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1. Abstract 8 

Natural risk studies such as flood risk assessments require long series of weather variables. As an 9 

alternative to observed series, which have a limited length, these data can be provided by weather 10 
generators. Among the large variety of existing ones, resampling methods based on analogues have 11 

the advantage of guaranteeing the physical consistency between local weather variables at each time 12 
step. However, they cannot generate values of predictands exceeding the range of observed values. 13 

Moreover, the length of the simulated series is typically limited to the length of the synoptic 14 
meteorological records used to characterize the large-scale atmospheric configuration of the 15 

generation day. To overcome these limitations, the stochastic weather generator proposed in this 16 
study combines two sampling approaches based on atmospheric analogues: 1) a synoptic weather 17 

generator in a first step, which recombines days of the 20th century to generate a 1,000-year 18 
sequence of new atmospheric trajectories and 2) a stochastic downscaling model in a second step, 19 

applied to these atmospheric trajectories, in order to simulate long time series of daily regional 20 
precipitation and temperature. The method is applied to daily time series of mean areal precipitation 21 

and temperature in Switzerland. It is shown that the climatological characteristics of observed 22 
precipitation and temperature are adequately reproduced. It also improves the reproduction of 23 

extreme precipitation values, overcoming previous limitations of standard analogue-based weather 24 
generators. 25 
 26 

2. Introduction 27 

Increasing the resilience of socio-economic systems to natural hazards and identifying the required 28 

ŀŘŀǇǘŀǘƛƻƴǎ ƛǎ ƻƴŜ ƻŦ ǘƻŘŀȅΩǎ ŎƘŀƭƭŜƴƎŜǎΦ ¢ƻ ŀŎƘƛŜǾŜ ǎǳŎƘ a goal, one must have an accurate 29 
description of both past and current climate conditions. The climate system is a complex machine 30 

which is known to fluctuate at very small time scales but also at large ones over multiple decades or 31 
centuries (Beck et al. 2007). It is necessary to study meteorological series as long as possible in order 32 

to catch all sources of variability and fully cover the large panel of possible meteorological situations. 33 
Regarding weather extremes, the same need arises as estimating return levels associated to large 34 

return periods cannot be successfully done without long climatic records (e.g. Moberg et al., 2006; 35 
Van den Besserlaar et al., 2013). This comment also applies to all statistical analyses on any derived 36 

variable, such as river discharge, for which multiple meteorological drivers come into play and for 37 
which extreme events correspond to the combination of very specific and atypical hydro-38 

meteorological conditions. 39 
 40 
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Using weather generators, long simulations of weather variables provide accurate descriptions of the 41 

climate system and can be used for natural hazard assessments. Among the large panel of existing 42 
weather generators, stochastic ones are used to construct, via a stochastic generation process, single 43 

or multisite time series of predictands (e.g. precipitation, temperature) based on the distributional 44 
properties of observed data. These characteristics, and consequently the weather generator 45 

parametrisation, are usually determined on a monthly or seasonal basis to take seasonality into 46 
account. They can also be estimated for different families of atmospheric circulation, often referred 47 

to as weather types. A state of the art of the most common methods which have been used for the 48 
downscaling of precipitation (single or multi-site) is presented in Wilks (2012) or in Maraun et al., 49 

(2010). More recent publications gather detailed reviews of some sub-categories of weather 50 
generators (e.g. Ailliot et al., 2015 for hierarchical models). An increasing number of studies focuses 51 

on the generation of multivariate and/or multi-site series of predictands (e.g. Steinschneider and 52 
Brown, 2013; Srivastav and Simonovic, 2015; Evin et al. 2018a; Evin et al. 2018b). Stochastic weather 53 

generators are able to produce large ensembles of weather time series presenting a wide diversity of 54 
multiscale weather events. For all these reasons, they have been used for a long time to enlighten 55 

the sensitivity and possible vulnerabilities of socio-eco-systems to the climate variability (Orlowsky et 56 
al. 2010) and to weather extremes.  57 

