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1. Abstract

Natural risk studiesuch as flood risk assessmemequire long series of weather variableAs an
alternative to observed series, which have a limited lengtiese datacan beprovided by weather
generatos. Among the large variety of existing ones, resampling methods basexthalogues have
the advantage of guaranteeing the physical consisydretween localveathervariables at each time
step. However, they cannot generate values of predictands exceeding the range of observed values.
Moreover, the length of the simulated ses istypicaly limited to the length of the synoptic
meteorologcal records used to characterize the larggcale atmospheric configuration of the
generation day To overcome thselimitations, the stochastic weather generatqgroposed in this
study combinestwo samplingapproachesbhased on atmospheric analogues: 1) a synoptic weather
generator in a first step which recombines daysf the 20" century to generatea 1,000-year
sequenceof new atmospheric trajectories and 2) a stochastic downscalindefrio a second step
applied to these atmospheric trajectoriegn orderto simulatelong time series of dailyegional
precipitation and temperatureThe methods applied todailytime series of mean areal precipitation
and temperature in Switzerlandt is shown that he climatological characteristics abserved
precipitation and temperatureare adequately reproducedit alsoimprovesthe reproduction of
extreme precipitation values, overcoming previous limitations of standard anelbgsed weather
generators

2. Introduction

Increasing the resilience of soegonomic systems to natural hazards and identifying the required
FRIFLIWGFGA2Yya A& 2yS 27T (2 Rdgodd Pne Onkist haleSaf h&drate ¢ 2
description ofboth past andcurrent climate conditions. The climate system is a complex machine
which is known to fluctuate at very small time scales but also at large ones over multiple decades or
centuries(Beck et al. 2007 It is necessary to study meteorological series as long as possibtder

to catch all sources of variability and fully cover the large panel of possible meteorological situations.
Regarding weather extremes, the same need arises as estimating return levels associated to large
return periods cannot be succesdfutione without long climatic records (e.g. Moberg et al., 2006

Van den Besserlaar et al., 2013). This comment also applies to all statistical analyses on any derived
variable, such as river discharge, for which multiple meteorologidaers come into play ad for

which extreme events correspond to the combination of very specific atypical hydro-
meteorologicalkconditions
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Using veather generatorslong simulationsof weather variableprovideaccurate descriptions of the
climate systemand can be used fanatural hazardassessments. Among the large panel of existing
weather generators, stochastic ones are used to construct, via a stochastic generation process, single
or multisite time series of predictandg.g. precipitation, temperaturepased on the disibutional
properties of observed data. These characteristics, and consequently the weather generator
parametrisation, are usually determined on a monthly or seasonal basis to take seasonality into
account. They can also be estimated for different farilié atmosphericirculation often referred

to as weather types. A state of the art of the most common methods which have been used for the
downscaling of precipitation (single or mdite) is presented in Wilk&012 or in Maraun et al.,
(2010. More recent publications gather detailed reviews of some -sabegories of weather
generators €.g.Ailliot et al., 2015or hierarchical models). An increasing number of studies fegus

on the generation of multivariate and/or muisite series of predictandg.g. Steinschneider and
Brown, 2013; Srivastav and Simonovic, 2@Ehbn et al. 2018Evin et al. 2018b Stochastic weather
generators are able to produce large ensembles of weather time series presenting a wide diversity of
multiscale weather events.oF all these reasons, they have been used for a long time to enlighten
the sensitivity and possible vulnerabilities of seemm-systems to the climateariability (Orlowsky et

al. 2010 and to weather extremes.

Other models used fothe generaton of weather sequencesare based orthe analogue method.
Since the description of the concept of analogy by Lo(@889, the analogue method has gained
popularity over time for climate or weather downscalinthis analogue model strategy has been
applied inmary studies(Boe et al. 2007 Abatzoglou and Browr2012, Steinschneider and Brown
2013 and has been used to address a wide range of questions from tpagbclimaticvariability

