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Abstract. Although water balance components at the catchment scale are strongly related to annual rainfall, availability 11 

of water resources in Mediterranean catchments also depends on rainfall seasonality. Observed seasonal anomalies in 12 

historical records are fairly episodic, but an increase in their frequency might exacerbate water deficit or water excess if 13 

the rainy season shortens or extends its duration, e.g. due to climate change. This study evaluates the sensitivity of water 14 

yield, evapotranspiration, and groundwater recharge to changes in rainfall seasonality by using the Soil Water 15 

Assessment Tool (SWAT) model applied to the Upper Alento River Catchment (UARC) in southern Italy where a long 16 

time series of daily rainfall is available from 1920 to 2018. We compare two distinct approaches: i) a “static” approach, 17 

where three seasonal features (namely rainy, dry, and transition fixed-duration 4-month seasons) are identified through 18 

the standardized precipitation index (SPI); ii) a “dynamic” approach based on a stochastic framework where the 19 

duration of two seasons (rainy and dry seasons) varies from year to year according to a probability distribution. 20 

Seasonal anomalies occur when the transition season is replaced by the rainy or dry season in the first approach and 21 

when season duration occurs in the tails of its normal distribution in the second approach. Results are presented within a 22 

probabilistic framework. We also show that the Budyko curve is sensitive to the rainfall seasonality regime in UARC by 23 

questioning the implicit assumption of a temporal steady state between annual average dryness and the evaporative 24 

index. Although the duration of the rainy season does not exert a major control on water balance, we were able to 25 

identify season-dependent regression equations linking water yield to the dryness index in the rainy season. 26 

 27 

 28 

 29 
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1. Introduction 30 

The rainfall regime of the Mediterranean climate is characterized by the alternation of wet and dry periods within the 31 

year, with evident out-of-phase seasonal behavior of precipitation and temperature patterns. Most annual rainfall is 32 

concentrated in the late fall, winter, and early spring, while late spring, summer, and early fall are usually hot and quite 33 

dry. Rainfall seasonality plays a fundamental role in planning and managing water resources in countries subject to a 34 

Mediterranean climate. Summer is characterized by water stress due to scarce rainfall supply, combined with high 35 

evapotranspiration loss and the seasonal peak in water consumption (comprising agricultural, industrial, and 36 

recreational uses, hydroelectric power generation, as well as domestic uses, which are often boosted by tourism 37 

pressure). Therefore, it is necessary to store water during the rainy period to cope with the uncertain duration of adverse 38 

water deficit conditions during the dry period. Water-supply infrastructures necessitate high investment costs that 39 

strongly depend on the expected balance between the amount of water supplied in the rainy period and the amount of 40 

water lost and consumed during the dry season. The amount of rainfall in each season can be suitably decomposed and 41 

simulated on the basis of the following three main components: i) duration of the seasons; ii) occurrence probability of a 42 

daily rainfall event in each season; iii) mean depth of daily rainfall events in each season (Van Loon et al., 2014). A 43 

combination of the last two factors determines the rainfall magnitude in each season (Feng et al., 2013).  44 

A very small or very large amount of water (exceeding a certain threshold value for a specified return period and 45 

duration) supplied in each season can be interpreted as a seasonal precipitation anomaly and is usually observed 46 

episodically in a historical multi-decadal time-series of annual rainfall values. Seasonal precipitation anomalies result 47 

mainly from a combination of the duration of the wet season and its rainfall magnitude. These two factors should be 48 

taken into due account when planning water-supply infrastructures (Apurv et al., 2017). The most recent reports 49 

released by the Intergovernmental Panel on Climate Change (IPCC) warn of the projected increase in seasonal 50 

anomalies induced by global warming in the Mediterranean region, with a considerable decrease in annual precipitation 51 
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and warming-enhanced evapotranspiration associated with rather severe and prolonged droughts, as recently observed 52 

in southern Europe in 2003, 2015, and 2017 (Mariotti et al., 2008; Laaha et al., 2017; Hanel et al., 2018). 53 

Studies underway in the Upper Alento River Catchment (UARC) in southern Italy offer a good chance to understand 54 

the effects of seasonal rainfall uncertainty on water supply generation given the presence of a multi-purpose earthen 55 

dam (known as Piano della Rocca) constructed to regulate water for irrigation, hydropower generation, flood control, 56 

and drinking purposes. The main research question, also raised or prioritized in some way by local stakeholders in their 57 

decision-making processes, can be expressed as follows: “What is the impact of seasonal rainfall anomalies on annual 58 

average (or seasonal average) water supply in UARC?”. This question is particularly relevant to hilly catchments 59 

similar to UARC within the Mediterranean region such that UARC could become a pilot area for dealing with some 60 

specific problems and carrying out paired-catchment analyses.  61 

This study therefore aimed to quantify the effects exerted by seasonal rainfall anomalies on water balance components. 62 

With a view to coordinating interaction with stakeholders, end-users, and professionals, we performed this task by 63 

implementing the well-known and well-validated Soil Water Assessment Tool (SWAT) model (Arnold et al., 1998). 64 

Particular attention is devoted to computing water yield supplying the artificial reservoir bounded by the Piano della 65 

Rocca earthen dam in ARC (Romano et al., 2018). One of the strengths of our approach lies in the availability of long-66 

term rainfall time-series (about a century of daily data) and detailed soil and land cover maps, enabling reliable 67 

catchment-scale model simulations. Reliable scenario-based projections are built to investigate whether the longer-than-68 

average duration of the wet season implies a higher-than-average mean annual rainfall and consequently higher-than-69 

average water yield. To investigate this issue, our research strategy couples the seasonal duration with daily rainfall 70 

occurrences and depths by using a Monte Carlo approach to obtain SWAT-simulated water balance components within 71 

a general probabilistic framework. 72 
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Many authors have attempted to quantify rainfall seasonality using different approaches (Ayoade, 1970; Markham 73 

1970; Nieuwolt, 1974; Oliver, 1980; Walsh and Lawler, 1981; Zhang and Qian, 2003; Martin-Vide, 2004; Potter et al., 74 

2005; Feng et al., 2013; de Lavenne and Andréassian, 2018). The precipitation concentration index (PCI) proposed by 75 

Oliver (1980) is the most popular approach for quantifying the year-round precipitation distribution in a given study 76 

area (Raziei, 2018). Sumner et al. (2001) analyzed the spatial and temporal variation of precipitation seasonality over 77 

eastern and southern Spain by using the seasonality index (SI). The SI was also utilized to examine the spatial and 78 

temporal variability of precipitation seasonality in Greece (Livada and Asimakopoulos 2005), USA (Pryor and Schoof 79 