 58 
Other models used for the generation of weather sequences are based on the analogue method. 59 

Since the description of the concept of analogy by Lorenz (1969), the analogue method has gained 60 
popularity over time for climate or weather downscaling. This analogue model strategy has been 61 

applied in many studies (Boe et al., 2007; Abatzoglou and Brown, 2012; Steinschneider and Brown 62 
2013) and has been used to address a wide range of questions from past hydroclimatic variability 63 

(e.g. Kuentz et al, 2015; Caillouet et al., 2016) to future hydrometeorological scenarios (e.g. Lafaysse 64 
et al., 2014; Dayon et al., 2015). The standard analogue approach hypothesises that local weather 65 

parameters are steered by synoptic meteorology. A set of relevant large scale atmospheric predictors 66 
is used to describe synoptic weather conditions. From the atmospheric state vector, characterizing 67 

the synoptic weather of the target simulation day, atmospheric analogues of the current simulation 68 
day are identified in the available climate archive. Then, the analogue method makes the assumption 69 

that similar large scale atmospheric conditions have the same effects on local weather. The local or 70 
regional weather configuration of one of the analogue days is then used as a weather scenario for 71 

the current simulation day. The key element of the analogue method is that it does not require any 72 
assumption on the probability distributions of predictands. This is a noteworthy advantage for 73 

predictands, such as precipitation, which have a non-normal distribution with a mass in zero. Most of 74 
the studies using analogues focused on precipitation and temperature either for meteorological 75 

analysis (Chardon, 2014; Daoud, 2016), or as inputs for hydrological simulations (Marty, 2012; 76 
Surmaini et al., 2015). Nevertheless, analogues are increasingly used for other local variables such as 77 

wind, humidity (Casanueva et al., 2014) or even more complex indices (e.g. for wild fire, Abatzoglou 78 
and Brown, 2012). When multiple variables are to be downscaled simultaneously, another major 79 

advantage of the analogue method is that the different predictands scenarios are physically 80 
consistent and the simulated weather variables are bound to reproduce the correlations between 81 

the variables (e.g. Raynaud et al., 2017) and sites (Chardon et al., 2014). Indeed, when analogue 82 
models use the same set of predictors (atmospheric variables and analogy domains) for all 83 

predictands, all surface weather variables and sites are sampled simultaneously from the historical 84 
records, thus preserving inter-site and inter-variable dependency.  85 

 86 
The two simulation approaches (stochastic weather generators and analogue methods) described 87 

above present some important advantages for the generation of long weather series but also some 88 
sizeable drawbacks. Indeed, stochastic weather generators rely on strong assumptions about the 89 

statistical distributions of predictands. Identifying the relevant mathematical representations of the 90 
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processes and achieving a robust estimation of their parameters can be difficult, especially if the 91 

length of the meteorological records is short. Modelling the spatial-temporal dependency between 92 
variables/sites is often another challenge. Conversely, for the analogue-based approaches, the 93 

identification of relevant atmospheric variables providing good prediction skills is not 94 
straightforward. The limited length of local weather records is also a critical issue since resampling 95 

past observations restricts the range of predicted values. In particular, the simulation of unobserved 96 
values of predictands is not possible. This can be problematic if one is interested in estimating 97 

possible extreme values of the considered variable. Furthermore, the information on synoptic 98 
atmospheric conditions required by analogue methods are generally coming from atmospheric 99 

reanalyses, which also have a limited temporal coverage (e.g. from the beginning of the 20th century 100 
for ERA20C, Poli et al., 2013) and from the mid-19th century for 20cr (Compo et al. 2011). The length 101 

of the generated time series is thus typically bounded by the length of the reanalyses.  102 
 103 

In this study we propose a weather generator (hereafter SCAMP+) building upon the SCAMP 104 
approach presented by Chardon et al. (2018) and making use of reshuffled atmospheric trajectories, 105 

following some of the developments by Buishand and Brandsma (2001) and Yiou et al. (2014). The 106 
weather scenarios generated by SCAMP being limited by the coverage of the climate reanalyses, the 107 

