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Reply to Referees’ comments 

 

Dear Editor and Referees, 

We thank the handling editor for handling the paper and the referees for their positive evaluation and for 
providing insightful and constructive comments, which have been a great help in improving the quality of 
our paper. We carefully revised the paper according to these comments and suggestions. The related parts 
of the paper have been rewritten and improved, and for your easy reading and evaluation, the changed 
parts are marked using BLUE COLORED text in the revised version. 

We hope the revised version is to your satisfaction, and of course, we are more than happy to improve the 
paper again according to new comments and suggestions that might come. 

Note that in some places of the manuscript, we have made improvements in addition to the referee 
comments. Please note that the line numbers in the referees’ comments refer to the original version of the 
paper, while in our reply they refer to the revised version. 
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Main corrections: 

1. To make the manuscript concise and easy to read, the “Experiment 2: Performance evaluation of the 

TSDP models” and “Experiment 5: Evaluation of runoff forecasting for long leading times” in the 

original manuscript are combined as the “Experiment 4: Evaluation of the TSDP models for different 

lead times” in the revised manuscript (see Section 3.5.4). 

2. In the original manuscript, the predictors for 3-, 5-, 7- and 9-month ahead runoff forecasting were 

determined by Pearson correlation coefficient (PCC). In the revised manuscript, the predictors of 3-, 

5-, and 7-month ahead runoff forecasting were determined by partial autocorrelation coefficient 

function (PACF). Also, forecasting runoff 9 months ahead was removed. This is because determining 

the predictors by PACF has better forecasting performance than determining the predictors by PCC, 

which can be demonstrated by the following figure. Besides, forecasting runoff 3 months, 5 months, 

and 7 months ahead are enough to tell the difference of the forecasting models. 
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3. To make it easier for the reader to start reading the methodology, knowing where the research was 

developed, the “3.1 Study area and data observations” in the original manuscript were changed to 

“2 Monthly runoff data” in the revised manuscript. 

4. We have added a flowchart to illustrate the optimization process of BOGP (see Figure 2). 

5. We have added examples of the boundary effects to analyze the shift-copy variance and the data-

addition sensitivity of VMD (see Figure 3). 

6. We have computed kernel density estimates to evaluate the different error distribution of 

calibration and validation decompositions (see Figure 4). 

7. We have computed absolute PCCs between validation sample predictors and prediction targets to 

indicate the importance of generating validation samples from appended decompositions (see 

Figure 5). 

8. We have redrawn the block diagram of the TSDP framework to clarify the modeling process (see 

Figure 6). 

9. We have added a block diagram of the comparative experimental setups to tell the difference of 

each experiment (see Figure 7). 

10. We have added a block diagram of experiment 1 to denote the data partition of different 

forecasting schemes (see Figure 8). 

11. We have added a table to describe the hyperparameter search ranges of ARIMA, SVR, BPNN, and 

LSTM(see Table 1). 

12. We have evaluated the NSE of the BCMODWT-SVR scheme for different wavelet types and 

decomposition levels to find an optimal combination of wavelet and decomposition level (see Figure 

12). 

13. We have calculated the mutual information (MI) between each predictor and the predicted target to 

evaluate the feature importance for different lead times (see Figure 15). 

14. For other corrections, please see the response details below. 
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Referee 1 (John Quilty) 

 

 

Comment by Referee:  

ASSESSMENT: 

This paper introduces a variational mode decomposition (VMD)-based support vector regression (SVR), i.e., 
VMD-SVR, model for multi-step ahead streamflow forecasting. The authors strive to address the ‘boundary 
effects’ problem common to many time series decomposition approaches that are typically coupled with data-
driven models such as VMD, ensemble empirical mode decomposition (EEMD), singular spectrum analysis (SSA), 
wavelet transforms (WT), etc. outlined in earlier studies (Du et al., 2017; Maheswaran and Khosa, 2012; Quilty 
and Adamowski, 2018; Wang and Wu, 2016; Zhang et al., 2015). This is a worthwhile problem to address due to 
the growing interest in coupling these decomposition methods (VMD, EMD, SSA, WT, etc.) with data-driven 
models for hydrological forecasting and the vast majority of studies that overlook the impact of boundary 
effects on hydrological forecasting performance. Many of the just mentioned studies point out flaws in existing 
strategies for coupling decomposition methods with data-driven models and some go on to identify potential 
solutions. 

In this paper, the authors put forth their own approach for addressing boundary effects. The authors claim that 
the main benefits of their proposed approach include that it “…can reduce the boundary effects, save the 
modelling time, and improve the prediction performance. This practical streamflow forecasting framework can 
be outlined as follows: 

(1) Divide the entire streamflow data into training and validation sets and decompose each of these two sets 
separately into signal components. This procedure avoids using the validation information for training purposes. 

(2) Combine the predictors of individual signal components into a final predictors, and select the original 
streamflow data as the prediction target in order to build only one optimized prediction model.  

(3) Generate training and validation samples and divide the validation samples into development and testing 
samples. Mix and shuffle the training and the development samples to optimize the prediction model, and 
reduce the boundary effects.” 

Throughout the MAJOR COMMENTS section below, I raise several issues with how the authors’ proposed 
approach actually satisfies these points. In my opinion, I think there is much clarification required on the 
authors’ part to demonstrate that they adequately fulfill these points (in a way that is meaningful for 
operational forecasting problems, which the present study appears to be concerned with). In particular, the 
authors’ methodology for how they decompose the time series using VMD (and other comparative approaches) 
and use it in training and validating their proposed VMD-SVR (and comparative) method(s) is not entirely clear. 
Out of all issues raised in this review, this point needs the most attention. 

Nonetheless, I find that the paper is well-written, is properly structured, and is supported by appropriate figures. 
The references are sufficient. The analysis carried out in the paper is reasonable but the validity of the paper’s 
results, in terms of how useful the results are to those concerned with developing operational forecasting 
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models, largely depends on how the authors carried out decomposition of the time series (using VMD, DWT, 
etc.) and used it to develop the forecasting models. 

If the authors can adequately address each of the comments/suggestions mentioned below, I would be happy 
to re-evaluate my current stance on the paper’s suitability for being published in Hydrology and Earth System 
Sciences. In my opinion, the paper should not be published in its current form. 

 

Answer by authors:  

We thank you for the positive evaluation of our work and all the comments/suggestions on our manuscript. We 
have made improvements to the manuscript following your suggestions. Overall, the main corrections are: 

1. We have analyzed the VMD shift-variance and sensitivity of the addition of new data using the 
underlying data of our study (the monthly runoff at Huaxian station)(see Figure 3) and discussed how to 
reduce the influence of boundary effects caused by the VMD shift-variance and sensitivity of addition of 
new data (see Section 3.4). 

2. We have compared the proposed TSDP framework with the WDDFF framework proposed by Quilty and 
Adamowski (2018). Additionally, we have compared no-decomposition ARIMA, SVR, BPNN, and LSTM 
with the TSDP and WDDFF framework in the revised manuscript. 

Please find more details about our changes below. 

 

 

Comment by Referee: 

MAJOR ITEMS: 

In the Introduction, the authors mention how their “…proposed scheme can reduce the boundary effects, save 
the modelling time, and improve the prediction performance. This practical streamflow forecasting framework 
can be outlined as follows:  

(1) Divide the entire streamflow data into training and validation sets and decompose each of these two sets 
separately into signal components. This procedure avoids using the validation information for training purposes.  

(2) Combine the predictors of individual signal components into a final predictors, and select the original 
streamflow data as the prediction target in order to build only one optimized prediction model.  

(3) Generate training and validation samples and divide the validation samples into development and testing 
samples. Mix and shuffle the training and the development samples to optimize the prediction model, and 
reduce the boundary effects.”  

Some comments on each of these points are given below: 

Point 1 

To decompose the validation data, the authors imply that they append one validation record at a time onto the 
calibration dataset (and any previous validation data) then perform VMD. The authors do this for each 
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validation record, keeping the VMD components for each previous validation record static (this I my 
interpretation, the latter assertion was not specifically mentioned by the authors, at least that I could find). This 
appears to avoid boundary effects in the validation data due to the ‘future data’ issue; however, there are two 
major issues with this approach: 

• The first issue is that VMD is sensitive to the addition of new data. I.e., by adding an additional data 
point to a time series and performing VMD creates inconsistencies between the intrinsic mode 
functions (IMFs) with the appended data and the IMFs prior to the appended data. Sometimes, these 
inconsistencies can be very large and tend to be largest at the edges of a time series, the most 
important time series observations in real-world forecasting applications (see example R script attached 
at the end of this review for the sensitivity of VMD to the additional of new data points). 

• Because of this last point, the parameters of a model calibrated on initial IMFs generated by VMD that 
are then fed with updated IMFs based on the newly appended data may need to be updated to account 
for these newly introduced errors not seen during model calibration. This begs the question of whether 
each time the IMFs are updated whether the model should be updated too. Which goes against the 
authors’ desire to implement a computationally-efficient forecasting method. Perhaps the authors may 
wish to consider a Kalman Filter to update their model parameters if they follow such an approach (as 
opposed to completely re-training the model). The Kalman Filter could be used to update the model 
parameters at each time step or at larger intervals. 

• The second issue is that VMD is shift-variant, meaning that performing VMD on lagged versions of the 
same time series leads to distortions in the IMFs derived by the VMD at the same times. This further 
exacerbates the issue raised above in terms of calibrating and validating a data-driven model based on 
using time-lagged inputs that are decomposed via VMD (see example R script attached at the end of 
this review that demonstrates the shift-variance problem in VMD). 

Answer by authors:  

Thank you for providing the R script to test the shift-copy variance and the data-addition sensitivity of VMD. We 
have tested the shift-copy variance and data-addition sensitivity of VMD using a Matlab implementation which 
is derived from Dragomiretskiy and Zosso (2014). The results are shown in Figure 3. Note that the decomposition 
level (K), the quadratic penalty parameter (α), the noise tolerance (τ), and the convergence tolerance (ε) are the 
four parameters that influence the VMD decomposition performance (see the last paragraph of Section 3.1). The 
parameters 𝛼, 𝜏, and 𝜀 remain static for decomposing the calibration set and appended sets. The parameter 𝐾 
was tuned based on the calibration set (see Section 4.4 and Figure 9 for how to tune K) and remain static for 
decomposing the appended sets (see Figure 6). The last decomposition of appended sets for each signal 
component is a validation decomposition. 

We agree with you that VMD is shift-variant and sensitive to the addition of new data. We think the boundary 
effects cause these two issues. The boundary effects lead to large decomposition errors at the edges of a time 
series, but the rest decomposition errors are very small by adopting appropriate decomposition parameters, 
which can be proved by Figure 3. Fig. 3(b), (d), and (f) show that VMD has very small decomposition errors 
except for the boundary decompositions. Since the calibration set was concurrently decomposed and the 
validation set was sequentially appended to the calibration set and decomposed, the calibration decompositions 
(samples) are barely affected while the entire validation decompositions (samples) are affected by the 
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introduced decomposition errors. In other words, the calibration and validation samples have different error 
distribution (see Figure 4), which leads to the models calibrated on the calibration samples generalized poorly to 
validation samples. 

Since the calibration and validation samples can come from different distribution (see Machine learning 
yearning by Andrew Ng), we think it is not necessary to update model parameters with Kalman Filter because we 
have already dealt with the boundary effects with two different approaches. However, we do believe that 
updating model parameters with Kalman Filter is a new great idea to deal with boundary effects and we will 
research it in our subsequent experiments. One approach is to make the driving pattern (i.e., the relationship 
between predictors and prediction targets) in the validation sample as close as possible to that of the calibration 
sample. The other approach is to make the models assess validation error distribution during the calibration 
stage. In the first approach, the validation samples were generated from the decompositions of appended sets 
rather than validation decompositions because the driving pattern of boundary decomposition of appended sets 
is close to calibration decompositions (monotone increasing or decreasing, see minimap in Fig. 3a, c and e). In 
other words, the predictors selected from appended decomposition are more correlated to the predicted target 
(see Fig. 5). In the second approach, we mixed and shuffled the calibration and development (half validation) 
samples to build SVR models based on cross-validation. This is because the model can calibrate and validate on 
calibration and validation error distribution simultaneously. We have proved that these two approaches are 
worked by Experiment 1 (see Section 5.1 and Figure 16). The key ideas, potential reasons, and procedures of the 
TSDP framework have been clarified in the revised manuscript (see Section 3.4). 

 

 

Comment by Referee: 

Point 2 

Although there are numerous studies that have considered forecasting each IMF (in EEMD, VMD, etc. based 
models) separately (and summing their constituent forecasts to obtain the final forecast), the authors should 
note that in the literature other studies have also built forecasts using, for instance, all wavelet-decomposed 
time series in a single forecasting model (Maheswaran and Khosa, 2013; Quilty and Adamowski, 2018). Many 
other examples of this approach can be found in the literature. It is suggested that the authors ‘downplay’ this 
feature of their framework as being something new or different. 

 

Answer by authors:  

Yes, you are right and we have downplayed “building a single forecasting model” as the new feature of the 
proposed TSDP framework and we also have added references for building a single forecasting model (see lines 
289-291). 

 

 

Comment by Referee: 



8 

 

Point 3 

In terms of the mix and shuffle approach used to the training and validation data in the VMD-SVR models: 

It is very difficult (for me) to see how taking all but the last 120 records of the red line in Figure 8 (b) (i.e., the 
development set) and randomly shuffling it with the red line from Figure 8 (a), (the training set) would lead to 
such a high performance on the last 120 records in Figure 8 (b) (i.e., the test set) as noted in Figure 9 and 11. 
Especially, when it appears that the training and combined development and test sets have completely different 
distributions (with the training set having a larger number of records). 

It seems like something is missing here. To have a mean NSE of 0.2 for standard SVR and a mean NSE of nearly 1 
for SSA-SVR, VMD-SVR, and DWT-SVR (Figure 11) is a sign that something is potentially awry with the 
decomposition process and its division into training, development, and test sets. A modest increase in NSE 
would make sense (between SVR and VMD-SVR) but such a large discrepancy between the standard SVR and the 
coupled SVR approaches (SSA-SVR, VMD-SVR, and DWT-SVR) makes me think that important details of the 
decomposition of the time series and its partitioning into the different data sets is missing. 

I think it is necessary for the authors (at the very least) to provide pseudo-code for how they decomposed the 
time series using EEMD, SSA, VMD, and DWT as well as how it was partitioned into training, development, and 
testing sets including how the mixed sampling approach was carried out. It would be ideal if the authors could 
provide the code that they used for these steps and (if possible) the time series used to develop the models. 
This would allow for the substantial difference in results (between SVR and VMD-SVR) to be validated. 

 

Answer by authors: 

Generating validation samples from the decompositions of appended sets (i.e., appended decompositions), 
which is performed before the mixing-and-shuffling step, helps a lot in improving the prediction performance 
(see Figure 16). This is because the predictors selected from appended decompositions are more correlated with 
the prediction targets than the predictors selected from validation decompositions (see Fig. 5). Of course, more 
development samples lead to better generalization performance but also lead to a greater workload. Set the 
number of development samples to 120 (accounts for about 22% of the calibration samples), is due to a balance 
between efficiency and accuracy. We have discussed why and how generating validation samples from 
appended decompositions and mixing and shuffling the calibration and development (half validation) samples 
improve the generalization ability of TSDP models (see Section 3.4). 

