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1. Abstract 8 

Natural risk studies such as flood risk assessments require long series of weather variables. As an 9 
alternative to observed series, which have a limited length, these data can be provided by weather 10 
generators. Among the large variety of existing ones, resampling methods based on analogues have 11 
the advantage of guaranteeing the physical consistency between local variables at each time step. 12 
However, they cannot generate values of predictands exceeding the range of observed values. 13 
Moreover, the length of the simulated series is typically limited to the length of the synoptic 14 
meteorology records used to characterize the large-scale atmospheric configuration of the 15 
generation day. To overcome those limitations, the stochastic weather generator proposed in this 16 
study combines two sampling approaches based on atmospheric analogues: 1) a synoptic weather 17 
generator in a first step, which recombines days in the 20th century to generate a 1,000-year 18 
sequence of new atmospheric trajectories and 2) a stochastic downscaling model in a second step, 19 
applied to these atmospheric trajectories, in order to simulate long time series of daily regional 20 
precipitation and temperature. The method is applied to daily time series of mean areal precipitation 21 
and temperature in Switzerland. It is shown that the climatological characteristics of observed 22 
precipitation and temperature are adequately reproduced. It also improves the reproduction of 23 
extreme precipitation values, overcoming previous limitations of standard analog-based weather 24 
generators. 25 
 26 

2. Introduction 27 

Increasing the resilience of socio-economic systems to natural hazards and identifying the required 28 
adaptations is one of today’s challenges. To achieve such a goal, one must have an accurate 29 
description of both past and current climate conditions. The climate system is a complex machine 30 
which is known to fluctuate at very small time scales but also at large ones over multiple decades or 31 
centuries (Beck et al. 2007). It is necessary to study meteorological series as long as possible in order 32 
to catch all sources of variability and fully cover the large panel of possible meteorological situations. 33 
Regarding weather extremes, the same need arises as estimating return levels associated to large 34 
return periods cannot be successfully done without long climatic records (e.g. Moberg et al., 2006; 35 
Van den Besserlaar et al., 2013). This comment also applies to all statistical analyses on any derived 36 
variable, such as river discharge, for which multiple meteorological drivers come into play and for 37 
which extreme events correspond to the combination of very specific and atypical meteorological 38 
conditions. 39 

 40 

https://doi.org/10.5194/hess-2019-557
Preprint. Discussion started: 16 December 2019
c© Author(s) 2019. CC BY 4.0 License.