SCAMP+ model extends the pool of possible atmospheric trajectories. Using random transitions 108 
between past atmospheric sequences, SCAMP+ generates unobserved atmospheric trajectories, on 109 

which the 2-stage SCAMP approach can be applied. By exploring a wide variety of atmospheric 110 
trajectories, SCAMP+ introduces some additional large-scale variability which improves the 111 

exploration of possible weather sequences. In addition, as done in SCAMP (Chardon et al., 2018), the 112 
SCAMP+ approach includes a simple stochastic weather generator which is estimated, for each 113 

generation day, from the nearest atmospheric analogues of this day. These two steps (random 114 
atmospheric trajectories and random daily precipitation/temperature values) improve the 115 

reproduction of extreme values, overcoming previous limitations of analogue-based weather 116 
generators, usually known to underestimate observed precipitation extremes. 117 

 118 
These developments are carried out for the exploration of hydrological extremes (extreme floods) of 119 

the Aare River basin in Switzerland (Andres et al. 2019a,b). Meteorological forcings, i.e. temperature 120 
and precipitation, are thus simulated to be used as inputs of a hydrological model, for different sub-121 

basins of the Aare river basin. Meteorological simulations from SCAMP+ have been used in the Swiss 122 
EXAR project1 and have proven its ability to estimate the discharge values associated to very large 123 

return periods on the Aare River. In section 2, we describe in details the test region, the data and 124 
three simulation approaches (a classical analogue method, referred to as ANALOGUE, SCAMP and 125 

SCAMP+). Section 3 presents the main results on both climatological characteristics and extreme 126 
values. Section 4 sums up the main outputs of this study and proposes some further developments 127 

and analysis. 128 
 129 

 130 

3. Data and Method 131 

3.1 Studied region 132 

This study is carried out on the Aare River basin which covers almost half of Switzerland (17,700 133 

km²). The topography varies greatly within the basin with, on one hand, high mountains on its 134 

southern part (maximum altitude of 4270 m, Finsteraarhorn) and on the other hand, plains on the 135 

                                                             
1 https://www.wsl.ch/en/projects/exar.html 
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northern part (minimum altitude of 310 m). These different characteristics coupled with the basin 136 

being located at the crossroads of several climatic European influences give a wide diversity of 137 

possible weather situations across the year.  138 

 139 

3.2 Atmospheric reanalysis and local weather data 140 

The application of the analogue method requires a long archive providing an accurate description of 141 

both past synoptic weather patterns and local atmospheric conditions. Indeed, a wide panel of 142 

meteorological situations available for resampling is necessary in order to identify the best analogues 143 

for the simulation (e.g. Van Den Dool et al., 1994; Horton et al., 2017). In most studies, synoptic 144 

situations are provided by atmospheric reanalyses. Here, we use the ERA-20C atmospheric reanalysis 145 

(Poli et al., 2013) which provide information on large scale atmospheric patterns on a 6 h basis from 146 

1900 to 2010. Data are available at a 1.25° spatial resolution. More specifically, the set of predictors 147 

used for the identification of atmospheric analogues is made of the geopotential height at 500 and 148 

1000 hPa, the vertical velocities at 600 hPa, large scale precipitation and temperature. The 149 

justification of these choices will be given in section 3.3.1.  150 

The local and surface weather parameters of interest are retrieved from 105 weather stations for 151 

precipitation and 26 weather stations for temperature, which are spread out homogeneously over 152 

our target region, as presented on Figure 1. These data are available at a daily time step from 1930 to 153 

2014. They have been spatially aggregated in order to obtain daily time series of mean areal 154 

precipitation (MAP) and temperature (MAT) for the Aare region. The three weather generators 155 

considered in this study aims at producing scenarios of daily time series of MAP and MAT. In this 156 

study, a scenario is defined as a possible realization of the climate system under current climate 157 

conditions (i.e. the climate observed for the past few decades). It can be noticed that many 158 

applications of analogue-based approaches produce simulations at specific weather stations. 159 

However, as shown by Chardon et al. (2016) for France, the prediction skill is significantly improved 160 

when the prediction is produced for areal averages, which motivates the generation of MAP and 161 

MAT values in this study. 162 

 163 
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 164 

Fig.1: The Aare River basin (red) and locations of the different precipitation (dots) and temperature 165 