(e.g. Kuentz et al, 201&aillouet et al., 201@0o future hydrometeorologicakcenarioqe.g. Lafaysse

et al., 2014 Dayon et al., 2015 The standardanalogue approach hypothesises that local weather
parameters are steered by synoptic meteorology. Aceklevant large scalatmosphericpredictors

is used to dscribe synoptic weather conditions. From the atmospheric state vector, characterizing
the synoptic weather of the targetimulationday, atmosphericanalogueof the current simulation
dayare identified in the available climate archive. Then, the anaagethod makes the assumption
that similar large scalatmosphericconditions have the same effexobn local weatherThe local or
regional weather configuration of one of the analogue days is then usedwasather scenario for

the current simulation dayThe key element of the analogue method is that it does not reqaimg
assumption on the probability distributions of predictands. This is a noteworthy advantage for
predictands, such as precipitation, which have a-nommal distribution with a mass irem. Most of

the studies using analogues focused on precipitation and temperature either for meteorological
analysis(Chardon, 204; Daoud, 201K or as inpus for hydrological simulationgMarty, 2012
Surmaini et al., 200)5Nevertheless, analogues are increasingly used for other local variables such as
wind, humidity(Casanueva et al., 20Ldr even more complex indicgs.g. forwild fire, Abatzoglou

and Brown, 2012 When multiple variables are to be downscaled simultarsdy, another major
advantage of the analogue method is that the different predictarsdenarios are physically
consistent and the simulated weather variables are bound to reproduce the correlations between
the variables(e.g. Raynaud et al., 20L@nd sies (Chardon et al.2014). Indeed,when analogue
modek usethe same set of predictors (atmospheric variables and analogy domains) for all
predictands, all surface weather variablasd sites aresampled simultaneously from the historical
records, thus preserving intersite and intervariable dependency

The two simulation approachegstochastic weather generators and analegnethods)described
abovepresent some important advantages for the generation of long weather series but also some
sizeable drawbacks. Indeed, stochastic weather generators rely on strong assunglimuisthe
statistical distributions of predictand$dentifying the relevanmathematical representations of the
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processesand achieving a robust estimation tfeir parameters can be difficyltespeciallyif the
length of the meteorological records is shoModelling the spatiatemporal dependency between
variables/sites isoften another challenge.Conversely, dr the analoguebased approaches, the
identification of relevant atmospheric variableproviding good prediction sk is not
straightforward The limited length of local weather records is also a critical issueeresampging
pastobservations restrictthe range of predicted valuesn particular,the simulation ofunobserved
values of predictandss not possibleThis can be problematic if one is interesteddstimating
possible extreme valuesof the considered variableFurthermore, the information on synoptic
atmospheric conditions required by analoge methods are generally comingrom atmospheric
reanalyseswhich also have a limite@mporal coverage (e.g. from thbeginning of the 20 century
for ERA20(Poli et al., 2013xnd from themid-19" centuryfor 20cr (Compo et al. 2001 The length
of the generated time series is thus typically bounded by the length@feanalyses.

In this sty we propose a weather generator (hereaft&CAMP) building umpn the SCAMP
approach presented by Chardon et @018 and making use ofeshuffledatmospheric trajectories
following some of the developmentby Buishand and Brandsnf2001) and Yiou et al(2014). The
weather scenariogienerated by SCAMBinglimited bythe coverage of the climate reanalysdbe
SCAMP+model extends the pool of possible atmospheric trajectorieflsing random transitions
between past atmospherisequences SCAMP-generates unobservedatmospheric trajectories, on
which the 2stage SCAMP approach can be appliBy. exploring a wide variety of atmospheric
trajectories, SCAMP+ introduces some additional lacpde variability which improves the
exploration of possible weather sequencés.addition,as done in SCAMEhardon et a] 2018), the
SCAMP+ approach includes a simple stochastic weather generator which is estimated, for each
generation day, from the nearest atmospheric analeg of this day. Thee two steps (random
atmospheric trajectories and random daily precipitationfiperature values)improve the
reproduction of extreme values, overcoming previousnitations of analogie-based weather
generatorsusually known to underestimate observed precipitation extremes

These developments are carried dot the exploration of hydrologicagxtremes (extreme floodsf

the AareRiverbasinin SwitzerlandAndres et al. 2019a,bMeteorological forcings, i.demperature

and precipitation are thus simulated to be used as inpofsa hydrological model, for differersub-
basinsof the Aare riveibasin.Meteorological Bnulationsfrom SCAMPHave been used in the Swiss
EXAR projettand have proven its ability to estimate the discharge valuessociated to very large
return periods on the Aare Riven section 2, walescribe in details the test region, the data and
three simulation approaches d classical analogue methorkferred to asANALOGUESCAMPRand
SCAMP). Section 3 presents the main results on both climatological charadtsriahd extreme
values. Sectiod sums up the main outputs of this study and proposes some further developments
and analysis.