2008), and northern Bangladesh (Bari et al. 2016). Under the typical Mediterranean climate of Sardinia (Italy), Corona 80 

et al. (2018) used the SI to evaluate the role of precipitation seasonality on runoff generation. Nonetheless, while PCI 81 

and SI are useful indexes to classify rainfall seasonality and the degree of concentration of rainfall within the year, their 82 

implementation in a Monte Carlo framework is not straightforward. Therefore, we opted to characterize rainfall 83 

seasonality and its anomalies by using the two approaches described as follows. A first approach, which is hereafter 84 

referred to as the static approach, is based on the analysis of the standardized precipitation index (SPI) to define the 85 

duration of a wet season (4 months), a dry season (4 months) and a transition season (2 months from dry to wet phase 86 

plus 2 months from wet to dry phase) in UARC. In this approach, the drought anomaly is rigidly built with the artifact 87 

of extending the duration of the dry season to eight months by removing the transition season. The same criterion 88 

applies to a prolonged duration of the rainy season. The second approach, instead, exploits the seasonality 89 

characterization proposed by Feng et al. (2013) and can be viewed as a dynamic approach since the duration of the rainy 90 

season is time-variant (inter-annual variability) and can be stochastically generated with random duration values drawn 91 

from their statistical distribution. This second approach investigates what happens to the water budget if the duration of 92 

the rainy season becomes shorter-than-normal (i.e. rainfall scarcity) or longer-than-normal (i.e. rainfall excess). As far 93 

as we are aware, there is still a lack of knowledge about the effects of possible changes in rainfall seasonality on the 94 

water balance of a catchment subject to a Mediterranean climate, and the analyses presented in this paper aim primarily 95 

to contribute to fill this gap. 96 



 

5 

 

2. Study area and experimental analyses 97 

The Upper Alento River Catchment (UARC) is situated in the Southern Apennines (Province of Salerno, Campania, 98 

southern Italy) and has a total drainage area of about 102 km2 (Fig.1). The Piano della Rocca dam is an earthen 99 

embankment with an impervious core that has been operating since 1995. The area consists mostly of relatively poor-100 

permeable arenaceous-clayey deposits and secondarily of arenaceous-marly-clayey and calcareous-clayey deposits 101 

(Romano et al., 2018).  102 

Please insert Fig. 1 here 103 

A weather station managed by the Italian Hydrological Service is located near the village of Gioi Cilento and provides a 104 

dataset of daily rainfall values covering the period 1920-2018 (about 90 years), with an interruption of nine years (1942-105 

1950) straddling World War II (Nasta et al., 2017). The data set of annual rainfall sums derived from the daily rainfall 106 

time series has a mean of 1,229.3 mm, while other metrics (median, standard deviation and coefficient of variation) are 107 

reported in the last row of Table 1. The same statistics are also summarized for rainfall depths in each month of the 108 

year. The variability exhibited by the monthly time series of rainfall depths is also depicted in Figure 2, denoting a 109 

typical Mediterranean seasonal cycle. A large amount of precipitation occurs in the months from October to March, a 110 

period commonly identified as a wet period of the hydrological year, and accounts for about 68% of the annual mean 111 

rainfall (i.e. 834.9 mm over 1,229.3 mm) (see Table 1 and Figure 2). November is the wettest month with an average 112 

monthly rainfall of 166.9 mm (about 14% of mean annual rainfall). In contrast, lower mean monthly rainfall depths are 113 

concentrated from April to September, which commonly identify a dry period of the hydrological year, with a 114 

cumulative rainfall over this period of 394.5 mm with respect to the annual mean of 1,229.3 mm, hence representing 115 

about 32% of mean annual rainfall. July is the driest month with a monthly mean rainfall of 29.8 mm (i.e. 2% of mean 116 

annual rainfall). 117 

Please insert Fig. 2 here 118 

Please insert Table 1 here 119 
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Within the monitoring activities of the MOSAICUS (MOnitoring and modeling Soil–vegetation–atmosphere processes 120 

in the Alento river basin for Implementing adaptation strategies to Climate and land USe changes) project (Nasta et al., 121 

2013; Romano et al., 2018), an automated weather station was installed in 2004 close to the village of Monteforte 122 

Cilento and equipped with sensors for monitoring rainfall, wind speed and direction, air temperature and relative 123 

humidity, and solar radiation, to record such meteorological variables at 15 min intervals (Nasta et al., 2019). The 124 

statistical distributions of weather data recorded at the weather station of Monteforte Cilento (2004-2018) will be used 125 

to calculate potential evapotranspiration as described in Section 3. 126 

In this study, we used the most recent available land-use map drawn up in 2015 by using second-level CORINE 127 

(Coordination of Information on the Environment) Land-Cover classes (CORINE 2006 land cover dataset; 128 

http://www.eea.europa.eu): forest, arable land (annual crops), permanent crops (orchards, vineyards, olive groves, and 129 

fruit trees), pasture, urban fabric, and water bodies. Forest (evergreen and deciduous trees, and multi-stem evergreen 130 

sclerophyllous Mediterranean shrubs) and agricultural (arable land, permanent crops, and orchards) cover about 70% 131 

and 20% of the catchment, respectively (Nasta et al., 2017). A five-meter resolution Digital Terrain Model (DTM) was 132 

used to generate the hydrographic network and a soil-landscape units map is used to depict soil attributes in UARC 133 

(Nasta et al., 2018). 134 

3. Parameterization of the SWAT Model 135 

The Soil Water Assessment Tool (SWAT) is a bucket-type, semi-distributed hydrological model operating on a daily 136 

time scale and at a catchment spatial scale (Arnold et al., 1998). The main components of the water balance equation are 137 

the daily change in water storage (ΔWS) as affected by rainfall (R), actual evapotranspiration (ETa), groundwater 138 

recharge (GR), and water yield (WY). Water yield is given by the contribution of surface runoff, groundwater 139 

circulation, and lateral flow within the soil profile, and is partially depleted by transmission losses from tributary 140 

channels and water abstractions. All variables are expressed in units of mm of water height. 141 
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SWAT requires as input rainfall (R) and potential evapotranspiration (ETp) time series at a daily scale and is based on 142 

the concept of hydrological response units (HRUs), which are areas identified by similarities in soil, land cover, and 143 

topographic features, where hydrological processes are represented by a lumped schematization. The five-meter DTM 144 

of the study area was used to determine the catchment boundaries, the hydrographic network, and thirteen distinct 145 

HRUs. Catchment-lumped parameters are assigned to each HRU through look-up tables. By using the available soil-146 

landscape unit map, the input parameters were assigned according to the model set-up as presented in Nasta et al. 147 

(2017). Nine parameters were calibrated to achieve the best model fit between simulated and measured monthly water 148 

yield data recorded from 1995 and 2004 (Nasta et al., 2017). Such hydrological parameters include the soil evaporation 149 

and compensation factor, plant uptake compensation factor, Manning’s value for overland flow, the baseflow recession 150 

constant (groundwater flow response to changes in recharge), groundwater delay time, groundwater “revap” coefficient 151 

(controlling water that moves from the shallow aquifer into the unsaturated zone), Manning’s coefficient for the main 152 

channel, effective hydraulic condition in the main channel alluvium, and the bank storage recession curve. Model 153 

performance proved to be satisfactory at a monthly time scale. We ran numerical simulations at a daily time step 154 

(rainfall was randomly generated at a daily time step) and aggregated the output fluxes at a monthly time resolution. 155 

Although there is evidence in the body of scientific literature of a potential misfit between measured and simulated 156 

water yield values at a daily time-scale when calibrating a model with data at a monthly time resolution (Adla et al., 157 