2 
 

Using weather generators, long simulations of weather variables provide accurate descriptions of the 41 
climate system and can be used for natural hazard assessments. Among the large panel of existing 42 
weather generators, stochastic ones are used to construct, via a stochastic generation process, single 43 
or multisite time series of predictands (e.g. precipitation, temperature) based on the distributional 44 
properties of observed data. These characteristics, and consequently the weather generator 45 
parametrisation, are usually determined on a monthly or seasonal basis to take seasonality into 46 
account. They can also be estimated for different families of atmospheric circulation, often referred 47 
to as weather types. A state of the art of the most common methods which have been used for the 48 
downscaling of precipitation (single or multi-site) is presented in Wilks (2012) or in Maraun et al., 49 
(2010). More recent publications gather detailed reviews of some sub-categories of weather 50 
generators (e.g. Ailliot et al., 2015 for hierarchical models). An increasing number of studies focuses 51 
on the generation of multivariate and/or multi-site series of predictands (e.g. Steinschneider and 52 
Brown, 2013; Srivastav and Simonovic, 2015; Evin et al. 2018a; Evin et al. 2018b). Stochastic weather 53 
generators are able to produce large ensembles of weather time series presenting a wide diversity of 54 
multiscale weather events. For all these reasons, they have been used for a long time to enlighten 55 
the sensitivity and possible vulnerabilities of socio-eco-systems to the climate variability (Orlowsky et 56 
al. 2010) and to weather extremes.  57 
 58 
Another family of models used for the generation of weather sequences is the analogue method. 59 
Since the description of the concept of analogy by Lorenz (1969), the analogue method has gained 60 
popularity over time for climate or weather downscaling. This analogue model strategy has been 61 
applied in many studies (Boe et al., 2007; Abatzoglou and Brown, 2012; Steinschneider and Brown 62 
2013) and has been used to address a wide range of questions from past hydroclimatic variability 63 
(e.g. Kuentz et al, 2015; Caillouet et al., 2016) to future hydrometeorological scenarios (e.g. Lafaysse 64 
et al., 2014; Dayon et al., 2015). The standard analogue approach hypothesises that local weather 65 
parameters are steered by synoptic meteorology. A set of relevant large scale predictors is used to 66 
describe synoptic weather conditions. From the atmospheric state vector, characterizing the synoptic 67 
weather of the target simulation day, atmospheric analogues of the current simulation day are 68 
identified in the available climate archive. Then, the analogue method makes the assumption that 69 
similar large scale conditions have the same effect on local weather. The local or regional weather 70 
configuration of one of the analogue days is then used as a weather scenario for the current 71 
simulation day. The key element of the analogue method is that it does not require any assumption 72 
on the probability distributions of predictands. This is a noteworthy advantage for predictands, such 73 
as precipitation, which have a non-normal distribution with a mass in zero. Most of the studies using 74 
analogues focused on precipitation and temperature either for meteorological analysis (Chardon, 75 
2014; Daoud, 2016), or as inputs for hydrological simulations (Marty, 2012; Surmaini et al., 2015). 76 
Nevertheless, analogues are increasingly used for other local variables such as wind, humidity 77 
(Casanueva et al., 2014) or even more complex indices (e.g. for wild fire, Abatzoglou and Brown, 78 
2012). When multiple variables are to be downscaled simultaneously, another major advantage of 79 
the analogue method is that the different predictands scenarios are physically consistent and the 80 
simulated weather variables are bound to reproduce the correlations between the variables (e.g. 81 
Raynaud et al., 2017) and sites (Chardon et al., 2014). Indeed, when analogue models use the same 82 
set of predictors (atmospheric variables and analogy domains) for all predictands, all surface weather 83 
variables and sites are sampled simultaneously from the historical records, thus preserving inter-site 84 
and inter-variable dependency.  85 
 86 
The two simulation approaches (stochastic weather generators and analog methods) described 87 
above present some important advantages for the generation of long weather series but also some 88 
sizeable drawbacks. Indeed, stochastic weather generators rely on strong assumptions on the 89 
statistical distributions of predictands. Identifying the relevant mathematical representations of the 90 
processes and achieving a robust estimation of their parameters can be difficult, especially if the 91 
length of the meteorological records is short. Modelling the spatial-temporal dependency between 92 
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variables/sites is an additional challenge. Conversely, for the analogue-based approaches, the 93 
identification of relevant atmospheric variables providing good prediction skills is not 94 
straightforward. The limited length of local weather records is also a critical issue since resampling 95 
past observations restricts the range of predicted values. In particular, the simulation of unobserved 96 
values of predictands is not possible. This can be problematic if one is interested in estimating 97 
possible extreme values of the considered variable. Furthermore, the information on synoptic 98 
atmospheric conditions required by analog methods are generally coming from atmospheric 99 
reanalyses, which also have a limited temporal coverage (e.g. from the beginning of the 20th century 100 
for ERA20C, Poli et al., 2013) and from the mid-19th century for 20cr (Compo et al. 2011). The length 101 
of the generated time series is thus typically bounded by the length of the reanalyses.  102 
 103 
In this study we propose a weather generator (hereafter SCAMP+) building upon the SCAMP 104 
approach presented by Chardon et al. (2018) and making use of reshuffled atmospheric trajectories, 105 
following some of the developments by Buishand and Brandsma (2001) and Yiou et al. (2014). The 106 
weather scenarios generated by SCAMP being limited by the coverage of the climate reanalyses, the 107 
SCAMP+ model extends the pool of possible atmospheric trajectories. Using random transitions 108 
between past atmospheric sequences, SCAMP+ generates unobserved atmospheric trajectories, on 109 
which the 2-stage SCAMP approach can be applied. By exploring a wide variety of atmospheric 110 
trajectories, SCAMP+ introduces some additional large-scale variability which improves the 111 
exploration of possible weather sequences. In addition, as done in SCAMP (Chardon et al., 2018), the 112 
SCAMP+ approach includes a simple stochastic weather generator which is estimated, for each 113 
generation day, from the nearest atmospheric analogs of this day. These two steps (random 114 
atmospheric trajectories and random daily precipitation/temperature values) improve the 115 
reproduction of extreme values, overcoming previous limitations of analog-based weather 116 
generators, usually known to underestimate observed precipitation extremes. 117 
 118 
These developments are carried out for the exploration of hydrological extremes (extreme floods) of 119 
the Aare River basin in Switzerland (Andres et al. 2019a,b). Meteorological forcings, i.e. temperature 120 
and precipitation, are thus simulated to be used as inputs of a hydrological model, for different sub-121 
basins of the Aare river basin. Meteorological simulations from SCAMP+ have been used in the Swiss 122 
EXAR project1 and have proven its ability to estimate the discharge values associated to very large 123 
return periods on the Aare River. In section 2, we describe in details the test region, the data and 124 
three simulation approaches (a classical analogue method, referred to as ANALOGUE, SCAMP and 125 
SCAMP+). Section 3 presents the main results on both climatological characteristics and extreme 126 
values. Section 4 sums up the main outputs of this study and proposes some further developments 127 
and analysis. 128 
 129 

