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Responses to comments from anonymous Referee 2 

On “Should altitudinal gradients of temperature and precipitation inputs be inferred from key 
parameters in snow-hydrological models?” by D. Ruelland (HESS-2019-556) 

Referee’s comment 

The article analyzes the sensitivity of a snow accounting procedure and hydrological modeling results 
to the evaluation of temperature and precipitation in space and time in mountainous catchments. The 
study is based on a set of 20 catchments in the French Alps and two hydrological models. The author 
evaluates the interplay between the lapse rate, snow routine and hydrological model parameters. 

I found this is a clear and interesting paper. I have a few suggestions for improvement 
detailed below, some of which are quite major and requiring new calculations. I suggest considering 
the paper for possible publication in HESS after major revision. 
 
Authors’ response 
I would like to thank the referee for the time spent in reviewing the initial paper and making 
interesting suggestions. Most of them were judged useful, I provided a point-by-point response to 
the reviewer’s comments and tried to bring modifications to the manuscript accordingly. 

Detailed comments 

Referee’s comment 

1. I found that the literature review could have been more exhaustive, to better stress the originality 
of the work compared to existing studies on similar or close topics. Some recent works could be 
discussed, for example the work by Le Moine et al. (2015) on the link between snow and hydrological 
sub-models in model parameterization, some studies on using snow data to calibrate hydrological 
models (Besic et al. 2014, Henn et al. 2016, Riboust et al. 2019), some studies with physical 
approaches to estimate lapse rates (Rahman et al. 2014, Zhang et al. 2015, Naseer et al. 2019). The 
review could also be extended on how gauge undercatch factors are estimated. The author should 
further discuss to which extent the proposed approach is original compared to these past findings. 
 
Authors’ response and modifications to manuscript 
I thank the referee for these additional references, some of which I did not know. They were cited in 
the text and added to the reference list. 

Following the referee comment, the following paragraph was added in the introduction 
section: 
“…Several studies proposed approaches to estimate lapse rates based on physically-based or 
conceptual models on specific catchments. Zhang et al. (2013) showed that the runoff simulation 
results involving snowmelt and rainfall runoff were highly sensitive to the temperature and 
precipitation lapse rates in a Tibetan catchment. Rahman et al. (2014) calibrated the SWAT model in 
a snow-dominated basin in the Swiss Alps and found also that temperature lapse rate was 
significantly important for hydrological performance. Naseer et al. (2019) considered a dynamic lapse 
rate based on a vertical profile of temperature in a catchment in Japan and succeeded to improve the 
precipitation phase in a distributed hydrological modelling framework. Henn et al. (2016) 
investigated the value of snow data to constrain the inference of precipitation from streamflow, 
using lumped hydrologic models and an elevation-band snow model in a Californian basin. Their 
results suggested that multiple types of hydrologic observations, such as streamflow and SWE, may 
help to constrain the water balance of high-elevation basins. Le Moine et al. (2015) proposed a 
calibration strategy where the parameters of both an interpolation model and a daily snow-
hydrological model are jointly inferred in a multi-variable approach applied in a catchment in the 
French Alps. Using a hydro-meteorological modelling chain involving 31 calibrated parameters, they 



2 
 

showed the potential of using different types of observations (rain gauges, snow water equivalent 
measurements and streamflow data) to help assess temperature and precipitation lapse rates 
according to different weather types. These examples encourage testing whether an inverse 
modelling approach based on calibrated constant lapse rates can perform well with parsimonious 
conceptual models applied in numerous basins.” 
 
The recent reference from Riboust et al. (2019) was mentioned later in the introduction: 
“…Moreover, other authors (Franz and Karsten, 2013; He et al., 2014; Riboust et al., 2019) showed 
that adding snow data information to the calibration procedure enabled the identification of more 
robust snow parameter sets by making the snow models less dependent on the rainfall-runoff model 
with which they are coupled. 
It was also acknowledged in section 4.1 about the snow accounting routine (se answer to the referee 
comment #7.  
 
Some references were also acknowledged in the conclusion section: 
“…Accurate estimate of these parameters greatly helps in determining the form of precipitation and 
spatial distribution of temperature and precipitation, and are critical for snow cover and runoff 
modelling in high mountain catchments, as already reported in other regions (Zhang et al., 2013; 
Naseer et al., 2019).” 

Referee’s comment 

2. Section 2.1: It would be useful to add a figure showing the distributions of mean precipitation and 
temperature over the set of gauges, to give an idea of the variability across the study domain. 
 