2019), we are confident that our results and conclusions will not be affected by this drawback. Our analysis is based on 158 

the monthly aggregation of fluxes and is aimed at analyzing seasonal patterns of monthly aggregates.  159 

This study is based on modeling scenarios implemented in SWAT through a Monte Carlo approach, where each 160 

simulation is three years long. Results from the first two-year warm-up period are discarded, while water balance 161 

components simulated for the third year are stored for subsequent analysis. Initial soil water storage is set as field 162 

capacity. The model simulations of the first two years are disregarded in order to erase the impact of the initial 163 

(unknown) soil moisture values set in the soil domain. We point out that initial soil water content set at field capacity 164 
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can be considered a realistic situation in winter under the Mediterranean climate. The rainfall data are generated for the 165 

static and dynamic approaches (described below) using a probability setting calibrated on daily rainfall values recorded 166 

at the Gioi Cilento weather station (1920-2018). Mean and standard deviation of the meteorological data (wind speed, 167 

air temperature and relative humidity, and solar radiation) recorded at the second automated weather station (close to 168 

the village of Monteforte Cilento) are calculated each month. Daily potential evapotranspiration data were calculated by 169 

using random values of weather data drawn from their normal distribution in each month of the year (Allen et al., 1998). 170 

Results were provided as input to SWAT to randomly generate daily potential evapotranspiration by using the Penman-171 

Monteith equation (Allen et al., 1998). 172 

4. Determination of rainfall seasonality 173 

4.1. Static approach based on the SPI drought index 174 

The intra-annual rainfall regime under a Mediterranean climate can be characterized through the distribution of annual 175 

rainfall depth among different seasons (Paz and Kutiel, 2003; Kutiel and Trigo, 2013). The seasonal pattern occurring in 176 

the study area is here characterized by analyzing the distribution of the standardized precipitation index (SPI) on a long-177 

term monthly rainfall time series. The SPI is a probability index developed to classify rainfall anomalies and often 178 

employed as an indicator of potential (meteorological) droughts over many time scales (McKee et al., 1993; Hayes et 179 

al., 1999). Computation of the SPI should rely on long-term rainfall datasets (e.g. 30 years, according to climatological 180 

standards), and is usually obtained by projecting a Gamma distribution fitted on rainfall depths cumulated on 1, 3, 6, 12, 181 

18, or 24 months (referred to as SPI-1, SPI-3, SPI-6, SPI-12, SPI-18, or SPI-24, respectively) into a standardized normal 182 

distribution. The short-term SPI (e.g. 3-month time scale) can provide useful information for crop production and soil 183 

moisture supply, while the long-term SPI (e.g. 12- or 24-month time scale) can give insights on water availability for 184 

groundwater recharge. Negative SPI values indicate drier-than-expected rainfall, whereas positive SPI values refer to 185 

wetter-than-expected months. To quantify the degree of departure from median conditions, McKee et al. (1993) 186 

proposed a rainfall regime classification. Since the SPI is given in units of standard deviation from the standardized 187 
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mean, this statistical index enables also the precipitation anomaly to be identified through the magnitude of its value: 188 

values ranging from −0.99 to +0.99 are considered near normal, from +1.00 to +1.49 (or from −1.49 to −1.00) indicate 189 

moderately wet (or moderately dry) periods, from +1.50 to +1.99 (or from −1.99 to −1.50) very wet (or very dry) 190 

periods, and above +2.00 (or below −2.00) extremely wet (or extremely dry) periods. Therefore, the extent of SPI 191 

departure from the mean (i.e. from the zero value) gives a probabilistic measure of the severity of a wet (if positive) or 192 

dry (if negative) period. By exploiting the properties of the (standard) normal distribution, the probabilities of obtaining 193 

SPI values greater than +1, +2, and +3 (or less than −1, −2, and −3) are 15.90%, 2.28% and 0.14%, respectively. 194 

To emphasize the seasonal cycle of intra-annual rainfall patterns within a probabilistic framework, we used the SPI-1 by 195 

fitting the Gamma distribution on all monthly rainfall depths, i.e. pooling observations from all months in each year. In 196 

such a way, the months characterized by SPI-1 values below, around or above the zero line can be assumed to belong to 197 

the dry, transition or wet seasons, respectively.  198 

4.2. Dynamic approach based on the duration of the wet season proposed by Feng et al. (2013) 199 

According to Feng et al. (2013), the dimensionless seasonality index (DSI) is based on the concept of relative entropy 200 

and quantifies the rainfall concentration occurring in the wet season. The DSI is zero when the average annual rainfall is 201 

uniformly distributed throughout the year and maximized at 3.585 when maximum average annual rainfall is 202 

concentrated in one single month (Pascale et al., 2016); see the Appendix for details. Feng et al. (2013) proposed to 203 

describe the rainfall seasonality through the following three components: annual rainfall depth (magnitude), centroid 204 

(timing), and spread (duration) of the wet season (see also Pascale et al., 2015; Sahani et al., 2018). As described in 205 

Section 5.2 and according to appropriate statistical tests, we found that a normal distribution can reasonably describe the 206 

90 wet season durations obtained by applying to the observed rainfall time series the procedure proposed by Feng et al. 207 

(2013), and briefly summarized in the Appendix. Thus, each hydrological year will consist of the alternation of only 208 

two seasons: the wet season with a duration that is randomly generated by a normal distribution with mean and standard 209 

deviation estimated on the Gioi Cilento time series, and a dry season in the subsequent months of the year.   210 
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4.3 Set-up of Monte-Carlo rainfall scenarios in SWAT 211 

Seasonal rainfall anomalies, although episodic, can affect the water balance components at the catchment scale. As 212 

suggested by Domínguez-Castro et al. (2019), the impact of such anomalies can be quantified within a probabilistic 213 

framework. For the Upper Alento River Catchment (UARC), we evaluated the effects of seasonal anomalies by running 214 

SWAT simulations with synthetic rainfall time series considering different hypotheses (scenarios) of alternations of 215 

seasons, according to the static and the dynamic approaches described above. In each season, we assumed that rainfall 216 

evolution in time can be represented by a stochastic Poisson point process of daily rainfall occurrences, with daily 217 

rainfall depth following a proper probability distribution (Eagleson, 1972; Rodríguez-Iturbe et al., 1987; Veneziano and 218 

Iacobellis, 2002). Synthetic rainfall time series were then generated, keeping constant parameters of the Poisson process 219 

and daily rainfall parent distribution in each season.  220 

A preliminary analysis was conducted to investigate the best parent distribution for observed rainfall daily depths. With 221 

this aim, we used the L-moment ratios diagram proposed by Hosking (1990) (see also Vogel and Fennessey, 1993) as a 222 

diagnostic tool. Results are shown in Figure 3 where the L-skewness and L-kurtosis computed on the time series left-223 

censored with a threshold of 3 mm (large filled circle) is compared with the theoretical expectation of the same L-224 

moment ratios for several probability distributions commonly adopted in statistical hydrology. An ideal candidate as 225 

parent distribution seems the Generalized Pareto distribution (GPd), although it is also worth noting that sample 226 

estimation of L-skewness and L-kurtosis (0.3437, 0.1706) is very close to the expected values for exponential 227 

distribution (1/3, 1/6). As visual support for this preliminary analysis, the exponential probability plot in Figure 4 228 

compares the empirical cumulative distribution function F(x) of the observed time series (circles) with the fitted GPd 229 

