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Abstract 7 

This technical note deals with the mathematical representation of concentration–discharge 8 

relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to 9 

the classic one-sided power scaling relationship (commonly known as “power law”). We also discuss 10 

the identification of the parameters of the proposed relationship, using an appropriate numerical 11 

criterion. The application of 2S-APS to the high-frequency chemical time series of the Orgeval-Oracle 12 

observatory is presented (in calibration and validation mode): It yields better results for several 13 

solutes and for electrical conductivity in comparison with the power law relationship. 14 
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1. Introduction 17 

The relationship between solute concentrations and river discharge (from now on “C-Q relationship”) 18 

is an age-old topic in hydrology (see among others Durum, 1953; Hem, 1948; Lenz and Sawyer, 1944). 19 

It would be impossible to list here all the articles that have addressed this subject, and we refer our 20 

readers to the most recent reviews (e.g., Bieroza et al., 2018; Botter et al., 2019; Moatar et al., 2017) 21 

for an updated view of the ongoing research on C-Q relationships.  22 

Many complex models have been proposed to represent C-Q relationships, from the tracer mass 23 

balance (e.g., Minaudo et al., 2019) to the multiple regression methods (e.g., Hirsch et al., 2010). 24 

Nonetheless, for the past 50 years the simple mathematical formalism known as “power law” has 25 

enjoyed lasting popularity among hydrologists and hydrochemists (see, e.g., Edwards, 1973; 26 

Gunnerson, 1967; Hall, 1970, 1971). Over the years, however, some shortcomings of this relationship 27 

have become apparent: Recently, Minaudo et al. (2019) mentioned that, “fitting a single linear 28 

regression on C-Q plots is sometimes questionable due to large dispersion in C-Q plots (even log 29 
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transformed)”. Also, Moatar et al. (2017) present an extensive typology of shapes (in log–log space) 30 

for the French national water quality database, which shows that the power law must be modified to 31 

represent the C-Q relationship for dissolved components as well as for particulate-bound elements.  32 

This technical note presents a two-sided affine power scaling relationship (named “2S-APS”) that can 33 

be seen as a generalization of the power law. And although we do not wish to claim that it can be 34 

universally applicable, we argue here that it allows for a better description and modeling of the C-Q 35 

relationship of some solutes as a natural extension of the power law. 36 

2. Test dataset 37 

We used the half-hourly (every 30 min) hydrochemical dataset collected by the in situ River Lab 38 

laboratory at the Oracle-Orgeval observatory (Floury et al., 2017; Tallec et al., 2015). A short 39 

description of the study site is given in Appendix 1. We used dissolved concentrations of three ions – 40 

sodium [Na
+
], sulfate [S-SO4

2-
], and chloride [Cl

-
] – as well as electrical conductivity (EC). This dataset 41 

was collected from June 2015 to March 2018, averaging 20,700 measurement points.  42 

As our main objective in this note is to compare the performance of two relationships (the new 2S-43 

APS and the classic power law), we divided our dataset into two parts to perform a split-sample test 44 

(Klemeš, 1986): We used June 2015 to July 2017 for calibration (of both relationships), and August 45 

2017 to March 2018 for validation. Table 1 presents the main characteristics of both periods. 46 
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Table 1: Summary of high-frequency dissolved concentrations and electrical conductivity (EC; 47 

average, minimum, maximum values and ratio between quantiles 90 and 10 divided by the mean) 48 

from the River Lab at the Oracle-Orgeval observatory, divided into two groups: June 2015 to July 49 

2017 (calibration period) and August 2017 to March 2018 (validation period). 50 

Solute Unit 
Calibration period (June 2015 to July 2017) 

Mean (μ) Min Max (q90 -q10)/μ 

Sodium mg.L
-1

 13 2 17 0.22 

Sulfate Smg.L
-1

 19 2 32 0.44 

Chloride mg.L
-1

 30 4 40 0.28 

EC µS.cm
-1

 704 267 1015 0.23 

  Validation period (August 2017 to March 2018) 

Sodium mg.L
-1

 13 3 17 0.59 

Sulfate Smg.L
-1

 18 3 26 0.70 

Chloride mg.L
-1

 29 4 40 0.71 

EC µS.cm
-1

 576 171 813 0.65 

3. Mathematical formulations 51 

3.1 Classic one-sided power scaling relationship (power law) 52 

Since at least 50 years ago, a one-sided power scaling relationship (commonly known as power law) 53 

has been used to represent and model the relationship between solute concentration (�) and 54 

discharge (�) (Eq. (1)). 55 

� = ��� Eq. (1) 

