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Abstract. This paper evaluates whether snow-covered area and streamflow measurements can help assess altitudinal 

gradients of temperature and precipitation in data-scarce mountainous areas more realistically than using the usual 

interpolation procedures. An extensive dataset covering 20 Alpine catchments is used to investigate this issue. Elevation 

dependency in the meteorological fields is accounted for using two approaches: (i) by estimating the local and time-varying 

altitudinal gradients from the available gauge network based on deterministic and geostatistical interpolation methods with 10 

an external drift; and (ii) by calibrating the local gradients using an inverse snow-hydrological modelling framework. For the 

second approach, a simple 2-parameter model is proposed to target the temperature/precipitation-elevation relationship and 

to regionalise air temperature and precipitation from the sparse meteorological network. The coherence of the two 

approaches is evaluated by benchmarking several hydrological variables (snow-covered area, streamflow and water balance) 

computed with snow-hydrological models fed with the interpolated datasets and checked against available measurements. 15 

Results show that accounting for elevation dependency from scattered observations when interpolating air temperature and 

precipitation cannot provide sufficiently accurate inputs for models. The lack of high-elevation stations seriously limits 

correct estimation of lapse rates of temperature and precipitation, which, in turn, affects the performance of the snow-

hydrological simulations due to imprecise estimates of temperature and precipitation volumes. Instead, retrieving the local 

altitudinal gradients using an inverse approach enables increased accuracy in the simulation of snow cover and discharge 20 

dynamics, while limiting problems of over-calibration and equifinality. 

1. INTRODUCTION 

1.1. Providing accurate meteorological inputs in mountainous regions 

Regionalising air temperature and precipitation is a critical step in producing accurate areal inputs for hydrological models in 

high altitude catchments. The ability to correctly reproduce areal precipitation is vital to avoid the failure of hydrological 25 

models, which are sensitive to input volumes at the catchment scale (e.g. Oudin et al., 2006; Nicótina et al., 2008). Accurate 

temperature fields are also particularly important in mountainous regions because temperature is the main driver for 

snow/rain partition and snowmelt, and consequently influences seasonal discharge (e.g. Hublart et al., 2015; 2016). 

 However, in areas with complex topography, the characteristic spatial scales of temperature and precipitation estimates 

are typically poorly captured, notably when the network of measurements used is sparsed. Gridded datasets obtained by 30 

interpolating measurements taken at meteorological stations are thus affected by inaccuracies, which are spatially and 

temporally variable and difficult to quantify (Haylock et al., 2008; Isotta et al., 2015). Measurement errors depend on local 

conditions and increase with terrain elevation, as the operational conditions become more extreme (Frei and Schär, 1998). In 

the case of precipitation, a well-known problem arises from the systematic errors associated with precipitation under-catch 

during snowfall (Strasser et al., 2008), especially in windy conditions (Sevruk, 2005). In addition, temperature and 35 

precipitation are under-sampled at high elevations, because meteorological stations are mainly located at low elevations for 

logistical reasons (Hofstra et al., 2010). This makes it difficult to derive the local and seasonal relationship between 
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meteorological observations and topography, even though this is indispensable for accurate spatial temperature and 

precipitation estimates (Masson and Frei, 2014). Indeed, atmospheric uplift caused by relief tends to increase precipitation 

with elevation through the so-called orographic effect (Barry and Chorley, 1987). Nevertheless, precipitation accumulation 40 

trends can show considerable scatter with altitude depending on the region’s exposure to wind and synoptic situations 

(Sevruk, 1997). The relationship between temperature and elevation is generally more obvious. The rate at which air cools 

with a change in elevation ranges from about -0.98 °C (100 m)
-1

 for dry air (i.e., the dry-air adiabatic lapse rate) to about -0.4 

°C (100 m)
-1

 (i.e., the saturated adiabatic lapse rate; Dodson and Marks, 1997). Average temperature gradients of -0.60 ° 

(Dodson and Marks, 1997) or -0.65 °C (100 m)
-1

 (Barry and Chorley, 1987) are often used when high precision is not 45 

required. However, such average values are known to be rough approximations which are not suitable for more precise 

studies (see e.g. Douguédroit and De Saintignon, 1984). Notably they mask significant variations in different meteorological 

conditions and in different seasons. For instance, temperature lapse rates are generally lower in winter than in summer, as 

shown by Rolland (2003) for Alpine regions. 

1.2. Schemes for spatial interpolation of air temperature or precipitation 50 

The mapping of air temperature and precipitation using discrete observations based on gauge networks has been extensively 

studied. Readers can refer to, for instance, Ly et al. (2013) for a review on the different deterministic and geostatistical 

methods designed for operational hydrology and hydrological modelling at the catchment scale. 

 Schemes for spatial interpolation of meteorological variables vary in three ways (Stahl et al., 2006): (1) the model used 

to characterise the spatial variation of the variable of interest, (2) the method used to choose the surrounding points (number 55 

or distance, angular position relative to the prediction point) and (3) the approach used to adjust for elevation. The simplest 

approach is to choose the nearest station and adjust for elevation according to an assumed lapse rate. However, this method 

is fairly crude and ignores fine-scale spatial variations. Where more than one station is used in the prediction, a model is 

required to determine how to interpolate from them. Interpolation weights have been estimated using approaches including 

inverse distance weighting (IDW) (e.g. Dodson and Marks, 1997; Shen et al., 2001; Frei, 2014) and geostatistical methods 60 

based on kriging (e.g. Garen and Marks, 2005; Spadavecchia and Williams, 2009). Kriging relies on statistical models 

involving autocorrelation, which refers to the statistical relationships between measured points. Ordinary kriging (OKR) is 

well-known among kriging algorithms (see e.g. Goovaerts, 1997 for a detailed presentation of these algorithms). Different 

methods have been developed to deal with the statistical relationship between temperature/precipitation and elevation like 

regression analysis (Drogue et al., 2002), or more elaborate geostatistical techniques including simple kriging with local 65 

means, kriging with external drift (KED) and co-kriging (CKR): see Goovaerts (2000) for a comparison of these approaches. 

Among these techniques, KED has been widely used to generate temperature and precipitation maps. For instance, Masson 

and Frei (2014) showed that KED led to much smaller interpolation errors than linear regressions in the Alps. This was 

achieved with a single predictor (local topographic height), whereas the incorporation of more extended predictor sets (slope, 

circulation-type dependence of the relationship, inclusion of a wind-aligned predictor) enabled only marginal improvement. 70 

For daily precipitation, interpolation accuracy improved considerably with KED and the use of a simple digital elevation 

compared to OKR (i.e., with no predictor). These results confirm that accounting for topography is important for spatial 

interpolation of daily precipitation in high-mountain regions. Conversely, other authors showed that, even though taking 

topography into account was indispensable for temperature reconstruction whatever the temporal resolution, it was less clear 

for daily precipitation. For example, Ly et al. (2011) reported no improvement in precipitation estimated at a daily time scale 75 

if topographical information was taken into account with KED and CKR, compared to simpler methods such as ORK and 

IDW. In a recent and very complete comparative study, Berndt and Haberlandt (2018) analysed the influence of temporal 

resolution and network density on the spatial interpolation of climate variables. They showed that KED using elevation 
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performed significantly better than ORK for temperature data at all temporal resolutions and station densities. For 

precipitation, using elevation as additional information in KED improved the interpolation performance at the annual time 80 

scale, but not at the daily time scale. 

 Theoretically, KED can account for local differences in topographic influence in different seasons and synoptic 

situations. Indeed, the regression coefficients computed between the primary variable (temperature or precipitation) and the 

secondary variable (elevation) are implicitly estimated through the kriging system within each search neighbourhood 

(Goovaerts, 2000). The relation between variables is thus assessed locally, meaning changes in correlation across the study 85 

area can be taken into account. However, as suggested by Stahl et al. (2006) concerning temperature and by Ly et al. (2011) 

concerning precipitation, care should be taken in applying KED when interpolating daily variables with very few 

neighbouring sample points. Indeed, methods that compute local lapse rates from the surrounding control points can perform 

poorly in regions with insufficient high-elevation data, due to inaccurate estimation of local lapse rates. 

1.3. Placing meteorological fields in a hydrological perspective 90 

A subject that requires further investigation is which methods that produce daily temperature and precipitation fields can 

provide the best snow cover and streamflow simulations. The usual cross validation for the inter-comparison of interpolation 

methods is limited, especially in ungauged areas, like the highest parts of mountainous areas. As stressed by Gottardi et al. 

(2012), a method can perform well in interpolation (at the ground network altitudes) but poorly in extrapolation (higher). 