(dashed line) and the fitted exponential distribution (continuous line). The two models are very close to each other for 230 

the whole body of observation, with only a slight departure of the GPd from the straight line characterizing the 231 

exponential distribution due to a very slight right tail. This evidence gave us the confidence to adopt the single-232 

parameter exponential model as parent distribution for series partitioned according to the seasons defined above, 233 

thereby reducing the uncertainty related to the additional shape parameter of the GPd. Finally, it is worthwhile 234 
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mentioning that both distributions shown in Figure 4 were fitted by applying Deidda’s (2010) multiple-threshold-235 

method (MTM) on a range of thresholds from 2.5 to 12.5 mm to prevent biases due to very low records and data 236 

discretization (Deidda, 2007). The MTM was then applied to estimate the exponential parameter  (mm) and the 237 

probability occurrence of rainy days  (d-1) for each season considered.  238 

For each scenario pertaining to either the static or dynamic approach, we generated 10,000 equi-probable realizations of 239 

synthetic daily rainfall time series, each three years long, according to a stochastic Poisson point process model. In each 240 

modeling scenario, the synthetic time series was then used as input for the SWAT model to evaluate the effects on the 241 

water balance components in UARC. As anticipated in Section 3, the first two years represent warm-up simulations and 242 

were thus discarded, while only results for the third year were stored for subsequent analyses presented in the next 243 

section.  244 

Please insert Fig. 3 here 245 

Please insert Fig. 4 here 246 

To further evaluate the hydrologic behavior of the study catchment, an issue deserving more detailed attention is the 247 

assessment of the sensitivity of water balance to rainfall seasonality. With this aim, we refer to the Budyko framework 248 

(Budyko, 1974), which has been extensively applied to relate water components in different climatic contexts 249 

worldwide, including the Mediterranean climate (see e.g. Viola et al., 2017, Caracciolo et al. 2017). Specifically, the 250 

Budyko framework relates the evaporative index (ETa/R) to the dryness index (ETp/R) computed at an annual time scale 251 

in terms of “available water” (i.e., rainfall R). Potential evapotranspiration, ETp, is limited by either energy supply (for 252 

the dryness index less than or equal to one) or water supply (for the dryness index greater than one), and therefore the 253 

Budyko space has two physical bounds dictated by either the atmospheric water demand (ETa≤ETp) or the atmospheric 254 

water supply (ETa≤R). The first bound is the energy limit (or demand limit, i.e. the 1:1 line corresponding to ETa=ETp) 255 

implying that actual evapotranspiration cannot exceed potential evapotranspiration. The second bound is the water limit 256 
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(or supply limit, i.e. the horizontal line corresponding to ETa=R) implying that actual evapotranspiration cannot exceed 257 

precipitation when the dryness index is greater than one (i.e. ETp/R>1). 258 

 259 

5. Results and discussion 260 

5.1. Static approach for assessing rainfall seasonality 261 

The observed temporal evolution of SPI-6 in our 90-year time series (see gray bars in Fig. 5) highlights prolonged 262 

droughts amongst the 1980s and 1990s and prolonged wet periods in the last decade when SPI-6 values above the 263 

threshold +2 occurred in 2008, 2010, and 2012. Yet, by splitting the SPI-6 values into two 45-year sub-groups, we can 264 

observe that the last 45-year period is characterized by a drier climate compared to the first 45-year period. Specifically, 265 

in the first sub-group the probabilities of obtaining SPI-6>+1 and SPI-6<−1 are 17.9% and 7.6%, respectively. In 266 

contrast, in the second sub-group there is a general increase in negative SPI-6 values: the probability of obtaining SPI-267 

6>+1 becomes 11.9% and that of obtaining SPI-6<−1 19.3%. By analyzing daily rainfall datasets recorded at 55 268 

weather stations located in the region of Basilicata near UARC (characterized by similar climatic conditions), Piccarreta 269 

et al. (2013) observed a general decreasing trend in the mean annual rainfall over the period 1951–2010 mainly due to 270 

the autumn-winter decrease in precipitation. 271 

Please insert Fig. 5 here 272 

We now discuss the results pertaining to the calculation of the seasonal pattern of SPI-1 values. Rainfall seasonality 273 

under a Mediterranean climate can be assumed to be roughly represented by the alternation of two six-month seasons, 274 

characterized by positive and negative SPI-1 values (wet and dry season, respectively) (Rivoire et al., 2019). The 275 

temporal evolution of the SPI-1 values is represented by the gray bars in Fig. 6a and highlights the seasonal cycle within 276 

each year, whereas their 12-month moving average (magenta line in Fig. 6a) oscillates around the zero value with 277 

prolonged dry periods during the 1980s and 1990s and prolonged wet periods in the 2000s and 2010s. Fig. 6b shows the 278 

box and whiskers plots of the SPI-1 values for each month of the year, thus depicting the monthly distribution of this 279 
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index throughout the available recorded period. The median SPI-1 values (central red line in the blue boxes) are 280 

negative only from May to August and positive from September to April, even though the whiskers (identified by the 281 

two lines at the 25th and 75th percentile) denote the presence of relatively large variability in almost all months. Closer 282 

inspection of this graph enables one to identify three main seasonal features: i) a dry period from May till August with 283 

median values below zero; ii) a rainy period from November till February with median values above zero; iii) two 284 

transition periods from wet to dry (March and April) and from dry to wet (September and October) with median values 285 

near zero. We are aware that the median values in March, April, and October of the transition season are above zero, 286 

rather than “near” zero, but we recall that the Mediterranean climate in UARC is sub-humid mainly due to orographic 287 

influences. However, this approach is intrinsically a “static” procedure since the subdivision of the twelve months into 288 

three groups is rigid even though months in the transition periods have high variability in SPI-1 values. This outcome 289 

refines the initial working hypothesis of seasonal alternation of two semesters. 290 

Please insert Fig. 6 here 291 

The frequency distributions of the SPI-1 values computed over the rainy, dry, and transition seasons are illustrated in 292 

Fig.6c-6d-6e. The wet season (depicted by the blue histograms) is characterized by probabilities of having SPI-1 values 293 

greater than 0, +1, +2, and +3 of 80.60%, 30.50%, 1.90%, and 0.30%, respectively. The dry season (depicted by the red 294 

histograms) is associated with SPI-1 values lower than 0, −1, −2, and −3 with probabilities of 78.10%, 31.10%, 0.56% 295 

and 0.10%, respectively. Conversely, we warn that probabilities of obtaining positive SPI-1 values in the transition 296 

season are 63.30% instead of the expected 50% if the hypothesis were “perfectly true”. Therefore, we considered three 297 

different scenarios, each with fixed and recurrent alternation of seasons during the hydrological year: i) a “reference 298 

scenario” with a four-month wet season (NDJF), a four-month dry season (MJJA), and a four-month transition season 299 