From a numerical point of view, the relationship presented in Eq. (1) is generally adjusted by first 56 

transforming the dependent (�) and independent (�) variables using a logarithmic transformation, 57 

and then adjusting a linear model (Eq. (2)). 58 

ln	(�) = ln(�) + �. ln(�) Eq. (2) 

Graphically, this is equivalent to plotting concentration and discharge in a log–log space, where 59 

parameters � and � can be identified either graphically or numerically, under the assumptions of 60 

linear regression.  61 

3.2 Limits of the power law 62 

In many cases, the power law appears visually adequate (and conceptually simple), which explains its 63 

lasting popularity. With the advent of high-frequency measuring devices in recent years, the size of 64 
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the datasets has exploded, and the C-Q relationship can now be analyzed on a wider span (Kirchner 65 

et al., 2004). Figure 1 shows an example from our own high-frequency dataset: the 17,500 data 66 

points (which correspond to the calibration period of Table 1) represent half-hourly measurements 67 

collected over a 2-year period, during which the catchment was exposed to a variety of high- and 68 

low-flow events, thus providing a great opportunity for exploring the shape of the C-Q relationship. 69 

This being said, we do not wish to imply that a similar behavior could not been identified in medium- 70 

and low-frequency datasets, which remain essential tools with which to analyze and understand 71 

long-term hydrochemical processes (e.g., Godsey et al., 2009; Moatar et al., 2017). 72 

 73 

 74 

Figure 1: Concentration–discharge relationship observed at the Oracle-Orgeval observatory 75 

(measurements from the River Lab) for chloride ions [Cl-]: (a) standard axes, (b) logarithmic axes. 76 

 77 

Figure 1 illustrates the inadequateness of the power law for this dataset: The C-Q relationship 78 

evolves from a well-defined concave shape on the left to a slightly convex shape on the right in the 79 

log–log space. From the point of view of a modeler wishing to adjust a linear model, one has gone 80 

beyond the straight shape that was aimed at. Note that this is true for our dataset, and that it does 81 

(

(a) (b) 
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not need to always be the case: The log–log space can be well adapted in some situations (see 82 

examples in the paper by Moatar et al., 2017).  83 

3.3 A two-sided affine power scaling relationship as a progressive 84 

alternative to the power law 85 

As a progressive alternative to the one-sided power scaling relationship (power law), we propose to 86 

use a two-sided affine power scaling (2S-APS) relationship as shown in Eq. (3) (Box and Cox, 1964; 87 

Howarth and Earle, 1979). 88 

�
�
� = �+��

�
� 

Eq. (3) 

From a numerical point of view, the relationship presented in Eq. (3) is equivalent to first 89 

transforming the dependent (�) and independent (�) variables using a so-called Box–Cox 90 

transformation (Box and Cox, 1964), and then adjusting a linear model. In comparison with the 91 

logarithmic transformation, the additional degree of freedom offered by n allows for a range of 92 

transformations, from the untransformed variable (n = 1) to the logarithmic transformation (n → ∞). 93 

This “progressive” property was underlined long ago by Box and Cox (1964): When n takes high 94 

values, Eq. (3) converges toward the one-sided power scaling relationship (power law) (Eq. (1)). The 95 

reason is simple: 96 

�
�
� = �

�
�
��� ≈ 1 + �

�
���	 when n is large. 

 

Thus, for large values of n, Eq. (3) can be written as: 97 

1 +
1
�

��� ≈ � + � +
�
�

��� 
 

That is equivalent to: 98 

ln� ≈ � + �. ln� (with � = �(� + � − 1))  

The progressive behavior and the convergence toward the log–log space are clearly evident in Figure 99 

2. 100 

 101 
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 102 

Figure 2: Evolution of the shape of the concentration–discharge scatterplot for chloride ion with 103 

two-sided affine power scaling (2S-APS) and an increasing value of parameter n.  104 

3.4 Choosing an appropriate transformation for different ion species 105 

(calibration mode) 106 

Because the hydro-biogeochemical processes that control the transport and reaction of ions are 107 

different, different ionic species may have a C-Q relationship of distinct shape (Moatar et al., 2017). 108 

In Figure 3, we show the behavior of three ions and the EC from the same catchment and the same 109 

dataset (all four from the Oracle-Orgeval observatory) with different transformations (n =1, 3, 5 and 110 

logarithmic transformation). The optimal shape was chosen numerically: We transformed our data 111 

series of � and � using different values of � (i.e., �∗ = ��/� and	�∗ = ��/�) and logarithmic 112 

transformation (i.e., �∗∗ = log(�) and	�∗∗ = log(�)). With these transformed values, we performed 113 
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a linear regression and computed parameter � and � and the coefficient of determination (R
2
) (see 114 