This is because the observed set is not representative of the entire feature space. As a result, estimations at high elevations 95 

are difficult to check due to the lack of meteorological data. To go further, the use of other data like streamflow 

measurements may be a good alternative way to validate temperature and precipitation estimations at high-elevation sites. 

 To date, few studies have compared the performance of different interpolation methods evaluated by hydrological 

modelling in mountainous areas. Among the few that have, Tobin et al. (2011) showed that kriging (and more specifically 

KED) can be used effectively to estimate temperature and precipitation fields in complex alpine topography during flood 100 

events. Their comparative analyses of the different interpolation techniques suggested that geostatistical methods performed 

better than IDW. In particular, with elevation as auxiliary information, KED gave the overall best validation statistics for the 

set of events under study. However, it can be hypothesised that, in many mountainous areas, gauge observations do not 

include sufficient information to accurately account for the elevation dependency of air temperature and precipitation using 

interpolation techniques, which are thus limited to providing accurate inputs for snow-hydrological models. On the other 105 

hand, numerous calibration parameters controlling snow accumulation (the temperature threshold between the solid and 

liquid phase, temperature range of phase separation, snowfall gauge under-catch factor) and melt (temperature threshold for 

snowmelt, degree-day melt factor, snowpack thermal state, etc.) have been introduced in most of the snow accounting 

routines (SAR) used in operational hydrology: see e.g. HBV (Bergström, 1975), MOHYSE (Fortin and Turcotte, 2007), 

CEMANEIGE (Valéry et al., 2014), MORDOR (Garavaglia et al., 2017). The aim of using these parameters is to adapt to 110 

local snow processes, but they could be used primarily to compensate for errors in the input data without satisfactorily 

achieving it. 

1.4. Inverting the hydrological cycle 

In contrast, inverting the hydrological cycle with snow-hydrological models may help identify the dependency of the areal 

inputs on elevation more realistically and enable more accurate snow-hydrological simulations, while simultaneously 115 

limiting the number of free parameters. The idea is not completely new and was notably introduced by Valéry et al. (2009) in 

an attempt to use streamflow measurements to improve knowledge of yearly precipitation in data-sparse mountainous 

regions. Their results suggested that it was possible to unambiguously identify the altitudinal precipitation gradients from 

streamflow at a yearly time scale. In another paper, Valéry et al. (2010) proposed regionalisation of daily air temperature and 
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precipitation to better estimate inputs over high-altitude catchments as regards to the water balance. In their conclusion, the 120 

authors claimed that their regionalisation approach also significantly improved the performance of a rainfall-runoff model at 

a daily time scale. However, the lapse rates in the temperature and precipitation inputs were estimated from gauge 

observations at the regional scale based on a leave-one-out procedure. This leaves room for potential improvement by locally 

inferring the lapse rates based on inverse modelling applied at the catchment scale. Improvement is also to be expected from 

the use of auxiliary observations such as remotely-sensed snow cover data to calibrate and validate models in addition to the 125 

runoff measurements, which can help better assess the reliability of the modelled snow processes (see e.g. Parajka and 

Blöschl, 2008; Thirel et al., 2013). Moreover, other authors (Franz and Karsten, 2013; He et al., 2014) showed that adding 

snow data information to the calibration procedure enabled the identification of more robust snow parameter sets by making 

the snow models less dependent on the rainfall-runoff model with which they are coupled. Using both streamflow and snow-

cover observations in an inverse modelling approach could thus provide further insights into the most relevant snow 130 

parameters, while improving our knowledge of the altitudinal temperature and precipitation gradients in data-sparse 

mountainous regions. 

1.5. Objectives 

Based on the above issues, this paper investigates whether altitudinal gradients should be inferred from available gauge 

information when interpolating air temperature and precipitation, or from key-parameters of snow-hydrological models in 135 

mountainous areas. To address this question, we use a large dataset of mountainous, snow-affected catchments in the French 

Alps and we propose a framework to assess the hydrological coherence of gridded datasets and for inferring orographic 

gradients based on snow-hydrological observations. The rest of the paper is organised as follows. Section 2 describes the 

study region, the data and their pre-processing. Section 3 provides a brief description of the interpolation procedures tested. 

Section 4 presents the model assessment methodology. The results are presented and discussed in Section 5, and the main 140 

findings, recommendations and future outlooks are summarised in Section 6. 

2. STUDY AREA AND DATASET 

2.1. Meteorological data 

The study was carried out in the French Alps whose altitudes range from 3 to nearly 4800 m a.s.l. (Fig. 1). A dataset of 78 

temperature gauges and 148 precipitation gauges was gathered from the RADOME (Réseau Automatisé d’Observations 145 

Météorologiques Etendues) database of Météo-France (https://publitheque.meteo.fr) for six administrative departments 

(Alpes-de-Haute-Provence, Hautes-Alpes, Alpes-Maritimes, Isère, Savoie and Haute-Savoie). The extracted series are the 

mean daily air temperature and the daily liquid equivalent water depth of total precipitation for each station over an 18-year 

period from the 1
st
 of September 1998 to the 31

st
 of August 2016. These gauges were selected because their series present no 

missing data from the 1
st
 September 2000 to the 31

st
 of August 2016, thus allowing a coherent and stable signal to be 150 

represented over the 16-year period of analysis. The corresponding gauge density is ~3 stations per 1000 km² for temperature 

and ~5 stations per 1000 km² for precipitation, which is close to the recommended minimum density for mountainous areas 

(~4 stations per 1000 km², WMO, 2008). Although the spatial distribution of the available meteorological stations is 

reasonably balanced, high altitudes (above 2000 m a.s.l.), which represent approximately 20% of the study area, remain 

under-represented, as temperature and precipitation gauges are mainly located at low and mid elevations: between 235 and 155 

2105 m for temperature, and between 235 and 2006 m for precipitation. 
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Fig. 1 Location of the selected precipitation, temperature and streamflow stations in the French Alps. Elevations are from a SRTM digital 

elevation model which was resampled to a grid with 0.5x 0.5 km cells. 160 

2.2. Streamflow data 

In order to avoid case-specific results, an extensive dataset of 20 catchments was gathered from the French hydrological 

database (www.hydro.eaufrance.fr) over the study area (Fig. 1 and Table 1). The catchments were selected based on the 

following criteria: (i) their streamflow regime is considered to be natural since they are located upstream from any major 

hydraulic installations, such as dams and water transfers; (ii) their streamflow regime is moderately to strongly affected by 165 

snow (i.e. between 10% and 70% of their total precipitation falls in solid form); and (iii) their streamflow series present good 

quality measurements according to the hydrological reports, with less than 10% daily missing values for the period 2000‒

2016. 

2.3. Snow cover data 

MOD10A1 (Terra) and MYD10A1 (Aqua) snow products version 5 were downloaded from the National Snow and Ice Data 170 

Center for the period 24 February 2000–1 January 2017. This corresponds to 6157 dates among which 98.8% are available 

for MOD10A1 and 85.8% for MYD10A1 since Aqua was launched in May 2002 and became operational in July 2002. 

These snow products are derived from a Normalised Difference Snow Index (NDSI) calculated from the near-infrared and 

green wavelengths, and for which a threshold was defined for the detection of snow (Hall et al., 2006, 2007). Cloud cover 

represents a significant limit for these products, which are generated from instruments operating in the visible-near-infrared 175 
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wavelengths. As a result, the grid cells were gap filled to produce daily cloud-free snow cover maps of the study area. The 

different classes in the original products were first merged into three classes: no-snow (no snow or lake), snow (snow or lake 

ice), no-data (clouds, missing data, no decision, or saturated detector). The missing values were then filled according to a 

gap-filling algorithm described in Gascoin et al. (2015). The algorithm works in three sequential steps: (i) Aqua/Terra 

combination; (ii) temporal deduction by sliding the time filter up to 9 days; (iii) spatial deduction by elevation and 180 

neighbourhood filter to fill the remaining gaps. The resulting database consists of 5844 binary (snow/no-snow) maps at 500 

m spatial resolution for the period 2000‒2016 (16 hydrological years, from the 1
st
 of September 2000 to the 31

st
 of August 

2016). 

 

Table 1 Streamflow gauging stations and main catchment characteristics. The fraction of precipitation falling as snow (Snow) was 185 
estimated by hydrological modelling. 

