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Reply to the Handling Editor and Reviewers 
 

We thank the Editor for handling the review process, and the three anonymous Reviewers for evaluating 

our work. We have implemented all applicable recommendations that improve the quality of the original 

manuscript. Some preliminary replies to the comments received were posted already during the public 

discussion step of the journal, and more targeted point-by-point responses are given below. To avoid 

confusion, all line numbers refer to the revised version of the manuscript (attached to the response letter), 

where all changes are properly tracked. Finally, please note a native English speaker, with expertise in 

environmental sciences, has fine-tuned all parts of the revised paper and this reply. 

Reply to the Handling Editor 

Dear Authors, 

after receiving three reviews, and by reading your answers to the comments and suggestions made by the 

reviewers, I am convinced that the manuscript can be enhanced and made more readable with a clear 

research question(s) and final message what your research results bring to the scientific community, at 

least in the Mediterranean area. 

Please, prepare a revised manuscript at your earliest convenience by incorporating into it your answers 

from the discussion phase. 

The revised manuscript will be reviewed again by at least one reviewer and myself. 

Sincerely Yours, 

MatjažMikoš 

Handling Editor 

 

REPLY: We thank the Editor for handling the review process of our original submission and for 

providing useful recommendations on how to improve the manuscript. In the following, we provide our 

final replies to the three reviewers who evaluated our original paper during the public discussion step of 

the journal. We tried to thoroughly reformulate the last part of the Introduction (lines 64-100) to clarify 

the research question, the goal of our study, the novelty proposed by this study and the conclusions. We 

followed almost all comments and suggestions received from the three reviewers, especially by 

improving the description of the methods and clarity in reporting results and comments. 

 

General comments from the authors on reviewers’ reports 

Three reviewers evaluated our original manuscript, making interesting comments but also raising some 

concerns. A few concerns refer to general matters, whereas the rest are mostly linked to their personal 

views on the topic of our study. While there is a consensus on the quality with which we presented our 

investigation, the opinions were somewhat more critical on the scientific significance and how we 

discussed our results. 

In the light of the comments and recommendations received, we have revised the introduction and better 

focused (we do hope) the main research question that guided our present study. We have put considerable 

effort into the revised manuscript to clarify those parts that might give rise to strong criticisms. In the 

event of disagreement with some reviewer’s criticism, we shall give adequate reasons for our position. 

We also changed the title. The new one is: “Assessing the impact of seasonal rainfall anomalies on 

catchment-scale water balance components”. 

 

 

Reply to Referee #1 

COMMENT 1.1. General comments: In the submitted paper, authors investigate the impact of the rainfall 

seasonality anomalies on the catchment water balance components. For this purpose, a catchment in the 

southern Italy is selected and SWAT model is applied in order to carry out the investigation. Two 

different approaches are used in order to define rainfall scenarios. First approach is based on the 

standardized precipitation index and second one is based on the duration of the wet season as proposed by 

Feng et al. (2013). The topic is potentially interesting for the society and HESS readers. 
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REPLY-1.1. We thank this reviewer for her/his positive comments and appreciation of the potential 

interest in our work.  

 

However, two main shortcomings of the paper from my perspective that should be improved are:  

 

COMMENT 1.2. Firstly, the main focus of the paper is to investigate what is the impact of different 

rainfall scenarios on the water yield, actual evapotranspiration and groundwater recharge. Thus, for 

different scenarios changes in these variables are analyzed with respect to reference case. Model 

calibration is just briefly described and reference to more detailed description is given (Nesta et al., 2017). 

It seems that model was calibrated using monthly data (?). However, P6, L124 states that daily time step 

of the SWAT model was used. I think that model should also be calibrated using daily data if authors 

want to use this time step. Otherwise, I would suggest to aggregate daily rainfall data into monthly and re-

run the model with monthly time step (if this is possible or perhaps use a different model). An alternative 

is, to calibrate the model using daily data if there is a discharge gauging station available near the 

catchment outlet.  

REPLY-1.2. Nasta et al. (2017 STotEnv) calibrated nine model parameters by comparing measured and 

simulated monthly water yields recorded at the dam. Numerical simulations were run at the daily time 

step (the only time step allowed in SWAT). In this study, we followed the same criterion: we ran 

numerical simulations at the daily time step (rainfall was randomly generated at the daily time step) and 

aggregated the output fluxes at a monthly time resolution. We are aware that calibrating at the monthly 

time-scale might lead to a potential misfit between measured and simulated values at a daily time-scale 

(e.g. Adla et al., 2019, Water). However, our analysis is based on the monthly aggregation of fluxes and 

we analyzed seasonal patterns of monthly aggregates. In the light of the above comment, we added a new 

part at lines 182-188 to clarify this important point and why this misfit should not be viewed as relevant 

to our analysis. The reference to the paper by Adla et al. (2019) is also added. 

 
Adla, S., S. Tripathi, M. Disse, 2019. Can we calibrate a daily time-step hydrological model using monthly time-

step discharge data? Water 11, 1750;  doi:10.3390/w11091750. 

 

COMMENT 1.3. Secondly, when using different scenarios, authors only modified rainfall characteristics, 

what about air temperature? It is true that in some cases the dependence between these two variables can 

be low or even none existing. However, is some other cases, some dependence could exist. For example, 

higher average annual temperature could lead to lower annual rainfall and vice-versa. Or higher daily 

temperature in summer could cause higher rainfall amounts due to more extreme thunderstorm. Did 

authors check the relationship for this specific catchment? Moreover, I think that air temperature 

variability should be included in this kind of investigations. Even if there is no clear relationship with 

rainfall. 

REPLY-1.3. We fully agree with this comment, which in our opinion is timely. Indeed, the feedback of 

temperature on precipitation is a widely recognized cause for the increasing frequency of storms and 

heavy rainfall events under climate change. Unfortunately, we do not have easy access to a database of 

long time series of observed temperatures to reliably evaluate this linkage in our case study. However, 

one should note that this kind of information cannot be restricted only to the surrounding air temperatures, 

but should include the change in the sea surface temperature and air moisture to correctly frame the 

analysis. This is certainly an issue that deserves an in-depth investigation, but it goes beyond the scope of 

our study. We focused only on the long-term (almost one century) daily time series of rainfall, yielding 

interesting outcomes about the sensitivity of catchment hydrological response to seasonal rainfall patterns 

alone. Moreover, for the same reason (lack of comprehensive spatial and temporal sets of temperature 

data), we were unable to capture any significant (increasing) trend and assumed the temperature is 

stationary in time and so is evapotranspiration (although, of course we reproduce the seasonal cycle). Our 

analysis addressed only the impact exerted by rainfall seasonality on the major water balance 

components. The availability of adequate datasets should highlight whether the observed increases in air 

temperatures impact the daily precipitations, or mostly only the sub-daily and sub-hourly rainfall values. 

In any case, we took care of temperature variability (and temporal variability of all weather data) because 

daily potential evapotranspiration data were calculated by using random values of weather data drawn 
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from their normal distribution in each month of the year. We reformulated this part by clarifying 

sentences (lines 167-172)  

 

Specific comments:  

I would suggest to add a figure showing the location of the catchment with stations used. 

REPLY-1.4. We added the new Fig. 1 and have accordingly changed the figure numbering throughout 

the revised manuscript. 

 

P6, L130: Please better explain what is meant by the term boundary forcings. 

REPLY-1.5. With the term “boundary forcings”, we mean the (input) water fluxes (rainfall and potential 

evapotranspiration) set as upper boundary conditions to the flow domain. 

To avoid misunderstanding we rephrased all occurrences of “boundary forcings” with “rainfall and 

potential evapotranspiration forcings”. We modified also y-axis title in Fig. 10 as well. 

 

P7, L142-144: Why did you used only 3 years for simulation and why 2-years warm-up period? How 

does this selection impact on the results? Moreover, does initial state of the catchment also has impact on 

the results (i.e. using different initial values of model variables)? 

REPLY-1.6. We decided to run three years in each scenario and neglect the model simulations of the first 

two years to annihilate the impact of initial soil moisture values set in the soil domain. We point out that 

the soil moisture content at the initial day of year 1 is set at the value of “field capacity” (which can be 

already considered a realistic situation in winter under Mediterranean climate). Moreover, we have 

considered the third year of model simulation. We repeat this exercise 10,000 times so as to frame the 

output fluxes within a probabilistic framework. We added this clarification in the text (see lines 189-196) 

 

P7, L146-149: The data from other station will be used for analyses at monthly time scale but the model 

will run with daily time step and daily reference evapotranspiration will be calculated? Perhaps you could 

rephrase this sentence. 

REPLY-1.7. We agree and we reformulate this (unclear) sentence. We have the daily weather values and 

we use the descriptive statistics of daily values in each month of the year to generate new random daily 

values of evapotranspiration in each month. See also reply1.3. Sentences in lines 196-200 were rephrased. 

 

P7, L149: Here reference evapotranspiration is mentioned but in next sections, you only mention potential 

and actual evapotranspiration. Why was reference evapotranspiration used? 

REPLY-1.8. SWAT uses weather data to estimate potential evapotranspiration (ETp). We replaced the 

word “reference” with the word “potential” at line 201. Thanks for pointing it out. 

 

P9, section 4.3: If I understand correctly exponential distribution was selected only based on the graphical 

comparison shown in Figure 2 and Figure 3? If this is the case, I would suggest to additionally apply a 

suitable statistical test.  

REPLY-1.9. The stochastic Poisson point process of daily rainfall occurrences was assumed to represent 

daily rainfall evolution for its easy reproducibility (Lines 252-254). In a preliminary analysis, we tested it 

and compared it with the best parent distribution, namely the Generalized Pareto Distribution. In this 

case, we observed a fair agreement between the two models for representing the daily rainfall evolution 

recorded at the Gioi Cilento weather station, and concluded that the simple-to-use exponential model is 

suitable (Lines 267-269). 

The stochastic Poisson point process is widely used for its simplicity and parsimony as pointed out by 

Reviewer#2 (we list below the three references reported in Reply 2.4 to Reviewer #2). 

 
Rodríguez-Iturbe, I., B. Febres de Power, J.B. Valdés. 1987. Rectangular pulses point process models for rainfall: 

Analysis of empirical data. Journal of Geophysical Research, https://doi.org/10.1029/JD092iD08p09645 

Veneziano, D., V. Iacobellis. 2002. Multiscaling pulse representation of temporal rainfall. Water Resources 

Research, 38, 1138, 10.1029/2001WR000522 

Eagleson, P. S. 1972. Dynamics of flood frequency. Water Resour. Res., 8, 878–898. 
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P10, L230-231: I do not understand this sentence, if you split the data, how can you then have a drying 

trend? Only for the second 45 years?  

REPLY-1.10. The frequency distribution of SPI-6 values in the first 45 years is wetter than the one 

pertaining to the last (more recent) 45 years. This is now clarified at Lines 306-312. 

 

P13, L285 and L294: A statistical test is mentioned here but no information about null and alternative 

hypothesis is given. Moreover, authors should rephrase these sentences. In statistical hypothesis testing 

the null hypothesis can be either rejected in favor of the alternative hypothesis or cannot be rejected (with 

the chosen significance level). Moreover, all the methods used should probably be mentioned and 

described in the methodology section (and not results and discussion).  

REPLY-1.11. The Mann-Kendal test has become a standard test to search for a possible trend in a time 

series and is widely applied in the literature. Therefore, after a discussion among the co-authors, we 

decided not to describe the Mann-Kendal test in detail and just mentioned the reference. 

 

Sections 5.3 and 5.4 and conclusions: The main results of the paper are somehow expected: dry scenario 

leads to less runoff, groundwater recharge and also less actual evapotranspiration (compared to reference 

scenario). On the other hand, wet scenario leads to more runoff, groundwater recharge and actual 

evapotranspiration (compared to reference scenario). Moreover, different rainfall simulation methods 

yield different results. The actual relationship among variables mostly depends on the rainfall 

characteristics, especially if variability in air temperature is not considered. Can the authors perhaps 

somehow enhance the take home message of this paper? 

REPLY-1.12. The target of our study is to evaluate the sensitivity of some water balance components to 

seasonal rainfall anomalies (potential temperature effects are not considered here, partly because of the 

lack of suitable datasets). We thoroughly reformulated the conclusion section by highlighting the take-

home message of this paper. We recalled the main research question that we posed in the Introduction: 

“What is the impact of seasonal rainfall anomalies on annual-average (or seasonal-average) water supply 

in UARC?” 