Table 2). The � considered as optimal has the highest R
2
 value (see Table 2). However, we could also 115 

have followed the advice of Box et al. (2016, p. 331) and done it visually (Figure 3).  116 

 117 

 118 

Figure 3: C-Q behavior of three different chemical species and the electrical conductivity with 119 

different 2S-APS transformations (n =1, 3, 5, and log). The optimal power parameter (black dots) 120 

was chosen based on the R2 criterion. Note that we have removed the scale on the axes to focus 121 

only on the change in shape in the C-Q relationship. 122 

 123 

 124 

 125 

 126 
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Table 2: Coefficient of determination (R²) calculated for n =1 (no transformation), n = optimal value 127 

for two-sided affine power scaling relationship (Figure 3) and n � ∞ (log–log space) for each ion 128 

and for electrical conductivity (EC). Note that the R² is computed from transformed values. 129 

Solute n R
2 

Sodium 

n = 1 (no transformation) 0.53 

n = 3 (optimal) 0.73 

n → ∞ (log–log) 0.53 

Sulfate 

n = 1 (no transformation) 0.32 

n = 5 (optimal) 0.81 

n → ∞ (log–log) 0.77 

Chloride 

n = 1 (no transformation) 0.52 

n = 3 (optimal) 0.88 

n → ∞ (log–log) 0.69 

EC 

n = 1 (no transformation) 0.38 

n = 5 (optimal) 0.79 

n → ∞ (log–log) 0.74 

 130 

The results given in Table 2 show the better quality of the fit obtained with the optimal value of	�.  131 

4. Numerical identification of the parameters for the 2S-APS 132 

relationship  133 

The extremely large number of values in this high-frequency dataset may cause problems for a 134 

robust identification over the full range of discharges using a simple linear regression. Indeed, the 135 

largest discharge values are in small numbers (in our dataset only 1% of discharges are in the range 136 

[2.6 m
3
s

-1
, 12.2 m

3
s

-1
], and they correspond to the lowest concentrations (see Figure 1)).  137 

To address this question, we successively tested a large number of (�,�) pairs (� remaining fixed at 138 

the optimal value given in Table 2). Each pair yields a series of simulated concentrations (�� !) that 139 

can be compared with the observed concentrations (�"��). Among the many numerical criteria that 140 

could be used, we chose the bounded version of the Nash and Sutcliffe (1970) efficiency criterion 141 

NSEB (Mathevet et al., 2006), which is commonly used in hydrological modeling. NSEB can be 142 

computed on concentrations or on discharge-weighted concentrations (which corresponds to the 143 

load). We chose the average of both, because we found that it allows more weight to be given to the 144 

extremely low concentrations and thus to avoid the issue of under-representation of high-145 

discharge/low-concentration measurement points. Table 3 presents the formula for these numerical 146 

criteria. 147 

We retained as optimal the pair of (�,�) that yielded the highest #$%&'"!� value (we explored in a 148 

systematic fashion the range [1–5] for � and [-1.2–1.2] for	�). 149 
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Table 3: Numerical criteria used for optimization (Cobs – observed concentration, Csim – simulated 150 

concentration, Q – observed discharge). The Nash and Sutcliffe (1970) efficiency (NSE) criterion is 151 

well known and widely used in the field of hydrology. The rescaling proposed by Mathevet et al. 152 

(2006) transforms NSE into NSEB, which varies between -1 and 1 (its optimal value). The advantage 153 

of this rescaled version is to avoid the occurrence of large negative values (the original NSE 154 

criterion varies in the range [-∞, 1]). 155 

#$%'"�' = 1 −	
∑ )�"��

* − �� !
* +

,
*

∑ (�"��
* − �"��------),

*
 Eq. (4) 

#$%&'"�' =
#$%'"�'

2 − #$%'"�'
 Eq. (5) 

#$%�"/0 = 1 −	
∑ )�*�"��

* − �*�� !
* +

,
*

∑ (�*�"��
* − ��"��--------),

*
 Eq. (6) 

#$%&�"/0 =
#$%�"/0

2 − #$%�"/0
 Eq. (7) 

#$%&'"!� =
1
2

(#$%&'"�' + #$%&�"/0) Eq. (8) 

 156 

5. Results 157 

5.1 Results in calibration mode 158 

The optimal values of � and � corresponding to the simulation of each ion and EC with the highest 159 