(triangles) stations. 166 

 167 

3.3 Description of the three models 168 

This section presents the three different models considered and evaluated in this study.  169 

 170 

3.3.1 ANALOGUE: Classical analogue model 171 

The most basic model evaluated in this study, hereafter referred to as ANALOGUE, relies on a 172 

standard 2-level analogue method. For each day of the simulation period (1900 ς 2010), analogue 173 

days are identified from candidate days. The candidate days, extracted from the archive period, i.e. 174 

the period on which both predictors and local observations are available (1930 ς 2010), are all days 175 

of the archive located within a 61-day calendar window centred on the target day. This calendar filter 176 

is expected to account for the possible seasonality of the large scale / small scale downscaling 177 

relationship. For instance, candidate days for May 15th 2000 are selected within the pool of days 178 

ranging from April 15th to June 14th of each year of the archive.  179 

The predictors used for the analogues selection been chosen based on Raynaud et al. (2017). They 180 

have been shown to guarantee both inter-variable physical consistency and good predictive skills 181 

according to the Continuous Ranked Probability Skill Score (CRPSS), for 4 predictands (precipitation, 182 

temperature, solar radiation and wind). In the present work, the predictors considered for each level 183 

for the two-level analogy are as follows: 184 

- The first level of analogy is based on daily geopotential heights at 1000 hPa and 500 hPa (HGT1000, 185 

HGT500) as proposed by Horton et al. (2012) and Raynaud et al. (2017). The analogy criterion used 186 

here is the TewelesςWobus score (TWS) proposed by Teweles and Wobus (1954). This score has 187 

been found to lead to higher performances than a more classical Euclidian or Malahanobis distance 188 
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(Kendall et al. 1983; Guilbault et Obled, 1998; Wetterhall et al., 2005). It quantifies the similarity 189 

between two geopotential fields by comparing their spatial gradients. It allows selecting dates that 190 

have the most similar spatial patterns in terms of atmospheric circulation. From September to May, 191 

the analogy is based on the geopotential fields on both the current day D and its following day D+1 at 192 

12UTC. Thereby, the motions of low-pressure systems and fronts are better described and the 193 

prediction skill of the method for precipitation is improved (e.g. Obled et al. 2002; Horton and 194 

Brönnimann, 2019). In summer, only the geopotential fields on the current day are used as no similar 195 

improvement could be found with a two-day analogy. During this first analogy level, 100 analogues 196 

are selected for each day of the target period. 197 

- The second analogy level makes a sub-selection of 30 analogues within the 100 analogues identified 198 

in the first analogy level. The analogy score used for the selection is the Root Mean Square Error 199 

(RMSE). From September to May, the predictors are the vertical velocities at 600 hPa and the large 200 

scale temperature at 2 meters. In summer, the vertical velocities but also other predictors such as 201 

the Convective Available Potential Energy (CAPE) led to a rather poor prediction of precipitation due 202 

to the coarse resolution of the atmospheric reanalysis, which prevent it from providing an accurate 203 

simulation of convective processes. Consequently, large scale precipitation from the reanalysis has 204 

been used as a predictor instead, resulting in predictive skills similar to the ones obtained for the rest 205 

of the year. The different predictor sets retained for summer and the rest of the year illustrate the 206 

differences typically observed between seasons for the main meteorological conditions and 207 

processes. 208 

The dimensions and position of the different analogy windows used to compute the analogy 209 

measures are presented on Figure 2. They follow the recommendations for the analogy windows 210 

optimisation presented in Raynaud et al. (2017) for all predictors.  211 

With this 2-step analogy, 30 scenarios of daily MAP and daily MAT are obtained for each day of the 212 

simulation period (1900-2010). Combined with the Schaake Shuffle method described in section 213 

3.3.4, the application of the ANALOGUE model leads to 30 scenarios of 110-year time series of daily 214 