Authors’ response and modifications to manuscript 
Details about the “estimated” climatology of the study period are now provided in Table 1 (see 
below), which has been modified to include mean annual temperature (T), total precipitation (P), 
snowfall fraction (S) and streamflow (Q) for each basin. Note however that T, P and S values are very 
delicate to provide since they necessarily rely on approximations depending on the method used to 
distribute temperature and precipitation (in link with the paper issue). This is why they were not 
included in the initial submitted paper.  As indicated in the modified caption of Table 1, catchment 
areal temperature, total precipitation and snowfall fraction were estimated after calibrating local 
altitudinal gradients over 2000‒2016 using the snow-hydrological inverse approach proposed in the 
current paper (see Test #4 in Table 5). 
 
Table 1 Streamflow gauging stations and main catchment characteristics. Percentages of glacierized area were estimated 
from the World Glacier Inventory (NSIDC, 2012). Mean annual precipitation (P), snowfall fraction (S) and temperature (T) 
were estimated after calibrating local altitudinal gradients over 2000‒2016 using the snow-hydrological inverse approach 
proposed in the current paper (see Test #4 in Table 5). 

Station River Area Glacierized 
area 

Elevations 
(m.a.s.l.) 

Mean annual 
precip. (P) 

Snowfall 
fraction (S) 

Mean 
annual 

temp. (T) 

Mean 
annual 

streamflow 

(Q) 

  (km²) (%) Min Max (mm/yr) (%) ( °C) (mm/yr) 

Barcelonnette Ubaye 549 0 1132 3308 802 48 1.9 521 

Lauzet-Ubaye Ubaye 946 0 790 3308 947 44 3.0 654 

Beynes Asse 375 0 605 2273 920 16 8.7 344 

Saint-André-Les-Alpes Issole 137 0 931 2392 965 24 6.8 481 

Villar-Lourbière Séveraisse 133 4 1023 3623 1561 47 2.3 1317 

Val-des-Prés Durance 207 0 1360 3059 836 54 0.9 688 

Briançon Durance 548 1 1187 3572 844 51 1.7 714 

Argentière-la-Bessée Durance 984 3 950 4017 1014 52 2.1 765 

Embrun Durance 2170 2 787 4017 990 48 2.9 693 

Espinasses Durance 3580 1 652 4017 964 45 3.4 654 
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Villeneuve-d'Entraunes Var 132 0 926 2862 989 37 4.8 650 

Val-d'Isère Isère 46 9 1831 3538 1245 63 -1.5 1119 

Bessans Avérole 45 12 1950 3670 1399 66 -2.4 1311 

Taninges Giffre 325 0 615 3044 2031 36 4.7 1771 

Vacheresse Dranse d'Abondance 175 0 720 2405 1669 29 4.9 1088 

La Baume Dranse de Morzine 170 0 690 2434 1636 32 4.7 1285 

Dingy-Saint-Clair Fier 223 0 514 2545 1649 26 6.5 1243 

Allèves Chéran 249 0 575 2157 1486 23 6.9 819 

Mizoën Romanche 220 9 1057 3846 1205 56 0.8 978 

Allemond L’Eau Dolle 172 2 713 3430 1460 46 2.7 1164 

Referee’s comment 

3. Section 2.2: Reference could be given to the work by Leleu et al. (2014). 
 
Authors’ response and modifications to manuscript 
I could not access this reference from the journal “La Houille Blanche”, although I contacted the 
authors to obtain a hard copy. As a result, I could not judge if it was appropriate to reference this 
work here. However, Section 2.2 deals mainly with the streamflow series gathered from the French 
hydrological database (www.hydro.eaufrance.fr) for 20 catchments, as indicated in the text. In other 
publications, the French hydrological database is usually acknowledged this way by indicating the 
web site from which data (and metadata) can be freely accessed. 

Referee’s comment 

4. Table 1: Please explain the meaning of abbreviations in the last column. Is this information useful 
here? 
 
Authors’ response and modifications to manuscript 
The information was indeed not very useful. It has been removed from the revised Table 1 (see Table 
above). 

Referee’s comment 

5. Section 3.3: The author calculates the efficiency criteria on precipitation values. However, the 
criteria may be strongly influenced by a few large rainfall events, which may not be representative of 
the average characteristics of precipitations. It may be useful to consider computing the efficiency 
criteria on transformed precipitation (e.g. root square transformation) to avoid putting too much 
weight on outlier values. Would this change something in results? 
 