 130 

3. Data and Method 131 

3.1 Studied region 132 

This study is carried out on the Aare River basin which covers almost half of Switzerland (17,700 133 

km²). The topography varies greatly within the basin with, on one hand, high mountains on its 134 

southern part (maximum altitude of 4270 m, Finsteraarhorn) and on the other hand, plains on the 135 

northern part (minimum altitude of 310 m). These different characteristics coupled with the basin 136 

being located at the crossroads of several climatic European influences give a wide diversity of 137 

possible weather situations across the year.  138 

                                                           
1
 https://www.wsl.ch/en/projects/exar.html 
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 139 

3.2 Atmospheric reanalysis and local weather data 140 

The application of the analogue method requires a long archive providing an accurate description of 141 

both past synoptic weather patterns and local atmospheric conditions.  Indeed, a wide panel of 142 

meteorological situations available for resampling is necessary in order to identify the best analogs 143 

for the simulation (e.g. Van Den Dool et al., 1994 ; Horton et al., 2017). In most studies, synoptic 144 

situations are provided by atmospheric reanalyses. Here, we use the ERA-20C atmospheric reanalysis 145 

(Poli et al., 2013) which provide information on large scale atmospheric patterns on a 6 h basis from 146 

1900 to 2010. Data are available at a 1.25° spatial resolution. More specifically, the set of predictors 147 

used for the identification of atmospheric analogues is made of the geopotential height at 500 and 148 

1000 hPa, the vertical velocities at 600 hPa, large scale precipitation and temperature. The 149 

justification of these choices will be given in section 3.3.1.  150 

The local and surface weather parameters of interest are retrieved from 105 weather stations for 151 

precipitation and 26 weather stations for temperature, which are spread out homogeneously over 152 

our target region, as presented on Figure 1. These data are available at a daily time step from 1930 to 153 

2014. They have been spatially aggregated in order to obtain daily time series of mean areal 154 

precipitation (MAP) and temperature (MAT) for the Aare region. The three weather generators 155 

considered in this study aims at producing scenarios of daily time series of MAP and MAT. It can be 156 

noticed that many applications of analogue-based approaches produce simulations at specific 157 

weather stations. However, as shown by Chardon et al. (2016) for France, the prediction skill is 158 

significantly improved when the prediction is produced for areal averages, which motivates the 159 

generation of MAP and MAT values in this study. 160 

 161 

 162 

Fig.1: The Aare River basin (red) and locations of the different precipitation (dots) and temperature 163 

(triangles) stations. 164 

 165 
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3.3 Description of the three models 166 

This section presents the three different models considered and evaluated in this study.  167 