(MA from wet to dry and SO from dry to wet); ii) a “dry scenario”, which mimics an extreme drought anomaly, 300 

characterized by a prolonged eight-month dry season (from March to October) and abrupt alternations with the four-301 

month wet season (NDJF), without any transition season; iii) a “wet scenario”, which mimics an extreme rainy 302 
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anomaly, characterized by a prolonged eight-month wet season (from September to April) and abrupt alternations with 303 

the four-month dry season (MJJA), again with no transition season. 304 

In light of the above results, the two Poisson parameters ( and ) describing daily rainfall values were calculated for 305 

each of the three seasons in the “reference scenario” and were then also used to develop synthetic simulations of rainfall 306 

time series in the “dry” and “wet” scenarios (see Table 2).  307 

Please insert Table 2 here 308 

 309 

5.2. Dynamic approach for assessing rainfall seasonality 310 

The centroid of the monthly rainfall distribution measured at the Gioi Cilento weather station (in the 90 years between 311 

1920 and 2018) indicates that the wet season is centered in the second half of December, while its average duration is 312 

about 5.44 months (see Fig. 7). Nonetheless, it is worth noting the occurrence of a few extreme situations: the severe 313 

drought recorded in 1985 caused a minimum duration of about four months of the rainy period, while the year 1964 314 

registered a maximum duration of about 7.0 months. The term “dynamic” used for this approach stems mainly from the 315 

fact that the duration of the rainy period is time-variant throughout the years.   316 

Please insert Fig. 7 here 317 

The dimensionless seasonality index (DSI) and the seasonality index (SI) were computed for the Gioi Cilento time 318 

series according to procedures proposed by Feng et al. (2013) and by Walsh and Lawler (1981), respectively. The 319 

Mann-Kendall nonparametric test (Mann, 1945; Kendall, 1975) was then applied to evaluate possible decreasing, 320 

increasing, or absence of temporal trends on these indexes, and revealed that the null hypothesis of absence of trend 321 

cannot be neglected at the 0.05 significance level for both indexes. The stationarity in time of the DSI (red line) and SI 322 

(green line) is also apparent from a perusal of Fig. 8, where the linear regressions (dashed and dotted for the DSI and SI, 323 

respectively) are characterized by very weak downward slopes. 324 
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Please insert Fig. 8 here 325 

As described in Section 4.2, the dynamic approach assumes the alternation of only two seasons (wet and dry) with 326 

random durations of the rainy period. Figure 9a shows the time series of the 90 durations of the wet season estimated 327 

with the procedure proposed by Feng et al. (2013), while their frequency distribution is plotted in Fig. 9b. We then 328 

applied the Lilliefors statistical test (Lilliefors, 1967) to the null hypothesis of normality for the estimated wet durations 329 

obtaining a p-value of 0.327, meaning that the null hypothesis cannot be rejected with the commonly adopted 5% 330 

significance level. For each hydrological year, we thus generate a duration of the wet season from a normal distribution 331 

with the same mean and standard deviation of the Gioi Cilento time series (with a mean of 2.71 months and standard 332 

deviation of 0.28 months), while the dry seasons were consequently obtained as the complement in the same year to the 333 

wet seasons. In this case, the two Poisson parameters ( and ) for modeling daily rainfall values were computed for the 334 

wet and dry seasons (Table 3). 335 

Please insert Fig. 9 here 336 

Please insert Table 3 here 337 

 338 

5.3. Effects of seasonal rainfall anomalies on water balance when using the static approach 339 

The results obtained from the three scenarios pertaining to the static approach are presented using the descriptive 340 

statistics of the water balance components at the annual time scale obtained from 10,000 SWAT simulation runs (Table 341 

4). The reference scenario represents the normal situation with three seasons (dry, transition, and wet). Even though the 342 

range of annual rainfall values is relatively large, the coefficient of variation (CV) is only 14%, implying that very low 343 

and very high annual rainfall depths (outliers) occur occasionally. The water balance components, namely water yield 344 

(WY), actual evapotranspiration (ETa), and groundwater recharge (GR), represent on average 35%, 49%, and 16% of the 345 

annual mean rainfall depth (R=1,229 mm). The annual rainfall depths for the other two scenarios (only two seasons 346 

without the transition season) shift down to 988 mm (dry scenario) and up to 1,393 mm (wet scenario), thus affecting 347 
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the water balance. When the dry season lasts eight months (dry scenario), water yield, actual evapotranspiration, and 348 

groundwater recharge decrease by 116 mm, 60 mm, and 66 mm, respectively, when compared to the reference scenario. 349 

Please insert Table 4 here 350 

 351 

In contrast, when the wet season lasts eight months (wet scenario), the water yield, actual evapotranspiration, and 352 

groundwater recharge increase by 93 mm, 21 mm, and 54 mm, respectively, when compared to the reference scenario. 353 

Water yield, actual evapotranspiration, and groundwater recharge represent on average 32%, 55%, and 13% of the 354 

annual rainfall depth in the extreme dry season (dry scenario), and 38%, 45%, and 18% of annual rainfall depth in the 355 

extreme wet season (wet scenario). 356 

Decomposition of the annual results into the seasonal components highlights other interesting features that are shown in 357 

Fig. 10 (rainfall and potential evapotranspiration forcings) and in Fig. 11 (main water balance components). For the 358 

reference scenario the seasonal rainfall depth is 201 mm, 436 mm, and 593 mm for the dry, transition, and wet seasons, 359 

respectively, representing 16%, 35%, and 48% of the total annual rainfall (see Fig. 10a). Water yield depths span from 360 

44 mm during the dry season to 251 mm during the rainy season (see Fig. 11a). Almost 60% of annual water yield 361 

occurs over the wet season, about 30% in the transition season, and about 10% in the dry season. In contrast, the actual 362 

evapotranspiration depths are higher than rainfall depths in the dry season (269 mm) and lower than rainfall depths 363 

during the transition (226 mm) and rainy (110 mm) seasons (see Fig. 11a). 364 

Please insert Fig. 10 here 365 

Please insert Fig. 11 here 366 

 367 

Over the dry scenario (see Figs. 10b and 11b), the months belonging to the transition season become drier-than-normal. 368 

The total rainfall depths over the dry and wet seasons are 397 mm and 590 mm, respectively, whereas the extreme 369 

drought anomaly induces precipitation loss only in the dry season with a considerable decrease of 239 mm of rainfall 370 
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depth (Fig. 10b). The consequences of this situation on the average water balance components in the prolonged dry 371 

season lead to significant deficits (Fig. 11b). Water yield loss over the dry season is 93 mm, which represents 50% of 372 

water yield obtained for the dry and transition seasons in the reference scenario. The wet season (from November to 373 

February) provides about 590 mm of water yield per year. The water loss by actual evapotranspiration is limited and 374 

represents only 10% of ETa obtained for the dry and transition seasons in the reference scenario (Fig. 11b).   375 