Authors’ response and modifications to manuscript 
The Jack-Knife cross-validation procedure on precipitation series is usually performed on RMSE (e.g. 
Kyriadis et al., 2001; Le Moine et al., 2013; Yang et al., 2018 to cite just a few). I could not find in the 
literature an example where RMSE was applied based on a root square transformation of 
precipitation in such a procedure. Of course, it can be argued than computing the objective function 
(here RMSE) on transformed precipitation may lead to different interpolation parameters. However, 
it can also be assumed that large rainfall events are critical for elevation/precipitation regressions 
when looking at the optimized surrounding gauges to consider in the KED and IED methods. This 
means that using an efficiency criterion on transformed precipitation may also put less weight on 
large rainfall events to compute the regressions. 

Following the referee comment, the JK cross-validation was re-run with IED using RMSEsqrt on 
daily, monthly and yearly precipitation series. No significant differences could be found in the 
optimized interpolation parameters as shown in the following Table 1. Only the number of optimized 
number of surrounding neighbours changed slightly at the daily time scale from 17 to 15. This cannot 
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be not judged significant as this parameter presents a low sensitivity between 12 and 20 neighbours 
due to the intrinsic compromise looking on the whole study domain. 
 
Table 1 Cross-validation of the IED method with RMSE or RMSEsqrt (root square transformation of precipitation) against 
yearly, monthly and daily series from precipitation gauges over the period 2000‒2016. The values of n(u) and ω  represent 
the interpolation parameters, which were optimised using the leave-one-out procedure. 

 Current paper (RMSE as EC) Alternative test (RMSEsqrt as EC) 

 Efficiency criterion IED parameters Efficiency criterion IED parameters 

 RMSE n(u) ω RMSEsqrt (RMSE) n(u) ω 

Yearly 150.31 mm/year 12 3 2.13 (150.31) 12 3 

Monthly 22.20 mm/month 12 2 1.05 (22.2) 12 2 
Daily 2.90 mm/day 17 2 0.51 (2.91) 15 2 

 
For these different reasons, and also because the RMSEsqrt is difficult to interpret since units are not 
allowed, the usual RMSE criterion was kept in the article as efficiency criteria on precipitation series. 
Note also that the two other criterions (MAE and NSE which were not used for optimization) are not 
presented anymore in Table 4 as they seemed to cause confusion in the result interpretation (see 
answer to the Referee’s comment #10 below). 

Referee’s comment 

6. L261: The name “RMSE” given to the normalized RMSE is a bit confusing. The author may choose 
another name, e.g. NRMSE. 
 
Authors’ response and modifications to manuscript 
There was an error in the text, which is now corrected. In fact the models were cross-validated 
against the usual RMSE (root mean square error) without any normalization, as follows: 
 

RMSE = √∑(𝑉𝑝𝑟𝑒𝑖 − 𝑉𝑜𝑏𝑠𝑖)
2/𝑁

𝑁

𝑖=1

 (1) 

 

where 𝑉𝑝𝑟𝑒𝑖 and 𝑉𝑜𝑏𝑠𝑖 are the predicted and observed variables respectively at time scale i and N 

the total number of time steps. 

Referee’s comment 

7. Section 4.1: Some modifications in this snow module were recently proposed by Riboust et al. 
(2019), to account for snow-covered area. This should be shortly commented, to better explain how 
the proposed approach compares to this existing work. 
 
Authors’ response and modifications to manuscript 
Agreed. This is now commented in the Section 4.1, as follows: 
 
“In the original version of CEMANEIGE, fractional snow-covered area (FSC) is calculated as follows: 

𝐹𝑆𝐶𝑖(𝑡) = min⁡(
𝑆𝑊𝐸𝑖(𝑡)

𝑆𝑊𝐸𝑡ℎ
, 1) (11) 

where SWE is the quantity of snow accumulated on the catchment in snow water equivalent (a state 

variable of the model, in mm), and SWEth is the model’s melting threshold. SWEth is calculated as 

being equal to 90% of mean annual solid precipitation on the catchment considered (Valéry et al., 

2014). Alternative approaches have been proposed to account for the hysteresis that exists between 

FSC and SWE during the accumulation and melt phases (Riboust et al., 2019). However, introducing 

such a hysteresis adds two additional free parameters to the SAR. Instead, SWEth was fixed to 40 mm 
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since preliminary sensitivity analyses showed that this value gave very satisfactory FSC values when 

compared to the MODIS observations in the studied catchments.” 