In the original manuscript, the lag period of the SVR model is determined by PACF. For example, the lag equals to 
1 for Huaxian station (as shown by the following figure). This is because the PACFs after the first lag are 
insignificant. This might lead to poor forecasting performance. We have tested that setting the lag to 12 leads to 
a better forecasting performance than lags from 1 to 11. Therefore, the lag period for SVR, BPNN, and LSTM is 
set to 12 in the revised manuscript. Additionally, we have clarified the decomposition process in Figure 6 and the 
data partition in Figure 8 and Section 2 (see lines 138-143). 
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We agree with you that providing code and data is helpful for the readers to validate our research results. The 
codes and data for this study were uploaded to GitHub (see 
https://github.com/zjy8006/MonthlyRunoffForecastByAutoReg.git) (see readme for how to reproduce our study) 
and we have also uploaded the updated code and data to Mendeley Data 
(http://dx.doi.org/10.17632/ybfvpgvvsj.4, Ganggang Zuo, 2020). 

 

 

Comment by Referee: 

Some other points include: 

1. The authors seem to be familiar with the framework proposed by Quilty and Adamowski (2018) and 
note that these authors avoided boundary effects through their approach (Wavelet Data-Driven 
Forecasting Framework, WDDFF). Why did the authors not compare the WDDFF against their VMD 
approach? As it stands, each of the comparison methods (EEMD, SSA, and DWT) used in this study are 
all impacted by the boundary effect. At the end of this review, the Referee has included a MATLAB code 
for how the authors could obtain boundary-corrected wavelet and scaling coefficients through the 
maximal overlap discrete wavelet transform. If the authors use this script to decompose their input time 
series and include it in their SVR model, they can easily replicate the WDDFF from Quilty and 
Adamowski (2018). 

 

Answer by authors: 

We thank you for providing the Matlab implementation of boundary-corrected maximal overlap discrete wavelet 
transform (BCMODWT) to build WDDFF. We have compared the WDDFF framework with the TSDP framework. 
However, we think the WDDFF is not feasible for our case study. Because our underlying data does not include 
meteorological observation and we have to choose the explanatory variables from the monthly runoff. 
Additionally, our underlying data only contain 792 monthly runoffs, and remove the boundary-affected 
decompositions will lead to the sample size less than 792. In the revised manuscript, we have selected twelve 

https://github.com/zjy8006/MonthlyRunoffForecastByAutoReg.git
http://dx.doi.org/10.17632/ybfvpgvvsj.4
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monthly runoff series lagging from one month to twelve months as explanatory variables and tested several 
wavelet functions (haar, db1, fk4, coif1, sym4, db5, coif2, and db10) and decomposition levels (1, 2, 3 and 4). The 
results are shown in Figure 12. However, the WDDFF framework based on BCMODWT and SVR, namely 
BCMODWT-SVR failed to predict our underlying data (see Fig.19 and Fig. 20). We have analyzed the potential 
reasons for these results in lines between 708 and 713. 

 

 

Comment by Referee: 

2. Also, since the authors are following only a univariate time series forecasting problem without 
considering exogenous variables such as rainfall, evaporation, it would also seem plausible that they 
should compare their framework to simple time series methods such as ARIMA or even more 
appropriately, fractionally-differenced ARIMA (also known as Hurst-Kolmogorov processes, HKp) that 
are known to be suitable for forecasting time series with multiscale behaviour. The HKp method has 
been shown to be a useful method for monthly streamflow forecasting, with the potential to 
outperform common machine learning methods (k nearest neighbours, neural networks) (Koutsoyiannis 
et al., 2010). 

Answer by authors: 

We have added the ARIMA, BPNN, and LSTM models for predicting the underlying data of this study. The details 
of building these models are presented in Section 3.5.4 (see lines 393-398) and Table 1. The results are shown in 
Section 5.4, Figure 19, Figure 20, and discussed in Section 6 (see lines 714-716). 

 

 

Comment by Referee:  

3. Line 266-7: ‘Therefore, only a few decomposition values of the training set are affected by the boundary 
effects.’ Can the authors validate this claim (i.e., via a formula or through an experiment)? How can one 
determine which training records in the various VMD components include boundary effects? 

 

Answer by authors: 

That's a misstatement. We have confirmed that every decomposition of VMD will be affected by boundary 
effects through testing the shift-copy variance and the data-addition sensitivity of VMD (see Figure 3). What we 
try to explain with this sentence is that the decomposition errors except for the boundary decomposition errors 
can be ignored. This because these decomposition errors are very close to zero (see Fig.3b,d, and f). Since the 
calibration set was concurrently decomposed, the most calibration decomposition errors except for the boundary 
decomposition errors can be ignored. We have removed this sentence in the revised manuscript. 

 

 



11 

 

Comment by Referee: 

4. VMD has many tuning parameters that, by the discussion in section 2.1, seems to greatly impact VMD 
performance. How then is VMD more user-friendly than the MODWT, which only requires the selection 
of a decomposition level and wavelet filter (although not trivial), for which there are only a finite 
number? From what I can tell, the parameters in VMD (aside from the selection of the number of IMFs) 
can take on an infinite number of values… 

Answer by authors:  

We agree with you that the VMD has more parameters that should be pre-assigned than MODWT. However, we 
think the VMD is more controllable than MODWT through the VMD parameters. There are four parameters, i.e., 
the decomposition level (K), the quadratic penalty parameter (𝛼), the noise tolerance (𝜏), and the convergence 
tolerance (𝜀), mainly affect the decomposition performance of VMD. How these parameters affect the 
decomposition performance have been analyzed in Section 3.1 (see lines 164-170). As suggested by Zuo et al. 
(2020), the values of 𝛼, 𝜏, and 𝜀 were set to 2000, 0, and 1e-9, respectively. Setting 𝜏 to 0 can remove noise in 
the original time series as much as possible and setting 𝜀 to 1e-9 can obtain more accurate decomposition 
results. Setting the 𝛼 to 2000 tends to get small bandwidth, hence, avoid information redundancy and additional 
noise to be included in the decomposed signal components. As suggested by Xu et al. (2019), the decomposition 
results are very sensitive to the K. Therefore, we only have to tune K by observing the center-frequency aliasing 
(see Fig. 9) as suggested by Zuo et al. (2020). This can avoid mode mixing and extract more uncorrelated signal 
components with a low noise level (see Figure 13 and Figure 14). The VMD is more controllable than DWT or 
MODWT because we do not know how to select wavelet functions and decomposition levels to obtain 
uncorrelated signal components with a low noise level. 

 

 

Comment by Referee:  

5. I think Line 320 should be re-cast in light of the fact that selecting the right combination of VMD 
parameters is technically more computationally-intensive than for the DWT or MODWT. 

 

Answer by authors:  

We agree with you that tuning the all the four parameters (the decomposition level (K), the secondary penalty 
parameter (𝛼), the noise tolerance (𝜏), and the convergence tolerance (𝜀)) is computationally-intensive than 
DWT or MODWT. However, we can control decomposition results in terms of mode mixing and noise with the 
VMD parameters. We only need to tune the most sensitive parameter, i.e., the decomposition level, which has 
been demonstrated worked in our case study. Therefore, we think VMD is not more computationally-intensive 
than DWT or MODWT because the most VMD parameters do not need to be tuned. We have removed “Testing 
numerous combinations of 𝜓 and L is quite laborious.” in the revised manuscript. 
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Comment by Referee:  

6. For Experiment 5, only odd numbered lead times were considered (3, 5, 7, and 9 months ahead). Why 
were even numbered lead times (2, 4, etc. months ahead) not considered? 

 

Answer by authors:  

We aim to evaluate the performance gap of the TSDP models for long lead times and the workload for 
evaluating both the odd- and even-numbered lead times is huge. Therefore, we think only evaluate the odd-
numbered (or even-numbered) lead times is enough to tell the difference of models. We can also evaluate 1-, 2-, 
3-, 4-month ahead forecasting models, however, the 1-, 3-, 5-, 7- and 9-month ahead forecasting models can tell 
the predication performance of much longer lead times. In fact, we have removed the 9-month ahead monthly 
runoff forecasting in our revised manuscript for the convenience of comparison and presentation of different 
forecasting models. 

 

 

Comment by Referee:  

7. Section 3.4: which open-source software was used for EEMD, SSA, VMD, and DWT? 
 

Answer by authors:  

We have clarified the open-source software of EEMD, SSA, VMD, and DWT in Section 4.3. 

 

 

Comment by Referee:  

8. Given that a Bayesian approach (BOGP) was used for SVR hyper-parameter optimization, could it not 
also be used to select the VMD-related parameters? One would think that you could use the BOGP to 
optimize both VMD and SVR parameters at once. If possible, I think it would be interesting for the 
authors to consider this. If it is not feasible, a short discussion on why it is not feasible would be 
interesting. 

 

Answer by authors:  

Bayesian optimization is a sequential design strategy for global optimization of black-box functions. We did not 
search VMD parameters using BOGP because it is hard to define an objective function for VMD (for SVR the 
objective function is mean square error). Besides, only the decomposition level is needed to be tuned in the case 
study, and determining the decomposition level by observing the center-frequency aliasing (see Figure 9) can 
avoid mode mixing to obtain more uncorrelated signal components (see Figure 13) with a low noise level (see 
Figure 14). 
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Comment by Referee:  

9. Why was six-fold cross-validation selected for hyper-parameter optimization (why not 3, 5, or 10-fold 
cross-validation)? 

 

Answer by authors:  

The CV fold is a vital parameter that influences the forecasting performance of TSDP models. However, there is 
no theoretical method to determine the CV fold. The 10-fold CV and leave-one-out CV (LOOCV) are two 
frequently-used methods (Zhang and Yang, 2015; Jung, 2018). The research results of Zhang and Yang (2015) 
indicated the LOOCV has a better performance than a 10-fold or 5-fold CV. However, LOOCV is computationally 
expensive. Additionally, Hastie et al. (2009) empirically demonstrated that 5-fold CV sometimes has lower 
variance than LOOCV. Therefore, the selection of cross-validation folds needs to consider specific application 
scenarios. We used the 6-fold CV in the previous version of the manuscript because we referred to an SVR model 
example. We have changed the 6-fold CV to the frequently-used 10-fold CV scheme in the revised manuscript 
rather than LOOCV due to the limited computational resources. Additionally, the difference between the 6-fold 
CV and 10-fold CV is small in the case of this study. We have clarified why using 10-fold CV in lines 476 between 
482. 

 

 

Comment by Referee:  

10. Normally one has to set a range for the different hyper-parameters in the BOGP approach. What range 
was set for the various SVR hyper-parameters? It would be good to include what guided your selection 
of these particular ranges. 

 

Answer by authors:  

In the revised manuscript, we have clarified the search range for the parameters of SVR in Table 1. 

 

 

Comment by Referee:  

11. Line 495: Figure 8 (a) – I find it hard to agree with the statement that the training data is ‘barely 
affected by the boundaries’. Between record 550 and 555 there is a difference between the red and 
blue lines of ~ 2 *108 m3! I think one can hardly dismiss this as being a small difference…I suggest 
acknowledging this rather large discrepancy as something significant. 
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In fact, this is one of the issues of VMD, EEMD, etc. They are not shift-invariant and are sensitive to the 
addition of new observations (see supporting R code at the end of this review). I suggest the authors 
discuss in detail these disadvantage of VMD, especially in relation to the MODWT, which does not suffer 
from these problems and which may also be used, in a mathematically sound manner, to decompose 
multiscale and/or non-stationary time series into sub-time series capturing their prominent features 
(which potentially includes trends, periodicities, transients, etc.). I think more effort needs to be 
devoted to clearly identifying the particular advantages of using the VMD-based approach in this study 
over the MODWT (which again, does not suffer from such issues). 

 
Answer by authors:  

That's a misstatement. We have removed this statement in the revised manuscript. We agree with you that the 
calibration data is affected by boundary effects. However, this statement means that the most decomposition 
errors except for the boundary decomposition errors caused by boundary effects can be ignored. Although the 
boundary decomposition errors are large, only a small number of calibration samples are affected by these 
boundary decomposition errors. We agree with you that VMD, EEMD, DWT, and SSA suffer form the shift-
variance and sensitive to the addition of new data, which lead to decomposition errors. The boundary-corrected 
MODWT can avoid this problem. However, this study aims to propose a general solution to this problem by using 
different approaches. In other words, we think building practical forecasting models using VMD, EEMD, DWT and 
SSA without correcting and removing the boundary decompositions is worth trying. We have analyzed the 
particular advantages and disadvantages of using the VMD-based approach in this study in Section 6 (see lines 
690-719). 

 

 

Comment by Referee:  

12. Figure 8(b) drives the above-mentioned point home much further… Comparing Figure 8 (a) and Figure 8 
(b) it also appears to be the case that the validation data and training data come from distributions, too. 
It would seem logical that the forecasting model should be updated to account for this change through 
time (e.g., perhaps through a Kalman Filter)? 

Answer by authors:  

As shown in Fig. 3(f), only a small number of decompositions at the edges of the calibration set suffers from 
boundary effect. As shown in Fig.3(g), all the validation decompositions are suffering from boundary effects. 
Therefore, we think the calibration decompositions and validation decomposition have a different (error) 
distribution. Since the calibration and validation set can have different distribution (see Machine learning 
yearning by Andrew Ng). We think it is not necessary to update the model parameters because generating 
validation samples from appended decompositions and mixing and shuffling the calibration samples and 
development samples (half validation samples) help a lot to improve the generalization ability of the calibrated 
models (see Figure 16). Generating validation samples from appended decompositions obtain more correlated 
input predictors (see Figure 5) and mixing and shuffling the calibration and development samples can assess the 
validation error distribution during the calibration stage. 
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Comment by Referee:  

13. Figure 10: it would make it much easier to read if the authors reduced the marker size for the different 
methods in the scatter plots. For the hydrograph plots, it would be good to zoom in on a particular 
section, perhaps concentrating on the largest peak event? 

Answer by authors:  

We have redrawn the scatter plots to make it easier to read, see Figure 19. 

 

 

Comment by Referee:  

14. Figure 18: Why was the standard SVR not included in this analysis? I think it should be included to show 
how much better the other approaches (DWT-SVR, VMD, SVR, etc.) are at longer lead times. 

Answer by authors:  

We have analyzed the standard ARIMA, SVR, BPNN, and LSTM model in the revised manuscript, see Figure 20 
and Section 5.4. 

 

 

Comment by Referee:  

15. Line 755-756: ‘However, as far as we know, approaches of building a forecasting framework that is 
adapted to the boundary effect never be tried.’  
 
Are you sure? Quilty and Adamowski (2018) explored the boundary effect existing in popular wavelet-
based decomposition methods (DWT, MODWT, etc.), then introduced a set of best practices that 
addresses these boundary conditions (completely) and implemented these best practices in a new 
forecasting framework tailored for real-world forecasting. I think one could say that their framework 
‘adapted to the boundary effect’. In an earlier study by Maheswaran and Khosa (2012), the authors also 
discussed how to overcome some of the issues of the DWT by choosing a more appropriate wavelet 
decomposition method (à trous algorithm) that did not suffer from the same boundary conditions. I 
would also qualify their approach as ‘adapting to the boundary effect’. In my opinion, the texted quoted 
from Line 755-6 is not entirely true and should be revised. 

