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Abstract 10 

The large number of spatially distributed earth observation products, i.e. time series of surface 

emissions and reflectances at different wavelengths with increasing spatial resolution, 

contribute to the derivation of surface characteristics, e.g. vegetation or soil parameters in the 

environmental sciences. These derivatives usually build upon complex algorithms consisting 

of atmospheric corrections and process descriptions. 15 

The testing scheme presented here seeks a different approach to identifying these surface 

characteristics that control the generation of such observation time series. Spatially distributed 

patterns of these characteristics of different persistence usually dominate parts of a time series 

because of their very specific reaction to and interaction with environmental influences. We 

test these characteristics’ patterns for their existence in a rotated vector space of elementary 20 

patterns derived from a principal component analysis of an observational time series. With the 

result of this test we can then make valid assumptions, e.g. with regard to the importance of 

the surface properties for the emittance or reflectance, or their spatial uncertainties. 

We demonstrate the functionality of this rather simple test algorithm for a synthetic and fully 

traceable example, and an application in a medium hydrological catchment for a time series of 25 

thermal satellite data. Possible future applications for this scheme are the prioritization and 

improvement of model input, data assimilation, or the evaluation and validation of model 

output. 
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1 Introduction 30 

With the current advancements in satellite, aircraft and drone remote sensing as well as in 

geophysical measurement techniques, spectral reflectance and emissivity information of the 

land surface are available from an increasing number of platforms at different spatial and 

temporal resolutions (Weng, 2017). By applying complex atmospheric corrections, 

reflectance and emissivity models, land surface reflectivity (visible, near-infrared, radar) and 35 

emissivity (thermal, microwave) data are translated into relevant environmental variables, 

such as surface temperature (Ts), soil water content (WC), leaf area index (LAI), snow cover 

(SC) or evapotranspiration (ET) (Bastiaanssen et al., 1997; Brenner et al., 2017; Dorigio et al., 

2017; Dong, 2018; Horn and Schulz, 2010), among many others. 

The spatial and temporal patterns of these variables are strongly controlled by land surface 40 

characteristics such as land surface energy balance, relief, or the availability of soil moisture 

and therefore the general climate, vegetation and soil properties. Identifying the dependencies 

between land surface characteristics and the directly remotely sensed land surface information 

is important to improve our environmental process understanding and to advance the 

predictive capabilities when remote sensing data are used to predict land surface 45 

characteristics or processes (see e.g. Awange et al., 2006; Matgen et al., 2006; Müller et al., 

2014, 2016; among many others). 

In this context, it is often necessary to identify the specific control or impact that individual 

patterns of land surface characteristics (e.g. vegetation, or soil texture; in the following called 

“parental pattern”, PP) have on the full time series of patterns of system states (e.g. Ts or WC 50 

images; in the following called TS), or on just individual elements/images of the TS. A 

common tool to analyze these controls is to calculate simple 1-to-1 comparison scores based 

on an individual PP and single TS members. Possible scores include correlation, root mean 

square error, or normalized distribution similarity tests (e.g. Kolmogorov-Smirnov test; 

Corder and Foreman, 2014). However, when applying simple comparison scores, PPs are only 55 

compared to single members of the TS and it is not possible to quantify the overall effect of 

any PP on the complete TS. 

The complete TS of e.g. surface temperature, snow or water content pattern represents the 

dynamic behavior of the observed land surface system and can be regarded as an n-

dimensional vector space of possible states, where n is the number of elements (remotely 60 

sensed images) within the TS. While each element of TS will contain some important 
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information about the land surface system under investigation, a certain degree of redundancy 

in the information content of each TS member has to be expected due to the dominance of 

certain PPs. 

Principal component analysis (PCA) is a statistical procedure to analyze the correlation 65 

structure between several observations (members of TS). A PCA converts a set of (possibly 

highly) correlated observations into a set of linearly uncorrelated variables (principal 

components, PCs) using an orthogonal transformation (Richards and Jia, 2006). The first PC 

is in the direction of the largest part of the data variance, and each subsequent PC has the 

highest variance possible under the constraint that it is orthogonal to the preceding 70 

components. The resulting set of PCs therefore constitute an uncorrelated orthogonal basis, 

whereby the individual PCs are ordered by “the portion of variance of the original they 

explain”. In this way, it is possible to extract the most dominant components (patterns) of the 

observed system, which is represented by the TS.     