Referee’s comment 

8. Fig.3: Maybe add the meaning of the key variables (at least inputs/output) in the figure caption. If 
UZL is the threshold for the upper output, maybe the arrow should stop at the level of this output. 
 
Authors’ response and modifications to manuscript 
Agreed. The meaning of the key variables has been added in the Figure caption, as follows: “R, M, PE 
and Q stand for rainfall, melt, potential evapotranspiration and streamflow, respectively”. Following 
the referee comment, the arrow for UZL was also slightly modified in the figure. 

Referee’s comment 

9. L376-378: This is a point I did not understand in the proposed methodology. By introducing this 
criterion WB in the objective function, the author forces the model to close the water balance in the 
sense of Budyko. This is quite successful when looking at results shown in Fig. 6, since no data lies 
outside the boundaries of balance closure in the plot. However, I do not understand the physical 
rationale behind putting this constraint. There are many catchments where the water balance cannot 
be closed in the Budyko sense for good reasons, mainly because of underground water exchanges. 
The author artificially constrains the models using WB. I think a more classical bias criterion would be 
better to consider instead. 
 
Authors’ response and modifications to manuscript 
The rationale behind using WB in the objective function was to enhance the parameter identifiability 
without decreasing the model efficiency. I agree that there are many catchments where the water 
balance cannot be closed in the Budyko sense for good reasons due notably to inter-catchment 
groundwater exchanges (IGE). There are also several bad reasons for which water balance is 
sometimes not closed at the basin scale: errors in the precipitation volumes, wrong estimate of 
potential evapotranspiration, inaccurate knowledge of the catchment area, etc. Since the paper deals 
with the lapse rates of the temperature and precipitation inputs, it can be assumed that using a more 
classical objective function (i.e. without WB) may also lead to optimize the lapse rates while water 
balance is not closed for the above “bad” reasons (errors in the precipitation volumes, wrong 
estimate of potential evapotranspiration). 
 Nevertheless, I decided to follow the referee comment because sensitivity analyses to the 
objective function are far beyond the paper issue and because other readers may not be convinced 
by the proposed constraint. I re-run all the simulations with a more classical objective function (i.e. 
without using the WB constraint) based only on NSEFSC and NSEsqrtQ. The results were the same as 
regards to the modelling distribution performances between the various tests (see Figures 1 and 2 
below). Changing the objective function thus did not change the main findings of the paper notably 
as regards to the interest of calibrating the temperature and precipitation lapse rates via a 
parsimonious 2-parameter SAR. Obviously, the water balance was not closed systematically and it 
was not interesting anymore to present the Budyko graphs for the different tests. This led also to 
deteriorate the general parameter identifiability (see Figure 3 below). This particularly affected the 
identifiability of the X2 parameter of GR4J. However, the ranking of parameter identifiability in 
between tests did not change and the parsimonious 2-parameter SAR still led to the best parameter 
identifiability, while remaining among the best-performing models. Finally, the optimized lapse rates 
were slightly changed: the precipitation gradients were notably found more similar between the two 
hydrological models tested (see Figure 4 below). This is another reason that convinced me to 
renounce to the WB constraint in the objective function. 
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Fig. 1 Boxplots (showing 0.00, 0.25, 0.50, 0.75 and 1.00 percentiles) of the efficiency distributions obtained in validation by 
the (a) GR4J and (b) HBV9 models combined with the snow model according to six different tests (see Table 5) to account 
for elevation dependency in the T and P inputs on the 20 snow-affected Alpine catchments. 
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Fig. 2 Comparison of snow-hydrological simulations with elevation dependency according to Tests #1 to #4 (see Table 5) 
with GR4J for the Durance at Serre-Ponçon. The graphs show mean inter-annual time-series of temperature, precipitation, 
streamflow and fractional snow cover at the catchment scale in validation over the period 2008‒2016. Tmean, Pmean and Smean 
stand for mean annual temperature, precipitation, and snowfall, respectively. The efficiency criterions NSESNOW, NSEQ, 
NSElnQ and VEC are computed from continuous (not mean seasonal) series over 2008‒2016. 
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Fig. 3 Parameter sensitivity to the objective function (OF) according to Tests #1 to #6 (see Table 5) with GR4J combined 
with the snow accounting routine (SAR) on the Durance at Serre-Ponçon. The values and dots in red indicate the optimised 
calibrated parameters when minimising OF, the black dots represent trials of the SCE-UA optimisation algorithm, and the 
values in blue are the variation coefficients (in %) of the 20% best parameter solutions compared to the optimised values for 
each parameter (the lowest value, the easiest parameter identifiability). Note that depending on the tests, the calibrated 
parameters of the SAR vary from 2 to 5 (see Table 5 and Table 2 in the manuscript), while the GR4J hydrological models has 
4 parameters (see Table 3 in the manuscript). 
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Fig. 4 Boxplots (showing 0.00, 0.25, 0.50, 0.75 and 1.00 percentiles) of the ranges of (a) temperature and (b) precipitation 
lapse rates calibrated with the 2-parameter SAR (Test #4) in association with the GR4J and HBV9 models on the 20 snow-
affected Alpine catchments. The red crosses indicate mean values. 