3. Data and Method

3.1 Studied region

This study is carried out on the Aare River basin which covers almost half of Switzerland (17,700
km?2). The topography varies eatly within the basin with, on one hand, high mountains its
southern part(maximum altitude of 4270 m, Finsteraarhorn) and on the other hand, plains on the

! https:/Mww.wsl.ch/en/projects/exar.html
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northern part (minimum altitude of 310 m). These different characteristics coupled with tha basi
being located at the crossroads of several climatic European influences give a wide diversity of
possible weather situations across the year.

3.2 Atmospheric reanalysis and local weather data

The application of the analogue method requireag archive poviding an accurate description of

both past synoptic weather patterns and local atmospheric conditibndeed a wide panel of
meteorological situations available for resamplisghecessary in order to identifige best analoges

for the simulation €.g. Van Den Dool et al1994; Horton et al., 201). In most studies, synoptic
situations are provided bgtmospheric reanalysesiere, we use the ER20C atmospheric reanalysis
(Poli et al., 201Bwhich provide information on large scale atmospheric patterns on a 6 h basis from
1900 to 2010. Data are available at a 1.25° spatial resolution. More specifically, the set of predictors
used for the identification of atmospheric analogues is made ofgepotential height at 500 and

1000 hPa, the vertical velocities at 600 hPa, large scale precipitation and temperature. The
justification of these choices will be givensiection 3.3.1

The local and surface weather parameters of interest are retrieveh fLO5weather stations for
precipitation and 26wneather stations fortemperature which are spread out homogeneously over
our target region, as presented on &ig 1. These data are availableadaily time step from 1930 to
2014. They have been spatialaggregated in order to obtaidaily time series of mean areal
precipitation (MAP) and temperature (MAT) for the Aare region.The three weather generators
consideredin this study aims aprodudng scenariosof daily timeseries of MAP and MATh this
study, a scenarids defined asa possible realization of the climatystemunder current climate
condtions (.e. the climate observed for thepast few decadés It can be noticedthat many
applications of analogubased approaches producsimulations atspecific weather stations.
However, a shownby Chardon et al2016) for France the prediction skill isignificantlyimproved
when the prediction is produced for areal averagefich motivatesthe generationof MAP and
MAT values in this study
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Figl: The Aare River basin (red) and locations of the different precipitation (dots) and temperature
(triangles) stations

3.3 Description of the three models

This section presents the three different models considered and evaluated in this study.

3.3.1ANALOGUEIassical analogue model

The most basicmodel evaluatedin this study, hereafter referred to aBNALOGUEelies on a
standard 2level analogue method-or each day of the simulation period (19@010),analogue

days are identified from candidte days. The candidate days, extracted from the archive period, i.e.
the period on which both predictors and local observations are available (2800), are all days

of the archivdocatedwithin a 6tday calendar window centred on the target day. Tddakendar filter

is expected to account for the possible seasonality of the large scale / small scale downscaling
relationship. For instance, candidate days for Maj' 2800 are selected within the pool of days
ranging from April 18to June 14 of eachyear of the archive.

The predictoraused for the analogues selectidtieen choserbased on Raynaud et dR017). They
have been shown t@uarantee both intetvariable physical consistency and good predictive skills
according to theContinuous Ranked Prability Skill Score (CRPS8),4 predictands (precipitation,
temperature, solar radiation and windhn the present work, the predictorsonsidered for each level
for the two-level analogyare as follows

- The first level of analogy is based on daily geopotential heights at 1000 hPa and 500 hPa (HGT1000,
HGT500) as proposed Blorton et al.(2012 andRaynaud et al(2017). Theanalogy criterion used
here is theTewelegWobus score (TWS) proposed by Tewelrd Wobus (1954)This score has
been found to lead to higher performances than a more classical Euclididialahanobis distance

5
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(Kendall et al. 1983; Guilbault et Obled, 89%etterhall et al., 2005)It quantifies the similarity
between two geopotentl fieldsby comparing thei spatial gradients. It allowselecting dates that
have the most similar spatial patterns in termatmospheric circulationFrom September to May,
the analogy is based on the geopotential fields on both the current day Mtsafallowing day D+1 at
12UTC. Thereby, the motions tbdw-pressuresystems and fronts are better described and the
prediction skill ofthe method for precipitation is improvede(g. Obled et al. 2002; Hortoand
Bronnimann2019. In summer, only the ggmtential fields on the current day are used as no similar
improvement could be founavith a two-day analogy During this first analogy level00 analogues
are selected for each day of the target period.