The control or impact of any PP on the TS (e.g. the impact of spatially distributed soil texture 75 

pattern on a time series of surface temperature) can be assessed by quantifying the agreement 

(or the degree of deviation) of the PP with the individual PCs. However, a possible direct 

agreement between a PP and any of the PCs is largely disrupted by any noise in the 

measurements and/or signal-processing step. A PP will only be exactly found or reconstructed 

(or identical to any PC) for completely noise-free data, and when the PPs are independent of 80 

each other with distinct weights (deduced from linear regression without noise; compare 

Howard, 2010). However, these circumstances are hardly found under real conditions. 

As the objective is to identify the most relevant and controlling PPs for the TS of interest, we 

circumvent the aforementioned difficulties by developing a new method that is based on the 

following step: First, a PCA is performed on the TS and a set of n orthogonal PCs is derived. 85 

Second, we additionally optimize a n-dimensional rotation of the system of PCs with regard 

to the net angle between the selected PP and the primary PC. In this way, we receive for each 

PP the one vector that is best correlated to it, and the angles to all PCs can be extracted. 

We will explain the general idea as well as the mathematical formulation of this procedure in 

more detail in section 2. A synthetic test case in section 3.1 will demonstrate the principle 90 

functionality of the method, while in section 3.2, it is applied to a real case problem, where a 

time series of thermal remote sensing images is analyzed to extract their dominant landscape 
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controls. Further application areas and an outlook are provided in section 4. Section 5 finally 

will provide some guidance to access the archive of available code. 

  95 

2 Method description 

2.1 Problem and method definition 

Let us assume, we have a complex system that is based on a number of m PPs (e.g. 

vegetation, soil texture) as shown in Fig. 1 (upper panels; here m=2: B1, B2). The PPs may 

“generate” a series (TS) of patterns (e.g. patterns of surface temperature Ts, that are a result of 100 

some complex interaction within the water, radiation and energy balance of a landscape). 

Such a series of possible patterns I1, I2, …, In is shown in Fig. 1 (lower panels, n=6), whereby 

in this synthetic case, the patterns are generated as random linear combinations of the PPs B1 

and B2 and some additive gaussian noise.   

The question now is which of the PPs is contributing to what degree to the observed pattern 105 

I1-In, or in other words, to what degree can the PPs be reconstructed or generated by the TS I1-

In. In order to answer this question, we use the complete set I1-In of available “observations” 

that arrange an nD vector space based on this set. The angles between these vectors are 

normally non-orthogonal, i.e. members of I1-In are interrelated and dependent on each other, 

and do not permit any conclusions about their importance. To avoid these dependencies and 110 

to provide a ranking system, we orthogonalize the nD vector space by applying a PCA and 

extracting the PCs. The now orthogonal vector space permits i) quantifying a degree of 

importance by defining the smallest angle between a reconstructed or generated PP and PC1, 

the principle component with the largest share of the overall variability, ii) a finer 

determination of transitions between different states due to the same angular distances 115 

between the PCs, and iii) a reduction of the nD vector space to an (n-k)D vector space, by 

declaring the k PCs with the smallest share as noise or “not important enough”. Thus, we 

improve above declaring a PP by i) quantifying its importance with ii) a high resolution 

gradient and iii) reducing calculation effort. 

2.1.1 Principal component analysis 120 

The herein used principal component analysis (PCA; a complete mathematical description can 

be found at Richards and Jia, 2006, chapter 6.1), or similarly empirical orthogonal functions 
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(EOFs, e.g. Denbo and Allen, 1984; Hamlington et al., 2011; Lorenz, 1956) are widely used 

within the field of analyzing big data (Fan and Bifet, 2013; Feldman et al., 2013). Hence, 

these mathematically similar methods are often used in the fields of climate sciences 125 

(meteorology: Preisendorfer and Mobley, 1988; geography: Demšar et al., 2013), especially 

with remote sensing data (Pohl and Van Genderen, 1998).  