 

Referee’s comment 

10. Table 4: There is a strong drop in the NSE criterion for temperature when going from monthly to 
daily time steps for IDW and ORK. How this drop can be explained? 
 
Authors’ response and modifications to manuscript 
The drop in the NSE criterion for temperature was in fact when going from monthly (or daily) to 
yearly time scale for IDW and ORK. As it can be seen from the following figure 5, the NSE criterion is 
very sensitive to the number of considered time steps, and further on the range of sampled 
temperatures (which is quite different at the yearly versus monthly time step). As a result, the NSE 
values between the different methods should be compared only for a given time scale, and not in 
between time scales. 

On the opposite, the RMSE criterion (which was used as objective function in the JK cross-
validation) is better representative for the comparison of temperature (whatever the time scales) 
since units are directly comparable. Following the referee comment, and as NSE values seemed to 
cause confusion in the result interpretation, only the RMSE values are now presented in Table 4. 
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Fig. 5 Cross-validation of the IDW and IED methods against (a) yearly and (b) monthly series from temperature gauges over 
the period 2000‒2016. The NSE criterion is very sensitive to the number of considered time step, and further on the range of 
sampled temperatures (which is quite different at the yearly versus monthly time step). As a result, there is drop in NSE 
values for temperature when going from monthly to yearly time step, particularly with the IDW method.  Therefore, the NSE 
values between the different methods should be compared only for a given time step, and not in between time steps. On the 
opposite, the RMSE criterion (used as objective function for cross-validation) is better representative for the comparison of 
temperature whatever the time step. 

 

Referee’s comment 

11. L472-476: I think this result is the consequence of using WB in the objective function. As 
mentioned above, this constraint is artificial and potentially counterproductive for the efficiency of 
the model. 
 
Authors’ response and modifications to manuscript 
This result was indeed the consequence of using WB in the objective function. Please note however 
that this constraint was not counterproductive for the efficiency of the model as it can be seen 
clearly from Figures 1 and 2 of the revision notes: with or without WB in the objective function, the 
hydrological predictions are significantly improved as regards to the efficiency criterions when using 
a SAR targeting for the temperature and precipitation lapse rates (Tests #4, #5 and #6). 
 Following the referee comment, a more classical objective function was used (i.e. without the 
WB term in the OF). Obviously, the water balance was not closed systematically and it was not 
interesting anymore to present the Budyko graphs for the different tests. The Budyko graphs and 
associated comments were therefore removed from the manuscript. 
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Referee’s comment 

12. L510-516: I find this a bit contradictory with the WB constraint. If the author makes the 
hypothesis that underground water exchanges between catchments may play a key role, why does 
the author constrain water balance not to account for such exchanges in the optimization phase? 
 
Authors’ response and modifications to manuscript 
As explained above, inter-catchment groundwater exchanges (IGE) are not the only reason why the 
water balance may not be closed in the Budyko sense. Other reasons (maybe more important) may 
play a key role such as errors in the precipitation volumes or wrong estimate of potential 
evapotranspiration. Since the paper deals with the optimization of temperature (impacting snow 
accumulation and melt, but also evapotranspiration estimates) and precipitation gradients, 
constraining the water balance in the objective function aimed mainly at enhancing the parameter 
identifiability (see Fig. 3 of the revision note) without deteriorating the modelling efficiency (see Figs. 
1 & 2 of the revision note). While the HBV model considers the catchments as closed systems, GR4J 
allows potential IGE via its X2 parameter. 

However, since sensitivity analyses to the objective function are far beyond the paper issue 

and because other readers may not be convinced by the proposed constraint, I renounced to the WB 

constraint in the objective function (see answers to the referee comment #9) and I re-run all the 

simulations with a more classical OF. Figures and comments were changed accordingly. Please note 

that it did not change the main findings of the paper. 

