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Dealing with the boundary effects appropriately is very important in improving the generalization
ability of practical decomposition-based models. This is because the boundary effects introduce de-
composition errors and lead to different error distribution for calibration and validation samples. The
two-stage decomposition prediction (TSDP1) framework proposed in this work handled the boundary
effects with two key steps. One is generating validation samples from decompositions of appended sets.
The appended sets obtained by sequentially appending the validation set to the calibration set. The other
is mixing and shuffling the calibration and development (half validation) samples. A brief summary of why
the boundary effects lead to different error distribution, how the TSDP framework deals with the error
distribution, and why the TSDP framework is effective for reducing the boundary effect consequences is
provided below.

1 Why the boundary effects lead to different error distribu-
tion?

The boundary effects arise at the time-series boundaries where decomposition components are extrap-
olated. The boundary decompositions are extrapolated because some data points before or after the
given time-series, which are served as decomposition parameters, are not available ([Zhang et al., 2015],
[Zuo et al., 2020]).

Due to the boundary effects, different time-series boundaries lead to some decomposition algorithms
to be shift-variant and sensitive to the addition of new data. These decomposition algorithms including
variational mode decomposition (VMD), discrete wavelet transform (DWT), ensemble empirical mode
decomposition (EEMD), and singular spectrum analysis (SSA).

Take the VMD for example. Given the monthly runoff data of the Huaxian station from January
1953 to November 2018, i.e., x0=[q1, q2, ..., q791], and a one-step-ahead (shift) copy of x0, i.e., x1=[q2,
q3,...., q792], assume the VMD method is applied to x0 and x1. Then, the IMF1(2:791) for the VMD of
x0 should be maintained by IMF1(1:790) for the VMD of x1 since x0(2:791) is maintained by x1(1:790).
However, as shown in Figure 1 (a) and (b), the boundary decompositions of x0(2:791) and x1(1:790) are
completely different. See Figure 2 (a) and (b) for DWT, Figure 3 (a) and (b) for EEMD and Figure 4 (a)
and (b) for SSA. In Figure 1 - Figure 4, the IMF1 is the first decomposed signal component of VMD
and EEMD, D1 and S1 are the first decomposed signal component of DWT and SSA, respectively. The
symbol “(2:791)” means the second data point to the 791st data point.

Given the monthly runoff data of Huaxian station from January 1953 to November 2018, i.e.,
x1−791=[q1, q2, ..., q791] and the monthly runoff data from January 1953 to December 2018/12, i.e.,
x1−792=[q1, q2, ..., q792], the IMF1 for the VMD of x1−791 should be maintained by the IMF1 (1:791)

1The code and data are available on http://dx.doi.org/10.17632/ybfvpgvvsj.3
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for the VMD of x1−792, since x1−791 is maintained by x1−792(1:791). However, as shown in Figure 1 (c)
and (d) the boundary decompositions of x1−791 and x1−792(1:791) are completely different. See Figure 2
(c) and (d) for DWT, Figure 3 (c) and (d) for EEMD, Figure 4 (c) and (d) for SSA. A similar result was
obtained for the case in which several data points were appended to a given time series (see Figure 1 (e)
and (f) for VMD, Figure 2 (e) and (f) for DWT, Figure 3 (e) and (f) for EEMD, Figure 4 (e) and (f)
for SSA).

The calibration set is usually decomposed concurrently ([Zhang et al., 2015, Tan et al., 2018]). The
validation set should be decomposition one by one to avoid using future information and decomposing one
validation data point will generate the ”Not a Number”, i.e., NaN. Thus, the validation set is sequentially
appended to the calibration set and decomposed. The last decomposition of each signal component is
a validation decomposition. However, sequentially append the validation set to the calibration set and
decompose the appended set lead to the validation decompositions have large error distribution. This
is because every validation decomposition is selected from the boundary decompositions of an appended
set. The calibration decomposition errors are very small except for the boundary errors. Therefore, the
calibration and validation decomposition have different error distributions (see Figure 5).

2 How does the TSDP framework deal with the introduced
decomposition errors?

The different error distribution of calibration and validation decompositions leads to the models cali-
brated on the calibration samples generalize poorly to the validation samples. The TSDP framework
improves the generalization ability of decomposition-based models by generating validation samples from
the appended decompositions and mixing and shuffling the calibration samples and development (i.e.,
half validation) samples. Generating validation samples from appended decompositions maintains the
predictors highly correlated to the predicted target. Mixing and shuffling the calibration and development
samples, and training the models based on the shuffled samples enable the models to assess the validation
error distribution during the calibration stage. Overall, the TSDP framework deals with the introduced
decomposition errors without removing or correcting these errors.