In general, PCA is not applicable for 2D members of the nD vector space. To analyze 2D 

patterns, these patterns have to be flattened to 1D vector. Thus, a linearization procedure has 

to be defined for decomposition and (re)production of a 2D version of the resulting PCs. 130 

Additionally, these flattened patterns are normalized (Fisher z-transformed) to allow equal 

weighting of all patterns. Then, a covariance matrix and, subsequently, eigenvectors are 

calculated. The eigenvectors, sorted by size, define the described partial variance, principal 

components’ rotation matrix, and, hence, loadings for calculation of the orthogonal PC vector 

space.  135 

For non-dependent and unscaled PPs, as well as non-noisy PPs and TS data, PCA can directly 

be used for near-exact reproduction of PPs. However, real measurement data contains noise, 

so that dependencies between PPs and nonlinear scalings are to be expected. Therefore, the 

following procedure is added. 

2.1.2 Rotation 140 

Rotation is needed to find patterns between the axes of the PCA (=PCs) in case noise prevents 

direct reproduction. The rotation of a nD vector space can be described by multiplication of 

the vector space with a -sized rotation matrix  with the properties  and 

 (Howard and Rorres, 2010). A rotation of all n orthogonal vectors of the nD vector 

space is conformal, hence, results in a new nD orthogonal vector space (Howard and Rorres, 145 

2010). Thus, original patterns can be found similarly to finding them in the original 

orthogonal nD vector space. 

However, only the rotation of the first PC is important as orthogonal rotations can be added to 

rotate other PCs as well. Thus, the absolute angles of  are interpreted as a measure of 

deviation from each PC and, therefore, the deviation from each more or less dominant pattern 150 

within the original nD vector space.  
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If a rotation is unknown and to be determined by a pre- and an exact post-rotation vector, the 

rotation matrix can directly be calculated by 

 with . 

Although,  can be assessed directly, we need to consider noise in both observations (PCs) 155 

and PPs that are to be examined. Therefore, an optimization of  is necessary. 

For simplification, we assume , which is compliant with a proper definition of 

rotation and halves the number of parameters to be optimized. 

2.1.3 Optimization and scores 

Optimization of the rotation matrix in this approach is accomplished by applying an extended 160 

version of the Dynamically Dimensioned Search (DDS) algorithm, described by Tolson and 

Shoemaker (2007). This robust and effective algorithm is commonly used for optimization of 

numerous parameters for complex hydrological models (Wallner et al., 2012). This algorithm 

is chosen due to its single perturbation parameter, hence reduced tuning effort, and highly 

efficient search for good, but not optimal, solutions, hence low computational cost. For this 165 

application, we extend DDS by a loop of decreasing perturbation parameter to refine the 

optimum search. This approach is inspired by the simulated annealing schedule (Kirkpatrick 

et al., 1983). 

The optimization itself is based on a predefined error function. Here, we use a maximization 

of the (absolute) Pearson’s correlation score between a potential PP and the rotated PC1. This 170 

score is used as (linear) scaling and orientation (=sign) do not need to be specified for the 

calculated error. Thus, linear scaling and orientation adjustments are applied in the final stage 

for visualization of rotated patterns, so values are within the original ranges (see Figures in 

Section 3.1). 

We emphasize that the chosen optimization algorithm and error function may not be optimal 175 

for the following examples, but are chosen for their simplicity and traceability. As Wolpert 

and Macready (1997) state, there is not a single optimization algorithm that is fitting to a large 

or, much less, full range of different problems and/or data sets. 
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The described procedure in sections 2.1.1-2.1.3 is further called PARENTS (PAttern 

REtrieval or deNegation Testing Scheme) as it is capable of both reproducing actual and 180 

eliminating faulty PPs.  

2.2 Data processing scheme and output 

The PARENTS algorithm in this approach is specifically used for analyzing time series of 

spatial patterns from remote sensing. Though, it can easily be adjusted for non-geocoded data 

sets.  185 

The data are processed in the following way: First, the TS data set is assumed to be 

preprocessed as a 3D data stack (dimensions: latitude, longitude, time). If necessary, the data 

has to be resampled/georeferenced. Also, the considered PP is resampled/georeferenced to the 

same domain and resolution as the 3D data stack. Then, PCA is performed on the TS data set. 

Further, the PCs and the PP(s) are rearranged as a matrix, i.e. losing their spatial setup while 190 

being able to reproduce the original spatiality. This matrix is then multiplied by a random 

rotation matrix, which then is optimized with the extended DDS algorithm to reach a high 

correlation between the rotated and rescaled and optionally inverted PC1 and the PP(s). The 

final output is the rotated PCs sorted in a decreasing order, the rotation matrix, the correlation 

score, and net angles of the PP(s) to the different PCs for each PP. 195 

There is an additional option to reduce the number of PCs used for the rotation optimization. 