MAP and MAT.  215 
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 216 

Fig.2: Positions and dimensions of the analogy windows in the analogue model at both analogy levels. Z500, 217 

geopotential at 500 hPa ; Z1000, geopotential at 1000 hPa ; VV600, vertical velocities at 600 hPa ; P, 218 

precipitation ; T, temperature. 219 

 220 

3.3.2 SCAMP: Combined analog / generation of MAP and MAT values 221 

The SCAMP model enhances the previous ANALOGUE approach which is not able to generate daily 222 

values exceeding the range of observed precipitation and temperature. SCAMP combines the 223 

analogue method with a day-to-day adaptive and tailored downscaling method using daily 224 

distributions adjustment (Chardon et al. 2018). 225 

For each prediction day, the following discrete-continuous probability distribution proposed by Stern 226 

and Coe (1984) is fitted to the 30 MAP values obtained from the atmospheric analogues of this day: 227 

╕╨◐ Ⱬ ⱫϽ╕╖═◐ȿ◐ ȟ♪ȟ♫ȟ      ρ 228 

where ̄  is the precipitation occurrence probability, Ὂ  is the gamma distribution parameterized 229 

with a shape parameter  π  and a rate parameter  π. The ̄  parameter is directly estimated by 230 

the proportion of dry days, and the parameters ȟ of the gamma distribution are estimated by 231 

applying the maximum likelihood method to the positive precipitation intensities among the 30 MAP 232 

values. 30 MAP values are then sampled from the distribution model (1) in order to obtain 233 

unobserved values of precipitation, possibly beyond past observations. When there are less than 5 234 

positive MAP intensities in the analogues, we simply retrieve the MAP analog values. This distribution 235 
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model corresponds to a simplified version of the combined analogue/regression model described in 236 

Chardon et al. 2018 and we refer the reader to this paper for further information. 237 

Similarly, for each prediction day, a Gaussian distribution Ὂ ‘ȟ„ is fitted to the 30 MAT values 238 

obtained from the analogues. A sample of 30 new MAT values is then generated from this fitted 239 

Gaussian distribution. 240 

As for the ANALOGUE approach, the Schaake Shuffle reordering method is applied to the daily 241 

scenarios obtained from SCAMP. 30 scenarios of 110-year time series of daily MAP and MAT are 242 

produced. 243 

 244 

3.3.3 SCAMP+ 245 

As mentioned previously, the first limitation of the analogue method is related to the length of the 246 

synoptic weather information that is used to generate local predictands time series. In the present 247 

case, the length of time series that can be produced with the models ANALOGUE and SCAMP is 248 

limited to 110-year long weather scenarios.  249 

 250 

In SCAMP+, we extend the archive of synoptic weather information by rearranging the synoptic 251 

weather sequences, thus creating new atmospheric trajectories, used in turn as inputs to SCAMP. 252 

This generation of new trajectories makes use of atmospheric analogues, following those of the 253 

principles proposed in the weather generators described by Buishand and Brandsma (2001) and Yiou 254 

et al. (2014). For any given day, the atmospheric synoptic weather is considered to have the 255 

possibility to change its trajectory. The main hypothesis of this generation module is that if two days 256 

J and K are close atmospheric analogues with atmospheric patterns heading in the same direction, 257 

ǘƘŜƴ ǘƘŜƛǊ άŦǳǘǳǊŜέ are exchangeable and one could jump from one atmospheric trajectory to the 258 

other. In other words, day J+1 is a possible future of day K and conversely day K+1 is a possible future 259 

of day J. The probability p to jump from one trajectory to any other is considered as a parameter to 260 

estimate.  261 

 262 

The principle of a random atmospheric trajectory generation is sketched on Figure 3. In the present 263 

work, the only predictor involved to compare the synoptic atmospheric configuration between 2 264 

different days is the geopotential height field at 1000 hPa, for both the present day and its followers. 265 

The spatial analogy domain is the one used in Philipp et al. (2010) for the identification of Swiss 266 

weather types. The first line of Figure 3 presents an observed atmospheric trajectory in HGT1000 267 

from February 8th to February 12th 1934. On the February 9th, we look for analogues of the current 268 

day and its following day D+1. This is done to ensure that the two initial states are similar (high 269 

pressure system located over France on February 9th 1934 and on its analogue, January 28th 1921) 270 

and that the main features move in similar directions (high pressure system heading South-East on 271 

both February 10th 1934 and January 29th 1921).  272 

 273 

Practically, the five best analogues of the current atmospheric 2-day sequence are identified and one 274 

of those sequences is then selected with a probability p to generate the new day of the new 275 

trajectory. The same method is repeated for this new day to find its future day (as illustrated in 276 