Answer by authors:  

We have clarified this sentence. What we want to emphasize by this sentence is that the approaches, which are 
adapted to the boundary effect without correcting and removing the boundary-affected decompositions and 
providing users with a high confidence level on the unused data, never be tried. See lines 723-725. 
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Comment by Referee:  

MINOR ITEMS: 

• There are numerous grammatical and spelling errors. I did not note all of these issues. I recommend 
that the authors carefully check the paper for grammatical and spelling issues (e.g., Line 673 ‘…increase 
and decrease patterns…’ should read ‘…increasing and decreasing patterns…’). 

Answer by authors:  

We have carefully revised the manuscript and check it for clarity and language. Additionally, our revised 
manuscript was edited for proper English language, grammar, punctuation, spelling, and overall style by one or 
more of the highly qualified native English speaking editors at Editideas. The editorial certificate is shown as 
follows. 
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Comment by Referee:  

• Line 709: ‘Orthometric’? I suggest trying to get your point across using different terms. 
 
Answer by authors:  

We have clarified this term. The ‘Orthometric’ term means uncorrelated signal components. See line 380, 387, 
510, 675, 693. 

 

 

Comment by Referee:  

 
• Line 761: simulating or forecasting? This applies to the whole paragraph. Simulation and forecasting are 

generally regarded as different procedures in hydrology. 
 

Answer by authors:  

We have changed “simulating” to “forecasting” (see line 732) and rephrased this paragraph in the revised 
manuscript. 

 

 

Comment by Referee:  

• Line 764: It is not clear what is meant by ‘…predictor-runoff relationship and the decomposition-runoff 
relationship’. 

Answer by authors:  

We have clarified this sentence. We mean the relationship between input predictors and the output target, and 
the relationship between the original signal and decomposed signal components. See lines 665-666. 

 

 

Comment by Referee:  

• Line 765: I think you mean accuracy instead of reliability (the latter is generally measured using 
probabilistic performance metrics). The same comment also applies to the sentence two lines below.  

 

Answer by authors:  
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You are right, we have clarified this in the revised manuscript. See line 15, 110, 321. 

 

 

Comment by Referee:  

• Line 773: ‘lead’ not ‘leading’.  
 

Answer by authors:  

We have revised this term, see line 17, 112, 304, 324, 389, 531, 595, 609, 618, 627, 628, 635, 737, and 742. 

 

 

Comment by Referee:  

• Line 782: I would rephrase point ‘c’. Perhaps mention something along lines ‘Although some overfitting 
of the VMD-SVR occurs, the model still provides accurate out-of-sample forecasts’.  

 

Answer by authors:  

Thanks. We have rephrased point ‘c’ (see lines 748-750). 

 

 

Comment by Referee:  

• Line 789-90: Such as…? It would be good to provide some ideas concerning how you think this can be 
realized. 

 

Answer by authors:  

Such as using interpretable models (e.g., decision trees) to analyze feature (predictor) importance, using partial 
dependence plots to observing the global or local convergence, visualizing the model structure and parameters 
to analyze how the model structure and parameters influence the prediction results, generating against data to 
test the model behavior. 
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Referee 2 

 

 

Comment by Referee:  

General comments: Streamflow forecasting is important for water management and optimal allocation of water 
resources. This study aimed to improve the model performance of decomposition based forecasting methods. A 
two stage decomposition predication framework (TSDP) was proposed by the authors based on VMD and SVR, 
to avoid the influences of validation information on training. The effectiveness, efficiency and reliability of the 
TSDP framework and its VMD-SVR realization in terms of the boundary effect reduction, decomposition 
performance, prediction outcomes, time consumption, overfitting, and forecasting capability for long leading 
times were investigated. The final results on monthly runoff from three stations at the Wei River showed the 
superiority of the TSDP framework compared to benchmark models. It is found that the results are interesting 
for guiding proper use of decomposition-based forecasting methods in streamflow forecasting practice. 
 

Answer by authors:  

Thank you for your detailed evaluation of our manuscript. We have improved the manuscript according to your 
suggestions. Please find our response as to how each comment has been taken into consideration in the making 
revision below. 

 

 

Comment by Referee:  

Specific comments: 1) This study only focused on decomposition-based methods and aimed to solve one 
disadvantage existing in applying decomposition methods. Although this might be interesting for readers who 
use decomposition based methods, a wider scope including more streamflow forecasting techniques like 
ARIMA, BP, LSTM etc. can be more interesting. Even if a new technique is proposed (not the case in this 
manuscript), a companion with different types of techniques is often needed to support the application of the 
proposed technique. 

 

Answer by authors:  

We have analyzed the standard ARIMA, SVR, BPNN, and LSTM model in the revised manuscript, see Section 3.5.4 
and Table 1 for experimental setups, see Figure 19, Figure 20, and Section 5.4 for experimental results and see 
lines 714-716 for discussion.  

 

 

Comment by Referee:  
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2) Five experiments were designed for the assessment of different performance aspects including the reduction 
of the boundary effects, decomposition performance, predictability, time consumption, overfitting, and 
forecasting capabilities for long leading times. This might be interesting for readers. However, it is difficult to 
understand these experiments, since the complicated five-experiment design and presentation styles stopped 
the successful understanding and digestion of the results. I suggest the authors rewrite this part and add tables 
(for a comparison of five experiments) to help readers better understand the six different experiments and their 
differences. 
 

Answer by authors:  

To make the manuscript concise and easy to read, the “Experiment 2: Performance evaluation of the TSDP 
models” and “Experiment 5: Evaluation of runoff forecasting for long leading times” in the original manuscript 
are combined as the “Experiment 4: Evaluation of the TSDP models for different lead times” in the revised 
manuscript (see Section 3.5.4). We have rewritten this part (see Section 3.5) and added a block diagram of the 
comparative experimental setups (see Figure 7). 

 

 

Comment by Referee:  

3) Lines 66-67: when you mentioned the boundary effect for the first time in the manuscript, I expect an 
explanation of the ‘boundary effect’. 
 
Answer by authors:   

We have explained the boundary effect the first time it is mentioned (see lines 62-64). 

 

 

Comment by Referee:  

4) VMD and SVR are well-known techniques. The authors can shorten the descriptions of these two techniques 
and focus on the new things the authors proposed. 
 

Answer by authors:  

We have shortened the descriptions of VMD and SVR in our revised manuscript (see Section 3.1 and Section 3.2). 

 

 

Comment by Referee:  

5) Line 81: change ‘usage’ to ‘use’ 
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Answer by authors:  

We have rephrased this term in the revised manuscript (see lines 77-80). 

 

 

Comment by Referee:  
6) Line 259ïijŽ what is BOGP? Do you mean ‘Bayesian optimization based on Gaussian processes’? How is BOGP 
used to optimize EEMD, SSA, DWT and SVR? Add some details. 
 

Answer by authors: 

Yes, the BOGP means Bayesian optimization based Gaussian processes. We have clarified this term in the 
nomenclature. The BOGP was only used to optimize SVR-, BPNN-, and LSTM-based models. The BOGP was not 
used to optimize the parameters of EEMD, SSA, DWT and VMD because (1) it is hard to define an objective 
function for the decomposition processes (the object function for SVR-, BPNN-, and LSTM-based models is mean 
square error) and (2) we can manually control the decomposition performance by setting specific parameters 
(e.g., set the noise tolerance of VMD to zero to obtain sub-signals with low noise level). We have added more 
details about how to use the BOGP to optimize the SVR-, BPNN-, and LSTM-based models in the revised 
manuscript (see Figure 2). Below we give a brief explanation of using BOGP to optimize SVR models. 

In this study, the BOGP was used to obtain the optimized hyperparameters of SVR, i.e., the weight penalty(C), the 
error tolerance (𝜀), and the width control coefficient (𝜎). The BOGP algorithm for SVR model can be wrapped up 
as follows: 

Setp 1. Input a set of mixed and shuffled samples, the object function(𝑓),i.e., the loss function(the mean 
square error was used in this study), the convergence error (e.g., 𝐸 = 1𝑒 − 6) and the number of 
iterations (e.g., 𝑁𝐶 = 100), and the hyperparameters search space (e.g., 𝐶 = [0.1,200], 𝜀 = [1𝑒 − 6,1], 
𝜎 = [1𝑒 − 6,1]). 

Setp 2.  Randomly sample a candidate (e.g., 𝒙𝟎 = [𝐶 = 25, 𝜀 = 0.00001, 𝜎 = 0.26]) based on the given 
search space and set the iteration index as 𝑖 = 1. 

Setp 3. Given the previous candidate, update the posterior expectation of 𝑓 using the Gaussian process 
model (see Eq. 10). 

Setp 4. Track the new candidate (𝒙𝒊) that maximize the expected improvement (EI) function (see Eq. 11), 
i.e., 𝒙𝒊 = argmax𝐸𝐼(𝒙). 

Setp 5. Compute 𝑓(𝒙𝒊) based on the mixed and shuffled samples (including predictors and predicted 
targets) and set the iteration index to 𝑖 = 𝑖 + 1. 

Setp 6. Repeat steps 3-5 until the convergence is achieved or the number of iterations is reached. 

Setp 7. Output the last candidate as the optimal hyperparameters of the SVR model. 
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Comment by Referee:  

7) Add a table for a clear comparison of five experiments 
 

Answer by authors:  

We have added a block diagram to compare the four experiments (see Figure 7). Since the previous experiments 
represent the baseline for the next ones, we did not add a table for the comparison of the experimental results of 
the four experiments. 

 

 

Comment by Referee:  

8) 4 ‘Experimental Results and Analysis’ should be ‘Experimental results’ 

 

Answer by authors:  

We have changed ‘Experimental Results and Analysis’ to ‘Experimental Results’ (see Section 5). 

 

 

Comment by Referee:  

9) Line 354: Why 3,5,7,9? 

 

Answer by authors:  

We aim to evaluate the performance gap of the TSDP models for long lead times and the workload for 
evaluating both the odd- and even-numbered lead times is huge. Therefore, we think only evaluate the odd-
numbered (or even-numbered) lead times is enough to tell the difference of models. We can also evaluate 1-, 2-, 
3-, 4-month ahead forecasting models, however, the 1-, 3-, 5-, 7- and 9-month ahead forecasting models can tell 
the predication performance of much longer lead times. In fact, we have removed the 9-month ahead monthly 
runoff forecasting in our revised manuscript for the convenience of comparison and presentation of different 
forecasting models. 

 

 

Comment by Referee:  

10) Line 356: What does that mean by ‘the 20-month lag’? Does that make sense for monthly forecast? 
 



24 

 

Answer by authors: 

The '20-month lag' is the upper limit of lags for computing the Pearson correlation coefficient (PCC). The 20-
month lags (i.e., 1-month lag, 2-month lag, ...) were used to compute the PCC, and the lags with higher absolute 
PCC were finally selected as input predictors. We set a 20-month lag as the upper limit is due to the maximum 
lags of Partial autocorrelation function(PACF) was also set to 20. Therefore, we can compare the prediction 
performance of models established using the input predictors determined by PCC and PACF. Note that in the 
revised manuscript, we chose PACF instead of PCC to determine the input predictors for 3-, 5- and 7-month 
ahead runoff forecasting. This is because PACF leads to better forecasting performance than PCC (see the 
following figure). 
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Comment by Referee:  

11) Figure 2: if possible, put a map of China 
 

Answer by authors:  

We have added a map of China to illustrate the location of the Wei River (see Figure 1). 

 

 

Comment by Referee:  

12) I didn’t really get how ‘the mixing and shuffling step’ works. If possible, please clarify. 

 

Answer by authors:  

The mixing-and-shuffling step first mixes (concatenates) the calibration samples(e.g., row indexes are 1,2,3,4,5) 
and development samples (i.e., half validation samples)(e.g., row index are 6,7,8,9) as a single set of samples 
and then randomly shuffles the mixed sample rows (e.g., original row indexes are 1,2,3,4,5,6,7,8,9,..., and the 
shuffled row indexes might be 6,3,9,1,5,2,7,4,8,...). 

In fact, two crucial steps help to reduce the influences of the boundary effect. One is generating validation 
samples from appended decompositions and the other is mixing and shuffling the calibration and development 
samples. In the current manuscript, we only have discussed the later one. In the revised manuscript, we have 
added a discussion about the former one and clarify how these steps deal with the boundary effect (see Section 
3.4). 

The different error distribution of calibration and validation decompositions (see Figure 4), which is caused by 
the boundary effect, leads to the models calibrated on the calibration samples generalize poorly to the validation 
samples. 

The aforementioned two steps are worked for reducing the influence of boundary effect because : (1) The 
relationship between input predictors selected from appended decompositions and output target is maintained 
by the decomposition algorithms. In other words, the predictors can be reconstructed to original monthly runoff 
values by the decomposition algorithm. However, due to the decomposition errors come from different sets of 
appended decompositions, the predictors selected from the validation decompositions cannot be reconstructed 
to original monthly runoff values. This leads to the absolute Pearson correlation coefficients (PCCs) between 
predictors and predicted targets of validation samples generated from appended decompositions are larger than 
that of validation samples generated from validation decompositions (see Figure 5); (2) Mixing and shuffling the 
calibration and development samples, and training the models based on the shuffled samples enable the models 
to calibrate and validate on the calibration and validation error distribution simultaneously. The TSDP models 
were established based on the mixed and shuffled samples using cross-validation (CV) strategy (e.g.,10-fold CV 
means the mixed and shuffled samples are divided into 10 sub-samples, of which each one will be used to 
calibrate and validate the TSDP models). Shuffling the mixed samples enables the validation samples to be 
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randomly distributed throughout the mixed samples, which means the sub-samples extracted from the mixed 
and shuffled samples can be used to calibrate and validate the calibration and validation error distribution 
simultaneously. Therefore, the mixing-and-shuffling step can improve the generalization ability. 

The results (see Figure 16) indicate that (1) generating validation samples from appended decompositions, (2) 
mixing and shuffling the calibration samples, and development samples improve the prediction performance 
compared with the scheme without these two steps. 