Reducing the PCs significantly reduces processing time, while, in the case of specifically 

large partial variances in the first few PCs, of little loss.  

 

3 Test cases 200 

In the following, we present two test cases: one synthetic data set, which already was 

introduced in sect. 2.1, with a controlled setup of paternal patterns and noise, and one 

representing a typical application in remote sensing. 

3.1 Synthetic data set 

3.1.1 Input 205 

The synthetic data set is generated by different linear combinations of the two orthogonal 2D 

patterns B1 and B2 (Fig. 1, upper panels) with additional white noise. Pattern B1 contributes 
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with a normally randomized weight of µw1=10 (σw1=ln(10)), B2 with a weight of µw2=5 

(σw2=ln(5)), and noise with a weight of µw3=2 (σw3=ln(2)) to generate the data set patterns. 

These resulting patterns are then linearly scaled to the same value range as the original 210 

patterns I1-I6 (see Fig. 1, lower panels). 

The data set is tested for the original PPs B1 and B2, as well as a third pattern N 

(checkerboard, Fig. 3, upper right panel) that is orthogonal to both PPs. N is used as a 

denegation dummy in this example. 

3.1.2 Results 215 

First, we analyze the benefits of the PARENTS algorithm when compared to only applying 

the PCA without rotation. For this, we gradually increased the noise component (weight of 

noise, Fig. 2) when generating arbitrary sets of I1-I6 (see Fig. 1) while fixing the weights of B1 

and B2 for the different set elements. Fig. 2 (middle panel) illustrates the reconstructed pattern 

of the higher weighted B1 (Fig. 1, upper left) when only applying a simple PCA and 220 

extracting the first principle component PC1.  

It is easily seen that with increasing noise (“weight of noise”, w.o.n) the reproduction of B1 is 

blurred and the correlation coefficient between B1 and PC1 is decreasing from values ~0.9 

down to ~0.8 (see Fig. 2, upper panel). The PARENTS algorithm, including an optimized 

rotation of the PC system, however is able to reproduce B1 almost independent of the noise 225 

with correlation coefficients very close to 1.0 (see regression line in Fig. 2, upper panel), 

indicating a strong improvement in terms of robustness against and overall quality of the 

reconstruction. Though, the reproduction of B1 is of lower quality per definition of the PCA, 

when the influence is quite close to other patterns (see Fig. 2, w.o.n=10). 

The reproduction of all PPs from the more randomly constructed TS (as shown in Fig. 1) with 230 

the PARENTS algorithm using an extensive optimization (1.000.000 steps) is shown in Fig. 

3. The PPs B1 and B2 can be almost exactly reproduced with an absolute correlation score 

close to 1. Though, pattern B1 appears inverted in the final result. This is due to the error 

function being defined as absolute correlation score. The reproduction of a checkerboard 

pattern N - that is not used for production of the data set and is orthogonal to B1 and B2 - 235 

cannot be achieved; the absolute correlation score is as low as 0.05. 

In summary, it can be stated that the PARENTS algorithm has successfully been tested with a 

synthetic setting, where the PPs as well as the time series of TS were perfectly well known. 
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This example was limited in the number of TS members, as well as of PPs, but was perfectly 

suited to demonstrate the functioning of the methodology, especially under different noise 240 

conditions. The second example will address a more realistic case study, where a time series 

of thermal remote sensing images over a hydrological catchment in Luxembourg is 

investigated to analyze the dominant controls on surface temperature.      

3.2 Typical application with real data set - the Attert catchment and thermal 
remote sensing data 245 

The realistic case is based on the Attert catchment study within the German DFG research 

project CAOS (“catchments as organised systems”; CAOS, 2019). The 288 km² catchment is 

located in mid-western Luxembourg and southeastern Belgium (see Fig. 4).  Initial studies on 

the usage of PCs for grouping the catchment into hydrological functional units and deriving 

soil texture characteristics were performed in Müller et al. (2014, 2016).  250 

3.2.1 Input  

The utilized basic TS data set consists of 28 thermal infrared remote sensing images from the 

multispectral imaging system ASTER (advanced spaceborne thermal emission and reflection 

radiometer) on board the TERRA satellite from between January 2001 and June 2012 (see 