We briefly present the following steps to answer the aforementioned question: 1) we needed to build 

robust scenarios based on well-posed hydrological model (SWAT) by presenting results within a 

probabilistic framework; 2) to do that, we need to analyze the long-term historical rainfall time series and 

identify rainfall seasons; 3) evaluate the best statistical distribution of rainfall daily values (Poisson 

model) in each season; 4) propose two approaches to detect seasonal rainfall anomalies and stress pros 

and cons.  

Moreover, the assumption of the steady-state condition inherent in the Budyko approach is questioned. 

The stationarity/non-stationarity dilemma in hydrological processes is still a matter of an open debate in 

the scientific community (Milly et al., 2008; Montanari and Koutsoyiannis, 2014). 

 
Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. 

Stouffer. 2008. Stationarity is dead: Whither water management?Science,319:573–574. 

Montanari, A., and D. Koutsoyiannis. 2014. Modeling and mitigating natural hazards: Stationarity is 

immortal!Water Resour. Res.,50:9748–9756. 

 

 

Reply to Referee #2 

The paper deals with the assessment of water balance components (i.e.  water yield, evapotranspiration, 

groundwater recharge, etc.) and relative deficit in case of climatic anomalies related to seasonality in a 

Mediterranean basin. This is done by parameterizing a rainfall generator model according to two different 

schematic representation of seasonality (called “static” and “dynamic”), and using synthetic rainfall series 

as input to the SWAT hydrological model. While  shifts  and  changes  in  seasonal  patterns  have  been  

addressed  by  many  researchers as key factors in analyzing the hydrological impact of climatic 

fluctuations, the consequent issue of how these phenomena may impact the regulation of artificial 

reservoirs, designed for annual or multiyear storage purpose, deserves attention.  

GENERAL REPLY: We thank this reviewer for her/his comments and suggestions.  
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The paper is in general well sounded and relevant although it could be improved in my opinion, 

accounting for the following suggestions. The paper is compound by two main issues: 

2.1. The first one is referred to the analysis of the climatic forcing and the parameterization of the rainfall 

model; the second one is related to the use of SWAT model to obtain different components of water 

balance. A stronger emphasis is given to the first one, which is also performed by comparing different 

methods, while the second one is much less discussed. Also, the overall paper goal could be better 

assessed and the methodology more detailed in the introduction. To make an example, the sentence “The 

goal of the study is to characterize the rainfall seasonality and its anomalies by using two approaches.”   

(line 81) is in my opinion somehow misleading with respect to the overall paper objectives and 

developments. 

REPLY-2.1. We agree with this concern that was also raised by Ref.#3 (see our Reply 3.1). Therefore, 

we have completely reformulated the last part of the Introduction (Lines 69-117) and overhauled the 

conclusions (Lines 523-583) to make the paper more effective and clarify our goals and take-home 

messages (see also Reply 1.12 to Ref.#1). 

 

2.2. Dealing with issue #1, i.e. seasonality assessment, in the introduction the PCI and SI methods are 

indicated as most popular approaches. Nevertheless, the authors do not use them but rather prefer an SPI 

based analysis and the procedure proposed by Feng et al (2013).  A better acknowledgement could be 

provided about the reasons of such choices, and the comparisons between the performances of different 

methods. 

REPLY-2.2. Basically, our introduction lists some seasonality indexes, which indicate qualitatively the 

degree of rainfall seasonality in a given precipitation time-series. To assess rainfall seasonality 

quantitatively, among the various existing techniques, the SPI index and the Feng et al. approach 

appeared to be sound techniques to classify wet and dry months as well as to retrieve precious 

information on the statistical distribution of daily rainfall values.  

We added the following new sentence in lines 81-96: “Nonetheless, while PCI and SI are useful indexes 

to classify rainfall seasonality and the degree of concentration of rainfall within the year, their 

implementation in a Monte Carlo framework is not straightforward. Therefore, we opted to characterize 

rainfall seasonality and its anomalies by using the two approaches described as follows. A first approach, 

which is hereafter referred to as the static approach, is based on the analysis of the standardized 

precipitation index (SPI) to define the duration of a wet season (4 months), a dry season (4 months) and a 

transition season (2 months from dry to wet phase plus 2 months from wet to dry phase) in UARC. In this 

approach, the drought anomaly is rigidly built with the artifact of extending the duration of the dry season 

to eight months by removing the transition season. The same criterion applies to a prolonged duration of 

the rainy season. The second approach, instead, exploits the seasonality characterization proposed by 

Feng et al. (2013) and can be viewed as a dynamic approach since the duration of the rainy season is 

time-variant (inter-annual variability) and can be stochastically generated with random duration values 

drawn from their statistical distribution. This second approach investigates what happens to the water 

budget if the duration of the rainy season becomes shorter-than-normal (i.e. rainfall scarcity) or longer-

than-normal (i.e. rainfall excess). As far as we are aware, there is still a lack of knowledge about the 

effects of possible changes in rainfall seasonality on the water balance of a catchment subject to a 

Mediterranean climate, and the analyses presented in this paper aim primarily to contribute to fill this 

gap.”. 

 

2.3. At line 184 the authors state that they “assumed that the duration of the wet season follows a normal 

distribution...”.  While I do not doubt that such hypothesis may be a feasible one, I would expect some 

kind of validation or testing of it through observed data. 

REPLY-2.3. We strongly agree with this comment. Actually, we applied the Lilliefors test for normality 

in Section 5.2 (lines 382-391), and also anticipated this result in section 4.2 (lines 238-243). 

 

2.4. The stochastic Poisson point process with exponential distribution of pulses that is finally used for 

rainfall generations, I believe could be referenced to classical papers like Rodriguez-Iturbe, I. et al 

(Journal of Geophysical Research, 1987) and /or Eagleson (WRR, 1972),  may be also of interest a more 

recent application by Veneziano and Iacobellis (WRR, 2002) on Italian datasets, among many others. The 

use of seasonal parameterization on a stochastic rainfall generator is also a matter of interest. 
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REPLY-2.4. We agree and added the three mentioned citations accordingly (lines 254-255). 

 
Rodríguez-Iturbe, I., B. Febres de Power, J.B. Valdés. 1987. Rectangular pulses point process models for rainfall: 

Analysis of empirical data. Journal of Geophysical Research, https://doi.org/10.1029/JD092iD08p09645. 

Veneziano, D., V. Iacobellis. 2002. Multiscaling pulse representation of temporal rainfall. Water Resources 

Research, 38, 1138, 10.1029/2001WR000522 

Eagleson, P.S. 1972. Dynamics of flood frequency. Water Resour. Res.,8, 878–898. 

 

2.5. I believe that also conclusions should be reinforced. First by better depicting which practical use the 

methodology could be exploited for and, second, by deepening the discussion about the characterization 

of rainfall seasonality and its anomalies, according to different approaches, which was mentioned as a 

goal of the study.  

REPLY-2.5. We strongly agree with this comment, which was also stated by Ref.#1 (Reply1.12). We 

therefore report the same reply below. 

The target of our study is to evaluate the sensitivity of water balance components to seasonal rainfall 

anomalies (potential temperature effects are not considered here, partly because of the lack of suitable 

datasets). We thoroughly reformulated the Conclusions Section by highlighting the take-home message of 

this paper. We recalled the main research question that we posed in the Introduction: “What is the impact 

of seasonal rainfall anomalies on annual-average (or seasonal-average) water supply in UARC?” 

We briefly present the following steps to answer the aforementioned question: 1) we needed to build 

robust scenarios based on well-posed hydrological model (SWAT) by presenting results within a 

probabilistic framework; 2) to do that, we need to analyze the long term historical rainfall time series and 

identify rainfall seasons; 3) evaluate the best statistical distribution of rainfall daily values (Poisson 

model) in each season; 4) propose two approaches to detect rainfall seasonality anomalies and stress pros 

and cons.  

Moreover, the assumption of the steady-state condition inherent in the Budyko approach is questioned. 

The stationarity/non-stationarity dilemma in hydrological processes is still a matter of an open debate in 

the scientific community (Milly et al., 2008; Montanari and Koutsoyiannis, 2014). 

 
Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. 

Stouffer. 2008. Stationarity is dead: Whither water management? Science, 319:573–574. 

Montanari, A., and D. Koutsoyiannis. 2014. Modeling and mitigating natural hazards: Stationarity is immortal! 

Water Resour. Res., 50:9748–9756. 

 

 

Reply to Referee #3 

The main research question of this study, as presented by the authors in Line 64, is “What is the impact of 

rainfall seasonality anomalies on annual-average (or seasonal-average) water supply, and what happens if 

the Alento River catchment (ARC) will experience several consecutive years of lower-than-expected 

rainfall events?” The authors use SWAT (Soil Water Assessment Tool) to assess the changes in the 

different catchment water fluxes in response to changes in rainfall seasonality, using ARC as a study site. 

The changes in rainfall seasonality is simulated through two different approaches: (i) a “static” approach 

based on the SPI (Standard Precipitaiton Index) and (ii) a “dynamic” approach by decomposing 

seasonality into a magnitude, timing, and duration components following Feng et al. 2013. While 

simulating the changes in rainfall seasonality via a Monte-Carlo approach, the length of the seasons are 

set across multiple years but varied across the 3 case scenarios (“reference,” “dry,” and “wet”) for the 

“static” approach, whereas for the “dynamic” approach, the duration of the wet season in each year is 

randomly drawn from a normal distribution (line 220 – 222). 

GENERAL REPLY: We thank this reviewer for her/his comments and suggestions.  

 

To me, the set of main questions is at once too broad (“the effect of rainfall seasonality on the annual 

catchment water yield”) and too specific (effects on one catchment, ARC). The presentation is overall 

loose and acutely needs focusing. By this I mean that it’s not clear to me what conclusions to be drawn 

from this study other than “by changing rainfall seasonality under scenario X, we simulated a reduction in 

water yield at this Mediterranean catchment by Y amount,” which does not give much scientific insights 

into how this particular Mediterranean catchment might function (in response to the second part of the 
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main question), nor how the results may be able to be generalized to other Mediterranean catchments 

around the world (in response to the first part of the main question). Perhaps this is just an issue of having 

to refine the main question a little more. At one point the authors also state “the goal of this study is to 

characterize the rainfall seasonality and its anomalies by using two approaches (Line 84)” – to what end? 

Not only do I find this goal to be a little aimless, but it’s also not clear to me how this would help advance 

the overall research question stated earlier. I understand that this relates to the methodology through 

which the main questions were interrogated, but why two different approaches? And what did the authors 

learn from adopting the two different approaches? 

REPLY-3.1. Almost all of the papers we read in the literature refer to a general problem or concern that 

seasonality is investigated in one specific area where a good amount of quality data is available to 

elucidate somehow the question at hand. Moreover, especially in recent years, it is desirable to compare 

outcomes from different sites, an exercise made difficult since only in very few cases are the experimental 

sites instrumented in similar ways. One eventually tries to get the most from one’s own site and hopes 

that these outcomes can be exported to similar sites. 

While we do agree with this reviewer that the main research question we pose in this paper should be 

refined somehow and better worded, we are confident that the “static” and “dynamic” implementations 

discussed in the manuscript will contribute giving answer to some timely but still unexplored (at our best 

knowledge) issues, that are relevant to the Mediterranean rainfall seasonality. Specifically, the “static” 

approach (based on SPI) addresses the issue “What happens to the water budget if the transition season 

becomes dry or wet?”; while the “dynamic” approach, allowing the wet season to vary from year to year 

and thus accounting for inter-annual variability, aims to answer the question “What happens to the water 

budget if the spread of the wet season becomes smaller-than-average (short duration of the wet season, 

meaning drought) or larger-than-average (long duration of the wet season)?” 

 

By exploiting a long-term rainfall time series, an element of novelty of this manuscript is to assess the 

impact of wet season duration on the water budget in a river catchment with the UARC features. 

However, a longer-than-average duration of the wet season does not “always” imply a wetter-than-

average mean annual rainfall. We do have to take into account also rainfall magnitude of the wet season. 