 

 

 



1 

 

Two-stage Variational Mode Decomposition and Support Vector 

Regression for Streamflow Forecasting 

Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, Xinxin He 

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an, Shaanxi 710048, 

China 5 

Correspondence to: Jungang Luo (jgluo@xaut.edu.cn); Ni Wang (wangni@xaut.edu.cn) 

Abstract. Streamflow forecasting is a crucial component in the management and control of water resources. Decomposition-

based approaches have particularly demonstrated improved forecasting performance. However, direct decomposition of entire 

streamflow data with calibration and validation subsets is not practical for signal component prediction. This impracticality is 

due to the fact that the calibration process uses some validation information, that is not available in practical streamflow 10 

forecasting. Unfortunately, independent decomposition of calibration and validation sets lead to undesirable boundary effects 

and less accurate forecasting. To alleviate such boundary effects and improve the forecasting performance in basins lacking 

meteorological observations, we propose a two-stage decomposition prediction (TSDP) framework. We realize this framework 

using variational mode decomposition (VMD) and support vector regression (SVR), and refer to this realization as VMD-

SVR. We demonstrate experimentally the effectiveness, efficiency and accuracy of the TSDP framework and its VMD-SVR 15 

realization in terms of the boundary effect reduction, computational cost, overfitting, in addition to decomposition and 

forecasting outcomes for different lead times. Specifically, four comparative experiments were conducted based on the 

ensemble empirical mode decomposition (EEMD), singular spectrum analysis (SSA), discrete wavelet transform (DWT), 

boundary-corrected maximal overlap discrete wavelet transform (BCMODWT), autoregressive integrated moving average 

(ARIMA), SVR, backpropagation neural network (BPNN) and long short-term memory (LSTM). The TSDP framework was 20 

also compared with the wavelet data-driven forecasting framework (WDDFF). Results of experiments on monthly runoff data 

collected from three stations at the Wei River show the superiority of the VMD-SVR model compared to benchmark models. 
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Nomenclature 

TSDP Two-stage decomposition prediction 

TSDE Three-stage decomposition ensemble 

WDDFF Wavelet data-driven forecasting framework 

VMD Variational mode decomposition 

EEMD Ensemble empirical mode decomposition 

SSA Singular spectrum analysis 

DWT Discrete wavelet transform 

BCMODWT Boundary-corrected maximal overlap discrete wavelet transform 

PCA Principal component analysis  

SVR Support vector regression 

ARIMA Autoregressive integrated moving average 

BPNN Backpropagation neural network 

LSTM Long short-term memory 

ADF Augmented Dickey Fuller 

IMF Intrinsic mode function 

PACF Partial autocorrelation coefficient 

PCC Pearson correlation coefficient 

MI Mutual information 

MSE Mean square error 

NSE Nash–Sutcliffe efficiency 

NRMSE Normalized root mean square error 

PPTS Peak percentage of threshold statistic 

CV Cross-validation 

BOGP Bayesian optimization based on Gaussian processes 

GS Grid search 

VMD-SVR A TSDP model based on VMD and SVR 

EEMD-SVR A TSDP model based on EEMD and SVR 

SSA-SVR A TSDP model based on SSA and SVR 

DWT-SVR A TSDP model based on DWT and SVR 

BCMODWT-SVR A WDDFF model based on BCMODWT and SVR. 

VMD-SVR-A A TSDE model based on VMD and SVR 

EEMD-SVR-A A TSDE model based on EEMD and SVR 

SSA-SVR-A A TSDE model based on SSA and SVR 

DWT-SVR-A A TSDE model based on DWT and SVR 

 

1 Introduction 25 

Reliable and accurate streamflow forecasting is of great significance for water resource management (Woldemeskel et al., 

2018). The first attempts for streamflow prediction were based on precipitation measurements that date back to the 19th century 
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(Mulvaney, 1850; Todini, 2007). Since then, streamflow forecasting models have been progressively developed through the 

analysis of relevant physical processes and the incorporation of key hydrological terms into those models (Kratzert et al., 

2018). The investigated hydrological terms include physical characteristics and boundary conditions of catchments, as well as 30 

spatial and temporal variabilities of hydrological processes (Kirchner, 2006; Paniconi and Putti, 2015). Also, physics-based 

models have been largely developed through harnessing high computational power and exploiting hydrometeorological and 

remote sensing data (Singh, 2018; Clark et al., 2015). 

However, modeling hydrological processes with spatial and temporal variabilities at the catchment scale requires a lot of input 

meteorological data, information on boundary conditions and physical properties, as well as high-performance computational 35 

resources (Binley et al., 1991; Devia et al., 2015). Moreover, current physics-based models do not exhibit consistent 

performance on all scales and datasets because those models are constructed for small watersheds only (Kirchner, 2006; Beven, 

1989; Grayson et al., 1992; Abbott et al., 1986). Therefore, physics-based models have been rarely used for practical 

streamflow forecasting (Kratzert et al., 2018). Alternatively, numerous studies have explored and developed data-driven 

models based on time-series analysis and machine learning (Wu et al., 2009). 40 

In particular, streamflow prediction methods have been developed based on time-series models such as the Box-Jenkins 

(Castellano-Méndez et al., 2004), autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA) models (Li et al., 2015; Mohammadi et al., 2006; Kisi, 2010; Valipour et 

al., 2013). However, the underlying linearity assumption of conventional time-series models makes them unsuitable for the 

forecasting of nonstationary, nonlinear, or variable streamflow patterns. Therefore, maximum likelihood (ML) models with 45 

nonlinear mapping capabilities have been introduced for streamflow forecasting. These models include decision trees (DT) 

(Erdal and Karakurt, 2013; Solomatine et al., 2008; Han et al., 2002), support vector regression (SVR) (Yu et al., 2006; Maity 

et al., 2010; Hosseini and Mahjouri, 2016), fuzzy inference systems (FIS) (Ashrafi et al., 2017; He et al., 2014; Yaseen et al., 

2017) and artificial neural networks (ANN) (Kratzert et al., 2018; Nourani et al., 2009; Tiwari and Chatterjee, 2010; Rasouli 

et al., 2012). 50 

Nevertheless, traditional ML models cannot always adequately forecast highly nonstationary, complex, nonlinear, or 

multiscale streamflow time-series data in catchments due to the lack of meteorological observations. To handle this 

inadequacy, signal processing algorithms have been applied to transform nonstationary time-series data into relatively 

stationary components, which can be analyzed more easily. These algorithms are most commonly based on flow 

decomposition, and they include wavelet analysis (WA) (Liu et al., 2014; Adamowski and Sun, 2010), empirical mode 55 

decomposition (EMD) (Huang et al., 2014; Meng et al., 2019), ensemble empirical mode decomposition (EEMD) (Bai et al., 

2016; Zhao and Chen, 2015), singular spectrum analysis (SSA) (Zhang et al., 2015; Sivapragasam et al., 2001), seasonal-trend 

decomposition based on locally-estimated scatter-plot smoothing or LOESS (STL) (Luo et al., 2019) and variational mode 

decomposition (VMD) (He et al., 2019; Xie et al., 2019). These approaches have generally demonstrated improved streamflow 

forecasting. 60 
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However, the aforementioned decomposition-based methods don’t properly account for boundary effects on the decomposition 

results (Zhang et al., 2015). These boundary effects are effects that cause the boundary decompositions to be extrapolated. 

This extrapolation is carried out due to the unavailability of historical and future data points which serve as decomposition 

parameters (Zhang et al., 2015; Fang et al., 2019). In fact, each of these decomposition-based models firstly decompose the 

entire streamflow data and then divide the decomposition components into calibration and validation sets for streamflow 65 

prediction. This generally augments the calibration process with validation information, that is impractically available for 

realistic streamflow forecasting. Such validation information is useful in the reduction of the boundary effects, and is hence 

crucial for any operational streamflow forecasting algorithm. In order to avoid using this impractically-available validation 

information in calibration, streamflow time-series data must be first divided into calibration and validation sets, where each 

set is separately decomposed and the boundary effects are effectively reduced. Otherwise, the developed models would use 70 

some validation information in the calibration process, and hence would show unrealistically good forecasting performance. 

Other relevant research contributions are those of Zhang et al. (2015), Du et al. (2017), Tan et al. (2018), Quilty and 

Adamowski (2018), and Fang et al. (2019) who recently pointed out and explicitly criticized the afore-mentioned impractical 

(and even incorrect) usage of signal processing techniques for streamflow data analysis. Zhang et al. (2015) evaluated and 

compared the outcomes of hindcast and forecast experiments (with and without validation information, respectively) for 75 

decomposition models based on WA, EMD, SSA, ARMA and ANN. The authors suggested that the decomposition-based 

models may not be suitable for practical streamflow forecasting. Du et al. (2017) demonstrated that the direct application of 

SSA and the discrete wavelet transform (DWT) to entire hydrological time-series data leads to incorrect outcomes. Tan et al. 

(2018) assessed the impracticality in streamflow forecasting with EEMD and ANN. Quilty and Adamowski (2018) addressed 

the pitfalls of using wavelet-based models for hydrological forecasting. Fang et al. (2019) demonstrated that EMD is not 80 

suitable for practical streamflow forecasting. In summary, these contributions have demonstrated that inadequate streamflow 

forecasting models often lead to practically unachievable performance. 

Boundary effects still constitute a great challenge for practical streamflow forecasting. These effects can lead to shift variance 

for signal components, sensitivity to the addition of new data samples, and hence significant errors for decomposition-based 

models (see Section 3.4). Zhang et al. (2015) examined several extension methods, which can correct the boundary-affected 85 

decompositions, to reduce the boundary effects on decomposition outcomes. It was suggested that a properly-designed 

extension method can improve the forecasting performance. Quilty and Adamowski (2018) proposed a new wavelet-based 

data-driven forecasting framework (WDDFF), in which boundary-affected coefficients were removed by adopting either the 

stationary wavelet transform (SWT) algorithm (also known as “algorithme à trous”) or the maximal-overlap discrete wavelet 

transform (MODWT) algorithm. Tan et al. (2018) proposed an adaptive decomposition-based ensemble model to reduce 90 

boundary effects by adaptively adjusting the model parameters as new runoff data is added. These solutions demonstrated 

effective reduction of boundary effects.  

In this context, we believe that a problem worthy of investigation is to reduce the influence of the boundary effects without 

altering or removing the boundary-effect decompositions, while providing high-confidence testing results on unseen data. To 
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attain these goals, we designed a two-stage decomposition prediction (TSDP) framework, and proposed a TSDP realization 95 

based on VMD and SVR (where this realization is denoted by VMD-SVR). The proposed framework eliminates the need for 

validation information, reduces boundary effects, saves modeling time, avoids error accumulation, and improves the 

streamflow prediction performance. The key steps of this framework can be outlined as follows (see Section 3.4 for more 

details): 

1. Divide the entire time series-data into a calibration set (which is then concurrently decomposed into time-series 100 

components), and a validation set (which is sequentially appended to the calibration set and decomposed). 

2. Optimize and test a single data-driven forecasting model. For building a forecasting model, we use data samples that 

consist of input predictors (obtained by combining the predictors of different components of the signal 

decomposition), and output targets (selected from the original time series). The data samples can be divided into 

calibration samples (generated from the calibration-set decomposition), and validation samples (generated from the 105 

appended-set decomposition). The validation data samples are then divided into development samples (which are 

mixed and shuffled with the calibration samples to optimize the data-driven model), and testing samples (which are 

used to examine the confidence in the optimized data-driven model). 

This paper aims to find a general solution for dealing with time-series decomposition errors caused by boundary effects. We 

designed four comparative experiments to demonstrate the effectiveness, efficiency, and accuracy of the designed TSDP 110 

framework and its VMD-SVR realization. Performance comparisons were made in terms of the reduction in boundary effects, 

computational cost, overfitting, as well as decomposition and forecasting outcomes for different lead times. In the first 

experiment, we demonstrate that the influence of boundary effects can be reduced through generating validation samples from 

appended-set decompositions, and then mixing and shuffling calibration and development samples. In the second experiment, 

we compare the performance of the TSDP framework with that of the three-stage decomposition ensemble (TSDE) framework, 115 

in which one optimized SVR model is built for each signal component. This comparison demonstrates that the designed TSDP 

framework saves the modeling time and might improves the prediction performance. In the third experiment, we demonstrate 

that combines the predictors of the individual signal components as the final predictors, barely overfits the TSDP models. For 

the fourth experiment, we compared the EEMD, SSA, DWT, VMD methods in the TSDP framework and the boundary-

corrected maximal overlap discrete wavelet transform (BCMODWT) method in the WDDFF framework. Also, the 120 

decomposition-based models are compared to the no-decomposition ARIMA, SVR, BPNN and LSTM models. In order to 

evaluate the performance of the proposed model against the benchmark models, we used monthly runoff data collected at three 

stations which are located at the Wei River in China. 
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2 Monthly runoff data 

 125 

Figure 1: A geographical overview of the Wei River basin. 

In this work, we use the monthly runoff data of the Wei River basin (Huang et al., 2014; He et al., 2019; He et al., 2020; Meng 

et al., 2019). The Wei River (see Fig. 1), the largest tributary of the Yellow River in China, lies between 33.68ºN-37.39ºN and 

103.94ºE-110.03ºE and has a drainage area of 135,000 km2 (Jiang et al., 2019). The Wei River has a total length of 818 km 

and originates from the Niaoshu Mountains in the Gansu province and flows east into the Yellow River (Gai et al., 2019). The 130 

associated catchment has a continental monsoon climate with an annual average precipitation of more than 550 mm. The 

precipitation of the flood season from June to September accounts for 60% of the annual total flow (Jiang et al., 2019). In the 

Guanzhong Plain, the Wei River serves as a key source of water for agricultural, industrial and domestic purposes (Yu et al., 

2016). Therefore, robust monthly runoff prediction in this region plays a vital role in water resource allocation. 

The historical monthly runoff records from January 1953 to December 2018 (792 records) at the Huaxian, Xianyang and 135 

Zhangjiashan stations (see Fig. 1) were used to evaluate the proposed model and the other state-of-the-art models. The records 

were collected from the Shaanxi Hydrological Information Center and the Water Resources Survey Bureau. The monthly 

runoff records were computed from the instantaneous values (in m3/s) observed at 8 A.M. each day. The entire monthly runoff 

data was divided into calibration and validation sets. The calibration set covers the period from January 1953 to December 

1998, and represents approximately 70% of the entire monthly runoff data. The validation set corresponds to the remaining 140 

period from January 1999 to December 2018. The validation set was further evenly divided into a development set (covering 
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the period from January 1999 to December 2008) for selecting the optimal forecasting model, and a testing set (covering the 

period from January 2009 to December 2018) for validating the optimal model. 

3 Methodologies 

3.1 Variational mode decomposition 145 

The variational mode decomposition (VMD) algorithm proposed by Dragomiretskiy and Zosso (2014) concurrently 

decomposes an input signal 𝑓(𝑡) into 𝐾 intrinsic mode functions (IMFs). 

The VMD process is mainly divided into two steps, namely (a) constructing a variational problem and (b) solving this problem. 

The constructed variational problem is expressed as follows: 

{
min

{𝑢𝑘}{𝜔𝑘}
{∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 }

𝑠. 𝑡.   ∑ 𝑢𝑘(𝑡) = 𝑓(𝑡)𝑘

,        (1) 150 

where {𝑢𝑘} = {𝑢1, 𝑢2, ⋯ , 𝑢𝑘}  and {𝜔𝑘} = {𝜔1, 𝜔2, ⋯ , 𝜔𝑘}  are shorthand notations for the set of modes and their center 

frequencies, respectively. The symbol t  denotes time, 𝑗2 = −1 is the square of the imaginary unit, * denotes the convolution 

operator, and δ is the Dirac delta function. 

To solve this variational problem, a Lagrangian multiplier (λ) and a quadratic penalty term (α) are introduced to transform the 

constrained optimization problem (1) into an unconstrained problem. The augmented Lagrangian ℓ is defined as follows: 155 

ℓ({𝑢𝑘}, {𝜔𝑘}, 𝜆) ∶= 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

+ ‖𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ‖2
2 + 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 〉𝑘 . (2) 

For the VMD method, the alternate direction method of multipliers (ADMM) is used to solve Eq. (2). The frequency-domain 

modes 𝑢𝑘(𝜔), the center frequencies 𝜔𝑘 and the Lagrangian multiplier λ are iteratively and respectively updated by 

𝑢̂𝑘
𝑛+1(𝜔) =

𝑓̂(𝜔)−∑ 𝑢𝑖
𝑛+1(𝜔)−∑ 𝑢𝑖

𝑛(𝜔)+
𝜆̂𝑛(𝜔)

2𝑖>𝑘𝑖<𝑘

1+2𝛼(𝜔−𝜔𝑘)2 ,        (3) 

𝜔̂𝑘
𝑛+1 =

∫ 𝜔|𝑢𝑘
𝑛+1(𝜔)|

2
𝑑𝜔

∞
0

∫ |𝑢𝑘
𝑛+1(𝜔)|

2
𝑑𝜔

∞
0

,           (4) 160 

𝜆̂𝑛+1(𝜔) = 𝜆̂𝑛(𝜔) + τ(𝑓(𝜔) − ∑ 𝑢̂𝑘
𝑛+1(𝜔)𝑘 ),        (5) 

where 𝑛 is the iteration counter, τ is the noise tolerance, while 𝑢̂𝑘
𝑛+1(𝜔), 𝑓(𝜔), and 𝜆̂𝑛(𝜔) represent the Fourier transforms of 

𝑢𝑘
𝑛+1(𝑡), 𝑓(𝑡), and 𝜆𝑛(𝑡), respectively. 