Fig. 5). The satellite orbits on a near circular, sun-synchronous path with a repeat cycle of 4-255 

16 days and was launched December 1999. The ASTER instrument’s three sensors cover the 

wavelengths of VNIR (visible-near infrared: 0.52-0.86 µm), SWIR (shortwave infrared: 1.6-

2.43 µm), and TIR (thermal infrared: 8.125-11.65 µm) with 4, 6 and 5 bands, respectively 

(Fujisada, 1995). The Level 1A TIR product, band 13 (10.25-10.95 µm), with an original 

spatial resolution of 90 m is used, due to its most complete preservation of ground thermal 260 

patterns (compare Elder and Strong, 1953). 

The potential PPs that are assumed here are those landscape characteristics that are likely to 

influence land surface temperature and therefore the radiation, energy and water balance of 

the catchment. A resolution adjusted digital elevation model (DEM; ACT, 2013) and a 

derived hill shade (see Neon22, 2014) will have an impact on the incoming shortwave 265 

radiation, but also on the distribution of soil moisture via water transport processes 

redistributing incoming precipitation. A geological map with dominant rock formations (SGL, 

2003) might be a reasonable proxy for soil formation processes and soil texture distribution 

that water holding capacity and other hydraulic and thermal properties. CORINE land cover 
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(EEA, 1995) data give information about vegetation patterns in the catchment, which have an 270 

important impact on the energy and water balance via albedo, water uptake and 

evapotranspiration. We also added a random uniformly distributed pattern as a denegation 

dummy.  

The hill shade PP consists of the average values for the 28 actual hill shades at flyover (11:30 

am) based on slope and aspect of the DEM. The geological and the land cover data is 275 

originally of nominal characteristic. In many applications, these are used for class based 

parameter estimation. Thus, the nominal data is replaced by a numeric value for the 

PARENTS algorithm. The rock formation classes are used to appoint thermal inertia of the 

underlying bedrock, whereas land cover is translated to LAI. The set values can be found in 

tables 1 and 2. 280 

In the next section, the PARENTS algorithm will be applied to investigate whether and to 

what extend the assumed PPs can be reconstructed by the time series of thermal images, or, in 

other word to what extent is each PP controlling the dynamics of the TS.     

3.2.1 Results 

Figure 6 illustrates the results applying the PARENTS algorithm to the full TS data set of 28 285 

thermal images and the 5 potential PPs height, hill shade, thermal inertia, LAI and random 

noise for the Attert catchment. The algorithm ran for 20.000 optimization steps for each PP. 

While the upper panel of Fig. 6 shows the “original” patterns of the PPs, the reconstructed 

PPs are given in the middle panel showing their respective deviation from the original PPs. 

The lowest panel shows a smooth per-pixel scatter plot, including a 1:1 line, and the 290 

regression line with correlation coefficient, for each PP. 

The highest correlation between PPs and the rotated PC1 of the TS (0.81) can be found for the 

“height” (above sea level) information (Fig.6, lower panel); the valleys as well as the 

relatively high altitude in the northwest of the catchment can be well recognized within the 

rotated PC. Results for the “height above sea level” illustrate the importance of adiabatic 295 

temperature gradients on the temperature signal in hilly or mountainous terrains and are 

therefore expected to affect all TS images.  

We can find similar structures within the “hill shade” and its rotated counterpart. “Hill shade” 

is relevant for the TS patterns by highlighting areas where generally more radiation is 

available and heating up the surface. As this hill shade pattern is based on temporal averages 300 
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over all images, we expect a rather low quality of reproduction. Here, the PARENTS 

algorithm is finding especially highly shaded areas (≥0.75) with higher deviations in the 

rotated PC1 and, thus, only low correlation (r=0.4).  

The pattern of “thermal inertia” of the underlying bedrock is expected to have only a marginal 

influence on TS. The underlying bedrock is buffering heat fluxes within the overlying soil 305 

with temporal offset. “Thermal inertia” shows a similar spatial gradient compared to “height” 

with low values in alluvial valleys and high values in the schists heights. The correlation 

between both original PPs is relatively high (r=0.78). As this PP is not a continuous pattern, 

correlation with the rotated PC is lower (r=0.55) when compared to the height pattern, as 

expected. 310 

Vegetation and, thus LAI, is a very strong control on thermal patterns of surface temperature, 

due to its capability of regulating stomata resistance and, hence, the amount of transpiration, 

thereby cooling the leaf surface. The rotated PC for the land cover class based LAI still shows 

a high correlation (0.63) to this originally non-continuous pattern. 