The strategy is to analyze rainfall data and properly characterize the duration and magnitude of rainfall 

seasons through a Monte-Carlo approach since we want to obtain water budget results within a 

probabilistic framework. 

In light of the above comment and also the other two reviewers’ comments, we completely changed the 

last part of the Introduction. Please see lines 69-117 and by following similar concerns raised by 

Reviewer#1 (Reply 1.12) and Reviewer#2 (Reply 2.5) overhauled the Conclusions (Lines 523-583) 

 

The authors claim that the questions of how the catchment water balance plays out in Mediterranean 

question remains largely unaddressed (“As far as we are aware, there is still a lack of knowledge about 

the effects of possible changes in rainfall seasonality on the water balance of a catchment subject to a 

Mediterranean climate, and the analyses presented in this paper aims primarily at contributing to fill this 

gap.” (Lines 84 – 86) I find this statement to be surprising and again, vague and unrefined, since there is 

already a large body of work that already attempts to address this question in one fashion or another, via 

theoretical and empirical approaches, that remains uncited: 

− Potter et al. 2005 “Effects of rainfall seasonality and soil moisture capacity on mean annual water 

balance for Australian catchments” WRR. 

− Hickel and Zhang 2006. “Estimating the impact of rainfall seasonality on mean annual water balance 

using a top-down approach” JoH. 

− Viola et al. 2008 “Transient soil-moisture dynamics and climate change in Mediterranean ecosystems” 

WRR. 

− Gentine et al. 2012 “Interdependence of climate, soil, and vegetation as constrained by the Budyko 

curve.” GRL 

− Andersen et al. 2012 “Assessing regional evapotranspiration and water balance across a Mediterranean 

montane climate gradient.” AFM 

− Williams et al. 2012 “Climate and vegetation controls on the surface water balance: Synthesis of 

evapotranspiration measured across a global network of flux towers” WRR 
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− Feng et al. 2015 “Stochastic soil water balance under seasonal climates” PRSA 

− Viola et al. 2019 “Impacts of hydrological changes on annual runoff distribution in seasonally dry 

basins” WRM 

 

The authors do not make an attempt to contextualize the results of their work against a larger set of 

studies on water balance in seasonal and Mediterranean climates, and I find this disappointing. My goal in 

listing these references is not to encourage the authors to simply cite them, but also to use them (amongst 

others that I have certainly missed) as a starting point to actually pinpoint where the existing knowledge 

gaps are, and articulate clearly how, using the current approach, they are able to fill them. For example, 

the fact that we need to account for climate seasonality and non-stationarity when considering annual 

water balances, to me, does NOT constitute a knowledge gap – this has been the conclusion of many 

previous papers. 

REPLY-3.2. Actually, in the original manuscript we did cite Potter et al. (2005) (see line 73) and 

Williams et al. (2012) (see line 393). Other than that, we have cited the papers related to the studies 

presented by Viola et al. (2019) (see the citations of Viola et al., 2017; Caracciolo et al., 2017 at line 369). 

Viola et al. (2008) focused on seasonal soil moisture dynamics impacting on plant water stress by using a 

zero-dimensional bucket-filling model, while ignoring the topographical effect on the lateral distribution, 

and where the authors identify two seasons and set rainfall parameters arising from a Poisson process. 

The paper by Anderson et al. (2012) seems a bit on the boundary of the topic of rainfall seasonality. The 

remaining citations suggested are based on the Budyko approach, but do not focus on the assessment of 

rainfall seasonality.  

Therefore, we are aware of the state of the art in the literature and here confirm that, actually, few studies 

(such that of Viola et al, 2008) have dealt in the past with rainfall seasonality issues. Only recently have 

we witnessed an increase in the number of studies dealing with that topic, and our submission is also 

heading in this direction. Unlike the few previous studies (such as the paper by Viola et al., 2008), our 

study proposes a new approach for assessing the impact of observed rainfall data on a water budget. In so 

doing, we generate new random daily rainfall data as input in a hydrological model (such as SWAT) 

under a Mediterranean climate. It is therefore fundamental to group rainfall seasons adequately to 

properly calculate the statistical parameters belonging to a Poisson process even when the user has a 

short-term rainfall data set. 

We gave due consideration to this comment (please see Reply-3.1) and changed several parts of the 

Introduction (lines 69-117)  

 

Other comments: 

Line 47: “The amount of rainfall in each season can be suitably decomposed and simulated considering 

the following three main components.” It’s not clear to me how this statement fits in with the rest of the 

introduction. Why is intra-annual variability discussed at this point, when the focus of the study is on 

inter-annual variability of seasonality? I suggest the authors move this into the method section when 

discussing the Monte Carlo simulations for daily rainfall. Also, the representation of rainfall via a 

stochastic Poisson process (which this set of criteria is describing) should be associated with more 

foundational studies than those of Van Loon et al. 2014 and Feng et al. 2013 – this was introduced first by 

Rodriguez-Iturbe et al. 1987 “Some models for rainfall based on stochastic point processes” in PRSA and 

more widely disseminated in Rodriguez-Iturbe et al. 1999, PRSA. 

REPLY-3.3. The parameters describing the intra-annual variability of rainfall identify the timing, 

duration, and magnitude of the rainfall seasons (intra-annual variability) that nevertheless change with 

time (inter-annual variability). We agree with this comment about the seminal paper by Rodriguez-Iturbe 

et al. (1987), but we did not cite it since it is actually embedded in the papers by van Loon et al. (2014) 

and Feng et al. (2013). 

 

The presentation of Budyko’s curve as a conceptual and unifying framework is commendable, but it that 

it is too rushed. This may be a widely used concept in hydrological sciences, but it does not make a first 

appearance until the results section (starting on line 367!!) and need to be motivated better in the 

introduction and methods section. 

REPLY-3.4. This is a good point and we thank this reviewer for that. Honestly, we should admit that 

presenting our outcomes even within Budyko’s framework is something that was discussed among us 
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only shortly before submitting the manuscript to HESS-D. In the revised paper Budyko’s theory has been 

moved from Section 5.4 to Section 4.3 (lines 289-300) 

 

Additionally, description for each of the “static” scenarios (“reference” “dry” and “wet”) also only makes 

first appearance in the results section (lines 265-270) and need to be moved to the methods section. 

REPLY-3.5. In this case, we prefer to keep this description as in the original manuscript, because it is 

based on the results rather than being an a-priori hypothesis. 

 

SWAT model calibration has not been adequately described. While the performance is shown to be good 

at the monthly scale (line 141), there could still be compensating model parameters. It would be helpful to 

see a table of calibrated values for the list of model parameters in lines 137 – 141. 

REPLY-3.6. This concern was raised also by Reviewer#1. Below we report our reply 1.2: 

Nasta et al. (2017 STotEnv) calibrated nine model parameters by comparing measured and simulated 

monthly water yields recorded at the dam. Numerical simulations were run at the daily time step (the only 

time step allowed in SWAT). In this study, we followed the same criterion: we ran numerical simulations 

at the daily time step (rainfall was randomly generated at the daily time step) and aggregated the output 

fluxes at a monthly time resolution. We are aware that calibrating at the monthly time-scale might lead to 

a potential misfit between measured and simulated values at a daily time-scale (e.g. Adla et al., 2019, 

Water). However, our analysis is based on the monthly aggregation of fluxes and we analyzed seasonal 

patterns of monthly aggregates. In the light of the above comment, we added a new part at lines 182-188 

to clarify this important point and why this misfit should not be viewed as relevant to our analysis. The 

reference to the paper by Adla et al. (2019) is also added. 

 
Adla, S., S. Tripathi, M. Disse, 2019. Can we calibrate a daily time-step hydrological model using monthly time-

step discharge data? Water 11, 1750;  doi:10.3390/w11091750. 
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Abstract. Water Although water balance components at the catchment scale are strongly related to annual rainfall 12 

amount. Nonetheless, , availability of water resources availability in Mediterranean catchments also depends also on 13 

rainfall seasonality. Indeed, a high percentage of annual rainfall occurs between late fall and early spring and feeds 14 

natural and artificial water reservoirs. This amount of water stored in the mild-rainy season is used to offset rainfall 15 

shortages in the hot-dry season (between late spring and early fall). Observed seasonal anomalies in historical records 16 

are quitefairly episodic, but an increase ofin their frequency might exacerbate water stressdeficit or water excess if the 17 

rainy season shortens or extends its duration, e.g. due to climate change. Hydrological models are useful tools to assess 18 

the impact of seasonal anomalies on the water balance components and thisThis study evaluates the sensitivity of water 19 

yield, evapotranspiration, and groundwater recharge onto changes in rainfall seasonality by using the Soil Water 20 

Assessment Tool (SWAT) model. The study area is applied to the Upper Alento River Catchment (UARC) in southern 21 

Italy where a long time- series of daily rainfall is available from 1920 to 2018. To assess seasonality anomalies, weWe 22 

compare two distinct approaches: i) a “static” approach based on the Standardized Precipitation Index (SPI), and a 23 

“dynamic” approach that identifies the rainy season by considering rainfall magnitude, timing, and duration. The former 24 

approach rigidly selects, where three seasonal features,  (namely rainy, dry, and transition fixed-duration 4-month 25 

seasons, the latter being occasionally characterized by similar properties to ) are identified through the standardized 26 

precipitation index (SPI); ii) a “dynamic” approach based on a stochastic framework where the duration of two seasons 27 

(rainy and dry seasons) varies from year to year according to a probability distribution. Seasonal anomalies occur when 28 

the transition season is replaced by the rainy or dry periods. The “dynamic”season in the first approach and when 29 

season duration occurs in the tails of its normal distribution in the second approach, instead, is based on a time-variant 30 
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duration of the rainy season and enables to corroborate the aforementioned results. Results are presented within a 31 

probabilistic framework. A dry seasonal anomaly is characterized by a decrease of 241 mm in annual average rainfall 32 

inducing a concurrent decrease of 116 mm in annual average water yield, 60 mm in actual evapotranspiration and 66 33 

mm in groundwater recharge. WeWe also show that the Budyko curve is sensitive to the rainfall seasonality regime in 34 

UARC by questioning the implicit assumption of a temporal steady- state between annual average dryness and the 35 

evaporative index. Although the duration of the rainy season does not exert a major control on water balance, we have 36 

beenwere able to identify seasonalseason-dependent regression equations linking water yield to the dryness index 37 

overin the rainy season. 38 

 39 

 40 

 41 

1. Introduction 42 

The rainfall regime of the Mediterranean climate is characterized by the alternation of wet and dry periods within the 43 

year, with an evident out-of-phase seasonal behavior of precipitation and temperature patterns. Indeed, the majority of 44 

theMost annual amount of rainfall is concentrated in the late fall and, winter months, and early spring, while late spring, 45 

summer is, and early fall are usually hot and quite dry. Rainfall seasonality plays a fundamental role in planning and 46 

managing water resources in countries subject to a Mediterranean climate.  47 

ScarceSummer is characterized by water stress due to scarce rainfall supply, combined with high evapotranspiration 48 

lossesloss and excessive the seasonal peak in water consumption of water ((comprising agricultural, industrial, and 49 

recreational uses, hydroelectric power generation, as well as civildomestic uses being, which are often increasedboosted 50 

by the tourism pressure) induces water stress during summer.). Therefore, it is necessary to store water during the rainy 51 

period to cope with the “uncertain” duration of adverse water deficit conditions during the dry period. Supply-52 

waterWater-supply infrastructures necessitate high investment costs that strongly depend on the expected balance 53 

between the amount of water supplied in the rainy period and the amount of water lost and consumed during the dry 54 

season. The amount of rainfall in each season can be suitably decomposed and simulated consideringon the basis of the 55 

following three main components: i) duration of the seasons; ii) occurrence probability of a daily rainfall event in each 56 
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season; iii) mean depth of daily rainfall events in each season (Van Loon et al., 2014). A combination of the last two 57 

factors determines the rainfall magnitude in each season (Feng et al., 2013).  58 

A very lowsmall or very highlarge amount of water (exceeding a certain threshold value for a specified return period 59 

and duration) that is supplied during the rainy periodin each season can be interpreted as a seasonal precipitation 60 

anomaly and is usually observed episodically in a historical multi-decadal time-series of annual rainfall values. The 61 

seasonalSeasonal precipitation anomalies dependresult mainly onfrom a combination of the duration of the wet season 62 

and its rainfall magnitude. These two factors should be taken ininto due account when planning water-supply-water 63 

infrastructures (Apurv et al., 2017). The most recent reports released by the Intergovernmental Panel on Climate 64 