# Station River Area Elevations (m a.s.l.) Snow Operator 

   (km²) Min Mean Max %  

1 Barcelonnette [Abattoir] Ubaye 549 1132 2214 3308 48 DREAL 

2 Lauzet-Ubaye [Roche Rousse] Ubaye 946 790 2083 3308 41 EDF 

3 Beynes [Chabrières] Asse 375 605 1137 2273 14 EDF 

4 Saint-André-Les-Alpes [Mourefrey] Issole 137 931 1502 2392 22 DREAL 

5 Villar-Lourbière Séveraisse 133 1023 2172 3623 48 DREAL 

6 Val-des-Prés Durance 207 1360 2221 3059 53 DREAL 

7 Briançon Durance 548 1187 2187 3572 51 EDF 

8 Argentière-la-Bessée Durance 984 950 2178 4017 54 DREAL 

9 Embrun [La Clapière] Durance 2170 787 2109 4017 49 EDF 

10 Espinasses [Serre-Ponçon] Durance 3580 652 2029 4017 49 EDF 

11 Villeneuve-d'Entraunes [Pont d'Enaux] Var 132 926 1902 2862 35 DREAL 

12 Val-d'Isère Isère 46 1831 2659 3538 64 EDF 

13 Bessans [Avérole] Avérole 45 1950 2871 3670 71 EDF 

14 Taninges [Pressy] Giffre 325 615 1507 3044 34 EDF 

15 Vacheresse Dranse d'Abondance 175 720 1443 2405 29 DREAL 

16 La Baume [Pont de Couvaloup] Dranse de Morzine 170 690 1437 2434 27 DREAL 

17 Dingy-Saint-Clair Fier 223 514 1244 2545 20 DREAL 

18 Allèves [La Charniaz] Chéran 249 575 1171 2157 23 DREAL 

19 Mizoën [Chambon amont] Romanche 220 1057 2396 3846 53 EDF 

20 Allemond [La Pernière] L’Eau Dolle 172 713 1964 3430 47 EDF 

3. INTERPOLATION PROCEDURES 

This section briefly presents the different spatial estimators used in the present study. The interpolation methods analysed 

include inverse distance weighted (IDW), ordinary kriging (ORK), kriging with external drift (KED) and IDW with external 

drift (IED). Interest readers can refer to Goovaerts (2000) for a detailed presentation of the different kriging algorithms, and 190 

to Diggle and Ribeiro (2007) for their implementation in the public domain in the GeoPackage in R.  

3.1. Spatial interpolation methods 

3.1.1. Inverse distance weighting  

Let us consider the problem of estimating the given variable z at an unsampled location u using only surrounding observation 

data. Let {z(uα), α = 1, …, n} be the set of data measured at n surrounding locations uα. The inverse distance weighting 195 

(IDW) method estimated z as a linear combination of n(u) surrounding observations with the weights being inversely 

proportional to the square 𝜔 distance between observations and u: 

 

ZIDW(𝑢) =
1

∑ 𝜆𝛼
𝑛(𝑢)
∝=1

(𝑢)
∑ 𝜆𝛼

𝑛(𝑢)

∝=1

(𝑢)𝑧(𝑢𝛼)       with    𝜆α(𝑢) =
1

|𝑢 − 𝑢𝛼|
𝜔

 (1) 
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The basic idea behind the weighting scheme is that observations that are close to each other on the ground tend to be more 200 

alike than those located further apart, hence observations closer to u should receive a larger weight. 

3.1.2. Ordinary kriging 

Instead of Euclidian distance, geostatistics uses the semivariogram as a measure of dissimilarity between observations. The 

experimental semivariogram is computed as half the average squared difference between the components of data pairs: 

 205 

γ̂(ℎ) =
1

2𝑁(ℎ)
∑[𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]

2

𝑁(ℎ)

∝=1

 (2) 

 

where N(h) is the number of pairs of data locations a vector h apart. The hypotheses of spatial variability were here 

homogeneity and an isotropic spatial pattern due to the lack of sufficient sampled points, and hence identical variability in all 

directions. 

 Kriging is a generalized least-squares regression technique that makes it possible to account for the spatial dependence 210 

between observations, as revealed by the semivariogram, in spatial prediction. Like the inverse distance weighting method, 

ordinary kriging (ORK) estimates the unknown variable z at the unsampled location u as a linear combination of 

neighbouring observations: 

 

𝑍ORK(𝑢) = ∑ 𝜆𝛼
𝑂𝑅𝐾(𝑢)𝑧(𝑢𝛼)

𝑛(𝑢)

𝛼=1

      with       ∑ 𝜆𝛼
𝑂𝑅𝐾(𝑢)

𝑛(𝑢)

𝛼=1

= 1 (3) 

 215 

The ordinary kriging weights 𝜆𝛼
𝑂𝑅𝐾(𝑢)  are determined such as to minimise the estimation variance 𝑉𝑎𝑟{𝑍ORK(𝑢) −

z(u)},while ensuring the unbiasedness of the estimator 𝐸{𝑍ORK(𝑢) − z(u)} = 0. These weights are obtained by solving a 

system of linear equations known as the ordinary kriging system:  

 

{
  
 

  
 
∑ 𝜆𝛽(𝑢)𝛾(𝑢𝛼 − 𝑢𝛽) − 𝜇(𝑢) =  𝛾(𝑢𝛼 − 𝑢)               𝛼 = 1, . . . , 𝑛(𝑢)

𝑛(𝑢)

𝛽=1

∑𝜆𝛽(𝑢) = 1

𝑛(𝑢)

𝛽=1

                                                                                                  

 (4) 

 220 

where 𝜇(𝑢) are Lagrange parameters accounting for the constraints on the weights. The only information required by the 

kriging system (4) are semivariogram values for different lags, and these are readily derived once a semivariogram model 

has been fitted to experimental values. In this study, we dealt with the fitting of the semivariogram using two existing 

theoretical models, as presented below: 

 225 

- Exponential model 

 

𝛾(ℎ; 𝜃) {
0,                                                              h = 0,
𝜃0 + 𝜃1[1 − exp (−3(‖ℎ‖/𝜃2], h ≠ 0,

 

 

(5) 
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for 𝜃0 ≥ 0, 𝜃1 ≥ 0 𝑎𝑛𝑑 𝜃2 ≥ 0. 

 

- Spherical model 

 230 

𝛾(ℎ; 𝜃)

{
 
 

 
 
0,                                                              h = 0,

𝜃0 + 𝜃1 (
3‖ℎ‖

2𝜃2
−
1

2
(
‖ℎ‖

𝜃2
)

3

) , 0 < ‖ℎ‖ ≤

𝜃0 + 𝜃1,                                                  h > 𝜃2,

𝜃2, 

 

for 𝜃0 ≥ 0, 𝜃1 ≥ 0 𝑎𝑛𝑑 𝜃2 ≥ 0. 

(6) 

 

The spherical model was tested because it is the most widely used semivariogram model and is characterised by linear 

behaviour (Goovaerts, 2000). The exponential model was selected in addition because it is recommended in the literature for 

spatial analysis of temperature (Tobin et al., 2011) and precipitation (Bárdossy and Pegram, 2013; Masson and Frei, 2014) in 

high-mountain regions. Each of these models was combined with a nugget effect, sill and range as parameters. An automatic 235 

procedure was necessary to fit the semivariogram model to experimental values over the study period (1998‒2016). The 

models were fitted using regression such that the weighted sum of squares of differences between the experimental and 

model semivariogram is minimum (see Goovaerts, 2000). 

3.2. Accounting for elevation dependency 

3.2.1. Kriging with external drift 240 

Kriging with an external drift (KED) predicts sparse variables which are poorly correlated in space by considering that there 

is a local trend within the neighbourhood; primary data is assumed to have a linear relation with auxiliary information 

exhaustively sampled over the study area (Ahmed and de Marsily, 1997). KED thus uses secondary information (such as 

elevation) to derive the local mean of the primary attribute z and then performs kriging on the corresponding residuals: 

 245 

𝑍KED(𝑢) − 𝑚KED(𝑢) = ∑ 𝜆𝛼
𝐾𝐸𝐷(𝑢)[𝑧(𝑢𝛼) − 𝑚KED(𝑢𝛼)]

𝑛(𝑢)

𝛼=1

  

 

with     𝑚KED(𝑢) =  𝑎0(𝑢) + 𝑎1(𝑢)𝑦(𝑢) 

(7) 

 

where y(u) are elevation data available at all estimation points, 𝑎0 and 𝑎1 are two regression coefficients estimated from the 

set of collocated variable of interest and elevation data {𝑧(𝑢𝛼), 𝑦(𝑢𝛼), 𝛼 = 1,… , 𝑛} using a simple linear relation. 

 The KED procedure was applied at each time step independently and within each search neighbourhood when the time 

series were interpolated. The coefficients 𝑎0  and 𝑎1  thus varied in space and time, which makes possible to consider a 250 

variable space-time relationship between the primary variable (temperature or precipitation) and the secondary variable 

(elevation). 