The VMD performance is affected by the 𝐾, α, τ, and ε. A value of 𝐾 that is too small may lead to poor IMF extraction from 

the input signal, whereas a too-large value of 𝐾 may cause IMF information redundancy. A too-small value of α may lead to 165 

a large bandwidth, information redundancy, and additional noise for the IMFs. A too-large value of α may lead to a very small 
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bandwidth and loss of some signal information. As shown in Eq. (5), the Lagrangian multiplier ensures optimal convergence 

when an appropriate value of τ > 0 is used with a low-noise signal. The Lagrangian multiplier hinders the convergence when 

τ > 0 is used with a highly noisy signal. This drawback can be avoided by setting τ to 0. However, it is not possible to 

reconstruct the input signal precisely if τ equals 0. Additionally, the value of ε affects the reconstruction error of the VMD. 170 

3.2 Support Vector Regression 

Support vector regression (SVR) was first proposed by Vapnik et al. (1997) for handling regression problems. The SVR 

mathematical principles are described here briefly. 

For N pairs of samples {𝒙𝒊, 𝑦𝑖}𝑖=1
𝑁 , 𝒙𝒊 and 𝑦𝑖  denote the input variables and the desired output targets, respectively. Linear 

regression can be replaced by nonlinear regression, through the use of a nonlinear mapping function ϕ, as follows: 175 

𝑦𝑖 ≈ 𝑓(𝒙𝒊, 𝒘) = 〈𝒘, 𝜙(𝒙𝒊)〉 + 𝑏,          (6) 

where 𝒘 and 𝑏 represent the regression weights and bias, respectively, and 〈. , . 〉 is the inner product of two vectors. In the 

SVR framework, the error between 𝑦𝑖  and 𝑓(𝒙𝒊, 𝒘) is evaluated using the following ε-insensitive loss function: 

|𝑦𝑖 − 𝑓(𝒙𝒊, 𝒘)|𝜀 = {
0,    𝑖𝑓 |𝑦𝑖 − 𝑓(𝒙𝒊, 𝒘)| < 𝜀

|𝑦𝑖 − 𝑓(𝒙𝒊, 𝒘)| − 𝜀,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.       (7) 

Based on the  𝒘 and 𝑏 values, a regularized risk function 𝑅 is defined as  180 

𝑅 =
𝐶

𝑁
∑ |𝑦𝑖 − 𝑓(𝒙𝒊, 𝒘)|𝜀

𝑁
𝑖=1 +

1

2
‖𝒘‖2,         (8) 

where the first term indicates the empirical risk based on the 𝜀-insensitive loss function. The second term is a regularization 

term for penalizing the weight vector in order to limit the SVR model complexity. The parameter C is a weight penalty constant. 

To avoid high-dimensional nonlinear features 𝜙(𝒙), SVR uses a kernel trick that substitutes the inner product 〈𝜙(𝒙), 𝜙(𝒙′)〉 

in the optimization algorithm with a kernel function, namely, 𝐾(𝒙, 𝒙′). Some Lagrange multipliers, namely, 𝛼𝑖 and 𝛽, are 185 

introduced to solve the constrained risk minimization problem. The Lagrange form of the regression function is 

𝑓(𝒙) = ∑ 𝛼𝑖𝐾(𝒙, 𝒙′) + 𝛽𝑁
𝑖=1 .          (9) 

The SVR model relies heavily on the kernel function and the hyperparameters. In this work, a radial basis function (RBF), 

namely, 𝐾(𝒙, 𝒙′) = 𝑒𝑥𝑝(−‖𝒙 − 𝒙𝒊‖
2/2𝜎2), is used as the kernel function. The parameter 𝜎 is used to control the RBF width. 

In this study, the hyperparameters 𝜀, C, and 𝜎 are tuned by Bayesian optimization. 190 
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3.3 Bayesian optimization based on Gaussian processes 

 

Figure 2: A flowchart of the Bayesian optimization. 

Bayesian optimization (BO) is a sequential model-based optimization (SMBO) approach typically used for global optimization 

of black-box objective functions, for which the true distribution is unknown or the evaluation is extremely expensive. For such 195 

objective functions, the BO algorithm sets a prior belief on the loss function in a learning model, sequentially refines this 

model by gathering function evaluations, and updates the Bayesian posterior (James et al., 2011; Shahriari et al., 2016). 

To update the beliefs about the loss function and calculate the posterior expectation, a prior function is applied. Here, we 

assume that the real loss function distribution can be described by a Gaussian process (GP). Therefore, the loss function values 

{𝑓(𝒙𝒊)}𝑖=1
𝑛  for an evaluation set {𝒙𝒊}𝑖=1

𝑛  satisfy the multivariate Gaussian distribution over the function space 200 

𝑓1:𝑛~𝑁(𝑚(𝒙𝟏:𝒏), 𝑲),           (10) 

where 𝑚(𝒙𝟏:𝒏) is the GP mean function set and 𝑲 is a kernel matrix given by the covariance function 𝐾(𝒙, 𝒙′). An acquisition 

function is used to assess the utility of candidate points for finding the posterior distribution. In particular, the candidate point 

with the highest utility is selected as the candidate for the next evaluation of 𝑓. Many acquisition functions have been explored 

for Bayesian optimization. These functions include the expected improvement (EI), the upper confidence bounds (UCB), the 205 

probability of improvement, the Thompson sampling (TS), and the entropy search (ES). However, the EI function is the most 
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commonly used among these functions (James et al., 2011; Shahriari et al., 2016). For the GP model, the expected improvement 

can be calculated as 

𝐸𝐼(𝒙) = {
[𝜇(𝒙) − 𝑓(𝒙)]Φ(𝔃) + 𝜎(𝒙)𝜙(𝔃)    𝑖𝑓 𝜎(𝒙) > 0

0    𝑖𝑓 𝜎(𝒙) = 0
,       (11) 

𝔃 =
𝜇(𝒙)−𝑓(𝒙̂)

𝜎(𝒙)
,            (12) 210 

where 𝑓(𝒙) is the current lowest loss value, and 𝜇(𝒙) is the expected loss value, while Φ(𝔃) and 𝜙(𝔃) are the cumulative 

distribution function and the probability density function, respectively. Figure 2 shows a flowchart of the Bayesian 

optimization method based on Gaussian processes (BOGP). 

3.4 The TSDP framework and the VMD-SVR realization 

The boundary effects introduce errors into the construction of decomposition-based models. These errors arise from the 215 

extrapolation of the boundary decomposition components. In fact, this extrapolation is carried out due to the unavailability of 

historical and future data points which serve as decomposition parameters (Zhang et al., 2015; Fang et al., 2019). To find out 

the extent to which the boundary effects contribute to decomposition errors, we have evaluated the shift-copy variance and the 

data-addition sensitivity for each of the VMD, DWT, EEMD, and SSA methods. Given the monthly runoff data of the Huaxian 

station from January 1953 to November 2018, i.e., 𝒙𝟎 = [𝑞1, 𝑞2, ⋯ , 𝑞791], and a one-step-ahead (shift) copy of 𝒙𝟎, i.e., 𝒙𝟏 =220 

[𝑞2, 𝑞3, ⋯ , 𝑞792], assume the VMD method is applied to 𝒙𝟎 and 𝒙𝟏. Then, the  𝐼𝑀𝐹1(2: 791) for the VMD of 𝒙𝟎 should be 

maintained by 𝐼𝑀𝐹1(1: 790)  for the VMD of 𝒙𝟏  since 𝒙𝟎(2: 791)  is maintained by 𝒙𝟏(1: 790) . The IMF1 is the first 

decomposed signal component and “(2:791)” means the second data point to the 791st data point. However, the boundary 

decompositions of 𝒙𝟎(2: 791) and 𝒙𝟏(1: 790) are completely different (see Fig. 3a and b). Therefore, VMD is shift-variant. 

For the Huaxian station, given the monthly runoff data from January 1953 to November 2018, i.e., 𝒙𝟏−𝟕𝟗𝟏 = [𝑞1, 𝑞2, ⋯ , 𝑞791] 225 

and the monthly runoff data from January 1953 to December 2018/12, i.e., 𝒙𝟏−𝟕𝟗𝟐 = [𝑞1, 𝑞2, ⋯ , 𝑞792], the 𝐼𝑀𝐹1 for the VMD 

of 𝒙𝟏−𝟕𝟗𝟏 should be maintained by the 𝐼𝑀𝐹1(1: 791) for the VMD of 𝒙𝟏−𝟕𝟗𝟐, since 𝒙𝟏−𝟕𝟗𝟏 is maintained by 𝒙𝟏−𝟕𝟗𝟐(1: 791). 

However, the boundary decompositions of 𝒙𝟏−𝟕𝟗𝟏 and 𝒙𝟏−𝟕𝟗𝟐(1: 791) are completely different (see Fig. 3c and d). A similar 

result was obtained for the case in which several data points were appended to a given time series (see Fig. 3e and f). Therefore, 

VMD is also sensitive to the addition of new data. It can be demonstrated that the EEMD, DWT and SSA are also shift-variant 230 

and sensitive to addition of new data. The BCMODWT method developed by Quilty and Adamowski (2018) is shift-invariant, 

insensitive to the addition of new data, and also shows no decomposition errors. Thus we compared in this work the 

BCMODWT method of the WDDFF framework with the VMD, EEMD, SSA and DWT methods of the TSDP framework. 

The results in Fig. 3 collectively indicate that the concurrent decomposition errors are extremely small except for those of the 

boundary decompositions. 235 
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Figure 3: Examples of the boundary effects for the VMD method on monthly runoff data at the Huaxian station: (a and b) shift 

variance, (c and d) sensitivity to appending one data point, (e and f) sensitivity to appending several data points, (g) differences 

between sequential and concurrent validation-data decompositions, and (h) differences between the summation of the sequential 

and concurrent validation-data decompositions. 240 

However, the boundary effects introduce small decomposition errors for the calibration set, but large such errors for the 

validation set. This is because the calibration set is concurrently decomposed whereas the validation set is sequentially 

appended to the calibration set and decomposed. Additionally, the last decompositions of an appended set are selected as the 

validation decompositions. Note that this procedure is followed for three reasons. (1) This procedure simulates practical 

forecasting scenarios in which a time series is observed and predicted incrementally. (2) The validation set should be 245 

decomposed on a sample-by-sample basis to avoid validation-data decomposition using future information. (3) The 

decomposition algorithms such as VMD, EEMD, SSA and DWT cannot decompose one validation data point each time (and 
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might output the “not a number” data type). The decomposition errors of the calibration set could be ignored because only few 

of the boundary decompositions have relatively large errors (see Fig. 3f). Unfortunately, the decomposition errors of the 

validation set cannot be ignored because all decompositions of this set are selected from the boundary decompositions of the 250 

appended sets. In this context, large decomposition errors (corresponding to the differences between the blue and green lines 

in Fig. 3g) will be introduced to the model validation process. Figure 4 shows that the error distribution of the validation set 

has a larger scale than that of the calibration set. Thus, models calibrated on the calibration samples might generalize poorly 

on the validation samples due to the difference in error distribution between the calibration and validation decompositions. 

 255 

Figure 4: Density estimates with Gaussian-type kernels for the calibration and validation error distributions of the monthly runoff 

decompositions of the Huaxian station. The real decompositions are the joint decompositions of the entire monthly runoff for the 

period from January 1953 to December 2018. 

Fortunately, the difference in error distribution between the calibration and validation decompositions can be handled without 

altering or removing the boundary decompositions. This is based on three key remarks: (1) the boundary-affected 260 

decompositions might contain some valuable information for building practical forecasting models, (2) the distribution of the 

validation samples can be different from that of the calibration samples (Ng, 2017), and (3) the validation decomposition errors 

can be eliminated by summing signal components into the original signal (see Fig. 3h). Note that the summation of the 

sequential validation decompositions of Fig. 3(h) cannot completely reconstruct the validation set. This is mainly caused by 

setting the VMD noise tolerance (𝜏) to 0 in this work (see Section 3.1) rather than the introduced validation decomposition 265 

errors. Therefore, the decomposition errors barely affect the prediction performance if the decomposition-based models are 

properly constructed to learn from the calibration set and generalize well to the validation set. 
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Figure 5: Absolute Pearson correlation coefficients (PCC) between predictors and predicted targets of validation samples generated 

from the VMD appended decompositions and validation decompositions. The samples were collected at the Huaxian station. 270 

One way to deal with the influences of boundary effects is to generate validation samples using decompositions of appended 

sets, i.e., appended decompositions. The last sample generated from appended decompositions is selected as a validation 

sample since the predicted target of this sample belongs to the validation period. The advantage is that the predictors selected 

from appended decompositions are more correlated with the prediction targets than the predictors selected from validation 

decompositions (see Fig. 5). This is because the appended set is decomposed concurrently. However, the validation 275 

decompositions are reorganized from the decompositions of appended sets, which leads to the relationships between a 

decomposition and its lagging decompositions are changed a lot. 

The other way to deal with boundary effects is to assess the validation error distribution during the calibration stage. A 

promising way to achieve this goal is to use the cross-validation (CV) based on the mixed and shuffled samples generated from 

the calibration and validation distributions. The key advantage is that the developed models are simultaneously calibrated and 280 

validated on these distributions. Additionally, enough validation samples should be allocated for testing the final optimized 

models in order to give users a high confidence level on unseen data. Therefore, the validation samples are further split into 

development samples for cross-validation and testing samples for testing the final optimized data-driven models. 

Based on the aforementioned key remarks, the TSDP framework is designed as follows: (i) Time series decomposition: divide 

the entire time series (monthly runoff data in this work) into a calibration set (which is then concurrently decomposed) and a 285 

validation set (which is then sequentially appended to the calibration set and decomposed). (ii) Time series prediction: optimize 

and test a single prediction model using calibration and validation samples generated from the calibration and appended 

decompositions. For these samples, the optimal lag times (measured in hours, days, months, or years) of the decomposed signal 

components are combined as predictors, while the original signal samples are used as the desired prediction targets. This is the 

direct approach which has already been used by Maheswaran and Khosa (2013), Du et al. (2017) and Quilty and Adamowski 290 

(2018). 
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Figure 6: A block diagram of the two-stage decomposition prediction (TSDP) framework with the VMD-SVR realization. 

The design details of the TSDP framework and its VMD-SVR realization are summarized as follows (see Fig. 6).  

Step 1 Collect time-series data 𝑄(𝑡) as the VMD-SVR input (𝑡 = 1,2, ⋯ 𝑁, where 𝑁 is the length of the time-series data). 295 

Step 2 Divide the time-series data into calibration and validation sets (with 70% and 30% of the overall monthly runoff data, 

respectively, in this work). 