Finally, and as expected, the uniform noise cannot be reproduced (r=0.05), again indicating 315 

the good performance of the PARENTS methodology. 

In addition to the correlation coefficients between PP and the rotated PC1 in Fig. 6, Table 3 

provides an additional subset of rotation angles between the PPs and PC2 and PC3. The data 

show that the LAI patterns resembles PC1 at best, while PC2 shows to be closer to thermal 

inertia. For PC3, the angles show only low direct resemblance to the tested PPs. These 320 

findings fully support the results from Müller et al. (2014; section 3.3, Fig. 10) where PC1 is 

connected to CORINE and PC2 to geological maps.  

The effect of reduction of the number of PCs, here to a maximum of 5 (compare Müller et al., 

2014), can be found in Fig. 7. The reduction of the number of PCs limits the optimization 

problem to less parameters (5x5 instead of 28x28 => ~factor of 30) while potential 325 

information is lost, that could be found in the angular transitions between the higher PCs. This 

brings benefits within the computational effort for the cost of reproduction accuracy. Still, 

reducing the system at this point has less important information lost than reducing the length 

of the original TS.  

The correlation scores for height and thermal inertia drop the most. This leads to the 330 

assumption that height and rock information is distributed among PCs of lower importance. 
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The correlation score for LAI is practically the same, as the pattern is very close to PC1 

(compare Müller et al., 2014). 

Beyond the reproduction of potential patterns, we also explored the potential of reproducing a 

single image of the TS (rather than of PP) that was either included or excluded from the 335 

observation time series. This analysis was performed by considering the full set of PCs and 

compare it to results when only the first 5 PCs where were taken. We chose three different 

images for this test: a summer image (15 Jul 2008), a winter image (15 Feb 2003), and one 

especially clouded image (26 Sep 2003). Tables 4 shows the correlation results for these 

experiments. As summer situations are well represented in the overall data set (compare Fig. 340 

5), the correlation is high for both included and excluded, as well as the reduced number of 

PCs. Only minor structural features cannot be reproduced. Winter situations are not very well 

presented in the full TS, so excluding one image results in a similar effect on its final 

correlation as the reduction of the number of PCs. The specific winter patterns are of low 

importance for the overall variations. Though, excluding one winter image result in a lower 345 

correlation than reducing the number of PCs. Clouded images usually show an untypical 

pattern for the investigated area and, hence, show the largest drop in correlation results for the 

exclusion experiments. 

We see, that the PARENTS algorithm is capable of reproducing potential PPs of a thermal 

remote sensing TS to a reasonable quality. At the same time, noise cannot be reproduced, 350 

what underlines the meaningfulness of the internal system structure of the algorithm and its 

results. Further, we showed the degree of loss of information, when limiting the number of 

PCs. This is useful, when only PPs of high importance need to be found or if exclusion 

experiments are needed first. Last, we examined the influence of images with very specific or 

unusual compared to common patterns in the TS. This can also be used to reduce the number 355 

of dimensions and thus, computational effort or descriptive complexity. 

 

4 Conclusion 

In this paper, we present the PARENTS algorithm to identify the impact of any PP on an 

observed TS. We demonstrated the performance of the method using a synthetic data set and 360 

showed that including an optimized rotation will reproduce a pattern better than a simple 

PCA, when more than one important pattern is present. The PARENTS algorithm was also 

successfully tested in real case study when identifying the importance of different PPs on time 
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series of thermal images. A number of experiments analyzed the performance of the method 

when constraining the number of PCs in the rotation/optimization process.   365 

The PARENTS algorithm shows a very good performance in reproducing patterns in the 

synthetic setup. The original patterns are retrieved with high correlation scores for arbitrary 

influence of noise, compared to the simple PCA, and non-existing patterns cannot be 

reproduced (Fig. 2-3). Based on these results, the algorithm is tested within a realistic data set 

of 28 thermal remote sensing images and four different reasonable potential PPs and one 370 

uniform noise pattern. The main find is, that the random pattern is irreproducible (r=0.05), 

while the reasonable PPs can be found with different, though relatively high correlation scores 

(0.4-0.81). Patterns that are physically directly connected to the thermal surface signal, such 

as “LAI” or “height”, have higher scores than geological or shading patterns (Fig. 6). While 

correlation scores do not explain causality between PP and TS, the rotation angles within the 375 

vector space claim the patterns’ importances for the data set.  