3.2.2. Inverse distance weighting with external drift (IED) 

The external drift approach was also tested using the inverse distance weighting procedure to propose an original technique, 

which we called IDW with external drift (IED), as follows: 255 
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𝑍IED(𝑢) − 𝑚IED(𝑢) =
1

∑ 𝜆𝛼
𝑛(𝑢)
∝=1 (𝑢)

∑ 𝜆𝛼

𝑛(𝑢)

∝=1

(𝑢)[𝑧(𝑢𝛼) − 𝑚IED(𝑢𝛼)]  

 

with     𝑚IED(𝑢) =  𝑎0(𝑢) + 𝑎1(𝑢)𝑦(𝑢) 

(8) 

3.3. Leave-one-out procedure 

The interpolation parameters (𝑛(𝑢) and 𝜔 for IDW and IED, and 𝑛(𝑢) and theoretical models for ORK and KED) were 

calibrated and the interpolation performance was assessed by “leave-one-out” cross validation, which consists of the 

following principle: a successive estimation of all sampled locations was performed by using all other stations while always 260 

excluding the sample value at the location concerned. The spatial models were validated against RMSE (root mean square 

error normalized with the average of observations) for temperature and precipitation at daily, monthly and yearly time steps. 

For precipitation, parameters were only estimated for days with at least 1 mm mean precipitation, i.e. approximatively 41% 

of the daily sample, whereas parameters were calculated for all months and years since there were no locations with dry 

months or dry years in the dataset. Since the external drift computation and kriging weights can sometimes lead to negative 265 

precipitation amounts (Deutsch, 2006), a posteriori correction was performed to replace all negative-estimated precipitation 

values with a zero value. The following performance measures were used to compare the estimations and observations for n 

locations and t time steps: the RMSE, the absolute simple bias (expressed in °C or mm) and the Nash-Sutcliffe Efficiency 

criterion (NSE; Nash and Sutcliffe, 1970). 

 The elevations of the gauging stations were used when applying the KED and IED procedures for the “leave-one-out” 270 

cross validation. When interpolating temperature and precipitation exhaustively over the study area, the elevation predictors 

were based on the digital elevation model (DEM) of the shuffle radar topography mission (SRTM; Farr et al., 2007). SRTM 

originally has a resolution of about 90 m. In this study, we used the SRTM elevation model resampled to a grid with 0.5x0.5 

km cells from the UTM32N coordinate reference system. This spatial resolution was judged as a good balance between 

computational constraints and elevation accuracy. 275 

4. MODEL ASSESSSMENT METHODOLOGY 

The way of accounting for orographic gradients in the temperature and precipitation datasets was also assessed with respect 

to its ability to contribute to simulations of snow covered area and streamflow at the catchment scale using the following 

modelling experiment. 

4.1. Snow accounting routine (SAR) 280 

The selected SAR (Fig. 2a) is a modified version of CEMANEIGE proposed by Valéry et al. (2014). The original version 

was modified to account for: a snowfall under-catch correction factor as used in the HBV snow routine (see Beck et al., 

2016), the computation of fractional snow-covered area (FSC) from a snow water equivalent (SWE) threshold, and possible 

integration of temperature and precipitation altitudinal gradients. 

 285 
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Fig. 2 Snow accounting routine: (a) conceptual scheme and (b) associated equations (modified from Valéry et al., 2014). 

 

Depending on the objectives, the model can be run in a full distributed mode or according to elevation bands. As distributed 

(or semi-distributed) inputs, it requires the daily liquid equivalent water depth of total precipitation (P) and mean daily air 290 

temperature (Tmean). In the case of a semi-distributed application at the catchment scale, the first step is to divide the 

catchment into elevation zones of equal area. Mean areal inputs (P and Tmean) are then extracted for each elevation zone from 

gridded temperature and precipitation datasets. In the present study, the number of elevation zones was set at five due to 

computational constraints and because preliminary tests showed no significant improvement in the snow-hydrological 

simulations when a higher spatial resolution was used. 295 

 In each elevation band, the functions of the SAR described in Figure 2b are applied with a unique set of parameters. 

Internal states (snowpack represented according to snow water equivalent (SWE) and its thermal state STS) vary 

independently in each elevation zone according to the differences in input values. When gridded temperature and 

precipitation datasets interpolated without elevation dependency are used, the SAR enables forcing data for each elevation 

zone to be modified based on two orographic gradients (TLR and PLR) used as key parameters: 300 

 

𝑇𝑖(𝑡) = 𝑇𝑖
𝐼𝐷𝑊(𝑡) + [

− (𝑇𝐿𝑅 +
1
2
𝑇𝐿𝑅 × 𝑆𝑖 × 𝐶𝑆𝑉)

100
× (𝑦𝑖 − 𝑦𝑖

𝐼𝐷𝑊(𝑡))] 

(9) 

 

with: 

 

𝑆𝑖 {
      sin (

2𝜋 × (𝑑 − 80.5)

366
) , 𝑙𝑎𝑡 > 0

  − sin (
2𝜋 × (𝑑 − 80.5)

366
) , 𝑙𝑎𝑡 < 0

 

  

𝑃𝑖(𝑡) = 𝑃𝑖
𝐼𝐷𝑊(𝑡) × [1 +

𝑃𝐿𝑅

1000
× (𝑦𝑖 − 𝑦𝑖

𝐼𝐷𝑊(𝑡))] (10) 

where 𝑇𝑖
𝐼𝐷𝑊(𝑡) and 𝑃𝑖

𝐼𝐷𝑊(𝑡) are, respectively, the mean areal temperature and precipitation interpolated based on the IDW 

procedure in elevation zone i at time step t; 𝑦𝑖
𝐼𝐷𝑊(𝑡) is the mean areal elevation interpolated based on the IDW procedure in 

elevation zone i from the available gauges at time step t;  𝑦𝑖   is the mean areal elevation extracted from the DEM in elevation 

zone i; TLR and PLR are the constant temperature and precipitation lapse rates to be calibrated; CSV is a coefficient of 305 

seasonal variation due to solar radiation to be applied to TLR (when set to 0, no seasonal variation is applied); Si is an index 
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of seasonal change in solar radiation accounting for daytime length and ranges from -1 on the 21
st
 of December (winter 

solstice) to 1 on the 21
st
 of June (summer solstice) in non-leap years in the Northern Hemisphere (lat > 0), d is the number of 

days since the 1
st
 of January of the current year. 

  To ensure insightful comparison with the modelling experiment, the SAR was calibrated according to different modes 310 

and degrees of freedom (Table 2). In mode M1, elevation dependency, which was accounted for (or not) in the T and P 

inputs based on the interpolation procedures, was tested by calibrating five parameters (TS, TR, SFCC, θ, Kf) which control 

snow accumulation and melt. This mode is usually used to allow snow processes to be adjusted to local conditions and/or the 

errors in the T and P inputs. In mode M2, all parameters of the SAR were fixed in order to introduce two parameters (TLR 

and PLR) as orographic gradients. The aim of using this mode was to account for elevation dependency in the T and P inputs 315 

from constant, calibrated orographic gradients while fixing the parameters that control snow accumulation and melt. In mode 

M3, the same approach was chosen but an additional parameter (CSV) was associated with the TLR gradient in order to test 

the value of introducing a seasonal variation in the temperature lapse rates (see Eq. 9). In mode M4, elevation dependency in 

the T and P inputs was also accounted for based on three (TLR, CSV and PLR) parameters and two other parameters (θ, Kf) 

were calibrated in addition to allow for snowmelt adjustment. 320 

 In each altitudinal band, five outputs (rainfall, snowfall, snowmelt, potential evapotranspiration and fractional snow-

covered area) are computed at each daily time step. Rainfall (R) and snowmelt (M) are summed to compute the total quantity 

of water available for production and transfer in the catchment. Potential evapotranspiration (PE) is computed for each 

altitudinal band using the temperature-based formulation proposed by Oudin et al. (2005): 

 325 

𝑃𝐸𝑖(𝑡) =
𝑅𝑒

𝜆𝜌

𝑇𝑖(𝑡)+ 5

100
          if (𝑇𝑖(𝑡) + 5) > 0; 𝑒𝑙𝑠𝑒 𝑃𝐸𝑖(𝑡) = 0  (11) 

 
where Re is the extra-terrestrial solar radiation (MJ.m

−2
.day

−1
) which depends on the latitude of the basin and the Julian day 

of the year, λ is the net latent heat flux (fixed at 2.45 MJ.kg
−1

), ρ is the water density (set at 11.6 kg.m
−3

) and 𝑇𝑖(𝑡) is the air 

temperature (°C) estimated in the elevation zone i at time step t. 