Step 3 Concurrently extract 𝐾 IMF signal components from the calibration set using the VMD scheme. For optimal selection 

of 𝐾, check whether the last extracted IMF component exhibits central-frequency aliasing. 
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Step 4 Sequentially append the validation data samples to the calibration set to generate appended sets. Decompose each 300 

appended set into 𝐾 signal components using the VMD scheme. 

Step 5 Plot the partial autocorrelation function (PACF) of each signal component for the calibration set in order to select the 

optimal lag period and hence generate modeling samples. The PACF lag count is set to 20. We assume that the predicted target 

of the kth signal component is 𝑥𝑘(𝑡 + 𝐿) (where L is the lead time which is measured in hours, days, months or years). If the 

PACF of the 𝑚th lag period lies outside the 95% confidence interval (i.e., [−
1.96

√𝑛
,

1.96

√𝑛
], where n is the signal component length) 305 

and is insignificant after the 𝑚 th lag period, then the samples 𝑥𝑘(𝑡), 𝑥𝑘(𝑡 − 1), ⋯ , 𝑥𝑘(𝑡 + 1 − 𝑚)  are selected as input 

predictors and 𝑚 is selected as the optimal lag period for the kth signal component. 

Step 6 Combine the input predictors of each signal component to form the SVR predictors. Select the original time-series 

data sample after the maximum lag period (𝑄(𝑡 + 𝐿)) as the predicted target. 

Step 7 Based on the input predictors and output targets obtained in Step 6, generate calibration samples using the calibration 310 

signal components. Also, generate appended samples using the appended signal components obtained in Step 4. Select the last 

sample of the appended samples as a validation sample. Divide the validation samples evenly into development and testing 

samples. 

Step 8 Mix and shuffle the calibration and development samples. Train and optimize the SVR model using the shuffled 

samples and the BOGP algorithm. For testing, feed the test sample predictors into the optimized SVR model in order to predict 315 

time series samples and compare them against the original ones. The VMD-SVR output is the predicted samples for the test 

predictors. 

Steps 1-4 represent the decomposition stage of the proposed framework while Steps 5-8 represent the prediction stage. Note 

that the VMD and SVR schemes can be respectively replaced by other decomposition and data-driven prediction models. 

3.5 Comparative experimental setups 320 

As shown in Fig. 7, we design four comparative experiments to evaluate the effectiveness, efficiency, and accuracy of the 

TSDP framework and its VMD-SVR realization. The evaluation is carried on in terms of the boundary effect reduction (see 

Ex. 1), computational cost (see Ex. 2), overfitting (see Ex. 3) as well as decomposition and forecasting capabilities for different 

lead times (see Ex. 4). The previous experiments represent the baseline for the next ones. We first give a brief review of the 

EEMD, SSA, DWT, and BCMODWT methods. Then, we explain each experiment in detail. 325 

The EEMD method decomposes a time series into several IMFs and one residual (R) given the white noise amplitude (𝜀) and 

the number of ensemble members (𝑀). In this work, we set 𝑀 and 𝜀 to 100 and 0.2, respectively, as suggested by Wu and 

Huang (2009). The singular spectrum analysis (SSA) method decomposes a time series into independent trend, oscillation, and 

noise components ({𝑆1, ⋯ , 𝑆𝐿})). This decomposition is parameterized by the window length (𝑊𝐿) and the number of groups 

(𝑚). The SSA method has four main steps, namely embedding, singular value decomposition (SVD), grouping, and diagonal 330 

averaging. If one of the subseries is periodic, 𝑊𝐿  can be set to the period of this subseries to enhance decomposition 
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performance (Zhang et al., 2015). However, the grouping step can be ignored (i.e., we do not need to set 𝑚) if the value of 𝑊𝐿 

is small (e.g., 𝑊𝐿 ≤ 20) because grouping may hide information in the grouped subseries. In this work, 𝑊𝐿 was set to 12 

because we perform monthly runoff forecasting. The discrete wavelet transform (DWT) decomposes a time series into several 

detail series ({𝐷1, ⋯ , 𝐷𝐿}) and one approximation series (𝐴𝐿) given a discrete mother wavelet function (𝜓) and a decomposition 335 

level (L). These parameters are typically selected experimentally. In this work, we set 𝜓 to the db10 as suggested by Seo et al. 

(2015). Also, we set 𝐿 to 𝑖𝑛𝑡[log(𝑁)] following Nourani et al. (2009). Given 𝜓 and L, the BCMODWT method decomposes 

a given time-series into wavelets ({𝑊1, 𝑊2, ⋯ , 𝑊𝐿}) and scaling coefficients (𝑉𝐿). The number of boundary-affected wavelets 

and scaling coefficients is given by (2𝐿 − 1)(𝐽 − 1) + 1  (where 𝐽  is the length of the given wavelet filter) (Quilty and 

Adamowski, 2018). These boundary-affected wavelets and scaling coefficients are finally removed by BCMODWT. In this 340 

work, several wavelet functions were evaluated including haar, db1, fk4, coif1, sym4, db5, coif2 and db10 (with wavelet filter 

lengths of 2, 2, 4, 6, 8, 10, 12, and 20, respectively). Since we have only 792 monthly runoff values and the BCMODWT 

method removes some wavelet and scaling coefficients, the maximum decomposition level was set to 4 (286 wavelets and 

scaling coefficients were removed for db10). 

 345 

Figure 7: A block diagram of the comparative experimental setups. 
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3.5.1 Experiment 1: Evaluation of the boundary effect reduction 

 

Figure 8: A block diagram for different methods of generating the training, development and test samples. 

First, we show how boundary effects can be reduced through the generation of validation samples from appended 350 

decompositions, and then mixing and shuffling the calibration and development samples. As shown in Fig .8, we compare four 

TSDP schemes for one-month-ahead runoff forecasting in the first experiment. The development samples of the schemes 1 

and 2 come from the calibration distribution whereas those of the schemes 3 and 4 come from the validation distribution. The 

testing samples of the schemes 1 and 3 are generated from validation decompositions whereas those of schemes 2 and 4 are 

generated from appended decompositions. The comparisons between the first and second TSDP schemes and between the third 355 

and fourth TSDP schemes are carried out to verify whether generating samples from appended decompositions reduces 

boundary effects. Moreover, the comparisons between the first and third TSDP schemes and between the second and fourth 

TSDP schemes are performed to check whether the mixing-and-shuffling step reduces boundary effects. 
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3.5.2 Experiment 2: Evaluation of TSDE models 

In the second experiment, we compare the prediction performance and the computational cost of the TSDP and TSDE models 360 

for one-month-ahead runoff forecasting. Those models are implemented based on the EEMD, SSA, VMD, DWT and SVR 

methods. In particular, we investigate four combined schemes for TSDE models, namely EEMD-SVR-A (‘A’ means the 

ensemble approach is the addition ensemble), SSA-SVR-A, VMD-SVR-A, and DWT-SVR-A. The TSDE models include the 

extra ensemble stage compared to the TSDP models. The decomposition stages of the TSDP and TSDE models are identical. 

In the TSDE prediction stage, PACF is also used for selecting the predictors and the predicted target for each signal component. 365 

However, one optimized SVR model will be trained for each signal component. In the test phase, this model will be used for 

component prediction. The remaining prediction procedures are identical to those of the TSDP models. For testing in the 

ensemble stage, the prediction results of all signal components are fused to predict the streamflow data. Since the TSDE models 

build one SVR model for each signal component, the computational cost of each TSDE model is expected to be significantly 

higher than that of the corresponding TSDP model. 370 

3.5.3 Experiment 3: Evaluation of the PCA-based dimensionality reduction 

Our third experiment tests whether dimensionality reduction (i.e. reduction of the number of predictors) improves the 

prediction performance of the TSDP models. The TSDP models can reduce the modeling time and possibly improve the 

prediction performance compared with the TSDE models. However, combining the predictors of all signal components as the 

TSDP input predictors may lead to overfitting. This is because the TSDP predictors might be correlated and are typically much 375 

more than the TSDE ones. Therefore, it is necessary to test whether the reduction of the number of the TSDP predictors can 

help improve the prediction performance. 

Principal component analysis (PCA) has been a key tool for addressing the overfitting problem of redundant predictors 

(Wangmeng Zuo et al., 2005; Musa, 2014). Therefore, PCA is used in this work to reduce the TSDP input predictors. This 

analysis uses an orthogonal transformation in order to transform the correlated predictors into a set of linearly uncorrelated 380 

predictors or principal components. For further details on PCA, see Jolliffe (2002). The main PCA parameter is the number of 

principal components, which indicates the number of predictors retained by the PCA procedure. The optimal number of 

predictors is found through grid search. We also estimate this number using the MLE method of Minka (2001). Since the 

number of predictors varies for different TSDP models, the (guessed) number of predictors is replaced by the (guessed) number 

of excluded predictors for convenience of comparison. In this paper, the number of excluded predictors ranges from 0 to 16. 385 

A value of 0 indicates that all predictors are retained (i.e. the dimensionality is not reduced), but the correlated predictors are 

transformed into uncorrelated ones. The PCA-based and no-PCA TSDP models for one-month-ahead runoff forecasting are 

finally compared. 
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3.5.4 Experiment 4: Evaluation of the TSDP models for different lead times 

For the four experiments, we test the VMD decomposition performance by comparing the prediction outcomes of the VMD-390 

SVR scheme with those of three other TSDP schemes which combine the EEMD, SSA and DWT methods, respectively, with 

SVR. Meanwhile, the TSDP models were compared with the BCMODWT-SVR realization of the WDDFF framework, which 

was proposed by Quilty and Adamowski (2018). Additionally, the no-decomposition ARIMA, SVR, BPNN, and LSTM 

models are compared with TSDP and WDDFF realizations. For each of these data-driven models, the associated 

hyperparameter settings or search ranges are shown in Table 1. Each hyperparameter is fine-tuned to minimize the mean-395 

square error (MSE). The data-driven model with the lowest MSE is finally selected. The degree of differencing (d) of the 

ARIMA model is determined by the minimum differencing required to get a stationary time series from the original monthly 

runoff data. In our work, stationarity testing is performed by the augmented Dickey Fuller (ADF) test (Lopez, 1997). 

Table 1 The hyperparameters, tuning strategies, and search ranges for the compared data-driven models. 

Data-driven model Tuning strategy Hyperparameter Search space 

ARIMA GS Degree of differencing (𝑑) Determined by ADF test 

Autoregressive lags (𝑝) [1, 20] 

Moving-average lags (𝑞) [1, 20] 

SVR BOGP Weight penalty (𝐶) [0.1, 200] 

Error tolerance (𝜀) [1𝑒 − 6, 1] 

Width control coefficient (𝜎) [1𝑒 − 6, 1] 

BPNN&LSTM BOGP Batch size 256 

Optimizer Adam 

Learning rate [1𝑒 − 4, 1𝑒 − 1] 

Activation function Relu 

Number of hidden layers [1, 2] 

Number of hidden units [8, 32] 

Dropout rate [0.1, 0.5] 

 400 

The single-hybrid method of the WDDFF framework has shown the best forecasting performance according to Quilty and 

Adamowski (2018). Therefore, in this work, the WDDFF models were built based on BCMODWT and SVR using the single-

hybrid method. In the single-hybrid method, the explanatory variables are decomposed by BCMODWT. The decomposed 

signal components are selected jointly with the explanatory variables as input predictors. Since our work focuses on time-

series forecasting using autoregressive patterns, the explanatory variables are extracted from historical time-series data. Twelve 405 
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monthly runoff series lagging from one month to twelve months were selected as explanatory variables. Since these series 

have obvious inter-annual variations, they are also selected as the input predictors for the no-decomposition SVR, BPNN and 

LSTM models. The BCMODWT-SVR scheme was implemented as follows: (1) select the monthly runoff data (𝑄(𝑡 + 1), 

𝑄(𝑡 + 3), 𝑄(𝑡 + 5), and 𝑄(𝑡 + 7)) as prediction targets and the twelve lagging monthly runoff series (𝑄(𝑡 − 11), 𝑄(𝑡 −

10), ⋯ , 𝑄(𝑡 − 1), 𝑄(𝑡)) as explanatory variables; (2) decompose each explanatory variable using the BCMODWT method; 410 

(3) combine the explanatory variables and the decomposed components to form the model predictors; (4) select the final input 

predictors of the BCMODWT-SVR scheme based on the mutual information (MI) criterion (Quilty et al., 2016) (5) train and 

optimize the SVR model based on the CV strategy and the calibration and development samples; (6) test the optimized 

BCMODWT-SVR scheme using the test samples. 

4 Case study 415 

4.1 Data normalization 

To promote faster convergence of the BOGP algorithm, all predictors and prediction targets in this work were normalized to 

the [-1,1] range by the following equation: 

𝒚 = 2 ⊗
𝒙−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
,           (13) 

where 𝒙 and 𝒚 are the raw and normalized vectors, respectively, while 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  are the maximum and minimum values 420 

of  𝒙 , respectively. Also, the multiplication and subtraction are element-wise operations. Note that the parameters  𝑥𝑚𝑎𝑥  and 

𝑥𝑚𝑖𝑛 are computed based on the calibration samples. These parameters are also used to normalize the development and test 

samples in order to avoid using future information from the development and test phases, and enforce all samples to follow 

the calibration distribution. 

4.2 Model evaluation criteria 425 

For evaluating the forecasting performance, we employed four criteria, namely the Nash–Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970), the normalized root-mean-square error (NRMSE), the peak percentage of threshold statistics (PPTS) (Bai et 

al., 2016; Stojković et al., 2017) and the time cost. The NSE, NRMSE, and PPTS criteria are respectively defined as follows: 

𝑁𝑆𝐸 = 1 −
∑ (𝑥(𝑡)−𝑥(𝑡))

2𝑁
𝑡=1

∑ (𝑥(𝑡)−𝑥̅(𝑡))
2𝑁

𝑡=1

,          (14) 

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑥(𝑡)−𝑥(𝑡))

2𝑁
𝑡=1 ∕𝑁

∑ 𝑥(𝑡)∕𝑁𝑁
𝑡=1

,          (15) 430 

𝑃𝑃𝑇𝑆(𝛾)=
100

𝛾

1

𝑁
∑ |

𝑥(𝑡)−𝑥(𝑡)

𝑥(𝑡)
|𝐺

𝑡=1 ,          (16) 
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where 𝑁 is the number of samples, and 𝑥(𝑡), 𝑥̅(𝑡) and 𝑥̂(𝑡) are the raw, average, and predicted data samples, respectively. 

The NSE evaluates the prediction performance of a hydrological model. Larger NSE values reflect more powerful forecasting 

models. The NRMSE criterion facilitates comparison between datasets or models at different scales. Lower NRMSE values 

indicate less residual variance. To calculate the PPTS criterion, raw data samples are arranged in descending order and the 435 

predicted data samples are arranged following the same order. The parameter 𝛾 denotes a threshold level that controls the 

percentage of the data samples selected from the beginning of the arranged data sequence. The parameter G is the number of 

values above this threshold level. For example, PPTS(5) means the top 5% flows, or the peak flows, which are evaluated by 

the PPTS criterion. Lower PPTS values indicate more accurate peak-flow predictions. 