The following paragraph (and associated new table) was also added in the section 5.3 

(Identifiability of the parameters) to further discuss on the IGE issue and suggest the findings of the 

initial submission using the WB term in the OF: 

 

“…Equifinality is also reduced in Tests #4‒6 for the parameters controlling runoff generation and 

routing (X1, X3 and X4). On the opposite, the parameter of the inter-catchment groundwater flows 

(X2) is poorly identifiable with variation coefficients of 24.8%, 20.3% and 143.1% with Test #4, Test 

#5 and Test #6, respectively. This suggests that inter-catchment groundwater exchanges (IGE) do not 

play a key role in the studied catchments. Indeed, fixing X2 to a value of 0 (i.e. without potential IGE) 

with an alternative GR3J model provided similar mean validation efficiency on the set of catchments 

as compared to the GR4J associated with the 2-parameter SAR (Table 7). However, other objective 

functions may result in other findings as far as IGE are concerned. For instance, additional tests (not 

shown here for brevity sake) confirmed that it was possible to greatly reduce the X2 equifinality 

without decreasing the model efficiency by adding a water balance term in the objective function to 

constrain the proportion of years respecting the water and energy balance in the Turc-Budyko non-

dimensional graph (see Andréassian and Perrin, 2012). These tests suggested that it may be relevant 

to explicitly represent inter-catchment groundwater transfers in association with correcting or 

scaling factors applied to the precipitation input data to render the distribution between 

evapotranspiration, streamflow and underground fluxes more realistic, as already reported by Le 

Moine et al. (2007).” 

 
Table Mean validation efficiency on the set of 20 catchments with the GR4J model and the GR3J model in association with 
the 2-parameter SAR. 

Model Total number of free 
parameters 

Mean 
NSESNOW 

Mean 
NSEQ 

Mean 
NSElnQ 

Mean 
VEC 

2-parameter SAR/GR4J 6 (2 + 4) 0.86 0.79 0.82 0.95 

2-parameter SAR/GR3J 5 (2 + 3) 0.86 0.78 0.81 0.94 
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Referee’s comment 

13. Fig. 8 is interesting. However there are some cases which reveal that the optimum is probably 
outside the preset parameter range. This is typically the case for Test#1 for parameters X1 to X3. 
Therefore the ranges should be extended. 
 
Authors’ response and modifications to manuscript 
For Test#1 (and only for Test#1), the parameters X1 to X3 indeed reached the maximum allowed 
range. Please note however that Test#1 serves as a benchmark. As explained in Table 5 and in the 
text, it differs from the other tests because no elevation dependency in the T and P inputs are 
considered. As a result, hydrologic predictions with Test#1 are significantly (and rather logically) 
outperformed by the other approaches accounting for elevation-dependency (see e.g. Figures 1 and 
2 in the revision note). Extending the range of the parameters would be both poorly efficient in 
improving the simulations and incorrect from a numerical point of view. The referee has to be aware 
that the parameter ranges were preset to values recommended by the models’ authors (Perrin et al., 
2003 for GR4J and Beck et al., 2016 HBV9). They have been found after numerous simulations in very 
different contexts and can be judged as large enough. By the way, it can be seen in Figure 3 of the 
revision note, that no parameter limits are reached in the other tests, thus suggesting that the preset 
parameter range are adequate. 

To address the referee comment, I only extended the range of the X1 parameter (from 10-
1000 mm to 0-1500 mm) of GR4J to ensure a better correspondence with the UZL parameter range 
of HBV9. All simulations were re-run with this new range (and also with an objective function without 
WB, see answer to the referee’s comment #9), and Figures and comments were modified 
accordingly. Please note that this did not change the results (see Figure 1 of the revision note) and 
the parameters X2 and X3 still reached the maximum allowed range (see Figure 3 in the revision 
note) with Test#1 (and only with Test #1) for the reasons explained above. The following comment 
was also added in the beginning of section 5.3: 
“…The maximum allowed parameter range is only reached for the parameters X1 and X2 with Test 
#1. This test differs from the others because no elevation dependency in the T and P inputs are 
considered. Consequently, hydrologic predictions of Test #1 are significantly outperformed by the 
other approaches. Extending the parameter ranges beyond the tested values would be both poorly 
efficient in improving the simulations and incorrect from a numerical point of view since they were 
set to values recommended by the models’ authors. Moreover, no parameter limits were reached in 
the other tests, thus suggesting that the parameter ranges are adequate…” 

 

Referee’s comment 
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