The reduction of the computational effort by reducing the number of PCs shows a decrease in 

information compared to the full range of PCs (compare Fig. 6 and 7). Thus, this modified 

approach can be used to perform either preliminary examinations of a TS for denegation of 

specific patterns or weighing the importance of the PPs for the TS more specifically. 380 

We also show that the quality of reproduction is directly connected to a pattern’s 

representation in the underlying data set (see table 4). The TS itself consists of mainly 

summer and spring, and less winter images. At the same time, partial clouds are not recurring 

at the same positions and extents. Still, such described “outliers” can be (re)produced with 

some lower quality and, hence, lower certainty.  385 

We therefore expect the PARENTS algorithm to identify PPs successfully throughout 

different scales, as long as the underlying data set is covering a large variety of possible 

naturally occurring patterns. The algorithm, as presented, is a functional tool for 

understanding the contribution of surface characteristics in processes and their weights within 

an remotely observed system. 390 

A large number of further applications of the algorithm seems possible, e.g. in the field of 

remote sensing of the environment: 

● The use within assimilation schemes in (earth system) modeling. A number of 

different remote sensing data can be used as basis for the PARENTS algorithm to 
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search a modeled pattern (present or future) of a distributed model. This tested pattern 395 

then can be adjusted to the closest available reasonable pattern from the data basis.  

● The use within spatial interpolation of unknown values. It is possible to use the 

PARENTS algorithm for the search of partially existing patterns or point 

measurements and fill the void, from e.g. clouds, with the pattern of the rotated PC 

based on the available pixels. 400 

● The refinement of observed broad classes. The LAI patterns, for example, are well 

represented within the rotated PC. Still, adjustments of the scoring function to e.g. 

preserve average LAI values for each class is needed.  

● The use within solving downscaling issues. A coarse pattern to be downscaled to a 

finer resolution can similarly be executed as the refinement of class based patterns. 405 

The algorithm can be further adjusted by including non-linear scaling of the rotated PC, 

though this adds additional optimization effort, or changing the scoring function to also 

exceed the tested value range (extrapolation). These proposed applications are scope for 

future research and will be addressed in the near future.  

 410 
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Table 1: Numeric values (thermal inertia) for spatial classes within the geological map and their origin. 530 
These values from Robertson (1988) are assigned to the referenced map (SGL, 2003). 
 

spatial class assigned value composite value(s) 

alluvials and deposits 42  [10-3 cal cm-2 °C s0.5] 42 (~clay soil) 

sandstone 54 [10-3 cal cm-2 °C s0.5] 54 

marls 45 [10-3 cal cm-2 °C s0.5] 45 (~limestone) 

schists 63 [10-3 cal cm-2 °C s0.5] 63 (~serpentine) 
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Table 2: Numeric values (LAI) for spatial classes within the CORINE land cover and their origin. These 535 
values from (1) Sun and Schulz (2017) and (2) Knote et al. (2009) are assigned to the referenced map 
(EEA, 1995). Assigned values are estimated modes for the used image dates. 
 

spatial class assigned value composite value(s) 

agricultural-natural mix 2.60 [m2 m-2] 0.98 – 3.17 (2) 

arable 2.26 [m2 m-2] ~0.4 –5.0 (1); 0.68 – 2.78 (2) 

artificial 0.87 [m2 m-2] 0.44 – 2.15  

(2, continuous and discontinuous urban) 

complex cultivation 2.15 [m2 m-2] ~0.5 – 4.5 (1) 

coniferous forest 2.91 [m2 m-2] 1.67 – 3.32 (2) 

deciduous forest 2.89 [m2 m-2] ~1.0 – 6.0 (1); 1.21 – 3.45 (2) 

mineral extraction 2.20 [m2 m-2] 0.81 – 2.24 (2) 

mixed forest 3.02 [m2 m-2] 1.57 – 3.50 (2) 

pastures 1.95 [m2 m-2] ~0.2 – 5.5 (1); 1.12 – 3.06 (2) 

 

540 
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Table 3: Angles resulting after rotating the first 5 PCs to the rotated PC. Higher deviations from 90° have 
to be interpreted as patterns closer to the compared PC. Values origin from the same run as Fig. 6. 