- The second analogievelmakes a sulselection of 30 analogues within the 188alogues identified

in the first analogy levelThe analogy score used for the selection is the Root Mean Square Error
(RMSE)Fom September to Maythe predictorsare the vertical velocities at 600 ARand the large

scale temperature at 2 meters. In summer, the vertical velocities but also other predictors such as
the Convective Available Potential Energy (CAPE) led to a rather poor prediction of precipitation due
to the coarse resolution of the atmobpric reanalysiswhichprevent it fromprovidingan accurate
simulation of convective processeSonsequently, large scale precipitation from the reanalysis has
been usedasa predictorinstead, resulting in predictive skills similar to the ones obtaifvedhe rest

of the year.The different predictor sets retained for summer and the rest of the year illustrate the
differences typically observed between seasons for the maireteorological conditions and
processes.

The dimensions and position of the diffmt analogy windowsused to compute the analogy
measuresare presented on Fige 2. They follow the recommendatigrfor the analogy windows
optimisation presented in Raynaud et @017 for all predictors.

With this 2step analogy30 scenarios of dailMAP and daily MAdre obtainedfor each day of the
simulation period (19002010. Combined with the Schaake Shuffle method described in section
3.3.4, the application of thANALOGUBodel leads to 3@cenarios of 11@ear time series of daily
MAP andVAT.
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219 precipitation ; T, temperature.

220
221 3.3.2SCAMPCombined analoggenerationof MAP and MATValues

222 The SCAMP modednhancegshe previousANALOGUERpproachwhichis not ableto generate daily
223 values exceeding the range of observed precipitation and temperat8@AMPcombines the
224  analogue methodwith a dayto-day adaptive and tailored downscaling method usidgily
225 distributions adjustmen{Chardon et al. 2018)

226  For each predictioday,the followingdiscretecontinuous probability distributioproposed by Stern
227 and Coe (19845 fitted to the30 MAPvalues obtained from the atmospher@maloguesf this day

228 L ¢ Z Z3,-w hs h p

229 where "~ is the precipitation occurrencerobability, O is the gamma distribution parameterized
230 with a shape parameteér 11 and a rate parametdr 1. The™ parameteris directly estimated by
231 the proportion of dry daysand the parameters i of the gamma distributiorere estimatedby
232  applyingthe maximum kkelihood methodto the positive precipitationintensitiesamong the30 MAP
233 values 30 MAP values are then sampled from the distribution model (&) order to obtain
234 unobserved values of precipitation, possibly beyond past observatiien there are less than 5
235 positive MARnNtensitiesin the analogues, we simply retrieve tMAPanalog valuesThis distribution
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model corresponds to a simplified versiontbé combined analoge/regression model described in
Chardon et al. 2018nd werefer the reader to this paper for further information

Similarly, for each prediction day, a Gaussian distribut®@n h, is fitted to the 30MAT values
obtained from the analogues. sampk of 30 newMAT valuess then generatedfrom this fitted
Gaussiandistribution.

As forthe ANALOGURpproach the Schaake Shuffle reordering method is appliedhe daily
scenariosobtained from SCAMRB0scenarios of 11§ear timeseries of daily MAP and MAT are
produced.

3.3.3SCAMR

As mentionedpreviously the first limitation of the analogue method ielated tothe length of the
synoptic weather information that is used to generate local predictands time sénigdbe present
case the length of time series that can be produced witte models ANALOGUENd SCAMRs
limited to 110year longweather scenarios.

In SCAMP+, wextend the archive ofsynoptic weather informatiorby rearranging the synoptic
weather sequenceghus creating new atmospheric trajectoriesised in turn as inpsgtto SCAMP
This generation of new trajectoriesnakes use of atmospheric analoguésllowing those of the
principles proposed in theveather generators described Buishand and Brandsn{a001) and Yiou
et al. (2014. For any given day, the atmospheric synoptic weatherc@sidered to have the
possibilityto change its trajectory. The main hypothesis dhis generation modulds that if two days
Jand K are closeatmosphericanalogueswith atmosphericpatterns heading in the same direction,
0 KSy (KS ardlexchandabldaiddne ould jump from one atmospherictrajectory to the
other. In other words, day J+1 is a possible future of day K and conversely day K+1 is a possible future
of day JTheprobability p to jump from one trajectory to any other onsidered as @arameterto
estimate.