Figure 3 for the sequence January 30th 1921 - February 12th 1925) and extend the new trajectory with 277 
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one additional day. This process is repeated as long as necessary. In the present work, it was used to 278 

generate a 1000-year trajectory of daily synoptic weather situations. Rather large differences 279 

between the synoptic weather situation can be obtained after some days between the observed 280 

atmospheric sequence (e.g. February 12th 1934) and the random atmospheric trajectory (February 281 

12th 1925). As we will show later on, such a method leads to higher weather variability at multiple 282 

time scales. 283 

 284 

To insure that two consecutive days of the generated sequences belong to the appropriate season, 285 

the five 2-day analogue sequences are identified within a +/-15-day moving window centred on the 286 

calendar day of the target simulation day (e.g. all June days if the target day is xxxx-06-15th).  287 

 288 

 289 
Fig.3: Construction of a new 5-day atmospheric trajectory from an observed synoptic weather sequence. 290 

Each sub-figure presents the geopotential at 1000hPa on the domain of interest. The black squares and 291 

arrows give the new atmospheric trajectory and the blue shading highlights the two-day analogue that helps 292 

άŎƘŀƴƎƛƴƎ ƻŦ ŀǘƳƻǎǇƘŜǊƛŎ ŘƛǊŜŎǘƛƻƴέΦ   293 

 294 

The transition probability p from one observed trajectory to another indirectly determines the level 295 

of persistency of synoptic configurations. In this study, it has been calibrated in order to guarantee a 296 

good climatology of the large scale atmospheric sequences. To do so, we analysed the mean 297 

frequency and duration of each of the 9 weather types proposed for Switzerland by Philipp et al. 298 

(2010) in the observed synoptic series and in different reconstructed ones for transition probability p 299 

ranging from 1/10 (one transition every 10 days in average) to 1 (one transition per day in average). 300 

The results presented on Figure 4 shows that a transition probability of 1/7 is necessary to generate 301 

atmospheric trajectories that present a relevant persistency within each weather type.  302 
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 303 

Fig.4: Mean persistency of each of the 9 weather types (indicated by the different circles in each panel), as 304 

defined by Philipp et al. (2010), in the observed time series and in the simulated ones for transition 305 

probabilities ranging from 1 to 1/10 for the generation of atmospheric trajectories. 306 

 307 

The long time series of synoptic weather generated with the above approach is further used as 308 

inputs to the SCAMP generator described in the previous section. The SCAMP+ approach leads to 30 309 

scenarios of daily MAP and MAT, each of these scenarios being based on the 1000-year random 310 

atmospheric trajectories sequence. The output of this approach, combined with the Schaake Shuffle 311 

method described in the next section, is thus composed of 30 scenarios of 1000-year time series of 312 

daily MAP and MAT.  313 

 314 

3.3.4 Temporal consistency: Application of the Schaake Shuffle 315 

For each model (ANALOGUE, SCAMP and SCAMP+) and each day of the simulation period, 30 316 

scenarios of daily MAP and MAT are produced. To improve the temporal/physical consistency 317 

between two consecutive days or between the temperature and precipitation scenarios (partially 318 

induced by the synoptic weather series), we use the Schaake Shuffle method initially proposed by 319 

Clark et al. (2004). This method makes use of both the inter-variable physical and the intra-variable 320 

temporal consistency in observations to combine, at best, the outputs of any weather generator and 321 

reconstruct consistent predictands time series. It is particularly useful if one is interested in 322 

generating relevant precipitation accumulation scenarios over several days. A full description of the 323 

Schaake Shuffle method can be found in Clark et al. (2004) and some applications can be found in 324 