 

angle to PC height a.s.l. hill shade thermal inertia LAI uniform noise 

PC1  98.6° 85.1° 96.4° 60.6° 90.1° 

PC2 89.7° 91.7° 102.7° 89.7° 94.0° 

PC3 90.0° 91.2° 89.8° 92.5° 89.9° 
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Table 4: Correlation result for one thermal image from the TS and the rotation for different exclusion 545 
setups. Patterns were included (in) or not (out), and all PCs were used or just the first 5. Highest 
correlations are found for the inclusion of all images while lowest correlations are found for the exclusion 
of the specific image while reducing the number of PCs to the first 5. The decline is larger when images 
are less represented by the remaining TS.  
 550 
Image summer 

(15 Jul 2008) 
winter 

(15 Feb 2003) 
cloudy 

(26 Sept 2003) 
Setup in out in out in out 
Correlation for 28/27 
images in TS 0.998 0.944 0.998 0.757 0.995 0.703 
Correlation for first  
5 PCs from 28/27 images 0.878 0.862 0.796 0.743 0.705 0.681 
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Figure 1: The basic orthogonal 2D patterns B1 and B2 for use as PPs in the synthetic data set (upper 555 
panels) and the synthetic data set I1-I6 of 2D patterns generated from PPs B1, B2, and gaussian noise 

(lower panels). Pattern B1 contributes with a normally randomized weight of µw1=10 (σw1=ln(10)), B2 with 

a weight of µw2=5 (σw2=ln(5)), and noise with a weight of µw3=2 (σw3=ln(2)) to generate the data set 

patterns. For better comparison, these resulting patterns are linearly scaled to the same value range as the 

original patterns. 560 
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Figure 2: Assessment of the influence of noise for the difference between optimized rotation and PCA 
only. For generating the analyzed data sets, weights for the patterns B1 and B2 were fixed with little 
variation (w1,1-6 = 10+[0:0.1:0.5], w2,1-6 = 5-[0:0.1:0.5]) while a noise pattern was fixed with increasing 565 
weight for the different sets. The upper panel shows the correlation scores after 1.000.000 optimization 
steps for PC1 (red circles) and rotated PC1 (black circles) and B1 for the different weights of the noise. 
Additionally, the regression line (dotted) of the correlations of rotated PC1 is added to emphasize the near 
constant scores of almost 1.0. The lower panels show exemplary results of PC1 (top) and rotated PC1 
(bottom) for the weights 0, 10 and 20 (compare B1 in Figure 1, upper panel).  570 
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Figure 3: An exemplary reproduction (bottom) of the potential PPs (upper panel, compare Fig. 1) from 
the data set (Fig. 1, lower panel) with an extensive optimization routine. The checkerboard pattern (N) 
cannot be reproduced. Correlation results (|r|) are noted between rotation results and original patterns. 575 
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580 

Figure 4: The location of the Attert catchment with additional information on elevation. Catchment 
boundaries are defined by the location of the gauge Bissen, Luxembourg. For more information about 
catchment characteristics, the reader is referred to Müller et al. (2014, 2016). Basic map 
from © OpenStreetMap (Distributed under a Creative Commons BY-SA 
License, https://www.openstreetmap.org/copyright). 
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Figure 5: a) Examples of the seasonal TS data set patterns (winter 1, spring 2, summer 3, and autumn 4). 585 
b) The timing and ranges of data set patterns throughout the TS. 
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Figure 6: Result from the PARENTS algorithm for the full TS of 28 images and the potential PPs height 
(above sea level), hill shade, thermal inertia, LAI and a uniform noise pattern. First row shows original 590 
potential PPs, second row shows the rotated PC, and the third row shows the smoothed scatter plots of the 
patterns above with 1:1 line (black) and linear model (red, dashed) for better comparison. 
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Figure 7: Result from the PARENTS algorithm for the full TS of 28 images and the potential PPs height 595 
(above sea level), hill shade, thermal inertia, LAI and a uniform noise pattern. The number of PCs is 
limited to the first 5 most affecting (compare Müller et al., 2014). Illustration is set up according to Fig. 6. 
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