4.3 Open-source software and hardware environments 440 

In this work, we utilize multiple open-source software tools. We use Pandas (McKinney, 2010) and Numpy (Stéfan et al., 

2011) to perform data preprocessing and management, Scikit-Learn (Pedregosa et al., 2011) to create SVR models for 

forecasting monthly runoff data and perform PCA-based dimensionality reduction, Tensorflow (Abadi et al., 2016) to build 

BPNN and LSTM models, Keras-tuner  to tune BPNN and LSTM, Scikit-Optimize (Tim et al., 2018) to tune the SVR models, 

and Matplotlib (Hunter, 2007) to draw the figures. The MATLAB implementations of the EEMD and VMD methods are 445 

derived from Wu and Huang (2009) and Dragomiretskiy and Zosso (2014), respectively. The Python-based SSA 

implementation is adapted from Jordan D'Arcy (2018). The DWT and ARIMA methods were performed based on the 

MATLAB built-in “Wavelet Analyzer Toolbox” and “Econometric Modeler Toolbox”, respectively. As well, Dr. John Quilty 

of McGill University, Canada, provided the MATLAB implementation of the BCMODWT method. All models were 

developed and the computational cost of each model was computed based on a 2.50-GHz Intel Core i7-4710MQ CPU with a 450 

32.0 GB of RAM. 

4.4 Modeling stages 

The VMD-SVR model for one-month-ahead runoff forecasting of the Huaxian station is employed as an example to illustrate 

the modeling stages of the TSDP, TSDE, WDDFF, and no-decomposition models. 

As stated in Section 3.1, the decomposition level (𝐾), the quadratic penalty parameter (α), the noise tolerance (τ) and the 455 

convergence tolerance (ε) are the four parameters that influence the VMD decomposition performance. In particular, this 

performance is very sensitive to 𝐾 (Xu et al., 2019). As suggested by Zuo et al. (2020), the values of α, 𝜏, and ε were set to 

2000, 0, and 1e-9, respectively. The optimal 𝐾 value was determined by checking whether the last IMF had central-frequency 

aliasing (as represented by the red rectangle area in Fig. 9). Specifically, we increase 𝐾 starting from 𝐾 = 2 with a step size 

of 1. If the center-frequency aliasing of the last IMF is first observed when 𝐾 = 𝐿, then the optimal 𝐾 is set to 𝐿 − 1. As shown 460 

in Fig. 9, the optimal decomposition level for the Huaxian station is 𝐾 = 8. 
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Figure 9: Center-frequency aliasing for the last signal component of time-series data collected from the Huaxian station. 

According to the procedure of Section 3.4, PACF is used to determine the optimal predictors for the VMD-SVR scheme. For 

the time-series data of the Huaxian station, the first VMD IMF component is used as an example of tracking the optimal input 465 

predictors from PACF. Figure 10 shows that the PACF of the third lag month exceeds the boundary of the 95% confidence 

interval (illustrated by the red dashed line) and is insignificant after the third lag month. Thus 𝑥1(𝑡), 𝑥1(𝑡 − 1) and 𝑥1(𝑡 − 2) 

are selected as the optimal input predictors for IMF1. In such a manner, the input predictors of all signal components are 

combined together to form the VMD-SVR predictors. Then, the original monthly runoff data, i.e., 𝑄(𝑡 + 1), is selected as the 

predicted target. 470 

 

Figure 10: PACF of the first VMD signal component for the time-series data collected from the Huaxian station. 

As described in Section 3.2, the VMD-SVR model performance can be optimized by tuning the SVR hyperparameters, namely 

the weight penalty (𝐶), the error tolerance (𝜀), and the width control coefficient (𝜎). To tune these hyperparameters (𝐶, 𝜀, and 

𝜎), the maximum number of BOGP iterations was set to 100. The search space of SVR parameters is shown in Table 1. 475 

Moreover, the CV fold number is a vital parameter that influences the TSDP model performance. In fact, the 10-fold CV and 
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leave-one-out CV (LOOCV) are two frequently-used schemes (Zhang and Yang, 2015; Jung, 2018). Zhang and Yang (2015) 

show that the LOOCV scheme has a better performance than a 10-fold or a 5-fold CV scheme. However, LOOCV is 

computationally expensive. Additionally, Hastie et al. (2009) empirically demonstrated that 5-fold CV sometimes has lower 

variance than LOOCV. Therefore, the selection of the number of CV folds should be made while taking the specific application 480 

scenario into consideration. In this work, a 10-fold CV scheme was used for tuning the SVR hyperparameters due to the limited 

computational resources. We ran the BOGP procedure ten times to reduce the impact of random sampling, and the parameters 

associated with the lowest MSE on development samples were selected. As shown in Fig. 11 for the time-series data of the 

Huaxian station, the pairwise partial dependence of the SVR hyperparameters shows that the tuned parameters (𝐶 = 18.97, 

𝜀 = 1𝑒 − 6 and 𝜎 = 0.22) are globally optimized. This analysis indicates that the BOGP procedure provides reasonable 485 

results. 

 

Figure 11: Pairwise partial dependence plot of the MSE objective function for the VMD-SVR scheme based on time-series data of 

the Huaxian station. 
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 490 

Figure 12: NSE of the BCMODWT-SVR scheme for different wavelet types and decomposition levels. The horizontal axis represents 

the wavelet types while the two vertical axes respectively represent the decomposition level and the modeling stage (e.g., “Cal, 1” 

and “Dev, 1” respectively represent the calibration and development stages with a decomposition level of 1). 

As stated in Section 3.5.4, the input predictors of the BCMODWT-SVR scheme were generated from the explanatory variables 

and further filtered by the MI criterion. The input predictors with a MI value larger than 0.1 were retained to train the 495 

BCMODWT-SVR scheme. This choice was made since the number of predictors is close to 0 if the MI value is larger than 

0.2. Figure 12 shows the NSE values of the BCMODWT-SVR scheme for different wavelets and decomposition levels at the 

calibration-and-development stage. The db1 wavelet with a decomposition level of 4 lead to higher calibration and 

development NSE compared to other combinations of wavelet types and decomposition levels. Therefore, the wavelet type 

and decomposition level of the BCMODWT-SVR models were set to db1 and 4, respectively. 500 

 

Figure 13: Absolute Pearson correlation coefficients of signal components obtained by different decomposition methods for the time-

series data of the Huaxian station. 
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In this section, we compare the performance of the decomposition algorithms through the analysis of the absolute PCC between 

each signal component and the original monthly runoff data (see Fig. 13), the frequency spectrum of each signal component 505 

(see Fig. 14), and the MI between each predictor and the prediction target (see Fig. 15). The absolute PCCs for only the first 

explanatory variables of the BCMODWT method are presented in Fig. 13. This figure shows that the coefficients of the EEMD, 

SSA, and BCMODWT methods are much larger than 0, indicating that most of the signal components of these methods are 

highly correlated and redundant. The coefficients of the VMD and DWT signal components are less than 0.1 and 0.001, 

respectively. This indicates that these components are highly uncorrelated. Similar results were obtained for the time-series 510 

data of the Xianyang and Zhangjiashan stations. In general, these findings demonstrate that the SVR models established based 

on the BCMODWT, EEMD, SSA signal components might poorly forecast original monthly runoff data. On the contrary, 

SVR models based on the DWT and VMD signal components have great potential to accurately forecast monthly runoff data. 

 

Figure 14: Frequency spectra of the signal components for the time-series data of the Huaxian station. The spectra are shown for 515 
the SSA, EEMD, VMD, BCMODWT, and DWT decomposition methods.  

Figure 14 shows that the VMD components have a very low noise level around the main frequency. The EEMD IMF1 has a 

large noise level over the entire frequency domain while the EEMD IMF2 has large noise levels around the main frequency. 
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The noise level of SSA S6-S12 around the main frequency is larger than that of the VMD signal components. The DWT D1 has 

a large noise level for low frequencies and DWT D2 has a large noise level around the main frequency. The BCMODWT W1 520 

has a large noise level over the entire frequency domain and BCMODWT W2 has a large noise level around the main frequency. 

These results indicate that (1) the VMD scheme is much more robust to noise than the EEMD, SSA, DWT and BCMODWT 

schemes, (2) the main components of other schemes (e.g. W1 and W2 of BCMODWT, IMF1 and IMF2 of EEMD, D1 and D2 of 

DWT, and S6-S12 of SSA) might lead to poor forecasting performance. Similar results were obtained for the time-series data 

of the Xianyang and Zhangjiashan stations. 525 

Figure 15(d) and (e) show that the DWT and BCMODWT predictors for the one-month-ahead runoff forecast have higher MI 

values than that for 3-, 5-, and 7-month-ahead forecasts. Figure 15(a)-(c) show that the MI values of the VMD, SSA, and 

EEMD predictors for the 1-, 3-, 5- and 7-month-ahead runoff forecasts are very close. This indicates that the prediction 

performance of the DWT-SVR and BCMODWT-SVR schemes for the one-month-ahead runoff forecast may be much better 

than that for the 3-, 5- and 7-month-ahead runoff forecasts. Also, the results indicate that the prediction performance of the 530 

VMD-SVR, SSA-SVR, and EEMD-SVR schemes for all four lead times may not significantly vary. Overall, the findings 

obtained from Fig. 13-15 show that VMD has the best decomposition performance and a great potential to achieve a good 

prediction performance. 

 

Figure 15: Mutual information between each predictor and the predicted target for the time-series data of the Huaxian station. 535 

5 Experimental Results 

5.1 Reduction of boundary effects in the TSDP models 

An experimental comparison of TSDP models established with and without the appended decompositions and the mixing-and-

shuffling step is illustrated in Fig. 16. Figure 16(a) shows that the calibration and development NSE values of the scheme 1 

are very close but larger than the test NSE value. This indicates that the optimized model based on samples generated without 540 

the appended decompositions and the mixing-and-shuffling step approximates the calibration distribution reasonably well, 

though this model poorly generalizes to the test distribution. Figure 16(b) shows that the NSE interquartile range decreased 
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substantially compared to the test NSE of the scheme 1. Also, the NSE mean value increased considerably except for the 

EEMD-SVR scheme. This demonstrates the importance of generating test samples from appended decompositions in order to 

improve the prediction performance on the test samples. As well, Fig. 16(c) shows that the NSE interquartile range increased 545 

substantially compared to the NSE of the scheme 1, while the NSE mean decreased considerably. This demonstrates that the 

mixing-and-shuffling step does not improve the generalization performance if the validation samples are not generated from 

appended decompositions. Moreover, Fig. 16(d) shows that the NSE interquartile range decreased substantially in comparison 

with the NSE of the scheme 3, while the NSE mean increased considerably. These results also demonstrate the importance of 

generating validation samples from appended decompositions in order to improve the TSDP generalization capability. Figure 550 

16(d) also shows that the NSE interquartile range decreased substantially compared with the test NSE of the scheme 2, while 

the NSE mean increased considerably. This demonstrates the importance of the mixing-and-shuffling step in improving the 

prediction performance on test samples under the condition that the validation samples are generated from appended 

decompositions. Similar results were obtained for the NRMSE and PPTS criteria. In general, generating validation samples 

from appended decompositions, and also mixing and shuffling the calibration and development samples help a lot with 555 

boosting prediction performance. Nevertheless, generating samples from appended decompositions is more important than the 

mixing-and-shuffling step for reducing the boundary effect consequences. 

 

Figure 16: Violin plots of the NSE criterion for TSDP models and one-month-ahead runoff forecasting (See Fig. 8 for the details of 

each scheme). 560 
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5.2 Performance gap between the TSDP and TSDE models 

The performance gap between the TSDP and TSDE models is illustrated in Fig. 17. Figure 17(a), (b) and (c) show that the 

mean NSE for the DWT-SVR-A scheme is larger than that of the DWT-SVR one, while the mean NRMSE and PPTS values 

of DWT-SVR-A are smaller than that of DWT-SVR. The DWT-SVR-A scheme also has smaller NSE, NRMSE and PPTS 

interquartile ranges than those of the DWT-SVR one. This indicates that the DWT-SVR scheme does not improve prediction 565 

performance in comparison to the DWT-SVR-A one. Similar results and conclusions were obtained for the EEMD-SVR and 

EEMD-SVR-A schemes. Figure 17 (a), (b) and (c) also show that the mean NSE of the VMD-SVR scheme is larger than that 

of the VMD-SVR-A one, while the mean NRMSE and PPTS values of VMD-SVR are smaller than those of VMD-SVR-A. 

The NSE, NRMSE and PPTS interquartile ranges of VMD-SVR are smaller than those of VMD-SVR-A. This shows that 

VMD-SVR improves prediction performance compared with VMD-SVR-A. Similar results and conclusions were obtained for 570 

SSA-SVR and SSA-SVR-A. Figure 17(d) shows that the computational cost of the TSDE models is much larger than that of 

the TSDP models, and that the computational cost of the TSDE models is positively correlated to the decomposition level. 

Overall, these findings demonstrated that the TSDP models do not always improve the prediction performance but are generally 

of smaller computational cost compared to the TSDE models. 

 575 

Figure 17: Violin plots of the evaluation criteria for one-month-ahead runoff forecasting during the test phase of the TSDP and 

TSDE models. 

5.3 Effect of dimensionality reduction on the TSDP models 

The violin plots of NSE values for different (guessed) numbers of excluded predictors and all three data collection stations are 

illustrated in Fig. 18. Figure 18(a) and (b) show that dimensionality reduction generally reduces the NSE scores of the EEMD-580 
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SVR and SSA-SVR schemes. This indicates that dimensionality reduction causes these schemes to lose some valuable 

information. Figure 18(c) shows that the NSE scores of the DWT-SVR scheme are slightly larger than the mean NSE without 

PCA. Figure 18(d) shows that the NSE scores of the VMD-SVR scheme are slightly larger than the mean NSE without PCA 

when the number of excluded predictors is less than 8. The NSE score generally decreased as the number of excluded predictors 

is increased from 0 to 16. These results demonstrate that the DWT-SVR and VMD-SVR schemes have overfitting to some 585 

extent, and the predictors of these schemes are slightly linearly correlated. Figure 18 shows that the associated NSE scores of 

the guessed number of excluded predictors for the EEMD-SVR and SSA-SVR schemes are smaller than the mean NSE score 

without PCA. On the contrary, the corresponding NSE scores for the DWT-SVR and VMD-SVR schemes are slightly larger 

than the mean NSE score without PCA This indicates that the guessed number of principal components obtained by the MLE 

method reduces the prediction performance of the EEMD-SVR and SSA-SVR schemes but slightly improves the performance 590 

for the DWT-SVR and VMD-SVR schemes. In fact, we chose not to perform the dimensionality reduction on the subsequent 

TSDP models to avoid the risk of information loss. 

 

Figure 18: Violin plots of the NSE values for different numbers of excluded components and one-month-ahead runoff forecasting. 

5.4 Performance of the TSDP models for different lead times 595 

Figure 19 shows that the correlation values of the VMD-SVR scheme for 1-, 3-, 5- and 7-month-ahead runoff forecasting are 

concentrated around the ideal fit, with a small angle between the ideal and linear fits. This indicates that the raw measurements 

and the VMD-SVR predictions have a high degree of agreement. Also, the DWT-SVR correlation values are concentrated 

around the ideal fit with a small angle between the ideal and linear fits for forecasting runoff data one month ahead (see Fig. 