 168 

3.3.1 ANALOGUE: Classical analogue model 169 

The most basic model evaluated in this study, hereafter referred to as ANALOGUE, relies on a 170 

standard 2-level analogue method. For each day of the simulation period, a first set of analogue 171 

dates is selected based on the predictors described in Raynaud et al. (2017) which guarantees both 172 

inter-variable physical consistency and good predictive skills for 4 predictands (precipitation, 173 

temperature, solar radiation and wind). In the present work, the predictors are defined as follows: 174 

- The first level of analogy is based on daily geopotential heights at 1000 hPa and 500 hPa (HGT1000, 175 

HGT500) as proposed by Horton et al. (2012) and Raynaud et al. (2017). From September to May, the 176 

analogy is based on the geopotential fields on both the current day D and its following day D+1 at 177 

12UTC. Thereby, the motions of low-pressure systems and fronts are better described and the 178 

prediction skill of the method for precipitation is improved (e.g. Obled et al. 2002; Horton and 179 

Brönnimann, 2019). In summer, only the geopotential fields on the current day are used as no similar 180 

improvement could be found with a two-day analogy. 100 analogues are selected for each day of the 181 

target period. 182 

- The predictors selected for the second level of analogy derive from the best predictors sets 183 

identified in Raynaud et al. (2017). From September to May, they are the vertical velocities at 600 184 

hPa and the large scale temperature at 2 meters. In summer, the vertical velocities but also other 185 

predictors such as the Convective Available Potential Energy (CAPE) led to a rather poor prediction of 186 

precipitation due to the coarse resolution of the atmospheric reanalysis, which prevent it from 187 

providing an accurate simulation of convective processes. Consequently, large scale precipitation 188 

from the reanalysis has been used instead, resulting in predictive skills similar to the ones obtained 189 

for the rest of the year. This second analogy makes a sub-selection of 30 analogues within the 100 190 

analogues identified in the first analogy level.  191 

The dimensions and position of the different analogy windows used to compute the analogy 192 

measures are presented on Figure 2. They follow the recommendations for the analogy windows 193 

optimisation presented in Raynaud et al. (2017) for all predictors.  194 

With this 2-step analogy, 30 scenarios of daily MAP and daily MAT are generated for each day of the 195 

simulation period (1900-2010). Combined with the Schaake Shuffle method described in section 196 

3.3.4, the application of the ANALOGUE model leads to 30 scenarios of 110-year time series of daily 197 

MAP and MAT.  198 
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 199 

Fig.2: Positions and dimensions of the analogy windows in the analogue model at both analogy levels. Z500, 200 

geopotential at 500 hPa ; Z1000, geopotential at 1000 hPa ; VV600, vertical velocities at 600 hPa ; P, 201 

precipitation ; T, temperature. 202 

 203 

3.3.2 SCAMP: Combined analog / generation of MAP and MAT values 204 

The SCAMP model enhances the previous approach ANALOGUE which is not able to generate daily 205 

values exceeding the range of observed precipitation and temperature. SCAMP combines the 206 

analogue method with a day-to-day adaptive and tailored downscaling method using daily 207 

distributions adjustment (Chardon et al. 2018). 208 

For each prediction day, the following discrete-continuous probability distribution proposed by Stern 209 

and Coe (1984) is fitted to the 30 MAP values obtained from the atmospheric analogues of this day: 210 

𝑭𝒀(𝒚) = (𝟏 − 𝝅) + 𝝅 ∙ 𝑭𝑮𝑨(𝒚|𝒚 > 𝟎, 𝜶, 𝜷),      (1) 211 

where π is the precipitation occurrence probability, 𝐹𝐺𝐴 is the gamma distribution parameterized 212 

with a shape parameter 𝛼 > 0  and a rate parameter 𝛽 > 0. The π parameter is directly estimated by 213 

the proportion of dry days, and the parameters 𝛼, 𝛽 of the gamma distribution are estimated by 214 

applying the maximum likelihood method to the positive precipitation intensities among the 30 MAP 215 

values. 30 MAP values are then sampled from the distribution model (1) in order to obtain 216 

unobserved values of precipitation, possibly beyond past observations. When there are less than 5 217 

positive MAP intensities in the analogues, we simply retrieve the MAP analog values. This distribution 218 
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model corresponds to a simplified version of the combined analog/regression model described in 219 