 330 

Table 2 Parameters of the snow accounting routine and their associated fixed values or ranges tested in each modelling experiment. 

   Fixed values or ranges tested 

Param. Meaning Unit M1 M2 M3 M4 

TS Temperature between the solid and liquid phase °C [-3; 3] -1 -1 -1 

TR Thermal range for the phase separation above TS °C [0; 10] 4 4 4 

SFCC Snowfall gauge under-catch correction factor - [1; 3] 1 1 1 

θ Weighting coefficient for snowpack thermal state - [0; 1] 0 0 [0; 1] 

TM Temperature threshold for snowmelt °C TS + 1 0 0 0 

Kf Degree-day melt factor mm.°C-1.d-1 [0; 10] 5 5 [0; 10] 

SWEth Snow water equivalent threshold to compute FSC mm 40 40 40 40 

TLR Temperature lapse rate °C (100m)-1 - [0;1.5] [0;1.5] [0;1.5] 

CSV Coefficient of seasonal variation applied to TLR - - 0 [0; 1] [0; 1] 

PLR Precipitation lapse rate % (km)-1 - [0; 200] [0; 200] [0; 200] 

 

The outputs of each band are averaged to estimate the total liquid output of the SAR and PE at the catchment scale in order 

to feed the combined hydrological models (Fig. 3). 

4.2. Hydrological models 335 

To avoid model-specific results, two well-known hydrological models (see structures in Fig. 3 and parameters in Table 3) 

were chosen in association with the SAR: the 4-parameter GR4J presented by Perrin et al. (2003) and a 9-parameter lumped 
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version of the HBV model (Bergström, 1995; Beck et al., 2016), here referred to as HBV9 to avoid confusion with the 

original version. 

 The two models were run at a daily time step and used in lumped mode with the SAR on top. The structure and the 340 

number of degrees of freedom differ between GR4J and HBV9, which should make our results more generalizable. 

 

 

 
Fig. 3 Diagrams of the two hydrological models used: (a) GR4J and (b) HBV9. Calibrated parameters are in red and are further described 345 

in Table 3. 

 

Table 3 Parameters of the hydrological models and their associated ranges tested. 

Model Parameter Meaning Unit Tested range 

GR4J X1 Maximum capacity of the production store S mm [10; 1000] 

 X2 Inter-catchment exchange coefficient mm.d-1 [-5; 5] 

 X3 Maximum capacity of the non-linear routing store R mm [0; 500] 

 X4 Unit hydrograph (UH) time base d [0.5; 5] 

HBV9 BETA Shape coefficient of recharge function - [0.5; 5] 

 FC Maximum water storage in the unsaturated-zone store S mm [10; 1500] 

 LP Fraction of soil moisture above which actual evapotranspiration reaches PE - [0.3; 1] 

 K0 Additional recession coefficient of the upper groundwater store R - [0.05; 1] 

 K1 Recession coefficient of the upper groundwater store R - [0.1; 0.8] 

 UZL Threshold value for extra flow from the upper zone mm [0; 500] 

 PERC Maximum percolation to the lower zone mm.d-1 [0; 6] 

 K2 Recession coefficient of the lower groundwater store T - [0.01; 0.15] 

 MAXBAS Length of the equilateral triangular weighting function - [1 7] 

4.3. Calibration and validation methods 

4.3.1. General model assessment 350 

The models (GR4J and HB9 with the SAR on top) were cross-validated using a split-sample test procedure. The simulation 

period (2000‒2016) was split into two sub-periods alternatively used for calibration and validation. Thus two calibration and 

two validation tests were performed to provide results in validation on all available data. The models were run in a 

continuous way for the whole reference period, while only hydrological years (from the 1
st
 of September to the 31

st
 of 

August) corresponding to the calibration and validation periods were considered to compute the efficiency criteria. The 3-355 

https://doi.org/10.5194/hess-2019-556
Preprint. Discussion started: 12 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 

13 

year period before the simulation period was used for model warm-up to limit the effect of the storage initialisation, and was 

not included in performance computation. 

4.3.2. Optimisation algorithm and objective function 

The parameters of the SAR and the hydrological model were optimised simultaneously, using the Shuffled Complex 

Evolution (SCE) algorithm (Duan et al., 1992). The algorithmic parameters of SCE were set to the values recommended by 360 

Duan et al. (1994) and Kuczera (1997) to reduce the risk that SCE fails in local optimal solutions. The objective function 

(OF) used was a multi-criteria composite function focusing simultaneously on variations in snow-covered area, streamflow 

dynamics and water balance at the basin scale, as follows: 

 

OF = 1 − NSESNOW + 1 − NSEsqrQ + 1 −WB 

(12) 

 

with: 

 

NSESNOW = 1 −
∑ (𝐹𝑆𝐶𝑠𝑖𝑚,𝑖 − 𝐹𝑆𝐶𝑜𝑏𝑠,𝑖)

2𝑁
𝑖=1

∑ (𝐹𝑆𝐶𝑜𝑏𝑠,𝑖 − 𝐹𝑆𝐶𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

 

 

NSEsqrQ = 1 −
∑ (√𝑄𝑠𝑖𝑚,𝑖 − √𝑄𝑜𝑏𝑠,𝑖)

2𝑁
𝑖=1

∑ (√𝑄𝑜𝑏𝑠,𝑖 − √𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

 

 

WB =
∑ [(𝑄𝑠𝑖𝑚,𝑦 > 𝑃𝑦 − 𝑃𝐸𝑦)

𝑇𝑅𝑈𝐸
↔  (𝑄𝑠𝑖𝑚,𝑦 < 𝑃𝑦)]

𝑀
𝑦=1

𝑀
 

 365 

where 𝐹𝑆𝐶𝑜𝑏𝑠,𝑖  and 𝐹𝑆𝐶𝑠𝑖𝑚,𝑖  are the observed and simulated fractional snow-covered area (FSC) at daily time step i, N is 

the total number of time steps, 𝐹𝑆𝐶𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅  is the mean observed FSC over the test period, 𝑄𝑜𝑏𝑠,𝑖    and 𝑄𝑠𝑖𝑚,𝑖  are the observed 

and simulated streamflows at daily time step i, √𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅

   is the mean observed square root transformed flows over the test 

period,  𝑄𝑠𝑖𝑚,𝑦 , 𝑃𝑦  and 𝑃𝐸𝑦  are the total streamflow, precipitation and potential evapotranspiration in year y and M is the 

total number of years in the test period. 370 

 NSESNOW relies on the Nash-Sutcliffe Efficiency criterion. Perfect agreement between the observed and simulated 

values gives a score of 1, whereas a negative score represents lower reproduction quality than if the simulated values had 

been replaced by the mean observed values. NSEsqrQ can be considered as a multi-purpose criterion focusing on the 

simulated hydrograph. It puts less weight on high flows than the standard NSE on non-transformed discharge (Oudin et al., 

2006). WB represents the proportion of years of the test period, which respects the water and energy balance in the Turc-375 

Budyko non-dimensional graph proposed by Andréassian and Perrin (2012). The WB criterion evaluates if the catchment-

scale annual water balance is ensured. Perfect agreement gives a WB score of 1, while 0 indicates that the water balance is 

not reached in any year during the test period.  

4.3.3. Efficiency criteria in validation 

Four criteria were used to evaluate model performance during validation. The first one was the NSESNOW criterion. To put 380 

more emphasis on high and low flow conditions, we used the NSE on non-transformed streamflows (NSEQ) that gives more 

weight to large errors generally associated with peak flows, and the NSE on log-transformed streamflows (NSElnQ). The 
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absolute cumulated volume error (VEC) was also computed to obtain information on the agreement between observed and 

simulated total discharge over the test periods: 

 385 

VEC = 1 −
|∑ 𝑄𝑠𝑖𝑚,𝑖
𝑁
𝑖=1 −∑ 𝑄𝑜𝑏𝑠,𝑖

𝑁
𝑖=1 |

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑁
𝑖=1

 (13) 

 

A value of 1 indicates perfect agreement while values less than 1 indicate over- or underestimation of the volume. 

5. RESULTS AND DISCUSSION 

5.1. Cross-validation of the interpolation methods 

Table 4 lists the results of cross-validation of the interpolation methods against yearly, monthly and daily series from 390 

temperature and precipitation gauges. Kriging with ORK led to an improvement over IDW only for precipitation 

interpolation at the yearly and monthly time scales. Considering elevation dependency with external drift (KED and IED) 

significantly improved the performance of the kriging and inverse-distance methods, except for precipitation estimated at the 

daily time scale. This shows that the correlation between precipitation and topography increases with the increasing time 

aggregation as already reported in other studies (e.g.,  Bárdossy and Pegram, 2013; Berndt and Haberlandt, 2018). Of all the 395 

methods tested, IED provided the best performance in terms of both lower RMSE and MAE, and higher NSE for each 

variable (temperature and precipitation) and at all temporal resolutions (yearly, monthly and daily), except for precipitation 

at the daily time scale for which IDW performed best. 