In the wet scenario (see Fig. 10c and Fig. 11c), the months belonging to the transition season become wet (8 wet months 376 

and 4 dry months). Total rainfall depths in the dry and wet seasons are 200 mm and 1,193 mm (Fig. 10c). Rainfall depth 377 

increases by 164 mm in the wet season (+14% compared with that obtained in the wet and transition seasons in the 378 

reference scenario). Water yield gain in the wet season is 89 mm which represents 20% of water yield obtained in the 379 

wet and transition seasons in the reference scenario (Fig. 11c). The water lost by actual evapotranspiration is negligible. 380 

5.4. Effects of seasonal rainfall anomalies on water balance when using the dynamic approach 381 

The second approach to assessing the effect of rainfall seasonality extremes on water balance components is based on 382 

the stochastic generation of the wet season durations from their normal distribution (see Fig. 9b). This approach helps 383 

classify the results within a probabilistic framework according to the following rainy period duration classes: 3-4 384 

months, 4-5 months, 5-6 months, 6-7 months, 7-8 months. Seasonal extremes (3-4 months and 7-8 months) have very 385 

low probabilities of occurrence (0.60% and 0.30%, respectively). Nonetheless, it is interesting to analyze the effect of 386 

rainfall variability on water yield (WY), actual evapotranspiration (ETa) and groundwater recharge (GR). The most 387 

probable (62%) situation occurs when the rainy period lasts 5-6 months. Under these circumstances, the mean annual 388 

rainfall depth is 1,275 mm, whereas WY, ETa, and GR represent 35%, 49%, and 16% of annual average rainfall depth, 389 

respectively. These percentages are very close to those observed in the reference scenario of the static approach. If the 390 

wet season shortens by one month (23% probability), the mean annual rainfall depth decreases by 62 mm, whereas 391 

water yield depth by 33 mm (−7%). In contrast, if the wet season is made up of 6-7 months (14% probability), the 392 

annual mean rainfall depth increases by 51 mm and water yield by 27 mm (+6%). 393 
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Extreme dry and extreme wet situations reflect similar results obtained from the dry and wet scenarios presented above. 394 

A prolonged drought (i.e. rainy period only 3-4 months long) leads to an average rainfall loss of 130 mm per year 395 

inducing an appreciable annual decrease in both water yield (−68 mm) and groundwater recharge (−30 mm). A 396 

prolonged wet season (i.e. lasting 7-8 months), instead, causes average rainfall to gain approximately 108 mm per year, 397 

yielding annual increases in both water yield (+59 mm) and groundwater recharge (+12 mm). It is worth noting that the 398 

duration of the rainy period does not seem to exert a major control on the water balance. Pearson’s linear correlation 399 

coefficients between duration and average annual rainfall, water yield, and actual evapotranspiration are 0.22, 0.20, and 400 

0.11, respectively. 401 

Please insert Table 5 here 402 

Please insert Fig. 12 here 403 

Assuming that the long-term mean annual precipitation can be partitioned into the mean annual actual 404 

evapotranspiration and mean annual water yield, according to the Budyko framework we assume that larger values of 405 

the dryness index (drier climate conditions; ETp/R> 1) induce a greater proportion of rainfall that is partitioned to ETa. 406 

In contrast, data on the left-hand side of the Budyko curve will be characterized by a greater proportion of rainfall that 407 

is partitioned to water yield. Fig. 12 shows the Budyko plot of the dryness index (ETp/R) versus the evaporative index 408 

(ETa/R) together with the Budyko curve (solid garnet line). In this plot we depict the data points (colored dots) for the 409 

five different durations of the rainy period in UARC obtained by the dynamic approach. The first comment to be made 410 

is that all of these data points gather within the energy-limited region of the Budyko plot, with the longest rainy period 411 

(blue dot) favoring conditions of greater discharges (evaporative index ETa/R=0.45) and the shortest rainy period 412 

(droughts indicated by the red dot) inducing higher evapotranspiration fluxes (evaporative index ETa/R= 0.54). The 413 

latter situation shows that on average the Upper Alento River catchment is characterized by relatively good storage of 414 

soil-water made possible by the hydraulic properties of the soils and the large portion of shrub spots and forest areas 415 

(mostly deciduous chestnut forests and olive orchards), together with a good amount of annual precipitation in a hilly 416 
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and mountainous zone in southern Italy. However, it may also be noted that all of these data points cluster below the 417 

Budyko curve (Williams et al., 2012). The observed departure below the Budyko curve may be due to several reasons. 418 

Allowing for the Budyko assumptions for water balance, the present study refers to a long time scale (90 years), but a 419 

relatively small spatial scale since UARC has a drainage area of 102 km2. In fact, rainfall seasonality (i.e. intra-annual 420 

variability) may be just one of the major factors that could have led to a departure from the Budyko curve. The typical 421 

Mediterranean climate, which is characterized by precipitation being out-of-phase with potential evapotranspiration, is 422 

also singled out as a cause of the deviations we observed in our case study from the Budyko curve (Milly, 1994). 423 

Normal situations, characterized by a wet season lasting 5-6 months (green dot), lead to rainfall being partitioned into 424 

49% ETa, as indicated by the evaporative index value of 0.49. We hereby recall that this study is based on the 425 

assumption that the catchment response is not affected by human interferences and their feedbacks (land-use change, 426 

change in soil hydraulic properties, enhanced evapotranspiration induced by global warming, etc.), but only by changes 427 

in rainfall seasonality which, of course, can undermine Budyko’s implicit assumption of temporal steady-state (Feng et 428 

al., 2012; Troch et al., 2013). 429 

Please insert Fig. 13 here 430 

Please insert Table 6 here 431 

The relationships between the seasonal dryness index and water yield to rainfall ratio (WY/R) are affected by the 432 

duration of the wet season and are depicted in Fig. 13. The coefficients of the exponential regression models with their 433 

corresponding R2 values pertaining to the wet or dry season are reported for each duration class of the rainy period in 434 

Table 6. The exponential curves in the wet season (see plot 13a) are virtually parallel, yielding, for a fixed ETp/R, more 435 

WY/R as the duration of the rainy period increases from 3-4 months to 7-8 months. In contrast, the exponential 436 

regression curves belonging to the dry season (see plot 13b) explain only a small amount of the variations of WY/R in 437 

response to the dryness index and all seem quite insensitive to rainfall seasonality. Only the exponential model 438 
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pertaining to the dry season and for the smaller duration of the rainy period (3-4 months) explains slightly less than 50% 439 

of the variability of ETp/R for the study catchment. 440 

 441 

6. Conclusions 442 

Capturing the relationship between precipitation and catchment-scale water balance components in a Mediterranean 443 

context is a scientific challenge in view of expected increasing frequencies in extremes such as droughts and floods 444 

induced by climate warming. On the one hand, intense and prolonged droughts induce a steep decline in water 445 

availability for irrigation (with a subsequent decrease in crop productivity), domestic use (especially for the tourist 446 

sector), clean power generation, to mention just a few. On the other hand, projected increments in runoff and flooding 447 

induce higher-than-normal risk of landslides and soil erosion, compromising the local economy and leading to 448 

unprecedented hazards for a vulnerable population. Therefore, countries across the Mediterranean region are being 449 

forced to pursue drastic adaptive options which in turn depend on modeling scenarios which can be performed by using 450 

hydrological models. Indeed, scenarios need to rely on adequate rainfall modeling within the hydrological year by 451 

generating multiple data sets of reliable daily rainfall time series drawn from statistical distributions derived from long-452 

term observations. Nonetheless, a key is first to define rainfall seasons, and then optimize parameters featuring in the 453 

best statistical distribution describing rainfall data distribution in each season. If this exercise is well posed, one can 454 

capture realistic rainfall dynamics occurring in the water balance simulated by a numerical model. Within this 455 

framework, the aim of this study is to contribute in understanding the impact of rainfall seasonality and its anomalies on 456 

the water balance components by providing reliable and robust scenario-based projections, based on the use of well-457 

posed hydrological models. 458 

This study presented a pilot area (UARC in southern Italy) in the Mediterranean region. We applied the SWAT model 459 

that was calibrated and validated in a previous paper using a large amount of environmental data and maps (Nasta et al, 460 