Chardon et al. 2018 and we refer the reader to this paper for further information. 220 

Similarly, for each prediction day, a Gaussian distribution 𝐹𝑁(𝜇, 𝜎) is fitted to the 30 MAT values 221 

obtained from the analogues. A sample of 30 new MAT values is then generated from this fitted 222 

Gaussian distribution. 223 

As for the ANALOGUE approach, the Schaake Shuffle reordering method is applied to the daily 224 

scenarios obtained from SCAMP. 30 scenarios of 110-year time series of daily MAP and MAT are 225 

produced. 226 

 227 

3.3.3 SCAMP+ 228 

As mentioned previously, the first limitation of the analogue method is related to the length of the 229 

synoptic weather information that is used to generate local predictands time series. In the present 230 

case, the length of time series that can be produced with the models ANALOGUE and SCAMP is 231 

limited to 110-year long weather scenarios.  232 

 233 

In SCAMP+, we extend the archive of synoptic weather information by rearranging the synoptic 234 

weather sequences, thus creating new atmospheric trajectories, used in turn as inputs to SCAMP. 235 

This generation of new trajectories makes use of atmospheric analogues, following those of the 236 

principles proposed in the weather generators described by Buishand and Brandsma (2001) and Yiou 237 

et al. (2014). For any given day, the atmospheric synoptic weather is considered to have the 238 

possibility to change its trajectory. The main hypothesis of this generation module is that if two days 239 

J and K are close atmospheric analogues with atmospheric patterns heading in the same direction, 240 

then their “future” are exchangeable and one could jump from one atmospheric trajectory to the 241 

other. In other words, day J+1 is a possible future of day K and conversely day K+1 is a possible future 242 

of day J.  The probability p to jump from one trajectory to any other is considered as a parameter to 243 

estimate.  244 

 245 

The principle of a random atmospheric trajectory generation is sketched on Figure 3. In the present 246 

work, the only predictor involved to compare the synoptic atmospheric configuration between 2 247 

different days is the geopotential height field at 1000 hPa, for both the present day and its followers. 248 

The spatial analogy domain is the one used in Philipp et al. (2010) for the identification of Swiss 249 

weather types. The first line of Figure 3 presents an observed atmospheric trajectory in HGT1000 250 

from February 8th to February 12th 1934. On the February 9th, we look for analogues of the current 251 

day and its following day D+1. This is done to ensure that the two initial states are similar (high 252 

pressure system located over France on February 9th 1934 and on its analogue, January 28th 1921) 253 

and that the main features move in similar directions (high pressure system heading South-East on 254 

both February 10th 1934 and January 29th 1921).  255 

 256 

Practically, the five best analogues of the current atmospheric 2-day sequence are identified and one 257 

of those sequences is then selected with a probability p to generate the new day of the new 258 

trajectory. The same method is repeated for this new day to find its future day (as illustrated in 259 

Figure 3 for the sequence January 30th 1921 - February 12th 1925) and extend the new trajectory with 260 
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one additional day. This process is repeated as long as necessary. In the present work, it was used to 261 

generate a 1000-year trajectory of daily synoptic weather situations. Rather large differences 262 

between the synoptic weather situation can be obtained after some days between the observed 263 

atmospheric sequence (e.g. February 12th 1934) and the random atmospheric trajectory (February 264 

12th 1925). As we will show later on, such a method leads to higher weather variability at multiple 265 

time scales. 266 

 267 

To insure that two consecutive days of the generated sequences belong to the appropriate season, 268 

the five 2-day analogue sequences are identified within a +/-15-day moving window centred on the 269 

calendar day of the target simulation day (e.g. all June days if the target day is xxxx-06-15th).  270 

 271 

 272 
Fig.3: Construction of a new 5-day atmospheric trajectory from an observed synoptic weather sequence. 273 

Each sub-figure presents the geopotential at 1000hPa on the domain of interest. The black squares and 274 

arrows give the new atmospheric trajectory and the blue shading highlights the two-day analogue that helps 275 