 The exponential variogram model for the ORK and KED method performed systematically better than the spherical 

model whatever the variable and the time scale. In contrast, the exponent  400 

𝜔 used with the IDW and IED methods varies from 1 to 3 depending on the considered variable and time scale. The 

optimised number of surrounding neighbours n(u) also varies depending on the method and time scale. At the daily time 

scale, n(u)  ranged from 6 when interpolating temperature with ORK to 17 when interpolating precipitation with KED and 

IED. Hence, 10 (17) surrounding neighbours were used to compute altitudinal gradients of temperature (precipitation) based 

on the daily linear regressions with KED and IED. 405 

 Figure 4 shows the annual temperature and precipitation maps obtained by interpolation daily data from the 

meteorological gauges with the period 2000‒2016 using the IDW, ORK, KED and IED methods and their optimised 

parameters (Table 4). The maps of IED estimates of mean temperature and annual precipitation closely resemble the KED 

maps. Temperature estimates range from -9.2 °C to 16 °C with KED, and from -11.2 °C to 16.6 °C with IED. Precipitation 

estimates range from 630 mm to 3273 mm with KED, and from 642 mm to 3184 mm with IED. As expected, these ranges 410 

are wider than those obtained with the IDW and ORK procedures, which, unlike the KED and IED methods, do not consider 

either local or seasonal elevation dependency. As a result, the ranges obtained with KED and IED are probably more realistic 

with respect to temperature, but not necessarily with respect to precipitation, for which daily cross-validation shows that the 

simple IDW method provided better results. However, cross-validation was based on precipitation gauges sampled only 

below 2006 m a.s.l., meaning validation of the temperature and precipitation gridded datasets at higher altitudes was not 415 

possible. Another approach is thus needed to further explore whether elevation dependency should be disregarded when 

estimating daily precipitation (as suggested by cross-validation), and, if not, whether this dependency should be accounted 

for in the interpolation process or by inverting the hydrological cycle. A sensitivity analysis of snow-hydrological 

simulations to the orographic gradients was thus conducted. 

 420 
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Table 4 Cross-validation of the interpolation methods against yearly, monthly and daily series from meteorological gauges over the period 
2000‒2016. The best efficiency criteria for each analytical time scale and each variable of interest (temperature and precipitation) are in 
bold. The values of n(u) and ω (for IDW and IED) and of n(u) and model (for ORK and KED) represent the interpolation parameters, 
which were optimised using the leave-one-out procedure, as described in section 3.3. 425 

 

 

 

Fig. 4 Maps of mean annual temperature (°C) and total precipitation (mm per year) obtained by interpolation of (a) 78 gauges 
(temperature) and of (b) 148 gauges (precipitation) with daily data for the period 2000‒2016 using the inverse distance weighted (IDW), 430 
ordinary kriging (ORK), kriging with external drift (KED) and IDW with external drift (IED). The numbers below each map stand 
respectively for minimum, mean and maximum values (expressed in °C for temperature and in mm for precipitation) in the maps. 

  Temperature (78 gauges) Precipitation (148 gauges) 

  Without elevation 

dependency 

With elevation as external drift Without elevation 

dependency 

With elevation as external 

drift 

  IDW ORK KED IED IDW ORK KED IED 

Y
ea

rl
y
 

RMSE 1.82 1.82 0.65 0.65 177.05 174.27 153.75 150.31 

MAE 1.5 °C 1.5 °C 0.5 °C 0.5 °C 131.2 mm 127.8 mm 111.2 mm 110.4 mm 

NSE 0.452 0.455 0.931 0.930 0.764 0.772 0.822 0.830 

n(u) 6 6 8 10 4 15 12 12 

ω 1 - - 2 3 - - 3 

model - exponential exponential - - exponential exponential - 

M
o
n
th

ly
 

RMSE 1.91 1.92 0.86 0.80 23.19 22.73 22.35 22.20 

MAE 1.5 °C 1.5 °C 0.6 °C 0.6 °C 15.5 mm 15.2 mm 14.8 mm 14.8 mm 

NSE 0.927 0.926 0.987 0.987 0.873 0.878 0.882 0.883 

n(u) 7 6 8 10 5 15 12 12 

ω 1 - - 2 2 - - 2 

model - exponential exponential - - exponential exponential - 

D
ai

ly
 

RMSE 2.16 2.18 1.21 1.20 4.34 4.38 4.47 4.46 

MAE 1.7 °C 1.7 °C 0.9 °C 0.9 °C 2.3 mm 2.3 mm 2.4 mm 2.4 mm 

NSE 0.923 0.921 0.976 0.976 0.833 0.831 0.823 0.824 

n(u) 7 6 10 10 10 10 17 17 

ω 1 - - 2 2 - - 2 

model - exponential exponential - - exponential exponential - 
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5.2. Sensitivity of the snow-hydrological simulations to the orographic gradients 

For the sake of brevity, here we only present the results we obtained with the datasets interpolated with the IDW and IED 

procedures, since cross-validation at the daily time scale showed that they slightly outperformed the ORK and KED 435 

methods, respectively. Table 5 summarises the six tests performed to account for elevation dependency in the T and P inputs 

via the modelling experiment described in section 4. 

 

Table 5 Description of the tests to account for elevation dependency in the T and P inputs via the modelling experiment described in 
section 4. 440 

Mode Test 

number 

T input P input Calibrated parameters 

(excluding hydrological 

models) 

Principle 

M1 

 

1 T-IDW P-IDW TS, TR, SFCC, θ, Kf No elevation dependency in the T and P inputs, and five calibrated parameters 

for adjustment of snow accumulation and melt 

2 T-IED P-IDW TS, TR, SFCC, θ, Kf Elevation dependency only in the T input based on the IED interpolation 
procedure, and five calibrated parameters for adjustment of snow accumulation 

and melt 

3 T-IED P-IED TS, TR, SFCC, θ, Kf Elevation dependency in the T and P inputs based on the IED interpolation 
procedure, and five calibrated parameters for adjustment of snow accumulation 

and melt 

M2 4 T-IDW P-IDW TLR, PLR Elevation dependency in the T and P inputs considered based on two calibrated 
parameters in the SAR, and fixed parameters for snow accumulation and melt 

M3 5 T-IDW P-IDW TLR, CSV, PLR Elevation dependency in the T and P inputs considered based on three calibrated 

parameters in the SAR, and fixed parameters for snow accumulation and melt 
M4 6 T-IDW P-IDW TLR, CSV, PLR, θ, Kf Elevation dependency in the T and P inputs considered based on three calibrated 

parameters in SAR, and two calibrated parameters for adjustment of snow melt 

 

 

 
Fig. 5 Boxplots (showing 0.05, 0.25, 0.50, 0.75 and 0.95 percentiles) of the efficiency distributions obtained in validation by the (a) GR4J 
and (b) HBV9 models combined with the snow model according to six different tests (see Table 5) to account for elevation dependency in 445 
the T and P inputs on the 20 snow-affected Alpine catchments. 
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Figure 5 and Table 6 summarise the efficiency distributions obtained in validation with the GR4J and HBV9 models 

combined with the snow model in the different tests on the 20 snow-affected Alpine catchments. The results produced by the 

two hydrological models are in agreement and highlight the following main findings: 450 

‒ Not considering elevation dependency in either the T or P inputs (Test #1) leads to notable failures of the snow-

hydrological models, due to incorrect snow/rainfall partitioning and snowmelt in space and over time caused by too 

high temperatures and insufficient input volumes of precipitation, which cannot be offset by the free parameters of 

the SAR. Notably, calibrating temperature thresholds and ranges for snow/rain partition and snow melt, as well as 

snow under-catch (using the SFCC parameter) is clearly unsatisfactory. 455 

‒ Considering elevation dependency only in the T inputs based on the IED procedure (Test #2) significantly improves 

the snow-hydrological simulations, but considering elevation dependency in the P inputs based on the same 

procedure (Test #3) is not as efficient, notably for streamflow simulations. This shows that the estimated 

precipitation with IED over the catchments is of limited accuracy. 