Bellier et al. (2017) or in Schefzik (2017). Here, the Schaake Shuffle consists in modifying the 325 
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sequences of MAP and MAT values, preserving the association of the ranks of MAP and MAT and 326 

rearranging sequences between days D and D+1. Shuffled MAP and MAT sequences between 327 

consecutive days then have similar associations than what has been observed. In this study, we give 328 

priority to the temporal consistency of precipitation first. Temperature scenarios are recombined in a 329 

second step. 330 

The different components of the models ANALOGUE, SCAMP and SCAMP+ are summarized in Figure 331 

5. 332 

 333 

 334 

Fig.5: Illustration of the different steps applied (grey boxes) with models ANALOGUE, SCAMP and SCAMP+. 335 

Outputs obtained after each step are indicated in red.  336 

 337 

4. Results 338 

This section presents different statistical properties of the scenarios obtained with the 3 models and 339 

discusses the performances of each model by comparison with observed statistical properties. For 340 

the sake of consistency between the outputs, we compare the 30 scenarios of 111 years obtained 341 

from ANALOGUE and SCAMP to 300 scenarios of 100 years from SCAMP+ (i.e. each scenario of 1,000 342 

years is divided into 10 scenarios of 100 years). 343 

4.1 Climatology 344 

For both temperature and precipitation, the 3 models lead to an accurate simulation of their 345 

seasonal fluctuations (Figure 6). However, one can notice the slight overestimation of winter 346 
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temperature and an underestimation of July and August precipitation. SCAMP also tends to have a 347 

smaller inter-annual variability compared to ANALOGUE and SCAMP+. 348 

 349 

Fig.6: Observed and simulated seasonal cycles of temperature and precipitation for ANALOGUE, SCAMP and 350 

SCAMP+. The grey shadings present the inter-quantiles intervals at 50%, 90% and 99% levels. Simulated 351 

seasonal cycles are obtained using 30 scenarios of 111 years from ANALOGUE and SCAMP and 300 scenarios 352 

of 100 years from SCAMP+. 353 

The distributions of seasonal precipitation amounts and seasonal temperature averages are 354 

presented in Figure 7. Whatever the season, the three models are able to generate drier and wetter 355 

seasons than the observed ones (Figure 7a). The very similar results obtained for ANALOGUE and 356 

SCAMP suggest that the daily distribution adjustments used in SCAMP do not introduce more 357 

variability at the seasonal scale. SCAMP+ is able to generate seasonal values that significantly exceed 358 

the maximum values simulated by ANALOGUE and SCAMP (by 100 mm to 200 mm). This strongly 359 

suggests that a large part of the seasonal variability comes from the variability of the synoptic 360 

weather trajectories, the unobserved weather trajectories produced by SCAMP+ leading to a wider 361 

exploration of extreme seasonal values. 362 
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 363 

Fig.7a: Observed and simulated boxplots of seasonal precipitation amounts for ANALOGUE, SCAMP and 364 

SCAMP+ (Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November. 365 

Winter: December, January, February). 366 

The same comments can be made for spring and autumn temperatures (Figure 7b). For those 367 

variables however, SCAMP+ fails to simulate extremely hot summers or cold winters. This limitation 368 

will be further discussed in the next section with some additional analysis and opportunities for 369 

improvement. 370 
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 371 

Fig.7b: Observed and simulated boxplots of mean seasonal temperature for models ANALOGUE, SCAMP and 372 

SCAMP+ (Spring: March, April, May. Summer: June, July, August. Autumn: September, October, November. 373 

Winter: December, January, February). 374 

 375 

4.2 Daily Precipitations Extremes 376 

 377 

As mentioned in section 1, simple analogue methods cannot simulate unobserved precipitation 378 

extremes at the temporal resolution of the simulation (here daily). Moreover, for higher aggregation 379 

durations, they also tend to underestimate observed precipitation extremes. Figure 8 presents the 380 

precipitation values obtained with the three models for different return periods (from 2 year to 200 381 

years) and different aggregation durations (from 1 to 5 days).  382 

 383 

Considering 1-day extreme events, ANALOGUE is obviously not able to generate precipitation 384 

accumulations that exceed the maximum observed one. Combining the analogue method with daily 385 

distribution adjustments (SCAMP) overcomes this issue with maximum values reaching 115 mm. 386 

SCAMP+ leads to similar results. 387 

 388 