2017). Moreover, the availability of a long-term time series of daily rainfall data (almost one century) allowed us to 461 
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detect rainfall seasonality by using a static and a dynamic approach. In both approaches we apply the SWAT model to 462 

evaluate the sensitivity of hydrological water balance components to rainfall seasonality, using as input synthetic 463 

rainfall time series generated by a Poisson process with two parameters that characterize daily rainfall occurrences and 464 

daily rainfall depth in each season. In the static approach, dry or wet anomalies are considered when the transition 465 

seasons turn into dry or wet seasons. The advantage of this approach lies in its simplicity and easy reproducibility in 466 

other sites. However, it can be considered only an artifact based on criteria to group monthly rainfall amounts that might 467 

be subjective. In the dynamic approach, the seasonal anomalies occur on the tails of the normal distribution of the wet 468 

season duration. Although this approach seems statistically sound, the main disadvantage is the fact that it requires 469 

long-term historical rainfall time-series of daily rainfall data that are unlikely to be available in most weather stations 470 

across the Mediterranean region. In this study, both approaches concurred on understanding the impact of seasonal 471 

rainfall anomalies on catchment-scale water balance components. 472 

Our results show a drought anomaly (i.e. a prolonged duration of the dry season) in just one single year potentially leads 473 

to a decrease of even about a fifth of the annual average rainfall and induces a drastic decline in average annual amounts 474 

of water yield, actual evapotranspiration, and groundwater recharge. Conversely, an exceptional prolonged wet season 475 

is likely to cause a considerable increase in annual average rainfall, hence about a one-third rise in annual average water 476 

yield as well as enhanced groundwater recharge. In the dynamic approach, we demonstrated that the implicit 477 

assumption of a temporal steady-state in the Budyko relation approach is sensitive to rainfall seasonality. The Budyko 478 

evaporative index spans from 0.45 to 0.54 when the wet season lasts from 7-8 months up to 3-4 months. Moreover, it is 479 

possible to identify distinct season-dependent regression equations linking seasonal water yield to the dryness index 480 

over the wet season.  481 

In conclusion this paper provides a framework to analyze the effects of rainfall seasonality changes on the hydrological 482 

water budget and partition, while providing some preliminary results that can be representative for Mediterranean 483 

catchments. Finer analyses can be performed by considering consecutive years of prolonged drought episodes and/or by 484 
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adding the effects of temperature trends, which obviously affect potential evapotranspiration forcing and in principle 485 

can produce a further feedback on precipitation cycles. These still unexplored issues will form the subject of future 486 

research investigation and forthcoming communications. 487 

7. Appendix 488 

We set k and m as counters for the hydrological year and the 12 months in each year, respectively. The annual rainfall, 489 

𝑅𝑘, and associated monthly probability distribution, 𝑝𝑘,𝑚, are defined as:  490 

𝑅𝑘 = ∑ 𝑟𝑘,𝑚
12
𝑚=1                        (A1) 491 

𝑝𝑘,𝑚 =
𝑟𝑘,𝑚

𝑅𝑘
                        (A2) 492 

where rk,m represents the rainfall depth recorded in the m-th month in the k-th year.  493 

The relative entropy, 𝐷𝑘, is calculated in each hydrological year, k, as: 494 

𝐷𝑘 = ∑ 𝑝𝑘,𝑚
12
𝑚=1 𝑙𝑜𝑔2 (

𝑝𝑘,𝑚

𝑞𝑚
)                   (A3) 495 

where qm is equal to 1/12 (uniform distribution). This statistical index quantifies the distribution of monthly rainfall 496 

within each hydrological year. Finally, the dimensionless seasonality index (DSIk) in each hydrological year, k, is given 497 

by: 498 

𝐷𝑆𝐼𝑘 = 𝐷𝑘
𝑅𝑘

�̅�𝑚𝑎𝑥
                     (A4) 499 

where �̅�𝑚𝑎𝑥  is maximum �̅� . This way DSIk is zero when rainfall is uniformly distributed throughout the year and 500 

reaches its maximum value log212 when rainfall is concentrated in a single month. 501 

According to Feng et al. (2013), the magnitude (Rk) represents annual rainfall whereas the centroid (Ck) and the spread 502 

(Zk) indicate timing and duration of the wet season, respectively, and are calculated in each hydrological year k as: 503 
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𝐶𝑘 =
1

𝑅𝑘
∑ 𝑚𝑟𝑘,𝑚
12
𝑚=1                      (A5) 504 

𝑍𝑘 = √
1

𝑅𝑘
∑ |𝑚 − 𝐶𝑘|

2𝑟𝑘,𝑚
12
𝑚=1                   (A6) 505 
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Figures 

 

 

 

Figure 1:Geographical position of the Upper Alento River Catchment (UARC) in Campania  (southern Italy) with the 

locations of the weather stations of Gioi Cilento and Monteforte Cilento. This figure was adapted from © Google Maps 

Gioi Cilento weather station 

(rainfall data 1920-2018) 

Monteforte Cilento weather station 

(weather data 2004-2018) 
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Figure 2: Box plots of monthly rainfall depths recorded at the Gioi Cilento weather station (1920-2018). 

 

 

Figure 3: Theoretical L-moment ratio of common distribution models, as compared to the sample L-moment ratios of daily 

rainfall time series at the Gioi Cilento weather station (large filled circle). 
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Figure 4: Exponential probability plot of empirical and fitted cumulative distribution functions of daily rainfall depths 

collected at the Gioi Cilento weather station. 

 

 

 

Figure 5: Temporal evolution of SPI-6 spanning from 1920 to 2018 (rainfall data were recorded at the Gioi Cilento weather 

station). 
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Figure 6: a) Temporal evolution of SPI-1 values (gray bars) and their 12-month moving average (magenta line) spanning 

from 1920 to 2018 in the static approach; b) Box plots of SPI-1 values and frequency distribution in the c) rainy period (blue 

histograms corresponding to Nov-Dec-Jan-Feb), d) transition period (yellow histograms corresponding to Mar-Apr-Sep-Oct), 

e) dry period (red histograms corresponding to May-Jun-Jul-Aug). 
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Figure 7: Temporal evolution of the centroid (or timing; solid line) and spread (or duration; dashed lines) of the wet seasons 

estimated as proposed by Feng et al. (2013) within the framework of the dynamic approach (rainfall data were recorded at 

the Gioi Cilento weather station). 