19a). However, the correlation values are dispersed around the ideal fit with a large angle between the ideal and linear fits for 600 

forecasting runoff 3, 5, and 7 months ahead (see Fig. 19b, c and d). This indicates that the DWT-SVR model has good 

prediction performance for forecasting runoff data one month ahead but not for 3, 5 and 7 months ahead. While similar results 

can be observed for SSA-SVR, the correlation values of this scheme are less concentrated for forecasting runoff one month 

ahead and more concentrated for forecasting runoff 3, 5 and 7 months ahead in comparison to the DWT-SVR correlation 

values. This demonstrates that DWT-SVR is better than SSA-SVR in 1-month-ahead prediction but worse in 3-, 5-, and 7-605 

month-ahead prediction. Figure 19 also shows that the correlation values of the EEMD-SVR and BCMODWT-SVR schemes 
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are less concentrated than those of the VMD-SVR, DWT-SVR and SSA-SVR schemes for forecasting runoff one month ahead, 

and also less concentrated than those of the VMD-SVR and SSA-SVR schemes for forecasting runoff 3, 5 and 7 months ahead. 

This demonstrates that the EEMD and BCMODWT methods have poor prediction performance for all lead times. As shown 

in Fig. 19(a), the correlation values of the EEMD-SVR model are more concentrated than those of the ARIMA, SVR, BPNN 610 

and LSTM models, and the angle between the ideal and linear fits of BCMODWT-SVR is larger than that of the ARIMA, 

SVR, BPNN and LSTM models. This indicates that the decomposition of the original monthly runoff data cannot always help 

improve the prediction performance. As shown in Fig. 19, similar results were obtained for the time-series data of the Xianyang 

and Zhangjiashan stations. 

Quantitative evaluation results are presented in Fig. 20. Compared with the SVR, BPNN and LSTM models, the ARIMA 615 

models have larger mean NSE, and smaller mean NRMSE and mean PPTS. This indicates that the ARIMA models have better 

prediction performance than the SVR, BPNN and LSTM ones. The VMD-SVR scheme is the only scheme with a mean NSE 

exceeding 0.8 for all three stations and four lead times. This NSE value is often taken as a threshold value for reasonably well-

performing models (Newman et al., 2015). This result indicates that the measurements are reasonably matched by the VMD-

SVR predictions. Compared with the no-decomposition ARIMA model for forecasting runoff data one month ahead, the mean 620 

NSE values of VMD-SVR for forecasting runoff data 1, 3, 5 and 7 months ahead are respectively increased by 139%, 135%, 

134%, and 132%. For the SSA-SVR scheme, the corresponding increases are 136%, 103%, 101% and 104%, respectively. For 

the DWT-SVR scheme, the mean NSE values respectively increased by 134%, 2%, -71% and -93%. For the EEMD-SVR 

scheme, the respective decrements are -48%, -55%, -88% and -125%. For BCMODWT-SVR, the respective changes are -

51%, -90%, -79% and -84%. These findings indicate that (1) VMD-SVR and SSA-SVR play a positive role while EEMD-625 

SVR and BCMODWT-SVR play a negative role in improving the prediction performance of decomposition-based models for 

all lead times; (2) DWT-SVR has a positive impact on the prediction performance for forecasting runoff 1 and 3 months ahead 

but a negative impact on the prediction performance for forecasting runoff 5 and 7 months ahead; (3) as the lead time increased, 

the VMD-SVR prediction performance slightly decreased, the SSA-SVR and BCMODWT-SVR prediction performance 

slowly decreased, while the prediction performance of DWT-SVR and EEMD-SVR dramatically decreased. Indeed, the overall 630 

performance is ranked from the highest to the lowest as follows: VMD-SVR>SSA-SVR>DWT-SVR>EEMD-

SVR≈BCMODWT-SVR. Additionally, the VMD-SVR scheme generally has a smaller interquartile range and a good 

generalization capability for different watersheds. Similar results were obtained for the NRMSE and PPTS criteria (as shown 

in Fig. 20b and c). Overall, the results obtained from Fig. 19 and 20 demonstrate that the proposed VMD-SVR scheme has the 

best prediction performance as well as satisfactory generalization capabilities for different data collection stations and lead 635 

times. The results also show that the BCMODWT-SVR scheme may not be feasible for our case study. 
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Figure 19: Scatter plots of the TSDP and benchmark models during the test phase for forecasting runoff (a)1 month ahead, (b) 3 

months ahead, (c) 5 months ahead and (d) 7 months ahead at the Huaxian station. 
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 640 

Figure 20: Violin plots of the evaluation criteria during testing for the TSDP and benchmark models (the horizontal axes represent 

the model and lead time, e.g., “VMD-SVR, 1” represents the VMD-SVR model for 1-month-ahead runoff forecasting). 

6 Discussion 

As we can see from the experimental results of Section 5, the designed TSDP framework and its VMD-SVR realization attain 

the aforementioned desirable goals (see Section 1). We now discuss why and how the TSDP framework and its VMD-SVR 645 

realization are superior to other decomposition-based streamflow forecasting frameworks and models. 

The results in Section 5.1 show that generating samples from appended decompositions, as well as mixing and shuffling the 

calibration and development samples improve the prediction performance on test samples (see Fig. 16). The calibration and 

the validation samples have quite different error distributions due to boundary effects (see Fig. 4). The predictors of validation 

samples generated from appended decompositions are more correlated to the predicted targets than the predictors of validation 650 

samples directly generated from validation decompositions (see Fig. 5). Therefore, generating validation samples from 

appended decompositions helps the TSDP framework improve its generalization capability. Mixing and shuffling the 

calibration and development samples and training SVR model based on a CV strategy using the mixed and shuffled samples 

enable the assessment of the validation distribution during calibration with no test information. In other words, the SVR models 
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can be calibrated and validated on the calibration and validation distributions simultaneously. Therefore, the mixing-and-655 

shuffling step helps the TSDP framework enhance its generalization capability. Nevertheless, this step does not help much if 

the validation samples are generated from validation decompositions (see Fig.16). This because the relationship between 

predictors and prediction targets presented in validation samples is changed a lot compared to that of calibration samples. 

However, one may sequentially append the calibration set to the first streamflow data samples and decompose the appended 

sets to force the calibration and validation samples to follow approximately the same distribution. We refrain from doing this 660 

(and strongly advise against it) because the modeling process will become quite laborious and large decomposition errors will 

be also introduced into the calibration samples. 

The experimental outcomes of Section 5.2 indicate that the TSDP framework saves modeling time and sometimes improves 

the prediction performance compared to the TSDE framework (see Fig. 17). This improvement can be ascribed to the fact that 

the TSDP models avoid the error accumulation problem and also simulate the relationship between signal components and the 665 

original monthly runoff data as well as the relationship between the predictors and the predicted target. This simulation 

improves the prediction performance because the summation of the signal components (summation is the ensemble strategy 

used by TSDE) obtained by some decomposition algorithms cannot precisely reconstruct the original monthly runoff data (e.g., 

VMD in this work, see Fig. 3h). However, the TSDP framework accounts for the noise when the predictors are fused. 

Therefore, the TSDP framework might be outperformed by the TSDE framework if some signal components have a large noise 670 

level. The DWT-SVR and EEMD-SVR schemes do not improve the performance considerably compared with the DWT-SVR-

A and EEMD-SVR-A schemes (see Fig.17) since the respective main decomposition components (i.e., DWT D1 and D2, and 

EEMD IMF1 and IMF2) have large noise levels (see Fig.14). However, compared with the EEMD-SVR and EEMD-SVR-A 

schemes, the performance gap between DWT-SVR and DWT-SVR-A is quite small (see Fig.17) because the DWT has fewer 

signal components which are more uncorrelated than the EEMD signal components (see Fig 13). Overall, we still suggest 675 

using the DWT-SVR scheme rather than the DWT-SVR-A one to predict runoff one month ahead and save modeling time. 

The results of Section 5.3 indicate that combining the predictors of the individual signal components causes overfitting in the 

VMD-SVR and DWT-SVR schemes but does not overfit the EEMD-SVR and SSA-SVR schemes at all (see Fig. 18). The 

reason is that the predictors and prediction targets come from the same source (the monthly runoff data in this work) and the 

TSDP models simulate the relationship inside the original monthly runoff data rather than the relationship between the 680 

precipitation, evaporation, temperature, and monthly runoff data. Therefore, the TSDP models focus on simulating the 

relationship between historical and future monthly runoff data rather than fitting noise (random sampling error). Although the 

predictors of the VMD-SVR and DWT-SVR schemes are slightly correlated, the prediction performance of these schemes for 

one-month-ahead forecasting is already good enough and the dimensionality reduction improves the prediction performance a 

little bit. Therefore, we suggest predicting the original streamflow directly based on the proposed TSDP framework (see 685 

Section 3.4 and Fig. 6) without dimensionality reduction in the autoregression cases. However, Noori et al. (2011) have 

demonstrated that, compared with the no-PCA SVR model, PCA enhances considerably the prediction performance for the 
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monthly runoff with rainfall, temperature, solar radiation, and discharge. Therefore, performing PCA on the TSDP framework 

is necessary if the predictors come from different sources. 

The experimental outcomes of Section 5.4 indicate that the VMD-SVR scheme has the best performance (see Fig. 19 and 20). 690 

This validates the guess we made in Section 4.4. This performance improvement is due to the fact that the VMD signal 

components are barely correlated (see Fig. 13) and have a low noise level (see Fig. 14). Determining the VMD decomposition 

level by observing the center-frequency aliasing (see Fig. 9) helps avoid mode mixing, and hence leads to uncorrelated signal 

components. Setting the VMD noise tolerance (𝜏) to 0 removes some noise components inside the original monthly runoff data 

(see Section 3.1), and thus allows signal components with a low noise level. Although setting the noise tolerance to 0 does not 695 

enable the summation of the VMD signal components for the original streamflow reconstruction (see Fig. 3h), the TSDP 

framework perfectly solves this problem by building a single SVR model to predict the original streamflow instead of summing 

the predictions of all signal components. Also, results from Section 5.4 show that DWT-SVR exhibits prediction performance 

that is better than that of SSA-SVR for one-month-ahead runoff forecasting but worse than that of SSA-SVR for 3-, 5- and 7-

month-ahead runoff forecasting (see Fig. 19 and 20). Once again, this result verifies the guess we gave in Section 4.4. This is 700 

because, in comparison with SSA, the DWT predictors for one-month-ahead runoff forecasting have higher MI than those for 

3-, 5-, and 7-month-ahead runoff forecasting (see Fig. 15). The SSA-SVR scheme shows prediction performance that is inferior 

to that of VMD-SVR, but shows better prediction performance compared to other models. These outcomes are due to the fact 

that the SSA signal components are correlated (see Fig. 13) and have a larger noise level than VMD but a lower noise level 

than that of the EEMD, DWT, BCMODWT signal components (see Fig. 14). The EEMD-SVR poor prediction performance 705 

(see Fig.19 and 20) is because of the EEMD limitations such as sensitivity to noise and sampling (Dragomiretskiy and Zosso, 

2014). These limitations lead to large-noise EEMD components IMF1 and IMF2 (see Fig. 14) with component correlation, 

redundancy, and chaotically represented trend, period and noise terms (see Fig. 13). The BCMODWT-SVR scheme failed to 

provide reasonable forecasting performance due to: (1) the limited sample size (only 792 data points in the original monthly 

runoff data), of which the wavelet and scaling coefficients are further removed by the BCMODWT method, (2) the limited 710 

information explained by the explanatory variables of the original monthly runoff, where the PACF is very small after the first 

lag month, (3) the correlated BCMODWT signal components (see Fig. 13), and (4) the large-noise BCMODWT components 

W1 and W2 (see Fig. 14). Therefore, the WDDFF realization, i.e., BCMODWT-SVR, may not be feasible for our problem. 

Additionally, the ARIMA models have better performance than the SVR, BPNN and LSTM models but worse performance 

than the VMD-SVR and SSA-SVR models. This performance is likely because the ARIMA models automatically determine 715 

the p and q in the range [1,20] to find more useful historical information for explaining the monthly runoff data. However, 

signal components with different frequencies extracted from VMD and SSA explain more information inside the original 

monthly runoff data. Overall, the VMD method is more robust to sampling and noise, and is therefore recommended for 

performing monthly runoff forecasting in autoregressive scenarios. 

In summary, the major contribution of this work is the development of a new feasible and accurate approach for dealing with 720 

boundary effects in streamflow time-series analysis. Previous approaches handled the boundary effects by removing or 
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correcting the boundary-affected decompositions (Quilty and Adamowski, 2018; Zhang et al., 2015) or adjusting the model 

parameters as new data is added (Tan et al., 2018). However, to the best of our knowledge, no approaches have been 

successfully applied in building a forecasting framework that can adapt to boundary effects without removing or correcting 

boundary-affected decompositions, while providing users with a high confidence level on unseen data. Indeed, this work 725 

focuses on exploiting rather than correcting or eliminating boundary-affected decompositions, in order to develop an effective, 

efficient, and accurate decomposition-based forecasting framework. Note that we do not need a lot of prior experience with 

signal processing algorithms or mathematical methods for correcting boundary deviations. We just enforce the models to assess 

the validation distribution during the calibration phase, and ensure proper handling of the validation decomposition errors. 

Overall, this operational streamflow forecasting framework is quite simple and easy to implement. 730 

7 Conclusions 

This work investigated the potential of the proposed TSDP framework and its VMD-SVR realization for forecasting runoff 

data in basins lacking meteorological observations. The TSDP decomposition stage extracts hidden information of the original 

data and avoids using validation information that is not available in practical forecasting applications. The TSDP prediction 

stage reduces boundary effects, saves modeling time, avoids error accumulation, and possibly improves prediction 735 

performance. With four experiments, we explored the reduction in boundary effects, computational cost, overfitting, as well 

as decomposition and forecasting outcomes for different lead times. We demonstrated that the TSDP framework with its VMD-

SVR realization can simulate monthly runoff data with competitive performance outcomes compared to reference models. 

With the first experiment, we evaluated the reduction of the boundary effects in the TSDP framework. In the second 

experiment, we assessed the performance gap between the TSDP and TSDE models. For the third experiment, we empirically 740 

tested overfitting in TSDP models. Additionally, we evaluated the prediction performance of the TSDP models for different 

lead times in the fourth and last experiment. 

In summary, the major conclusions of this work are as follows: 

a. Generating validation samples with appended decompositions, as well as mixing and shuffling the calibration and 

development samples, can significantly reduce the ramifications of boundary effects. 745 

b. The TSDP framework saves modeling time and sometimes improves the prediction performance compared to the TSDE 

framework. 

c. Combining the predictors of all signal components as the ultimate predictors does not overfit the EEMD-SVR and SSA-

SVR models and barely overfits the VMD-SVR and DWT-SVR models. Although some overfitting of the VMD-SVR 

and DWT-SVR occurs, these models still provide accurate out-of-sample forecasts. 750 

d. The VMD-SVR scheme with NSE scores clearly exceeding 0.8 possesses the best forecasting performance for all 

forecasting scenarios. The BCMODWT-SVR scheme may not be feasible for autoregressive monthly runoff data 

modeling. 
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The boundary effects represent a potential barrier for practical streamflow forecasting. We do believe that generating samples 

from appended decompositions, in addition to mixing and shuffling the calibration and development samples, are promising 755 

ways to reduce the influences of boundary effects and improve the prediction performance on monthly runoff future test 

samples. Ultimately, however, the black-box nature of the TSDP framework and the VMD-SVR model (or any data-driven 

model) is a justifiable barrier of making decisions in water resource management using the prediction results. Further research 

is needed on the VMD-SVR result interpretability. 
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