“changing of atmospheric direction”.   276 

 277 

The transition probability p from one observed trajectory to another indirectly determines the level 278 

of persistency of synoptic configurations. In this study, it has been calibrated in order to guarantee a 279 

good climatology of the large scale atmospheric sequences. To do so, we analysed the mean 280 

frequency and duration of each of the 9 weather types proposed for Switzerland by Philipp et al. 281 

(2010) in the observed synoptic series and in different reconstructed ones for transition probability p 282 

ranging from 1/10 (one transition every 10 days in average) to 1 (one transition per day in average). 283 

The results presented on Figure 4 shows that a transition probability of 1/7 is necessary to generate 284 

atmospheric trajectories that present a relevant persistency within each weather type.  285 
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 286 

Fig.4: Mean persistency of each of the 9 weather types (indicated by the different circles in each panel), as 287 

defined by Philipp et al. (2010), in the observed time series and in the simulated ones for transition 288 

probabilities ranging from 1 to 1/10 for the generation of atmospheric trajectories. 289 

 290 

The long time series of synoptic weather generated with the above approach is further used as 291 

inputs to the SCAMP generator described in the previous section. The SCAMP+ approach leads to 30 292 

scenarios of daily MAP and MAT, each of these scenarios being based on the 1000-year random 293 

atmospheric trajectories sequence. The output of this approach, combined with the Schaake Shuffle 294 

method described in the next section, is thus composed of 30 scenarios of 1000-year time series of 295 

daily MAP and MAT.  296 

 297 

3.3.4 Temporal consistency: Application of the Schaake Shuffle 298 

For each model (ANALOGUE, SCAMP and SCAMP+), 30 scenarios of daily MAP and MAT are 299 

produced. To improve the temporal/physical consistency between two consecutive days or between 300 

the temperature and precipitation scenarios (partially induced by the synoptic weather series), we 301 

use the Schaake Shuffle method initially proposed by Clark et al. (2004). This method makes use of 302 

both the inter-variable physical and the intra-variable temporal consistency in observations to 303 

combine, at best, the outputs of any weather generator and reconstruct consistent predictands time 304 

series. It is particularly useful if one is interested in generating relevant precipitation accumulation 305 

scenarios over several days. A full description of the Schaake Shuffle method can be found in Clark et 306 

al. (2004) and some applications can be found in Bellier et al. (2017) or in Schefzik (2017). Here, the 307 

Schaake Shuffle consists in modifying the sequences of MAP and MAT values, preserving the 308 
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association of the ranks of MAP and MAT and rearranging sequences between days D and D+1. 309 

Shuffled MAP and MAT sequences between consecutive days then have similar associations than 310 

what has been observed. In this study, we give priority to the temporal consistency of precipitation 311 

first. Temperature scenarios are recombined in a second step. 312 

The different components of the models ANALOGUE, SCAMP and SCAMP+ are summarized in Figure 313 

5. 314 

 315 

 316 

Fig.5: Illustration of the different steps applied (grey boxes) with models ANALOGUE, SCAMP and SCAMP+. 317 

Outputs obtained after each step are indicated in red.  318 

 319 

4. Results 320 

This section presents different statistical properties of the scenarios obtained with the 3 models and 321 

discusses the performances of each model by comparison with observed statistical properties. For 322 

the sake of consistency between the outputs, we compare the 30 scenarios of 111 years obtained 323 

from ANALOGUE and SCAMP to 300 scenarios of 100 years from SCAMP+ (i.e. each scenario of 1,000 324 

years is divided into 10 scenarios of 100 years). 325 

4.1 Climatology 326 

For both temperature and precipitation, the 3 models lead to an accurate simulation of their 327 

seasonal fluctuations (Figure 6). However, one can notice the slight overestimation of winter 328 
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temperature and an underestimation of July and August precipitation. SCAMP also tends to have a 329 

smaller inter-annual variability compared to ANALOGUE and SCAMP+. 330 

 331 

Fig.6: Observed and simulated seasonal cycles of temperature and precipitation for ANALOGUE, SCAMP and 332 