‒ Improving the areal temperature and precipitation estimation clearly requires the calibration of altitudinal 460 

temperature and precipitation gradients. The snow-hydrological simulations are considerably improved when using 

the parsimonious 2-parameter SAR based only on the calibration of TLR and PLR (Test #4), 

‒ Compared to Test #4 based only on a 2-parameter SAR, only limited improvements in the performance distributions 

are obtained by introducing additional free parameters to account for the seasonal variability of the temperature 

gradients (Test #5) and for local adjustment of snowmelt (Test #6). 465 

 

Table 6 Mean validation efficiency of the 6 modelling tests (see Table 5) on the set of 20 catchments with the GR4J model and the HBV9 
model. 

Model Test 

number 

Number of free 

parameters 

of the SAR 

Mean 

NSESNOW 

Mean 

NSEQ 

Mean 

NSElnQ 

Mean 

VEC 

G
R

4
J 

1 5 0.59 0.59 0.66 0.91 

2 5 0.79 0.70 0.74 0.94 

3 5 0.79 0.66 0.71 0.90 

4 2 0.86 0.78 0.81 0.95 

5 3 0.86 0.79 0.81 0.95 

6 5 0.86 0.79 0.82 0.95 

H
B

V
9
 

1 5 0.57 0.66 0.70 0.91 

2 5 0.78 0.70 0.67 0.91 

3 5 0.79 0.63 0.61 0.88 

4 2 0.87 0.75 0.74 0.92 

5 3 0.87 0.77 0.76 0.92 

6 5 0.87 0.77 0.76 0.93 

 

Figure 6 shows the differences in the results of the Tests #1 to #4 in terms of annual water balance simulated with the GR4J 470 

model in the 20 catchments and represented in a Turc-Budyko non-dimensional space (Le Moine et al., 2007; Valéry et al., 

2010; Andréassian and Perrin, 2012). The least stretched and dispersed cluster is obtained when calibrating the altitudinal 

gradients of temperature and precipitation (Fig. 6d). Compared to the other simulations (Tests #1, #2 and #3), all the dots are 

located in the narrow “physical” range, delimited by a upper limit where Q = P (i.e., y = Q/P = 1) and a lower limit where Q 

= P – PE (Q/P = 1 – PE/P ↔ y = 1 – 1/x). This means that annual simulated runoff never exceeds total precipitation and that 475 

annual runoff deficit never exceeds total PE (assuming there are no errors in the streamflow measurements). Altitudinal 

temperature and precipitation gradients inferred from snow-hydrological modelling thus lead to more realistic catchment 

water balance than when they are estimated from gauges using interpolation. 

 As a representative example of the studied catchments, Figure 7 illustrates the differences in the simulations obtained 

by Tests #1 to #4 for the Durance at Serre-Ponçon. This 3580 km² catchment with altitudes ranging between 652 and 4017 m 480 
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a.s.l. ensures inflows to one of the biggest dams in Europe (maximum capacity of 1.3 km
3
). Dynamics of fractional snow 

cover area and streamflow are better simulated when considering elevation dependency of the T and P inputs via two 

calibrated, altitudinal gradients (Test #4). Compared to the other tests, mean annual temperature (4.1 °C) is lower and mean 

annual precipitation (1212 mm) is higher. Less precipitation is considered in solid form (44% of total precipitation on 

average) and accumulation is longer during winter, which fits streamflow observations better, both for low flows from 485 

December to April and for flood peaks between May and July. It is worth noting that these more realistic simulations were 

obtained with a SAR calibrated on only two parameters targeting the local lapse rates whereas the other simulations were 

based on a SAR calibrated on five parameters. This shows that calibrating the usual snow parameters to compensate for 

errors in the input data and/or to adapt to local snow processes is less efficient in the simulations than inferring only 

temperature and precipitation lapse rates while setting all the other parameters to physical or general values. This suggests 490 

that adapting to local snow processes is not indispensable and that compensating for the errors in the input data is better 

achieved by simply calibrating the local temperature and precipitation gradients. 

 

 
Fig. 6 Simulated annual water balance in validation mapped in non-dimensional space for the 20 snow-affected catchments with the GR4J 495 
model according to Tests #1 to #4 (see Table 5). The number of dots is 320, i.e. 20 catchments ×16 years. The QS/P versus P/PE plot of 
Test #4 produces the least stretched and dispersed cluster. 

5.3. Identifiability of the parameters 

Figure 8 shows an example of parameter sensitivity to the objective function (OF) according to the six tests (see Table 5) 

with the GR4J model on the Durance at Serre-Ponçon. As already shown, considering elevation gradients (Tests #4, #5 and 500 

#6) minimises OF and improves model performance. It also improves the parameter identifiability. The temperature 

altitudinal gradient (TLR) is easily identifiable with values ranging from 0.66 °C/100 m (Test #4 and Test #5) to 0.70 

°C/100m (Test #6). It appears to be a key parameter for improving snow and streamflow simulations compared to parameters 

calibrated using elevation gradients inferred from interpolation (Tests #2 and #3). The optimum value of the CSV parameter 

(Tests #5 and #6) is zero, clearly indicating no need to account for the seasonal variation in the temperature lapse rate in the 505 
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catchment studied here. The precipitation lapse rate (PLR) is also easy to identify (around 60%/km in the catchment studied). 

Introducing additional parameters controlling snowmelt (θ and Kf in Test #6) does not significantly improve the simulations. 

This shows that model performance is mainly sensitive to the use of parameters for temperature and precipitation lapse rates 

and that a 2-parameter SAR based on TLR and PLR (Test #4) on top of the hydrological models tested is both essential and 

sufficient to produce satisfactory simulations. Equifinality is more marked for the parameters controlling runoff generation 510 

and routing (X1, X2, X3 and X4), suggesting that these parameters somehow interact. However, the parameter of the inter-

catchment groundwater flows (X2) shows a clear optimum towards positive values, indicating the need for additional water, 

which cannot be totally offset by the calibrated precipitation lapse rate. This result suggests that it remains important to 

explicitly represent inter-catchment groundwater transfers in association with correcting or scaling factors applied to the 

precipitation input data to render the distribution between evapotranspiration, streamflow and underground fluxes more 515 

realistic, as already reported by Le Moine et al. (2007). 

 

 
Fig. 7 Comparison of snow-hydrological simulations with elevation dependency according to Tests #1 to #4 (see Table 5) with GR4J for 
the Durance at Serre-Ponçon. The graphs show mean inter-annual time-series of temperature, precipitation, streamflow and fractional 520 
snow cover at the catchment scale in validation over the period 2008‒2016. Tmean, Pmean and Smean stand for mean annual temperature, 
precipitation, and snowfall, respectively. 
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Fig. 8 Parameter sensitivity to the objective function (OF) according to Tests #1 to #6 (see Table 5) with GR4J combined with the snow 525 
model on the Durance at Serre-Ponçon. The values and dots in red indicate the optimised calibrated parameters when minimising OF, 
while the black dots represent trials of the SCE-UA optimisation algorithm. 

5.4. Ranges of the calibrated altitudinal gradients 

Figure 9 shows that the temperature and precipitation lapse rates vary considerably from one catchment to another. 

 The mean value of the calibrated temperature lapse rates is -0.66 °C (100 m)
-1

 and -0.62 °C (100 m)
-1

 with GR4J and 530 

HBV9, respectively. These values are higher than the yearly lapse rates identified by Rolland (2003) from gauge 

observations in Alpine regions, which ranged from -0.54 to -0.58 °C (100 m)
-1

 in the Italian and Austrian Tyrol. Instead, the 

values are close to the average temperature gradients generally proposed as approximations in the literature (-0.60 °C in 

Dodson and Marks, 1997; -0.65 °C (100 m)
-1

 in Barry and Chorley, 1987). They can be used as suitable estimates for daily 
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snow-hydrological purposes in the French Alps. However, to better account for local meteorological conditions, it may be 535 

advisable to calibrate them since the TLR parameter ranges from -0.43 to -0.84 °C (100 m)
-1

 depending on the catchments 

and on the models, and is easily identifiable (see Fig. 8 and section 5.3.). 

 The mean value of the calibrated precipitation lapse rates is 40% (km)
-1

 and 24% (km)
-1

 with GR4J and HBV9, 

respectively.  The differences between the two models may be due to the GR4J ability to gain (or loose) water from inter-

catchment groundwater flows through its X2 parameter (see section 5.3.). On the other hand, HBV9 relies on more 540 

parameters for production and transfer, thus enabling to compensate differently for the errors in the precipitation volumes. 