. 
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Figure 8: Temporal evolution of a) dimensionless seasonal index, DSI (Feng et al., 2013) represented by a red line with 

corresponding linear regression (dashed line); b) seasonality index, SI (Walsh and Lawler, 1981) represented by a green line 

with corresponding linear regression (dotted line). 
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Figure 9: Time series (a) and frequency distribution (b) of durations of the rainy periods at the Gioi Cilento weather station 

in the dynamic approach. 
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Figure 10: Rainfall and potential evapotranspiration forcings in the static approach, namely seasonal rainfall (R) and 

potential evapotranspiration (ETp) in the dry (red bars), transition (orange bars), and wet season (blue bars). Three scenarios 

are presented: a) “reference scenario” with the dry, transition, and wet seasons all lasting 4 months; b)“dry scenario” with 

the dry and wet seasons lasting 8 and 4 months, respectively; c) “wet scenario” with the dry and wet seasons lasting 4 and 8 

months, respectively. 
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Figure 11: Main water balance components in the static approach, namely seasonal water yield (WY) and actual 

evapotranspiration (ETa) in the dry (red bars), transition (orange bars), and wet season (blue bars). Three scenarios are 

presented: a) “reference scenario” with the dry, transition, and wet seasons all lasting 4 months; b) “dry scenario” with the 

dry and wet seasons lasting 8 and 4 months, respectively; c) “wet scenario” with the dry and wet seasons lasting 4 and 8 

months, respectively. 
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Figure 12: Budyko diagram relating the dryness index (ETp/R) with the evaporative (ETa/R) index classified according to the 

duration of the rainy period pertaining to the dynamic approach. Circles denote median and vertical colored lines represent 

the range between 5th and 95th percentiles of evaporative index (red, black, green, cyan and blue colors correspond to 

duration of the rainy period of 3-4, 4-5, 5-6, 6-7 and 7-8 months, respectively). Solid lines denote energy and water limits, the 

solid garnet line represents the Budyko curve (Budyko, 1974). The vertical dashed line separates left-hand side from right-

hand side of the Budyko curve. 
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Figure 13: Relationship between dryness index and water yield to rainfall ratio (WY/R) on a seasonal basis and classified 

according to the duration of the wet season (from shortest to longest denoted by reddish and bluish colors in the color bar) 

pertaining to the dynamic approach for the wet season (plot 12a) and the dry season (plot 12b). The exponential regression 

equations are represented in both plots by the dashed black lines according to the duration of the rainy period. 
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Tables 

 

 

Table 1: Descriptive statistics of the monthly and annual rainfall distributions recorded at the Gioi Cilento 

weather station during the period 1920-2018. 

 
mean  median min max Std. Dev. CV 

 
mm mm mm mm mm % 

Jan 145.6 141.65 0.0 461.2 81.6 56.0 

Feb 128.1 120.25 0.8 350.1 76.3 59.6 

Mar 112.9 101.1 0.0 302.6 73.4 65.0 

Apr 102.5 101 16.2 350.6 59.5 58.0 

May 75.2 67.6 1.1 304.8 56.6 75.2 

Jun 52.8 45.3 0.0 190.9 38.2 72.3 

Jul 29.8 17.6 0.0 140.4 32.8 110.0 

Aug 39.7 30.3 0.0 210 42.8 107.7 

Sep 94.4 81.9 1.6 296.8 63.0 66.7 

Oct 126.8 118.8 0.0 335.5 70.3 55.4 

Nov 166.9 152.2 26.0 613.2 94.9 56.9 

Dec 154.6 134.55 0.8 411.8 85.1 55.1 

Annual 1229.3 1198.3 478.6 2069.6 295.9 24.1 

 

Table 2: Scenario set-up in the “static” approach. Duration and Poisson distribution parameters ( and ) are 

reported for each of the considered scenarios. 

 

 Dry season Transition season Wet season 

 
months     months   months   

 
- mm d-1 - mm d-1 - mm d-1 

Reference scenario  (static) 4 8.20 0.196 4 10.53 0.34 4 11.70 0.423 

Dry scenario  (static) 8 8.20 0.196 0 - - 4 11.70 0.423 

Wet scenario (static) 4 8.20 0.196 0 - - 8 11.70 0.423 
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Table 3: Scenario set up in the “dynamic” approach. Duration and Poisson distribution parameters ( and ) are 

reported in the dry and wet season. 

 

Dynamic scenario Dry season Wet season 

 
months   months   

 
- mm d-1 - mm d-1 

 
random 9.34 0.243 random 11.99 0.413 

 

 

Table 4: Descriptive statistics of annual water balance components obtained in the three scenarios 

in the “static” approach. Units are mm, except for CV (%).  

 

Scenario Variable R WY ETa GR 

    mm mm mm mm 

Reference scenario 

mean 1229.0 433.3 605.2 194.3 

stand. dev. 176.0 104.2 36.5 48.0 

CV (%) 14.3 24.1 6.0 24.7 

min 586.6 150.8 449.1 44.0 

max 2053.9 1005.9 743.0 389.6 

Dry scenario 

mean 987.7 317.3 545.1 128.0 

stand. dev. 155.5 88.1 40.8 42.7 

CV (%) 15.7 27.8 7.5 33.4 

min 498.7 96.2 396.0 7.2 

max 1649.9 802.4 691.6 319.3 

Wet scenario 

mean 1392.8 526.0 625.8 248.1 

stand. dev. 192.4 119.6 34.3 52.6 

CV (%) 13.8 22.7 5.5 21.2 

min 721.9 157.0 481.2 59.0 

max 2179.2 1088.2 748.6 461.6 
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Table 5: Water balance components associated to occurrence probabilities for each duration of the rainy period. 

  Probability R WY ETa GR 

  % mm mm mm mm 

3-4 months 0.6% 1,145.0 385.3 608.5 169.6 

4-5 months 23% 1,213.4 420.0 619.4 188.0 

5-6 months 62% 1,275.4 453.0 624.9 199.6 

6-7 months 14% 1,326.0 480.2 631.6 210.2 

7-8 months 0.3% 1,383.5 511.6 644.2 211.8 

 

Table 6: Exponential regression models, with the corresponding coefficient of determination (R2), 

for the wet and dry seasons as a function of the duration of the rainy period. 

Duration Wet season Dry season 

 Exp regression function R2 Exp regression function R2 

3-4 months WY/R = 0.5914×exp(−×pR) 0.440 WY/R = 0.4635× exp(−0.343 pR) 0.482 

4-5 months WY/R = 0.6031×exp(−×pR) 0.579 WY/R = 0.3675×exp(−0.204×pR) 0.290 

5-6 months WY/R = 0.6171×exp(−×pR) 0.587 WY/R = 0.3530×exp(−0.174×pR) 0.279 

6-7 months WY/R = 0.6313×exp(−×pR) 0.617 WY/R = 0.3476×exp(−0.159×pR) 0.284 

7-8 months WY/R = 0.6586×exp(−×pR) 0.585 WY/R = 0.3137×exp(−0.105×pR) 0.211 
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