SCAMP+. The grey shadings present the inter-quantiles intervals. Simulated seasonal cycles are obtained 333 

using 30 scenarios of 111 years from ANALOGUE and SCAMP and 300 scenarios of 100 years from SCAMP+. 334 

The distributions of seasonal precipitation amounts and seasonal temperature averages are 335 

presented in Figure 7. Whatever the season, the three models are able to generate drier and wetter 336 

seasons than the observed ones (Figure 7a). The very similar results obtained for ANALOGUE and 337 

SCAMP suggest that the daily distribution adjustments used in SCAMP do not introduce more 338 

variability at the seasonal scale. SCAMP+ is able to generate seasonal values that significantly exceed 339 

the maximum values simulated by ANALOGUE and SCAMP (by 100 mm to 200 mm). This strongly 340 

suggests that a large part of the seasonal variability comes from the variability of the synoptic 341 

weather trajectories, the unobserved weather trajectories produced by SCAMP+ leading to a wider 342 

exploration of extreme seasonal values. 343 
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 344 

Fig.7a: Observed and simulated boxplots of seasonal precipitation amounts for ANALOGUE, SCAMP and 345 

SCAMP+ (Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November. 346 

Winter: December, January, February). 347 

The same comments can be made for spring and autumn temperatures (Figure 7b). For those 348 

variables however, SCAMP+ fails to simulate extremely hot summers or cold winters. This result is 349 

probably due to the non-stationary climate conditions experienced during the 20th century. Creating 350 

new atmospheric trajectories mixes synoptic sequences from the first half of the century with others 351 

from the early 2000s. The much coolest conditions prevailing until the 1980s result in few chances to 352 

generate seasonal temperature hotter than the 2003 summer for instance. This limitation will be 353 

further discussed in the next section. 354 
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 355 

Fig.7b: Observed and simulated boxplots of mean seasonal temperature for models ANALOGUE, SCAMP and 356 

SCAMP+ (Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November. 357 

Winter: December, January, February). 358 

 359 

4.2 Daily Precipitations Extremes 360 

 361 

As mentioned in section 1, simple analogue methods cannot simulate unobserved precipitation 362 

extremes at the temporal resolution of the simulation (here daily). Moreover, for higher aggregation 363 

durations, they also tend to underestimate observed precipitation extremes. Figure 8 presents the 364 

precipitation values obtained with the three models for different return periods (from 2 year to 200 365 

years) and different aggregation durations (from 1 to 5 days).  366 

 367 

Considering 1-day extreme events, ANALOGUE is obviously not able to generate precipitation 368 

accumulations that exceed the maximum observed one. Combining the analogue method with daily 369 

distribution adjustments (SCAMP) overcomes this issue with maximum values reaching 115 mm. 370 

SCAMP+ leads to similar results. 371 

 372 
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The large underestimation of daily extremes obtained with ANALOGUE leads to an important 373 

underestimation of 3-day and 5-day extremes. Despite a better simulation of daily values, SCAMP 374 

does not improve significantly the reproduction of 3-day and 5-day extremes. SCAMP+ outperforms 375 

both models for all durations, and generates precipitation extremes in agreement with observed 376 

extremes. Whatever the return period, the variability between the different 100-year scenarios is 377 

larger with SCAMP than with ANALOGUE and much larger with SCAMP+. This again suggests that 3 to 378 

5-day extreme events can arise from atypical synoptic conditions, possibly not available in a 110-year 379 

long weather archive. Thanks to the random atmospheric trajectories, SCAMP+ is able to generate 380 

such conditions. 381 

   382 

 383 

Fig.8: Return level analysis of extreme precipitation values associated to model ANALOGUE, SCAMP and 384 

SCAMP+ for accumulation over 1, 3 and 5 days. The grey shadings present the inter-quantiles intervals (30 x 385 

111-year scenarios for models ANALOGUE and SCAMP and 300 x 100-year scenarios for SCAMP+). 386 

 387 

 388 
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5. Discussion 389 

The different extensions of the classical analogue method introduced in this study aims at generating 390 

long regional weather time series without suffering from the main limitations of analogue models. 391 