The principle of arandom atmospheric trajectgrgenerationis sketchedon Figire 3. In the present
work, the only predictor involvedo compare the synoptic atmospheric configuration between 2
different daysis the geopotential bight field at 1000 hRdor both the present day and its followers
The spatial analogy domain ithe one used in Philipp et ali2010 for the identification of Swiss
weather types. The first lineof Figure 3presents an observed atmospheric trajectony HGT1000
from February 8 to February 12 1934.0n theFebruary 8, we look for analogueof the current
day and its following day D+This is done to ensure that the two initial states are similar (high
pressure system located over France on Febr@ri934 and on its analogue, January"2921)
and that the main features move in similar directions (high pressure system headingBxsithn
both February 1 1934 and January 291921).

Practicallythe five best analoguesf the currentatmospheric2-day sequenceare identified and one
of those sequences is then selectedth a probabilityp to generate the new day of the new
trajectory. The same method isepeated for this new day to find its future dags(illustrated in

Figure Jor the sequencelanuary 30 1921- February 12 1925) and extend the new trajectory with

8
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one additional day. This process is repeated as long as necessary. In the present work, it was used to

generate a 100Qear trajectory of daily synoptic weathesituations. Rather large differences
between the synoptic weather situatiooan be obtained after some days betwe#re observed
atmospheric sequences(g. February 12 1934) and therandom atmospheric trajectory (February
12" 1925). As we will show later on, sue methodleads tohigherweather variabilityat multiple
time scales.

To insure that two consecutive days of the generated sequences belong &pfirepriate season,
the five 2day analogue sequences are identified within al%/day moving window centred on the
calendar day of the target simulation day (e.g. all June days if the target day-B6&XY).

1934-02-10 1934-02-12
=< S 5

1925-02-04
e =
2

Analogues

Analogues

Fig.3: Construction of a nes-day atmospheric tajectory from an obgrved synoptic weather sequence
Each suHigure presents the geopotential at 1000hPa on the domain of interest. The black squares and
arrows give the new atmospheric trajectory and the blue shading highlifite two-day analogue thahelps
GOKIYyaAy3d 2F FGY2AaLIKSNAO RANBOlUAZ2YEé®

Thetransition probabilityp from one observed trajectory to anothéndirectly determines the level

of persistency of synoptic configurations.this study it has been calibrated in order to guarantee a
good climatology of thdarge scale atmospherisequences. To do so, we analysed the mean
frequency and duration of each of the 9 weather types propok®dSwitzerlandby Philipp et al.
(2010 in the observed gyoptic series and in different reconstructed ones fi@nsition probabilityp
ranging from 110 (one transition every 10 dayia averag¢to 1 (one transition per dayn averagé.
The results presented on kige 4 shows that atransition probabilityof 1/7 is necessary to generate
atmospheridrajectoriesthat present a relevant persistenayithin each weather type
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Fig.4: Mean persistency of each of the 9 weather tyg@sdicated by the different circles in each panelas
defined by Philipp et al. (2010, in the observed time series and in the simulated ones ftransition
probabilitiesranging from 1 tol/10 for thegenerationof atmospheric trajectories.

The long time series of synoptic weather generated with the above approach is further used as

inputs to the SCAMBeneratordescribed in the previous section. The SCAMP+ appieads t030
scenarios of daiyAP and MAT, each of these scenarios being bagethe 1000year random
atmospherictrajectories sequenceThe output of this approach, combined with the Schaake Shuffle
method described irthe nextsection, isthus composed 080 scenarios 0000-year time series of
daily MAP and MAT.

3.3.4Temporal consistencpplication of theSchaake Shuffle

For eachmodel (ANALOGUESCAMP and SCAMPand each day of the simulation periog0
scenariosof daily MAP and MATare produced To improve thetemporal/physical consistency
between two consecutive days or between the temperature and precipitation scengraotially
inducedby the synoptic weather serigswe use theSchaake Shuffle methaditially proposed by
Clark et al(2004). Thismethod make use of both the intervariable physical and the intnaariable
temporal consistency in observations to combinebest, the outputs ofanyweather generator and
reconstruct consistent predictansl time series It is particularly useful if one is interested in
generating relevant precipitation accumulation scenarios over sewviags. A full description dhe
Schaake 18iffle method can be found in Clark et gR004) and some applicationcan be found in
Bellier et al.(2017 or in Schefzik(2017. Here, the Schaake Shuffle consists in modifying the

10
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sequences of MAP and MAT valugseservingthe association of theanks of MAP and MATand
rearranging sequences between day® and D+1 Shuffled MAP and MAT sequendastween
consecutive days then hawemilar associations than what has been obsertadhis study, we ge
priority to the temporal consistency of precipitah first Temperature scenarios am@combined in a
second step.