Change (IPCC) warn onof the projected increase in seasonal anomalies induced by global warming in the 65 

Mediterranean region, with a remarkableconsiderable decrease in annual precipitation and warming-enhanced 66 

evapotranspiration associated with rather severe and prolonged droughts, as recently observed in southern Europe in 67 

2003, 2015, and 2017 (Mariotti et al., 2008; Laaha et al., 2017; Hanel et al., 2018). 68 

Studies under wayunderway in the Upper Alento River Catchment (UARC) in southern Italy offer a good chance to 69 

understand the effects of rainfall seasonal rainfall uncertainty on water supply generation given the presence of a multi-70 

purpose earthen dam (known as Piano della Rocca) constructed to regulate water for irrigation, hydro-71 

powerhydropower generation, flood control, and drinking purposes. The main research question, also solicitedraised or 72 

prioritized somehowin some way by local stakeholders in their decision-making processes, can be expressed as follows: 73 

“What is the impact of seasonal rainfall seasonality anomalies on annual- average (or seasonal- average) water supply 74 

and what happens ifin UARC?”. This question is particularly relevant to hilly catchments similar to UARC within the 75 

Alento River Mediterranean region such that UARC could become a pilot area for dealing with some specific problems 76 

and carrying out paired-catchment (ARC) will experience several consecutive years of lower-than-expected rainfall 77 

events?”analyses.  78 
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To deal with at least the first part of the above research question, a prime objective is the quantification of the This 79 

study therefore aimed to quantify the effects exerted by seasonal rainfall seasonalityanomalies on water balance 80 

components. With a view to positive interactionscoordinating interaction with stakeholders, end-users, and 81 

professionals, we performed this task by implementing the well-known and well-validated Soil Water Assessment Tool 82 

(SWAT) model whereas a particular(Arnold et al., 1998). Particular attention is devoted to the computation 83 

ofcomputing water yield supplying the artificial reservoir bounded by the “Piano della Rocca” earthen dam in ARC 84 

(Romano et al., 2018). One of the strengths of our approach lies in the availability of long-term rainfall time-series 85 

(about a century of daily data) and detailed soil and land cover maps, enabling reliable catchment-scale model 86 

simulations. Reliable scenario-based projections are built to investigate whether the longer-than-average duration of the 87 

wet season implies a higher-than-average mean annual rainfall and consequently higher-than-average water yield. To 88 

investigate this issue, our research strategy couples the seasonal duration with daily rainfall occurrences and depths by 89 

using a Monte Carlo approach to obtain SWAT-simulated water balance components within a general probabilistic 90 

framework. 91 

Many authors have attempted to quantify the rainfall seasonality by using different approaches (Ayoade, 1970; 92 

Markham 1970; Nieuwolt, 1974; Oliver, 1980; Walsh and Lawler, 1981; Zhang and Qian, 2003; Martin-Vide, 2004; 93 

Potter et al., 2005; Feng et al., 2013; de Lavenne and Andréassian, 2018). The Precipitation Concentration IndexThe 94 

precipitation concentration index (PCI) proposed by Oliver (1980) is the most popular approach for quantifying the 95 

year-round precipitation distribution in a given study area (Raziei, 2018). Sumner et al. (2001) analyzed the spatial and 96 

temporal variation of precipitation seasonality over the eastern and southern Spain by using the seasonality index (SI). 97 

The SI indicator was also utilized for examiningto examine the spatial and temporal variability of precipitation 98 

seasonality in Greece (Livada and Asimakopoulos 2005), USA (Pryor and Schoof 2008)), and northern Bangladesh 99 

(Bari et al. 2016). Under the typical Mediterranean climate of Sardinia (Italy), Corona et al. (2018) used the SI indicator 100 

to evaluate the role of precipitation seasonality on runoff generation.  101 
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The goalNonetheless, while PCI and SI are useful indexes to classify rainfall seasonality and the degree of this 102 

studyconcentration of rainfall within the year, their implementation in a Monte Carlo framework is not straightforward. 103 

Therefore, we opted to characterize the rainfall seasonality and its anomalies by using the two approaches described as 104 

follows. A first approach, which is hereafter referred to as the static approach, is based on the analysis of the 105 

Standardized Precipitation Index (SPI).standardized precipitation index (SPI) to define the duration of a wet season (4 106 

months), a dry season (4 months) and a transition season (2 months from dry to wet phase plus 2 months from wet to 107 

dry phase) in UARC. In this approach, the drought anomaly is rigidly built with the artifact of extending the duration of 108 

the dry season to eight months by removing the transition season. The same criterion applies to a prolonged duration of 109 

the rainy season. The second approach, instead, exploits the seasonality characterization proposed by Feng et al. (2013) 110 

and can be viewed as a dynamic approach. since the duration of the rainy season is time-variant (inter-annual 111 

variability) and can be stochastically generated with random duration values drawn from their statistical distribution. 112 

This second approach investigates what happens to the water budget if the duration of the rainy season becomes shorter-113 

than-normal (i.e. rainfall scarcity) or longer-than-normal (i.e. rainfall excess). As far as we are aware, there is still a lack 114 

of knowledge about the effects of possible changes in rainfall seasonality on the water balance of a catchment subject to 115 

a Mediterranean climate, and the analyses presented in this paper aimsaim primarily at contributingto contribute to fill 116 

this gap. 117 

2. Study area and experimental analyses 118 

The Upper Alento River Catchment (UARC) is situated in the Southern Apennines (Province of Salerno, Campania, 119 

southern Italy) and has a total drainage area of about 102 km2. (Fig.1). The “Piano della Rocca” dam is an earthen 120 

embankment with an impervious core that has been operating since 1995. The area consists mostly of relatively poor-121 

permeable arenaceous-clayey deposits and secondarily of arenaceous-marly-clayey and calcareous-clayey deposits 122 

(Romano et al., 2018).  123 
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A weather station managed by the Italian Hydrological Service is located innear the village of Gioi Cilento and provides 125 

a dataset of daily rainfall values covering the period 1920-2018 (about 90 years), with an interruption of 9nine years 126 

(1942-1950) that straddledstraddling World War II (Nasta et al., 2017). The total (cumulative) data set of annual depth 127 

of precipitationrainfall sums derived from the daily rainfall time series of the entire available period is characterized 128 

byhas a mean of 1,229.3 mm, a while other metrics (median value of 1,198.3 mm, a, standard deviation (Std. Dev.) 129 

equal to 295.9 mm, and a coefficient of variation (CV) equal to 24.1%; the mean and median values) are quite close 130 

indicating that this available dataset follows a normal distribution closely.reported in the last row of Table 1. The same 131 

statistics are also summarized for rainfall depths in each month of the year. The variability exhibited by the monthly 132 

time series of rainfall depths is instead summarized in Table 1 andalso depicted in Figure 12, denoting a typical 133 

Mediterranean seasonal cycle. A large amount of precipitation occurs in the months from October to March, a period 134 

commonly identified as a wet period of athe hydrological year, and accounts for about 68% of the mean annual mean 135 

rainfall (i.e. 834.9 mm over 1,229.3 mm) (see Table 1 and Figure 12). November is the wettest month with an average 136 

monthly rainfall depth of 152.2166.9 mm (about 14% of mean annual rainfall). In contrast, lower means ofmean 137 

monthly rainfall depthdepths are concentrated from April to September, which is commonly identified asidentify a dry 138 

period of athe hydrological year, with a cumulative rainfall depth over this period of 343.7394.5 mm with respect to the 139 

annual mean yearly value of 1,229.3 mm, and hence representing about 3132% of the mean annual rainfall. July is the 140 

driest month with a mean monthly mean rainfall depth of 17.629.8 mm (i.e. 1.62% of the yearlymean annual rainfall 141 

depth). 142 

Please insert Fig. 2 here 143 

Please insert Fig. 1 here 144 

Please insert Table 1 here 145 

Within the monitoring activities of the MOSAICUS (MOnitoring and modeling Soil–vegetation–atmosphere processes 146 

in the Alento river basin for Implementing adaptation strategies to Climate and land USe changes) project (Nasta et al., 147 
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2013; Romano et al., 2018), an automated weather station was installed in 2004 close to the village of Monteforte 148 

Cilento and equipped with sensors for precipitationmonitoring rainfall, wind speed and direction, air temperature and 149 

relative humidity, and solar radiation, to record thesesuch meteorological variables at 15 min intervals. The data set of 150 

daily rainfall values (1920-2018) recorded at the weather station of Gioi Cilento will be used to assess rainfall 151 

seasonality. (Nasta et al., 2019). The statistical distributions of weather data recorded at the weather station of 152 

Monteforte Cilento (2004-2018) will be used to calculate potential evapotranspiration as described in Section 3. 153 

In this study, we used the most recent available land-use map drawn onup in 2015 by using second-level CORINE 154 

(Coordination of Information on the Environment) Land-Cover classes (CORINE 2006 land cover dataset; 155 

http://www.eea.europa.eu): forest, arable land (annual crops), permanent crops (orchards, vineyards, olive groves, and 156 

fruit trees), pasture, urban fabric, and water bodies. Forest (evergreen and deciduous trees, and multi-stem evergreen 157 

sclerophyllous Mediterranean shrubs) and agricultural (arable land, permanent crops, and orchards) cover about 70% 158 

and 20% of the catchment, respectively (Nasta et al., 2017). A five-meter resolution Digital Terrain Model (DTM) was 159 

used to generate the hydrographic network and a soil-landscape units map is used to depict soil attributes in UARC 160 

(Nasta et al., 2018). 161 

3. Parameterization of the SWAT Model 162 

The Soil Water Assessment Tool (SWAT) is a bucket-type, semi-distributed hydrological model operating on a daily 163 

time scale and at a catchment spatial scale (Arnold et al., 1998). The main components of the water balance equation are 164 

the daily change in water storage (ΔWS) as affected by rainfall (R), actual evapotranspiration (ETa), groundwater 165 

recharge (GR), and water yield (WY). Water yield is given by the contribution of surface runoff, groundwater 166 

circulation, and lateral flow within the soil profile, and is partially depleted by transmission losses from tributary 167 

channels and water abstractions. All variables are expressed in units of mm of water height. 168 
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The boundary forcings areSWAT requires as input rainfall (R) and potential evapotranspiration (ETp) computed ontime 169 

series at a daily basis. SWATscale and is based on the concept of Hydrological Response Unitshydrological response 170 

units (HRUs), which are areas identified by similarities in soil, land cover, and topographic features. A 5-m Digital 171 

Elevation Model (DEM), where hydrological processes are represented by a lumped schematization. The five-meter 172 

DTM of the study area was used to determine the catchment boundaries, the hydrographic network, and thirteen distinct 173 

HRUs. Catchment-lumped parameters are assigned to each HRU through look-up tables. KnownBy using the available 174 

soil-landscape unit map, the input parameters were assigned according to the model set -up as presented in Nasta et al. 175 

(2017). Nine parameters were calibrated to achieve the best model fit between simulated and measured monthly water 176 

yield data recorded from 1995 and 2004 (Nasta et al., 2017). Such hydrological parameters include the soil evaporation 177 

and compensation factor, plant uptake compensation factor, Manning’s value for overland flow, the baseflow recession 178 

constant (groundwater flow response to changes in recharge), groundwater delay time, groundwater “revap” coefficient 179 

(controlling water that moves from the shallow aquifer into the unsaturated zone), Manning’s coefficient for the main 180 

channel, effective hydraulic condition in the main channel alluvium, and bank storage recession curve. Model 181 

performance proved to be satisfactory at monthly time scale.the bank storage recession curve. Model performance 182 

proved to be satisfactory at a monthly time scale. We ran numerical simulations at a daily time step (rainfall was 183 

randomly generated at a daily time step) and aggregated the output fluxes at a monthly time resolution. Although there 184 

is evidence in the body of scientific literature of a potential misfit between measured and simulated water yield values at 185 

a daily time-scale when calibrating a model with data at a monthly time resolution (Adla et al., 2019), we are confident 186 

that our results and conclusions will not be affected by this drawback. Our analysis is based on the monthly aggregation 187 

of fluxes and is aimed at analyzing seasonal patterns of monthly aggregates.  188 