Figure 6 shows the technical details of the TSDP framework and its VMD-SVR realization. The VMD
and SVR in the TSDP framework can be replaced with other decomposition and data-driven models. The
tuned decomposition parameters (decomposition level (K) for VMD) have to be tuned based on calibration
set and remain static for decomposing the appended sets. The default decomposition parameters (the
secondary penalty parameter (α), the noise tolerance (τ), and the convergence tolerance (ε) of VMD)
remain static for decomposing both the calibration and appended sets.

3 Why the TSDP framework is effective for dealing with
decomposition errors?

The boundary effects of VMD, DWT, EEMD, and SSA introduce decomposition errors and lead to dif-
ferent error distribution of calibration and validation decompositions. But in our work, we have demon-
strated that the TSDP framework can reduce the consequences of boundary effects and provide accurate
out-of-sample forecasts.

We directly built models based on the decompositions with introduced errors due to two facts. One
fact is that decomposition errors don’t affect the reconstructed results of decomposed signal components.
Figure 1 (h), Figure 2 (h), Figure 3 (h), and Figure 4 (h) show that the summation of decomposed signal
components with decomposition errors can precisely reproduce the original signal. The summation of
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VMD signal components cannot completely reproduce the original signal. This is because the noise
tolerance (τ) of VMD was set to zero and some noise components were removed. In other words,
the decomposition errors don’t lead the models calibrated well on these signal components to output
poor ensemble forecasts. Another fact is that the calibration and validation samples may have a different
distribution in practical forecasting scenarios ([Ng, 2017]). A classical instance is a cat classifier calibrated
on the cat pictures with a high revolution (which are collected by a professional camera) generalizes poorly
to the cat pictures with a low revolution (which are collected by a phone camera). Training a classifier on
the calibration and validation distribution can improve the generalization ability. Therefore, we believe
the different error distribution of calibration and validation samples can be handled properly by assessing
the validation error distribution during the calibration stages. These two facts can prove that it is ok to
build decomposition-based models without removing or correcting decomposition errors. In fact, our view
is that the decomposition errors might contain some valuable information to build forecasting models.
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Figure 1: Diagram of boundary effect for illustrating instances of VMD (a and b) shift-variance, (c and
d) sensitivity of appending one data point, (e and f) sensitivity of appending several data points, (g)
difference between sequential and concurrent validation decompositions and (h) difference between the
summation of sequential and concurrent validation decompositions at Huaxian station.
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(a) D1(2 : 791) of x0 D1(1 : 790) of x1
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(e) D1 of x1 552 D1 of x1 792
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(f) Error between  D1(1 : 552) of 
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550 600 650 700 750 800
Time (From Jan 1999 to Dec 2018)

10

0

10

20

Ru
no

ff(
10

8 m
3 )

(g) D1 of sequential validation decomposition
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Figure 2: Diagram of boundary effect for illustrating instances of DWT (a and b) shift-variance, (c and
d) sensitivity of appending one data point, (e and f) sensitivity of appending several data points, (g)
difference between sequential and concurrent validation decompositions and (h) difference between the
summation of sequential and concurrent validation decompositions at Huaxian station.
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(a) IMF1(2 : 791) of x0 IMF1(1 : 790) of x1
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(g) IMF1 of sequential validation decomposition
IMF1 of concurrent validation decomposition
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Figure 3: Diagram of boundary effect for illustrating instances of EEMD (a and b) shift-variance, (c and
d) sensitivity of appending one data point, (e and f) sensitivity of appending several data points, (g)
difference between sequential and concurrent validation decompositions and (h) difference between the
summation of sequential and concurrent validation decompositions at Huaxian station.
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(g) S1 of sequential validation decomposition
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Figure 4: Diagram of boundary effect for illustrating instances of SSA (a and b) shift-variance, (c and
d) sensitivity of appending one data point, (e and f) sensitivity of appending several data points, (g)
difference between sequential and concurrent validation decompositions and (h) difference between the
summation of sequential and concurrent validation decompositions at Huaxian station.
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Figure 5: Kernel density estimation of calibration and validation decomposition errors (kernel=Gaussian).
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Figure 6: A block diagram of the two-stage decomposition prediction (TSDP) framework with the
VMD-SVR realization.

9


	Why the boundary effects lead to different error distribution?
	How does the TSDP framework deal with the introduced decomposition errors?
	Why the TSDP framework is effective for dealing with decomposition errors?