The different components of themodels ANALOGUE, SCAMP and SCAamMPsummarized in Figure
5.

ANALOGUE SCAMP SCAMP-+

ERA20C atmosphericreanalyses (111yrs)

Atmospheric
trajectories
eneration

Meteorogical synoptic time series
111 years: Analogue and SCAMP; 1,000 years : SCAMP+
]

Analogue-based downscaling

| |
MAP and MAT daily values
30 observed values for each generation day

Daily values sampling

Tt
MAP and MAT daily values
30 sampled values for each generation day

[
Schaake Shuffle reordering

MAP and MAT scenarios
30 scenarios of
111 years: Analogue and SCAMP; 1,000 years : SCAMP+

Fig.5 lllustration of the different steps applied (grey boxes) with models ANALOGUE, SCAMP and SCAMP+.
Outputs obtained after each step are indicated in red.

4. Results

This section presents different statistical properties of the scenarios obtained witB nhadelsand
discusses the performansef each model by comparison withbserved statistical propertied-or
the sake of consistency between the outputs, we compare the 30 scenaribslofears obtained
from ANALOGUE and SCAMP to 300 scenarios of 100 igarSCAMP+ (i.e. each scenario of 1,000
years is divided into 10 scenarios of 100 years).

4.1 Climatology

For both temperature and precipitationthe 3 modelslead to an accurate simulation of the
seasonalfluctuations (Figure 6) However, one can notice thslight overestimation of winter

11
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temperature andan underestimation of July and August precipitati®@CAMRalsotends tohave a
smallerinter-annual variabilitycompared toANALOGEand SCAMP,

ANALOGUE SCAMP SCAMP+
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Fig.8 Observed and simulated seasonal cycles of temperature and precipitatioPM§ALOGUECAMPRand
SCAMR. The grey shadings present the intguantiles intervalsat 50%, 90% and 99% levelSmulated
seasonal cycleare obtained using 30 scenarios @&fillyears from ANALOGUBNd SCAMRINd 30 scenarios
of 100 years fromSCAMR.

The distributions of seasonal precipitation amountand seasonal temperatureaveragesare
presentedin Figure 7Whatever the season, the thremodels are abléo generate drier andvetter
seasons than the observed on@sigure a). The very similar results obtained f&NALOGUENd
SCAMPsuggestthat the daily distribution adjustmentsised in SCAMPdo not introduce more
variabilityat the seasonal scaleSCAMPIs able togenerateseasonal valuethat significantlyexceed
the maximum values simulatedy ANALOGUBNnd SCAMRBby 100mm to 200 mn). Thisstrongly
suggeststhat a large part ofthe seasonal variability comes frotme variability ofthe synoptic
weather trajectories, the uobservedweather trajectoriesproduced bySCAMP leading toa wider
exploration of extremeseasonalalues
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Fig. & Observed and simulated boxplots of seasonal precipitation amoufds ANALOGUESCAMPand
SCAMR (Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November.
Winter: December, January, February).

The same comments can be made for spring and autuamperatures (Figure 7b)For those
variables lowever, SCAMPfails tosimulate extremely hot summeis cold winters. This limitation
will be further discussed in the next sectiovith some additional analysis andpportunities for
improvement
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Fig.: Observed and simulated boxplots of mean seasonal temperatimemodels ANALOGUESCAMPRand
SCAMR (Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November.
Winter: December, January, February).

4.2 Daily Precipitationg&xtremes

As mentioned in sectiori, simple analogue methds cannot simul@ unobservedprecipitation
extremesat the temporal resolution of the simulation (here dailly)oreover, for higher aggregation
durations, they also tend to underestimate observeccipitation extremesFigure 8presentsthe
precipitationvaluesobtained with the three models for differemeturn periods (from 2 year to 200
years) and different aggregation duratiofisom 1 to 5 days

Considering May extreme eventsANALOGUHs obviously not able to generate precipitation
accumulatiors that exceed the maximum observed onéombining the analogue method with daily
distribution adjustments(SCAMPYvercomes this issue with maximum values reaching 5.
SCAMP leadsto similar results.
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