This study is based on modellingmodeling scenarios implemented in SWAT through a Monte Carlo approach, where 189 

each simulation is 3-yearthree years long. Results from the first 2two-year warm-up period are discarded, while water 190 

balance components simulated for the third year are stored for subsequent analysis. Initial soil water storage is set as 191 
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field capacity. The rainfall data will beThe model simulations of the first two years are disregarded in order to erase the 192 

impact of the initial (unknown) soil moisture values set in the soil domain. We point out that initial soil water content 193 

set at field capacity can be considered a realistic situation in winter under the Mediterranean climate. The rainfall data 194 

are generated for the static and dynamic approaches (described below) using a probability setting calibrated on daily 195 

rainfall values recorded at the Gioi Cilento weather station (1920-2018). The Mean and standard deviation of the 196 

meteorological data (wind speed, air temperature and relative humidity, and solar radiation) recorded at the second 197 

automated weather station (close to the village of Monteforte Cilento) will be used for statistical analysis at monthly 198 

time scale: results will beare calculated each month. Daily potential evapotranspiration data were calculated by using 199 

random values of weather data drawn from their normal distribution in each month of the year (Allen et al., 1998). 200 

Results were provided as input to SWAT in order to randomly generate daily referencepotential evapotranspiration by 201 

using the Penman-Monteith equation (Allen et al., 1998). 202 

4. Determination of rainfall seasonality 203 

4.1. Static approach based on the SPI drought index 204 

The intra-annual rainfall regime under a Mediterranean climate can be characterized through the partitionsdistribution 205 

of annual rainfall depth among different seasons (Paz and Kutiel, 2003; Kutiel and Trigo, 2013). The seasonal pattern 206 

occurring in the study area is basedhere characterized by analyzing the distribution of the standardized precipitation 207 

index (SPI) on a long-term monthly rainfall time series through the Standardized Precipitation Index (SPI).. The SPI is a 208 

probability index developed to classify rainfall anomalies and often employed as an indicator of potential 209 

(meteorological) droughts over many time scales (McKee et al., 1993; Hayes et al., 1999). The 210 

computationComputation of the SPI should rely on long-term rainfall datasets (e.g. 30 years, according to 211 

climatological standards), and is usually obtained by projecting a Gamma distribution fitted on rainfall depths 212 

cumulated on 1, 3, 6, 12, 18, or 24 months (referred to as SPI-1, SPI-3, SPI-6, SPI-12, SPI-18, or SPI-24, respectively) 213 

into a standardized normal distribution. ShortThe short-term SPI (e.g. 3-month time scale) can provide useful 214 
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information for crop production and soil moisture supply, while the long-term SPI (e.g. 12- or 24-month time scale) can 215 

give insights on water availability for groundwater recharge. Negative SPI- values indicate lowerdrier-than-expected 216 

rainfall, whereas positive SPI- values refer to wetter-than-expected months. To quantify the degree of departure from 217 

median conditions, McKee et al. (1993) proposed a rainfall regime classification. Since the SPI is given in units of 218 

standard deviation from the standardized mean, this statistical index enables also the precipitation anomaly to be 219 

identified through the magnitude of its value: values ranging from -−0.99 to +0.99 are considered near normal, from 220 

+1.00 to +1.49 (or from -−1.49 to -−1.00) indicatesindicate moderately wet (or moderately dry) periods, from +1.50 to 221 

+1.99 (or from -−1.99 to -−1.50) very wet (or very dry) periods, and above +2.00 (or below -−2.00) extremely wet (or 222 

extremely dry) periods. Therefore, the extent of SPI departure from the mean (i.e. from the zero value) gives a 223 

probabilistic measure of the severity of a wet (if positive) or dry (if negative) period. By exploiting the properties of the 224 

(standard) normal distribution, the probabilities to obtainof obtaining SPI- values greater than +1, +2, and +3 (or 225 

lowerless than -−1, -−2, and -−3) are 15.990%, 2.28% and 0.13514%, respectively. 226 

In order toTo emphasize the seasonal cycle of intra-annual rainfall patterns within a probabilistic framework, we 227 

slightly modifiedused the common SPI application-1 by fitting the Gamma distribution on all monthly rainfall depths, 228 

i.e. pooling together observations from all months in each year. In such a way, the months characterized by SPI-1 values 229 

below, around or above the zero line can be assumed to belong to the dry, transition or wet seasons, respectively.  230 

4.2. Dynamic approach based on the duration of the wet season proposed by Feng et al. (2013) 231 

According to Feng et al. (2013), the Dimensionless Seasonality Indexdimensionless seasonality index (DSI) is based on 232 

the concept of relative entropy and quantifies the rainfall concentration occurring in the wet season. The DSI is zero 233 

when the average annual rainfall is uniformly distributed throughout the year and maximized at 3.585 when maximum 234 

average annual rainfall is concentrated in one single month (Pascale et al., 2016); see the Appendix for details. Feng et 235 

al. (2013) proposed to describe the rainfall seasonality through the following three components: annual rainfall depth 236 

(magnitude), centroid (timing), and spread (duration) of the wet season (see also Pascale et al., 2015; Sahani et al., 237 
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2018). Following this framework, the hydrological year is assumed to start from the driest monthAs described in 238 

Section 5.2 and proceeds for the subsequent 12 months, rather than starting at a prescribed month (e.g. on April, 239 

according to a conventional way). Specificallyappropriate statistical tests, we assumedfound that the duration of the a 240 

normal distribution can reasonably describe the 90 wet season follows a normal distribution, with mean and standard 241 

deviation estimated from the 90 durations obtained for each year by applying to the Gioi Cilentoobserved rainfall time 242 

series the procedure proposed by Feng et al. (2013)), and briefly resumedsummarized in the Appendix. Thus, each 243 

hydrological year will consist of the alternation of only two seasons: the wet season with a duration that is randomly 244 

generated by a normal distribution with mean and standard deviation estimated on the Gioi Cilento time series, and a 245 

dry season in the subsequent months of the year.   246 

4.3 Set -up of Monte-Carlo rainfall scenarios in SWAT 247 

Rainfall seasonalitySeasonal rainfall anomalies, although episodic, can affect the water balance components at the 248 

catchment scale. As suggested by Domínguez-Castro et al. (2019), the impact of such anomalies can be quantified 249 

within a probabilistic framework. For the Upper Alento River Catchment (UARC), we evaluated the effects of seasonal 250 

anomalies by running SWAT simulations with synthetic rainfall time series considering different hypotheses (scenarios) 251 

of alternations of seasons, according to the “static” and the “dynamic” approaches described above. In each season, we 252 

assumed that rainfall evolution in time can be represented by a stochastic Poisson point process of daily rainfall 253 

occurrences, with daily rainfall depth following a proper probability distribution. (Eagleson, 1972; Rodríguez-Iturbe et 254 

al., 1987; Veneziano and Iacobellis, 2002). Synthetic rainfall time series were then generated, keeping constant 255 

parameters of the Poisson process and daily rainfall parent distribution in each season.  256 

A preliminary analysis was conducted to investigate the best parent distribution for observed rainfall daily depths. With 257 

this aim, we used the L-moment ratios diagram proposed by Hosking (1990) (see also Vogel and Fennessey, 1993) as a 258 

diagnostic tool. Results are shown in Figure 23 where the L-skewness and L-kurtosis computed on the time series left-259 

censored with a threshold of 3 mm (large filled circle) is compared with the theoretical expectation of the same L-260 
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moment ratios for several probability distributions commonly adopted in statistical hydrology. It is apparent thatAn 261 

ideal candidate as parent distribution isseems the Generalized Pareto distribution (GPd), although it is also worthwhile 262 

noticingworth noting that sample estimation of L-skewness and L-kurtosis (0.3437, 0.1706) is very close to the 263 

expected values for an exponential distribution (1/3, 1/6). As a visual support offor this preliminary analysis, the 264 

exponential probability plot in Figure 34 compares the empirical cumulative distribution function F(x) of the observed 265 

time series (circles) with the fitted GPd (dashed line) and the fitted exponential distribution (continuous line). It is 266 

apparent that theThe two models are very close to each other for the whole body of observation, with only a slight 267 

departure of the GPd from the straight line characteringcharacterizing the exponential distribution due to a very 268 

lightslight right tail. These evidences madeThis evidence gave us confident in adoptingthe confidence to adopt the 269 

single-parameter exponential model as parent distribution for series partitioned according to the seasons defined above, 270 

thereby reducing in such a way the uncertainty related to the additional shape parameter of the GPd. Finally, it is 271 

worthwhile mentioning that both distributions shown in Figure 34 were fitted by applying the Multiple-Threshold-272 

Method (MTM) by DeiddaDeidda’s (2010) multiple-threshold-method (MTM) on a range of thresholds from 2.5 to 12.5 273 

mm to prevent biases due to very low records and data discretization (Deidda, 2007). The MTM was then applied to 274 

estimate the exponential parameter  (mm) and the probability occurrence of rainy days  (d-1) for each season 275 

considered season.  276 

For each scenario pertaining to either the “static” or “dynamic” approach, we generated 10,000 equi-probable 277 

realizations of synthetic daily rainfall time series, each 3-yearthree years long, according to a stochastic Poisson point 278 

process model. In each modellingmodeling scenario, the synthetic time series was then used as input offor the SWAT 279 

model to evaluate the effects on the water balance components in UARC. TheAs anticipated in Section 3, the first two 280 

years represent warm-up simulations and were thus discarded, while only results for the third year were stored for 281 

subsequent analyses presented in the next section. For the former approach the alternation of seasons was fixed, as 282 

already pointed out, while for the “dynamic” approach the duration of wet season in each year was randomly drawn 283 
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from a normal distribution (with mean equal to 2.71 months and standard deviation equal to 0.28 months, estimated 284 

from the Gioi Cilento daily rainfall dataset). 285 

Please insert Fig. 2 here 286 

Please insert Fig. 3 here 287 

Please insert Fig. 4 here 288 

To further evaluate the hydrologic behavior of the study catchment, an issue deserving more detailed attention is the 289 

assessment of the sensitivity of water balance to rainfall seasonality. With this aim, we refer to the Budyko framework 290 

(Budyko, 1974), which has been extensively applied to relate water components in different climatic contexts 291 

worldwide, including the Mediterranean climate (see e.g. Viola et al., 2017, Caracciolo et al. 2017). Specifically, the 292 

Budyko framework relates the evaporative index (ETa/R) to the dryness index (ETp/R) computed at an annual time scale 293 

in terms of “available water” (i.e., rainfall R). Potential evapotranspiration, ETp, is limited by either energy supply (for 294 

the dryness index less than or equal to one) or water supply (for the dryness index greater than one), and therefore the 295 

Budyko space has two physical bounds dictated by either the atmospheric water demand (ETa≤ETp) or the atmospheric 296 

water supply (ETa≤R). The first bound is the energy limit (or demand limit, i.e. the 1:1 line corresponding to ETa=ETp) 297 

implying that actual evapotranspiration cannot exceed potential evapotranspiration. The second bound is the water limit 298 

(or supply limit, i.e. the horizontal line corresponding to ETa=R) implying that actual evapotranspiration cannot exceed 299 

precipitation when the dryness index is greater than one (i.e. ETp/R>1). 300 

 301 

5. Results and discussion 302 

5.1. Static approach for assessing rainfall seasonality 303 

ObservedThe observed temporal evolution of SPI-6 in our 90-year time series (see greygray bars in Fig. 45) highlights 304 

prolonged droughts in betweenamongst the 1980s and the 1990s and prolonged wet periods in the last decade when 305 

SPI-6 values above the threshold +2 occurred in 2008, 2010, and 2012. Yet, by splitting the frequency distribution of 306 
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the SPI-6 values ininto two 45-year sub-groups, one in we can observe that the last 45-year period is characterized by a 307 

drier climate compared to the first 45 years and a second one-year period. Specifically, in the last 45 years, we observe 308 

a general drying trend. In the first sub-group the probabilities to obtainof obtaining SPI-6>+1 and SPI-6<-<−1 are 309 

