthly runoff, where the PACF is very small after the first 

lag month, (3) the correlated BCMODWT signal components (see Fig. 13), and (4) the large-noise BCMODWT components 

W1 and W2 (see Fig. 14). Therefore, the WDDFF realization, i.e., BCMODWT-SVR, may not be feasible for our problem. 710 

Additionally, the ARIMA models have better performance than the SVR, BPNN and LSTM models but worse performance 

than the VMD-SVR and SSA-SVR models. This performance is likely because the ARIMA models automatically determine 

the p and q in the range [1,20] to find more useful historical information for explaining the monthly runoff data. However, 

signal components with different frequencies extracted from VMD and SSA explain more information inside the original 

monthly runoff data. Overall, the VMD method is more robust to sampling and noise, and is therefore recommended for 715 

performing monthly runoff forecasting in autoregressive scenarios. 

In summary, the major contribution of this work is the development of a new feasible and accurate approach for dealing with 

boundary effects in streamflow time-series analysis. Previous approaches handled the boundary effects by removing or 
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correcting the boundary-affected decompositions (Quilty and Adamowski, 2018; Zhang et al., 2015) or adjusting the model 

parameters as new data is added (Tan et al., 2018). However, to the best of our knowledge, no approaches have been 720 

successfully applied in building a forecasting framework that can adapt to boundary effects without removing or correcting 

boundary-affected decompositions, while providing users with a high confidence level on unseen data. Indeed, this work 

focuses on exploiting rather than correcting or eliminating boundary-affected decompositions, in order to develop an effective, 

efficient, and accurate decomposition-based forecasting framework. Note that we do not need a lot of prior experience with 

signal processing algorithms or mathematical methods for correcting boundary deviations. We just enforce the models to assess 725 

the validation distribution during the calibration phase, and ensure proper handling of the validation decomposition errors. 

Overall, this operational streamflow forecasting framework is quite simple and easy to implement. 

7 Conclusions 

This work investigated the potential of the proposed TSDP framework and its VMD-SVR realization for forecasting runoff 

data in basins lacking meteorological observations. The TSDP decomposition stage extracts hidden information of the original 730 

data and avoids using validation information that is not available in practical forecasting applications. The TSDP prediction 

stage reduces boundary effects, saves modeling time, avoids error accumulation, and possibly improves prediction 

performance. With four experiments, we explored the reduction in boundary effects, computational cost, overfitting, as well 

as decomposition and forecasting outcomes for different lead times. We demonstrated that the TSDP framework with its VMD-

SVR realization can simulate monthly runoff data with competitive performance outcomes compared to reference models. 735 

With the first experiment, we evaluated the reduction of the boundary effects in the TSDP framework. In the second experiment, 

we assessed the performance gap between the TSDP and TSDE models. For the third experiment, we empirically tested 

overfitting in TSDP models. Additionally, we evaluated the prediction performance of the TSDP models for different lead 

times in the fourth and last experiment. 

In summary, the major conclusions of this work are as follows: 740 

a. Generating validation samples with appended decompositions, as well as mixing and shuffling the calibration and 

development samples, can significantly reduce the ramifications of boundary effects. 

b. The TSDP framework saves modeling time and sometimes improves the prediction performance compared to the TSDE 

framework. 

c. Combining the predictors of all signal components as the ultimate predictors does not overfit the EEMD-SVR and SSA-745 

SVR models and barely overfits the VMD-SVR and DWT-SVR models. Although some overfitting of the VMD-SVR 

and DWT-SVR occurs, these models still provide accurate out-of-sample forecasts. 

d. The VMD-SVR scheme with NSE scores clearly exceeding 0.8 possesses the best forecasting performance for all 

forecasting scenarios. The BCMODWT-SVR scheme may not be feasible for autoregressive monthly runoff data 

modeling. 750 
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The boundary effects represent a potential barrier for practical streamflow forecasting. We do believe that generating samples 

from appended decompositions, in addition to mixing and shuffling the calibration and development samples, are promising 

ways to reduce the influences of boundary effects and improve the prediction performance on monthly runoff future test 

samples. Ultimately, however, the black-box nature of the TSDP framework and the VMD-SVR model (or any data-driven 

model) is a justifiable barrier of making decisions in water resource management using the prediction results. Further research 755 

is needed on the VMD-SVR result interpretability. 
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