Indeed, due to the limited extent of the observed time series and the impossibility to simulate 392 

unobserved daily scenarios, analogue models usually underestimate observed precipitation 393 

extremes. These limitations are relaxed by SCAMP+, the weather generator proposed in this study. 394 

SCAMP+ generates unobserved and plausible atmospheric trajectories, and, in addition, provides 395 

unobserved samples of temperature and precipitation using daily distribution adjustments. Such a 396 

generation process explores a larger weather variability at multiple time scales, which leads to a 397 

better reproduction of extremes.  398 

 399 

SCAMP+ is obviously not free of limitations.  A first issue is relative to the quality of observations 400 

used in the model, especially at the synoptic scale. ERA20C reanalyses used here are produced using 401 

sea level pressure and wind measurements only. This guarantees a certain quality of the geopotential 402 

at 1000 hPa. The quality of 500 hPa data and of the other predictors is conversely questionable 403 

(namely large scale temperature, precipitation and vertical velocities), as they do not beneficiate 404 

from the assimilation of observed data. This may impact the quality of the downscaling method. For 405 

instance, this could explain why the mean seasonal cycle of monthly precipitation is not well 406 

reproduced in our results (see for instance the underestimation of the mean precipitation in August). 407 

Using higher quality data is expected to partly address such limitations. Indeed, using ERA-Interim 408 

reanalyses (Dee et al, 2011) instead of ERA20C removes the biases and mis-reproductions mentioned 409 

above (not shown), a much larger panel of weather observations being assimilated in ERA-Interim. 410 

However, ERA-Interim covers a much smaller time period than ERA20C (roughly 50 years). Using ERA-411 

Interim for our simulations would make the panel of observed synoptic situations much less 412 

representative of possible ones, and would impact the ability of our model to generate long-term 413 

climate variability. Similarly, the regional predictands time series are based on 105 weather stations 414 

for precipitation and 26 weather stations for temperature. The representativeness of this 415 

information is also questionable, especially if one is interested in looking at precipitation and 416 

temperature extreme events. However, this large number of stations leads to the best possible 417 

estimations of these regional variables that can be achieved currently. 418 

 419 

Some other questions remain open, such as the difficulties encountered by SCAMP+ concerning the 420 

generation of very hot summers or very cold winters. It is very likely related to the temperature 421 

increase experienced over the 20th century, which appears clearly when looking at the hottest 422 

summers and the coldest winters. The new weather associations made by the random atmospheric 423 

trajectories are mixing days from the 1900s with other from the 2000s, their geopotential analogy 424 

being their only selection criteria. This could result in less chance to generate very hot summers (as 425 

observed in 2003) or very cold winters (as experienced in 1963). A possible improvement of the 426 

method could be to detrend the temperature data and perform the analysis presented in this study 427 

on "stationarized" temperature data (similarly to Evin et al., 2018b, see their section 2.2.1). 428 

 429 

All in all, SCAMP+ weather generator paves the way for more developments and applications. As part 430 

of the EXAR project (see acknowledgments), the model was coupled with a spatial and temporal 431 

disaggregation model and fed a hydrological model in order to generate long series of discharge data 432 
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(Andres et al., 2019a,b). Additional evaluations on the inter-variable co-variability showed that the 433 

physical consistency between temperature and precipitation is well reproduced in our simulations 434 

and that the model thus efficiently simulates the precipitation phase and the statistical 435 

characteristics of liquid/solid precipitation. SCAMP+ has a low computational cost and is able to 436 

generate multiple weather sequences which are consistent with possible trajectories of large scale 437 

atmospheric conditions, which motivates future applications to other regions and local weather 438 

variables.  439 

 440 
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research with direct access to archive data of MeteoSwiss ground-level monitoring networks. 444 

However, the acquired data may not be used for commercial purposes (e.g., by passing on the data 445 

to third parties, by publishing them on the internet). As a consequence, we cannot offer direct access 446 

to the data used in this study. Atmospheric predictors are taken from the European Centre for 447 

Medium-Range Weather Forecasts (ECMWF) ERA20C atmospheric reanalysis (Poli et al., 2013), 448 
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