17.9% and 7.6%, respectively. In contrast, in the second sub-group there is a general increase ofin negative SPI-6 values 310 

by turning: the probability into 11.9% to obtainof obtaining SPI-6>+1 becomes 11.9% and 19.3% to obtain getthat of 311 

obtaining SPI-6<-<−1. 19.3%. By analyzing daily rainfall datasets recorded at 55 weather stations located in the region 312 

of Basilicata Region nearbynear UARC (characterized by similar climatic conditions), Piccarreta et al. (2013) observed 313 

a general decreasing trend in the mean annual rainfall over the period 1951–2010 mainly due to the autumn-winter 314 

decrease ofin precipitation. 315 

Please insert Fig. 5 here 316 

Please insert Fig. 4 here 317 

We now discuss now about the results pertaining to the calculation of the seasonal pattern of SPI-1 values. Rainfall 318 

seasonality under a Mediterranean climate can be assumed to be roughly represented by the alternation of two 6six-319 

month seasons, characterized by positive and negative SPI-1 values (wet and dry season, respectively) (Rivoire et al., 320 

2019). The temporal evolution of the SPI-1 values is represented by the greygray bars in Fig. 5a6a and highlights the 321 

seasonal cycle within each year, whereas their 12-month moving average (magenta line in Fig. 5a6a) oscillates around 322 

the zero- value with prolonged dry periods in betweenduring the 1980s and the 1990s and prolonged wet periods 323 

betweenin the 2000s and the 2010s. Fig. 5b6b shows the box and whiskers plots of the SPI-1 values for each month of 324 

the year, thus depicting the monthly distribution of this index throughout the available recorded period. The median 325 

SPI-1 values (central red line in the blue boxes) are negative only from May to August and positive from September to 326 

April, even though the whiskers (identified by the two lines at the 25th and 75th percentile) denote the presence of a 327 

relatively large variability in almost all months. A closerCloser inspection of this graph enables one to identify three 328 

main seasonal features: i) a dry period from May till August with median values below zero; ii) a rainy period from 329 
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November till February with median values above zero; iii) two transition periods from wet to dry (March and April) 330 

and from dry to wet (September and October) with median values near zero. We are aware that the median values in 331 

March, April, and October of the transition season are above zero, rather than “near” zero, but we remindrecall that the 332 

Mediterranean climate in UARC is sub-humid mainly due to orographic influences. However, this approach can be 333 

consideredis intrinsically a “static” procedure since the subdivision of the twelve months ininto three groups is rigid 334 

even though months in the transition periods are characterized by the highest SPI-valueshave high variability. in SPI-1 335 

values. This outcome refines the initial working hypothesis of seasonal alternation of two semesters with random 336 

durations. 337 

Please insert Fig. 6 here 338 

Please insert Fig. 5 here 339 

The frequency distributions of the SPI-1 values computed over the rainy, dry, and transition seasons are illustrated in 340 

Fig.5c-5d-5e6c-6d-6e. The wet season (depicted by the blue histograms) is characterized by probabilities to haveof 341 

having SPI-1 values greater than 0, +1, +2, and +3 of 80.660%, 30.50%, 1.990%, and 0.330%, respectively. The dry 342 

season (depicted by the red histograms) is associated with SPI-1 values lower than 0, -−1, -−2, and -−3 with 343 

probabilities of 78.110%, 31.110%, 0.56% and 0.110%, respectively. Conversely, we warn that probabilities to haveof 344 

obtaining positive SPI-1 values in the transition season are of 63.330% instead of the expected 50% if the hypothesis 345 

waswere “perfectly true”. We thereforeTherefore, we considered three different scenarios, each with fixed and recurrent 346 

alternation of seasons during the hydrological year: i) a “reference scenario” with a 4four-month wet season (NDJF), a 347 

4four-month dry season (MJJA), and a 4four-month transition season (MA from wet to dry and SO from dry to wet); ii) 348 

a “dry scenario”, which mimics an extreme drought anomaly, characterized by a prolonged 8eight-month dry season 349 

(from March to October) and abrupt alternations with the 4four-month wet season (NDJF), without any transition 350 

season; iii) a “wet scenario”, which mimics an extreme rainy anomaly, characterized by a prolonged 8eight-month wet 351 
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season (from September to April) and abrupt alternations with the 4four-month dry season (MJJA), again with no 352 

transition season.  353 

In light of the aforementionedabove results, the two Poisson parameters ( and ) describing daily rainfall values were 354 

calculated for each of the three seasons in the “reference scenario” and they arewere then also used for developingto 355 

develop synthetic simulations of rainfall time series in the “dry” and “wet” scenarios (see Table 2).  356 

Please insert Table 2 here 357 

 358 

5.2. Dynamic approach for assessing rainfall seasonality 359 

The centroid of the monthly rainfall distribution measured at the Gioi Cilento weather station (in the 90 years between 360 

1920 and 2018) indicates that the wet season is centered in the second half of December, while its average duration is 361 

about 5.44 months (see Fig. 67). Nonetheless, it is worth noting the occurrence of a few extreme situations: the severe 362 

drought spell recorded in 1985 caused a minimum duration of about 4four months of the rainy period, while the year 363 

1964 registered a maximum duration of about 7.0 months. The term “dynamic” used for this approach stems mainly 364 

from the fact that the duration of the rainy period is time-variant throughout the years.   365 

Please insert Fig. 6 here 366 

The Mann-Kendall nonparametric test (Mann, 1945; Kendall, 1975) is used to evaluate possible decreasing, increasing, 367 

or absence of temporal trends on the DSI (Feng et al., 2013) or the seasonality index (SI) proposed by Walsh and 368 

Lawler (1981). This test did not highlight significant trend on DSI and SI at 0.05 significance level (zc-values of -0.0027 369 

and 0.0030, respectively). The stationarity in time of DSI (red line) and SI (green line) is also apparent from a perusal of 370 

Fig. 7, where the linear regressions (dashed and dotted for DSI and SI, respectively) are characterized by very weak 371 

downward slopes. 372 

Please insert Fig. 7 here 373 
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The dimensionless seasonality index (DSI) and the seasonality index (SI) were computed for the Gioi Cilento time 374 

series according to procedures proposed by Feng et al. (2013) and by Walsh and Lawler (1981), respectively. The 375 

Mann-Kendall nonparametric test (Mann, 1945; Kendall, 1975) was then applied to evaluate possible decreasing, 376 

increasing, or absence of temporal trends on these indexes, and revealed that the null hypothesis of absence of trend 377 

cannot be neglected at the 0.05 significance level for both indexes. The stationarity in time of the DSI (red line) and SI 378 

(green line) is also apparent from a perusal of Fig. 8, where the linear regressions (dashed and dotted for the DSI and SI, 379 

respectively) are characterized by very weak downward slopes. 380 

Please insert Fig. Under the “dynamic” approach, we consider8 here 381 

As described in Section 4.2, the dynamic approach assumes the alternation of only two seasons (wet and dry) with 382 

random durations of the rainy period. Figure 8a9a shows the time series of the 90 durations of the wet season estimated 383 

duration of the wet season in each year, with the procedure proposed by Feng et al. (2013), while their frequency 384 

distribution is plotted in Fig. 9b. We then applied the Lilliefors statistical test has verified at(Lilliefors, 1967) to the null 385 

hypothesis of normality for the estimated wet durations obtaining a p-value of 0.327, meaning that the null hypothesis 386 

cannot be rejected with the commonly adopted 5% significance level that observed data (Fig. 8b) belongs to. For each 387 

hydrological year, we thus generate a duration of the wet season from a normal distribution (Lilliefors, 1967). Thewith 388 

the same mean and standard deviation of the Gioi Cilento time series (with a mean of 2.71 months and standard 389 

deviation of 0.28 months), while the dry seasons were consequently obtained as the complement in the same year to the 390 

wet seasons. In this case, the two Poisson parameters ( and ) for modeling daily rainfall values were computed for the 391 

wet and dry seasons (Table 3). 392 

Please insert Fig. 9 here 393 

8 here 394 

Please insert Table 3 here 395 

 396 
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5.3. Effects of seasonal rainfall seasonality anomalies on water balance bywhen using the static approach 397 

The results obtained from the three scenarios pertaining to the “static” approach are presented using the descriptive 398 

statistics of the water balance components at the annual time scale obtained from 10,000 SWAT simulation runs (Table 399 

4). ReferenceThe reference scenario represents the normal situation with three seasons (dry, transition, and wet). Even 400 

though the range of annual rainfall values is relatively large, the coefficient of variation (CV) is only 14%, implying that 401 

very low and very high (outliers) annual rainfall depths (outliers) occur occasionally. The water balance components, 402 

namely water yield (WY), actual evapotranspiration (ETa), and groundwater recharge (GR), represent averagelyon 403 

average 35%, 49%, and 16% of the annual mean rainfall depth (R=1,229 mm). The annual rainfall depths for the other 404 

two scenarios (only two seasons without the transition season) shift down to 988 mm (dry scenario) and up to 1,393 mm 405 

(wet scenario) and consequently affect), thus affecting the water balance. When the dry season lasts 8eight months (dry 406 

scenario), water yield, actual evapotranspiration, and groundwater recharge decrease by 116 mm, 60 mm, and 66 mm, 407 

respectively, when compared to the reference scenario. 408 

Please insert Table 4 here 409 

 410 

In contrast, when the wet season lasts 8eight months (wet scenario), the water yield, actual evapotranspiration, and 411 

groundwater recharge increase by 93 mm, 21 mm, and 54 mm, respectively, when compared to the reference scenario. 412 

Water yield, actual evapotranspiration, and groundwater recharge represent averagelyon average 32%, 55%, and 13% of 413 

the annual rainfall depth in the extreme dry season (dry scenario)), and 38%, 45%, and 18% of annual rainfall depth in 414 

the extreme wet season (wet scenario). 415 

The decompositionDecomposition of the annual results into the seasonal components highlighthighlights other 416 

interesting features that are showedshown in Fig. 9 (boundary10 (rainfall and potential evapotranspiration forcings) and 417 

in Fig. 1011 (main water balance components). For the reference scenario the seasonal rainfall depth is 201 mm, 436 418 

mm, and 593 mm for the dry, transition, and wet seasons, respectively, representing 16%, 35%, and 48% of the total 419 

annual rainfall (see Fig. 9a10a). Water yield depths span from 44 mm during the dry season to 251 mm during the rainy 420 
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season (see Fig. 10a11a). Almost 60% of annual water yield occurs over the wet season, about 30% in the transition 421 

season, and about 10% in the dry season. In contrast, the actual evapotranspiration depths are higher than rainfall depths 422 

in the dry season (269 mm) and lower than rainfall depths during the transition (226 mm) and rainy (110 mm) seasons 423 

(see Fig. 10a11a). 424 

Please insert Fig. 9 here 425 

Please insert Fig. 10 here 426 

Please insert Fig. 11 here 427 

 428 

Over the dry scenario (see Fig. 9bFigs. 10b and 10b11b), the months belonging to the transition season become drier-429 

than-normal. The total rainfall depths over the dry and wet seasons are 397 mm and 590 mm, respectively, whereas the 430 

extreme drought anomaly causesinduces precipitation loss only in the dry season with a consistentconsiderable decrease 431 

of 239 mm of rainfall depth (Fig. 9b10b). The consequences of this situation on the average water balance components 432 

in the prolonged dry season lead to significant deficits (Fig. 10b11b). Water yield loss inover the dry season is 93 mm, 433 

which represents 50% of water yield obtained infor the dry and transition seasons in the reference scenario. The wet 434 

season (from November to February) provides about 590 mm of water yield per year. The water lostloss by actual 435 

evapotranspiration is limited and represents only 10% of ETa obtained infor the dry and transition seasons in the 436 

reference scenario (Fig. 10b11b).   437 

In the wet scenario (see Fig. 9c10c and Fig. 10c11c), the months belonging to the transition season turnbecome wet (8 438 

wet months and 4 dry months). Total rainfall depths in the dry and wet seasons are 200 mm and 1,193 mm (Fig. 9c10c). 439 

Rainfall depth increases by 164 mm in the wet season (+14% than the onecompared with that obtained in the wet and 440 

transition seasons in the reference scenario). Water yield gain in the wet season is 89 mm which represents 20% of 441 

water yield obtained in the wet and transition seasons in the reference scenario (Fig. 10c11c). The water lost by actual 442 

evapotranspiration is negligible. 443 
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5.4. Effects of seasonal rainfall seasonality anomalies on water balance bywhen using the dynamic approach 444 