Whatever the model, the calibrated lapse rates indicate the need for increased precipitation volumes in most catchments, 

either to counterbalance for erroneous measurements such as the systematic errors associated with precipitation under-catch 

during snowfall, or to consider the orographic effect that cannot be sufficiently accounted for by the gauges used for 

interpolating the precipitation fields. However the ranges of the precipitation lapse rates, from 0 to 99% (km)
-1

 with GR4J 545 

and from 0 to 79% (km)
-1

 with HBV9, suggest that the required correction is catchment-specific and depends either on the 

local meteorological conditions or on data from the available surrounding stations to interpolate the daily precipitation. 

 

 
Fig. 9 Boxplots (showing 0.05, 0.25, 0.50, 0.75 and 0.95 percentiles) of the ranges of (a) temperature and (b) precipitation lapse rates 550 
calibrated with the 2-parameter SAR (Test #4) in association with the GR4J and HBV9 models on the 20 snow-affected Alpine 
catchments. The red crosses indicate mean values. 

6. SUMMARY AND CONCLUSIONS 

6.1. Summary 

Elevation is a key factor in spatial climate variability in mountainous areas, for both temperature and precipitation. However, 555 

it is still difficult to establish the elevation dependency locally at a daily time scale from scattered observations. The aim of 

this paper was thus to assess whether snow-covered area and streamflow measurements can help assess altitudinal gradients 

of temperature and precipitation more realistically than using standard interpolation procedures in data-scarce mountainous 

areas. To investigate this issue, we used an extensive dataset based on 78 temperature gauges, 148 precipitation gauges, 500-

m MODIS gap-filled snow products and 20 streamflow gauges covering the period 2000 to 2016 in the French Alps. 560 

Elevation dependency in the temperature and precipitation fields was accounted for using two approaches: (1) by estimating 

the local and time-varying altitudinal gradients from the available gauge network based on deterministic (inverse distance 

weighted) and geostatistical (kriging) interpolation methods with external drift; and (2) by calibrating the local gradients 

using an inverse snow-hydrological modelling framework. In the second approach, we assumed a simple two-parameter 

correction model to regionalise air temperature and precipitation from the sparse meteorological network: the first parameter 565 

(TLR) targeted the temperature-elevation relationship, while the second parameter (PLR) targeted the precipitation-elevation 

relationship. The coherence of the two approaches was evaluated by benchmarking several hydrological variables of interest 

(snow covered area, streamflow and water balance) computed with snow-hydrological models fed by the interpolated 
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datasets and applied in a modelling framework against available measurements. The advantage of this approach is that it 

integrates the complex benchmarking process of observational meteorological datasets in an easy-to-grasp metric (Laiti et 570 

al., 2018). 

 Cross-validation of the mapping methods showed that, whatever the time scale, temperature estimates can clearly 

benefit from taking altitude into account with interpolation methods based on external drift. For precipitation, incorporating 

elevation in the interpolation methods was especially helpful for yearly and monthly accumulation times but could not 

achieve an improvement for daily time resolution. Our results also showed that accounting for elevation dependency from 575 

gauge networks when interpolating air temperature and precipitation was not sufficient to provide accurate inputs for the 

snow-hydrological models tested here. The lack of high-elevation stations seriously limited correct estimation of local, time-

varying lapse rates of temperature and precipitation, which, in turn, affected the performance of the snow-hydrological 

simulations due to too imprecise estimates of temperatures and of precipitation volumes. Conversely, retrieving the local 

altitudinal gradients via an inverse modelling approach provided evidence for increased accuracy in the simulation of snow 580 

cover and discharge dynamics (including discharge volumes), while limiting the problems of over-calibration and 

equifinality through parsimonious parametrisation. 

6.2. Recommendations 

These results suggest that interpolation methods using elevation as external drift such as those tested (KED and IED) should 

be used with caution in the absence of sufficient high-elevation data. Although the gauge density in the French Alps is close 585 

to the minimum density recommended by WMO (2008) for mountainous areas, the number of weather stations is insufficient 

for a complete cover of the altitude ranges. This seriously limits estimates of local and seasonal relations with elevation, 

notably for daily precipitation, but also for temperature, which was initially not apparent when using the leave-one-out 

procedure against available gauges. Placing meteorological fields in a snow-hydrological perspective thus proved 

indispensable to confirm the limited suitability of standard interpolation methods for generating reliable spatially distributed 590 

modelling inputs in mountainous areas. It also made it possible to propose a modelling approach to infer meteorological 

inputs in complex, mountainous environments and showed that it is possible (and even advisable) to use remotely-sensed 

snow-cover and streamflow measurements to improve our knowledge of temperature and precipitation inputs in data-scarce 

mountainous regions. Using auxiliary observations of snow cover notably proved to be useful to give additional insights into 

the reliability of the modelled snow processes. We thus suggest using the proposed modelling framework to infer local 595 

altitudinal gradients from a sparse network of gauges based on key parameters in the snow-hydrological models. More 

generally, following Tobin et al. (2011), we also recommend using such a framework for a preliminary assessment of the 

hydrological coherence of gridded datasets to be used in large-scale hydro-climatic studies. 

 Another recommendation concerns the level of complexity required to control snow accumulation and melt. Most 

degree-day snow models in the literature use free parameters to adjust snowpack processes and streamflow responses, 600 

including the whole water balance. Some parameters (temperature thresholds for snow/rain partition and snowmelt, solid 

precipitation correction factor) aim to compensate for the errors in the T and P inputs, while others (thermal state of the 

snowpack, degree-day melt factor) aim to fit snowmelt to local conditions. Our results showed that calibrating these 

parameters based on a 5-parameter SAR was much less efficient in improving the modelling performance than fixing them 

and calibrating only local temperature and precipitation altitudinal gradients based on a simple 2-parameter SAR. These 605 

results suggest that altitudinal gradients of temperature and precipitation inputs should be inferred from key parameters in 

snow-hydrological models since they play a first-order role in snow-hydrological simulations. Instead of compensating for 

the errors in the meteorological inputs, inferring the gradients reduces the input errors originating from the non-

representative vertical distribution of stations while allowing the parameters of snow accumulation and melt to be set at 
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general or physical values. Indeed, introducing additional free parameters to account for the seasonal variability of the 610 

temperature gradients and for adjustment of snowmelt led to only limited improvements in the performance distributions 

compared to the simulations based on the parsimonious 2-parameter SAR. This finding suggests that correcting errors in the 

model inputs is more critical than adapting the SAR to local snow processes. It also suggests limiting the degree of freedom 

allowed in degree-day snow models in order to reduce the risk of over-parametrisation. 

6.3. Prospects 615 

It would be instructive to further explore the sensitivity of snow-hydrological simulations to seasonal variations in the lapse 

rates, e.g. by using daily altitudinal gradients instead of a uniform constant gradient. However, as shown in the present paper, 

establishing the relationship between temperature/precipitation and elevation at the daily time scale from a sparse network of 

gauges is challenging in mountainous regions. For temperature, the methods tested for computing local and daily lapse rates 

for each prediction point (KED, IED) outperformed the methods that did not account for altitudinal gradients (IDW, ORK) in 620 

the leave-one-out procedure. However, using only a constant lapse rate calibrated from the inverse modelling approach 

performed substantially better than using the interpolated datasets of temperature with external drift. This shows either that 

the local temperature lapse rates (including their seasonal variation) were not correctly captured by the daily application of 

interpolation methods with external drift, or that, for our experiment, accurately estimating a constant, uniform gradient for 

temperature was more important than estimating its seasonal variations. A seasonal variation in temperature gradient was 625 

tested with a sinusoidal approach, which required an additional free parameter to determine the variation interval. When we 

compared the modified 3-parameter SAR version (Test #5 in Table 5) with the 2-parameter SAR on the whole dataset, we 

found that the performance distributions of the two SARs were very similar (Fig. 5). This means that, although the seasonal 

variation in the temperature altitudinal gradient can be put in evidence from gauge networks, as shown by Rolland (2003) for 

alpine regions, it did not appear indispensable for the daily snow-hydrological processes represented in our modelling 630 

experiment. Alternatively, improving the snow-hydrological simulations could consist in using minimum and maximum air 

temperature rather than daily mean temperature (see e.g. Turcotte et al., 2007) in order to better determine the snow/rain 

partition. For the regionalisation of these extreme temperatures, one challenge that remains will be characterising the high 

variability of daily lapse rates, which reflects temperature inversions as well as rapidly changing circulation patterns, as 

reported in Stahl et al. (2006). The same problem applies to precipitation since the seasonal relationship between 635 

precipitation and elevation also depends on exposure to atmospheric flows. Further research could thus build on the works of 

Jarvis and Stuart (2001) for temperature and Gottardi et al. (2012) for precipitation and focus on methods for interpolation 

and extrapolation that are capable of accounting for differences in the influence of topography in different seasons and 

synoptic situations. 

 640 
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