The second approach forto assessing the effect of rainfall seasonality extremes on water balance components is based 445 

on the stochastic generation of the wet season durations from their normal distribution (see Fig. 8b9b). This approach 446 

helps classify the results within a probabilistic framework according to the following rainy period duration classes: 3-4 447 

months, 4-5 months, 5-6 months, 6-7 months, 7-8 months. Seasonal extremes (3-4 months and 7-8 months) have very 448 

low occurrence probabilities of occurrence (0.660% and 0.3%).30%, respectively). Nonetheless, it is interesting to 449 

analyze the effect of rainfall variability on water yield (WY), actual evapotranspiration (ETa) and groundwater recharge 450 

(GR). The most probable (62%) situation occurs when the rainy period lasts 5-6 months. Under these circumstances, the 451 

mean annual rainfall depth is 1,275 mm, whereas WY, ETa, and GR represent 35%, 49%, and 16% of annual average 452 

rainfall depth, respectively. These percentages are the samevery close to those observed in the reference scenario of the 453 

static approach. If the wet season shortens by one month (23% probability), the mean annual rainfall depth decreases by 454 

62 mm, whereas water yield depth by 33 mm (-(−7%). In contrast, if the wet season is made up of 6-7 months (14% 455 

probability), the mean annual mean rainfall depth increases by 51 mm and water yield by 27 mm (+6%). 456 

Extreme dry and extreme wet situations reflect similar results obtained from the dry and wet scenarios presented above. 457 

A prolonged drought spell (i.e. lastingrainy period only 3-4 months long) leads to an average rainfall loss of 130 mm 458 

per year inducing a consistentan appreciable annual decrease in both water yield (-(−68 mm) and groundwater recharge 459 

(-(−30 mm).  A prolonged wet season (i.e. lasting 7-8 months), instead, causes an average rainfall to gain approximately 460 

108 mm per year, hence yielding  annual increases in both water yield (+59 mm) and groundwater recharge (+12  mm). 461 

It is worth noting that the duration of the rainy period does not seem to exert a major control on the water balance. The 462 

Pearson’s linear correlation coefficients between duration and average annual rainfall, water yield, and actual 463 

evapotranspiration are 0.22, 0.20, and 0.11, respectively. 464 

Please insert Table 5 here 465 

 466 
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To further evaluate the hydrologic behavior of the study catchment, an issue deserving to be addressed with 467 

some more details is to assess the sensitivity of water balance to rainfall seasonality. We refer to the Budyko 468 

framework (Budyko, 1974), which has beenPlease insert Fig. 12 here 469 

Assuming applied to relate water components in different climatic contexts worldwide, including the Mediterranean 470 

climate (see e.g. Viola et al., 2017, Caracciolo et al. 2017). Specifically, the Budyko framework relates the evaporative 471 

index (ETa/R) to the dryness index (ETp/R) computed at annual time scale in terms of “available water” (i.e., rainfall R). 472 

Potential evapotranspiration,  ETp, is limited by either energy supply (for the dryness index less than or equal to one) or 473 

water supply (for the dryness index greater than one) and therefore the Budyko space has two physical bounds dictated 474 

by either the atmospheric water demand (ETa≤ETp) or the atmospheric water supply (ETa≤R). The first bound is the 475 

energy limit (or demand limit, i.e. the 1:1 line corresponding to ETa=ETp) implying that actual evapotranspiration 476 

cannot exceed potential evapotranspiration. The second bound is the water limit (or supply limit, i.e. the horizontal line 477 

corresponding to ETa=R) implying that actual evapotranspiration cannot exceed precipitation when dryness index is 478 

greater than one (i.e. ETp/R>1). 479 

Please insert Fig. 11 here 480 

By assuming that the long-term mean annual precipitation can be partitioned into the mean annual actual 481 

evapotranspiration and mean annual water yield, according to the Budyko framework we assume that larger values of 482 

the dryness index (drier climate conditions; ETp/R> 1) induce a greater proportion of rainfall that is partitioned to ETa. 483 

In contrast, data on the left-hand side of the Budyko curve will be characterized by a greater proportion of rainfall that 484 

is partitioned to water yield. Fig. 1112 shows the Budyko plot of the dryness index (ETp/R) versus the evaporative index 485 

(ETa/R) together with the Budyko curve (solid garnet line). In this plot we have inserteddepict the data points (colored 486 

dots) for the five different durations of the rainy period in UARC obtained by the dynamic approach. AThe first 487 

comment to be made is that all of these data points gather within the energy-limited region of the Budyko plot, with the 488 

longest rainy period (blue dot) favoring conditions of greater discharges (evaporative index of ETa/R=0.45) and the 489 

shortest rainy period (droughts indicated by the red dot) inducing higher evapotranspiration fluxes (evaporative index 490 
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ofETa/R= 0.54). ThisThe latter situation highlightsshows that on average the Upper Alento River catchment is 491 

characterized by a relatively good storage of soil-water made possible by the hydraulic properties of the soils and the 492 

large portion of shrub spots and forest areas (mostly chestnut deciduous chestnut forests and olive orchards), together 493 

with a good amount of annual precipitation in a hilly and mountainous zone ofin southern Italy. However, ETp and ETa 494 

are not almost equivalent and one can even noteit may also be noted that all of these data points cluster below the 495 

Budyko curve (Williams et al., 2012). The observed departure below the Budyko curve canmay be due to a number 496 

ofseveral reasons. Allowing for the Budyko assumptions for water balance, the present study refers to a long time scale 497 

(90 years), but a relatively small spatial scale since UARC has a drainage area of 102 km2 and therefore local conditions 498 

and controlling factors might exert some effects on the water budget calculations. Actually. In fact, rainfall seasonality 499 

(i.e. intra-annual variability) canmay be just be one of the major factors havingthat could have led to a departure from 500 

the Budyko curve. The typical Mediterranean climate, which is characterized by a precipitation being out-of-phase with 501 

potential evapotranspiration, is also singled out as a cause of the deviations we have observed in our case study from the 502 

Budyko curve (Milly, 1994). Normal situations, characterized by a wet season lasting 5-6 months (green dot), lead to 503 

partition rainfall being partitioned into 49% ETa, as indicated by the evaporative index value of 0.49. We hereby recall 504 

that this study is based on the assumption that the catchment response is not affected by human interferences and their 505 

feedbacks (land-use change, change in soil hydraulic properties, enhanced evapotranspiration induced by global 506 

warming, etc.), but only by changes in rainfall seasonality thatwhich, of course, can undermine Budyko’s implicit 507 

assumption of temporal steady-state (Feng et al., 2012; Troch et al., 2013). 508 

Please insert Fig. 13 here 509 

Please insert Fig. 12 here 510 

Please insert Table 6 here 511 

The relationships between the seasonal dryness index and water yield to rainfall ratio (WY/R) are affected by the 512 

duration of the wet season and are depicted in Fig. 1213. The coefficients of the exponential regression models with 513 
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their corresponding R2- values pertaining to the wet or dry season are reported for each duration class of the rainy 514 

period in Table 6. The exponential curves in the wet season (see plot 12a13a) are virtually parallel among them, 515 

yielding, for a fixed ETp/R, more WY/R as the duration of the rainy period increases from 3-4 months to 7-8 months. In 516 

contrast, the exponential regression curves belonging to the dry season (see plot 12b) are able to13b) explain only a 517 

small amount of the variations of WY/R in response to the dryness index and all seem quite insensitive to rainfall 518 

seasonality. Only the exponential model pertaining to the dry season and for the smaller duration of the rainy period (3-519 

4 months) explains a bitslightly less than 50% of the variability of ETp/R for the study catchment. 520 

 521 

6. Conclusions 522 

Capturing the relationship between rainfall precipitation and catchment-scale water balance components in a 523 

Mediterranean context is a scientific challenge in view of climate change in Mediterranean ecosystems. Water yield 524 

feeds a multi-use water reservoirexpected increasing frequencies in the ARC. This study assesses rainfall seasonality by 525 

using two different approaches. The first one (static approach) is based on the analysis of the SPI-values by identifying 526 

three seasonal features (a 4-month dry season, a 4-month rainy period,extremes such as droughts and two 2-month 527 

transition seasons). Seasonal anomalies are considered when the transition seasons turn into dry or wet season. The 528 

second approach (dynamic approach) is based on the centroid and duration of the rainy period. In this study we assumed 529 

the centroid as time-invariant while the temporal variability of the duration is described by a Gaussianfloods induced by 530 

climate warming. On the one hand, intense and prolonged droughts induce a steep decline in water availability for 531 

irrigation (with a subsequent decrease in crop productivity), domestic use (especially for the tourist sector), clean power 532 

generation, to mention just a few. On the other hand, projected increments in runoff and flooding induce higher-than-533 

normal risk of landslides and soil erosion, compromising the local economy and leading to unprecedented hazards for a 534 

vulnerable population. Therefore, countries across the Mediterranean region are being forced to pursue drastic adaptive 535 

options which in turn depend on modeling scenarios which can be performed by using hydrological models. Indeed, 536 
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scenarios need to rely on adequate rainfall modeling within the hydrological year by generating multiple data sets of 537 

reliable daily rainfall time series drawn from statistical distributions derived from long-term observations. Nonetheless, 538 

a key is first to define rainfall seasons, and then optimize parameters featuring in the best statistical distribution. 539 

Rainfall seasonality was decomposed in seasonal duration, mean rainfall depth and  describing rainfall frequency. The 540 

impact of seasonalitydata distribution in each season. If this exercise is well posed, one can capture realistic rainfall 541 

dynamics occurring in the water balance simulated by a numerical model. Within this framework, the aim of this study 542 

is to contribute in understanding the impact of rainfall seasonality and its anomalies on the water balance components 543 

was evaluated in both approaches by providing simulated water yield, actual evapotranspiration and groundwater 544 

recharge within a probabilistic framework. Thereliable and robust scenario-based projections, based on the use of well-545 

posed hydrological models. 546 

This study presented a pilot area (UARC in southern Italy) in the Mediterranean region. We applied the SWAT model 547 

that was calibrated and validated in a previous paper using a large amount of environmental data and maps (Nasta et al, 548 

2017). Moreover, the availability of a long-term time series of daily rainfall data (almost one century) allowed us to 549 

detect rainfall seasonality by using a static and a dynamic approach. In both approaches we apply the SWAT model to 550 

evaluate the sensitivity of hydrological water balance components to rainfall seasonality, using as input synthetic 551 

rainfall time series generated by a Poisson process with two parameters that characterize daily rainfall occurrences and 552 

daily rainfall depth in each season. In the static approach, dry or wet anomalies are considered when the transition 553 

seasons turn into dry or wet seasons. The advantage of this approach lies in its simplicity and easy reproducibility in 554 

other sites. However, it can be considered only an artifact based on criteria to group monthly rainfall amounts that might 555 

be subjective. In the dynamic approach, the seasonal anomalies occur on the tails of the normal distribution. Both 556 

approaches concur on the impact of rainfall seasonal of the wet season duration. Although this approach seems 557 

statistically sound, the main disadvantage is the fact that it requires long-term historical rainfall time-series of daily 558 

rainfall data that are unlikely to be available in most weather stations across the Mediterranean region. In this study, 559 
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both approaches concurred on understanding the impact of seasonal rainfall anomalies on catchment-scale water 560 

balance components. A 561 

Our results show a drought anomaly (i.e. a prolonged duration of the dry season) in just one single year potentially leads 562 

to a decrease of even about 20% in a fifth of the annual average rainfall inducingand induces a drastic decline of about 563 

27%, 10% and 34% of annualin average amounts of water yield, actual evapotranspiration and groundwater recharge, 564 

respectively. An exceptional prolonged wet season will cause an increase of about 13% in annual average rainfall 565 

inducing a rise of about 21%, 3% and 28% of annual average annual amounts of water yield, actual evapotranspiration 566 

and groundwater recharge, respectively. 567 

, and groundwater recharge. Conversely, an exceptional prolonged wet season is likely to cause a considerable increase 568 

in annual average rainfall, hence about a one-third rise in annual average water yield as well as enhanced groundwater 569 

recharge. In the dynamic approach, we demonstrated that the implicit assumption of a temporal steady-state in the 570 

Budyko relation approach is quite sensitive to rainfall seasonality. The Budyko evaporative index spans from 0.45 to 571 

0.54 when the wet season lasts from 7-8 months up to 3-4 months. Moreover, it is possible to identify distinct 572 

seasonalseason-dependent regression equations linking seasonal water yield to the dryness index over the wet season.  573 

A subsequent study will integrate the discussion on water supply with projected water consumption in the next decades 574 

induced by socio-economic controls and climate variability. The challenge is to forecast extreme drought episodes in 575 

consecutive years that might lead to plausible water crisis at the water reservoir. 576 

 577 

In conclusion this paper provides a framework to analyze the effects of rainfall seasonality changes on the hydrological 578 

water budget and partition, while providing some preliminary results that can be representative for Mediterranean 579 

catchments. Finer analyses can be performed by considering consecutive years of prolonged drought episodes and/or by 580 

adding the effects of temperature trends, which obviously affect potential evapotranspiration forcing and in principle 581 
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can produce a further feedback on precipitation cycles. These still unexplored issues will form the subject of future 582 

research investigation and forthcoming communications. 583 

7. Appendix 584 

We set k and m as counters for the hydrological year and the 12 months in each year, respectively. The annual rainfall, 585 

𝑅𝑘, and associated monthly probability distribution, 𝑝𝑘,𝑚, are defined as:  586 

The annual rainfall, 𝑅𝑘 and associated monthly probability distribution, 𝑝𝑘,𝑚 are defined as:  587 

𝑅𝑘 = ∑ 𝑟𝑘,𝑚
12
𝑚=1                         (A1) 588 

 𝑝𝑘,𝑚 =
 𝑟𝑘,𝑚

𝑅𝑘
 
𝑟𝑘,𝑚

𝑅𝑘
                        (A2) 589 

where rk,m represents the rainfall depth recorded in the m-th month in the k-th year.  590 

The relative entropy, 𝐷𝑘  , is calculated in each hydrological year, k, as: 591 

𝐷𝑘 = ∑ 𝑝𝑘,𝑚
12
𝑚=1 𝑙𝑜𝑔2 (

𝑝𝑘,𝑚

𝑞𝑚
)                    (A3) 592 

where qm is equal to 1/12 (uniform distribution). This statistical index quantifies the distribution of monthly rainfall 593 

within each hydrological year. Finally, the dimensionless seasonality index (DSIk) in each hydrological year, k, is given 594 

by: 595 

 𝐷𝑆𝐼𝑘 = 𝐷𝑘
𝑅𝑘

�̅�𝑚𝑎𝑥
                         (A4) 596 

where �̅�𝑚𝑎𝑥  is maximum �̅�. This way DSIk is zero when rainfall is uniformly distributed throughout the year and 597 

reaches its maximum value log212 when rainfall is concentrated in a single month. 598 

According to Feng et al. (2013), the magnitude (Rk) represents annual rainfall whereas the centroid (Ck) and the spread 599 

(Zk) indicate timing and duration of the wet season, respectively, and are calculated in each hydrological year k as: 600 
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𝐶𝑘 =
1

𝑅𝑘
∑ 𝑚𝑟𝑘,𝑚

12
𝑚=1                      (A5) 601 

𝑍𝑘 = √
1

𝑅𝑘
∑ |𝑚 − 𝐶𝑘|2𝑟𝑘,𝑚

12
𝑚=1                   (A6) 602 
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Figure 1:Geographical position of the Upper Alento River Catchment (UARC) in Campania  (southern Italy) with the 

locations of the weather stations of Gioi Cilento and Monteforte Cilento. 
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Figure 2: Box plots of the monthly rainfall depths recorded at the Gioi Cilento weather station (1920-2018). 

 

 

Figure 23: Theoretical L-moment ratio of common distribution models, as compared to the sample L-moment ratios of daily 

rainfall time series at the Gioi Cilento weather station (large filled large circle). 
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Figure 34: Exponential probability plot of empirical and fitted cumulative distribution functions of daily rainfall depths 

collected at the Gioi Cilento weather station. 

 

 

 

Figure 45: Temporal evolution of SPI-6 spanning from 1920 to 2018 (rainfall data were recorded at the Gioi Cilento weather 

station). 
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Figure 56: a) Temporal evolution of SPI-1 values (gray bars) and their 12-month moving average (magenta line) spanning 

from 1920 to 2018 in the static approach; b) Box plots of SPI-1 values and frequency distribution in the c) rainy period (blue 

histograms corresponding to Nov-Dec-Jan-Feb), d) transition period (yellow histograms corresponding to Mar-Apr-Sep-Oct), 

e) dry period (red histograms corresponding to May-Jun-Jul-Aug). 
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Figure 67: Temporal trendevolution of the centroid,  (or timing (; solid line),) and spread,  (or duration (; dashed lines) of the 

monthly rainfall distribution spanning from 1920 to 2018 inwet seasons estimated as proposed by Feng et al. (2013) within the 

framework of the dynamic approach (rainfall data were recorded at the Gioi Cilento weather station). 

. 
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Figure 78: Temporal evolution of a) dimensionless seasonal index, DSI (Feng et al., 2013) represented by a red line with 

corresponding linear regression (dashed line); b) seasonality index, SI (Walsh and Lawler, 1981) represented by a green line 

with corresponding linear regression (dotted line). 

 

 

 

  

D
S

I
S

I

a

b

Formattato: Ometti numeri di riga

ha formattato: Inglese (Regno Unito)



 

42 

 

 

 

 

Figure 89: Time series (a) and frequency distribution (b) of durations of the rainy periods at the Gioi Cilento weather station 

in the dynamic approach. 
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Figure 9: Boundary10: Rainfall and potential evapotranspiration forcings in the static approach, namely seasonal rainfall (R) 

and potential evapotranspiration (ETp) in the dry (red bars), transition (orange bars), and wet season (blue bars). Three 

scenarios are presented: a) “reference scenario” with the dry, transition, and wet seasons all lasting 4 months; b) “)“dry 

scenario” with the dry and wet seasons lasting 8 and 4 months, respectively; c) “wet scenario” with the dry and wet seasons 

lasting 4 and 8 months, respectively. 
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Figure 1011: Main water balance components in the static approach, namely seasonal water yield (WY) and actual 

evapotranspiration (ETa) in the dry (red bars), transition (orange bars), and wet season (blue bars). Three scenarios are 

presented: a) “reference scenario” with the dry, transition, and wet seasons all lasting 4 months; b) “dry scenario” with the 

dry and wet seasons lasting 8 and 4 months, respectively; c) “wet scenario” with the dry and wet seasons lasting 4 and 8 

months, respectively. 
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Figure 1112: Budyko diagram relating the dryness index (ETp/R) with the evaporative (ETa/R) index classified according to 

the duration of the rainy period pertaining to the dynamic approach. Circles denote median and vertical colored lines 

represent the range between 5th and 95th percentiles of evaporative index (red, black, green, cyan and blue colors correspond 

to duration of the rainy period of 3-4, 4-5, 5-6, 6-7 and 7-8 months, respectively). Solid lines denote energy and water limits, 

the solid garnet line represents the Budyko curve (Budyko, 1974). The vertical dashed line separates left-hand side from 

right-hand side of the Budyko curve. 
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Figure 1213: Relationship between dryness index and water yield to rainfall ratio (WY/R) on a seasonal basis and classified 

according to the duration of the wet season (from shortest to longest denoted by reddish and bluish colors in the 

colorbarcolor bar) pertaining to the dynamic approach for the wet season (plot 12a) and the dry season (plot 12b). The 

exponential regression equations are represented in both plots by the dashed black lines according to the duration of the 

rainy period. 
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Tables 

 

 

Table 1: Descriptive statistics of the monthly and annual rainfall distributions recorded at the Gioi Cilento 

weather station during the period 1920-2018. 

month mean  median min max Std. Dev. CV 

 
mm mm mm mm mm % 

Jan 145.6 141.65 0.0 461.2 81.6 56.0 

Feb 128.1 120.25 0.8 350.1 76.3 59.6 

Mar 112.9 101.1 0.0 302.6 73.4 65.0 

Apr 102.5 101 16.2 350.6 59.5 58.0 

May 75.2 67.6 1.1 304.8 56.6 75.2 

Jun 52.8 45.3 0.0 190.9 38.2 72.3 

Jul 29.8 17.6 0.0 140.4 32.8 110.0 

Aug 39.7 30.3 0.0 210 42.8 107.7 

Sep 94.4 81.9 1.6 296.8 63.0 66.7 

Oct 126.8 118.8 0.0 335.5 70.3 55.4 

Nov 166.9 152.2 26.0 613.2 94.9 56.9 

Dec 154.6 134.55 0.8 411.8 85.1 55.1 

Annual 1229.3 1198.3 478.6 2069.6 295.9 24.1 

 

Table 2: Scenario set -up in the “static” approach. Duration and Poisson distribution parameters ( and ) are 

reported for each of the considered scenarios. 

 

 Dry season Transition season Wet season 

 
months     months   months   

 
- mm d-1 - mm d-1 - mm d-1 

Reference scenario  (static) 4 8.20 0.196 4 10.53 0.34 4 11.70 0.423 

Dry scenario  (static) 8 8.20 0.196 0 - - 4 11.70 0.423 

Wet scenario (static) 4 8.20 0.196 0 - - 8 11.70 0.423 
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Table 3: Scenario set up in the “dynamic” approach. Duration and Poisson distribution parameters ( and ) are 

reported in the dry and wet season. 

 

Dynamic scenario Dry season Wet season 

 
months   months   

 
- mm d-1 - mm d-1 

 
random 9.34 0.243 random 11.99 0.413 

 

 

Table 4: Descriptive statistics of annual water balance components obtained in the three scenarios 

in the “static” approach. Units are mm, except for CV (%).  

 

Scenario Variable R WY ETa GR 

    mm mm mm mm 

Reference scenario 

mean 1229.0 433.3 605.2 194.3 

stand. dev. 176.0 104.2 36.5 48.0 

CV (%) 14.3 24.1 6.0 24.7 

min 586.6 150.8 449.1 44.0 

max 2053.9 1005.9 743.0 389.6 

Dry scenario 

mean 987.7 317.3 545.1 128.0 

stand. dev. 155.5 88.1 40.8 42.7 

CV (%) 15.7 27.8 7.5 33.4 

min 498.7 96.2 396.0 7.2 

max 1649.9 802.4 691.6 319.3 

Wet scenario 

mean 1392.8 526.0 625.8 248.1 

stand. dev. 192.4 119.6 34.3 52.6 

CV (%) 13.8 22.7 5.5 21.2 

min 721.9 157.0 481.2 59.0 

max 2179.2 1088.2 748.6 461.6 
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Table 5: Water balance components associated to occurrence probabilities for each duration of the rainy period. 

  Probability R WY ETa GR 

  % mm mm mm mm 

3-4 months 0.6% 1,145.0 385.3 608.5 169.6 

4-5 months 23% 1,213.4 420.0 619.4 188.0 

5-6 months 62% 1,275.4 453.0 624.9 199.6 

6-7 months 14% 1,326.0 480.2 631.6 210.2 

7-8 months 0.3% 1,383.5 511.6 644.2 211.8 

  

Table 6: Exponential regression models, with the corresponding coefficient of determination (R2), 

for the wet and dry seasons as a function of the duration of the rainy period. 

Duration Wet season Dry season 

 Exp regression function R2 Exp regression function R2 

3-4 months WY/R = 0.5914×exp(−×pR) 0.440 WY/R = 0.4635× exp(−0.343 pR) 0.482 

4-5 months WY/R = 0.6031×exp(−×pR) 0.579 WY/R = 0.3675×exp(−0.204×pR) 0.290 

5-6 months WY/R = 0.6171×exp(−×pR) 0.587 WY/R = 0.3530×exp(−0.174×pR) 0.279 

6-7 months WY/R = 0.6313×exp(−×pR) 0.617 WY/R = 0.3476×exp(−0.159×pR) 0.284 

7-8 months WY/R = 0.6586×exp(−×pR) 0.585 WY/R = 0.3137×exp(−0.105×pR) 0.211 

  759 
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