#$%&'"!� criterion and the n value identified in Figure 3 and Table 2 are presented in Table 4.  160 

Table 4: Summary of values	1, 2,	and 4 used to obtain the optimal 56789:;2 criterion. 161 

Ion n a b NSEBcomb 

Sodium 3 2.70 -0.60 0.68 

Sulfate 5 2.20 -0.55 0.69 

Chloride 3 3.70 -1.00 0.83 

EC 5 4.20 -0.70 0.77 

 162 

For comparing the two relationships, we used the RMSE criterion. The results are shown in Table 5; 163 

they illustrate (for our catchment) the better performance (i.e., lower RMSE value) of the proposed 164 

2S-APS relationship for the three ions (sodium, sulfate, and chloride) over the power law 165 

relationship. For EC, there is a slight advantage over the power law. A test of the equality of variance 166 

(F-test) was performed between the RMSE obtained for the two relationships: Because of the very 167 

large number of points in our dataset, all differences were highly significant (p-value <0.001) 168 
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Table 5: Summary of values of RMSE criterion calculated for the three ions and EC. 169 

Solute 
2S-APS Power law 

RMSE RMSE 

Sodium 1.00 mgL
-1

 1.22 mgL
-1 

Sulfate 2.17 mgL
-1

 2.22 mgL
-1

 

Chloride 2.00 mgL
-1

 2.91 mgL
-1

 

EC 42.0 µS.cm
-1

 41.3 µS.cm
-1

 

 170 

Figure 4 illustrates the comparison of the quality of simulation over the entire calibration dataset 171 

between the power law and 2S-APS relationships. In general, the two-sided affine power scaling 172 

relationship yields better simulated concentrations than the classic power law relationship for the 173 

three ions (according to the results of Table 5). This is particularly evident over the low 174 

concentrations. This better performance is more apparent in the case of sodium and chloride ions.  175 
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 176 

  177 

Figure 4: Comparison of simulated concentrations with observed concentrations for: (a) two-sided 178 

affine power scaling (2S-APS) relationship, (b) power law (calibration mode).  179 

https://doi.org/10.5194/hess-2019-550
Preprint. Discussion started: 16 October 2019
c© Author(s) 2019. CC BY 4.0 License.



12 

 

5.2 Results in validation mode  180 

For the validation mode, we applied the above-calibrated relationships to a different time period 181 

(August 2017 to March 2018). The results are shown in Table 6. The RMSE criterion illustrates (for 182 

our catchment) the better performance of the proposed 2S-APS relationship over the power law 183 

relationship for all the solutes. Unlike the calibration case, the quality of the simulation of EC using 184 

the 2S-APS relationship has a much better performance than the one simulated by the power law 185 

relationship. 186 

Table 6: Summary of values of RMSE criterion calculated for the three ions and EC with the 187 

validation dataset. 188 

Solute 
2S-APS Power law 

RMSE RMSE 

Sodium 1.48 mgL
-1

 1.90 mgL
-1 

Sulfate 1.65 mgL
-1

 2.33 mgL
-1

 

Chloride 3.69 mgL
-1

 4.34 mgL
-1

 

EC 62.3 µS.cm
-1

 78.8 µS.cm
-1

 

 189 

6. Conclusion 190 

In this technical note, we tested and validated a three-parameter relationship (2S-APS) as an 191 

alternative to the classic two-parameter one-sided power scaling relationship (commonly known as 192 

“power law”), to represent the concentration–discharge relationship. We also proposed a way to 193 

calibrate the 2S-APS relationship. 194 

Our results (in calibration and validation mode) show that the 2S-APS relationship can be a valid 195 

alternative to the power law: In our dataset, the concentrations simulated for sodium, sulfate, and 196 

chloride as well as the EC are significantly better in validation mode, with a reduction in RMSE 197 

ranging between 15 and 26%. 198 

 199 
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 261 

8. Appendix 1 – Description of the River Lab  262 

In June 2015, the “River Lab” was deployed on the bank of the Avenelles River (within the limits of 263 

the Oracle-Orgeval observatory, see Figure 5) to measure the concentration of all major dissolved 264 

species at high frequency (Floury et al., 2017). The River Lab's concept is to "permanently” install a 265 

series of laboratory instruments in the field in a confined bungalow next to the river. River Lab 266 

performs a complete analysis every 30 min using two Dionex® ICS-2100 ionic chromatography (IC) 267 

systems by continuous sampling and filtration of stream water. River Lab measures the concentration 268 

of all major dissolved species ([Mg
2+

], [K
+
], [Ca

2+
], [Na

+
], [Sr

2+
], [F

-
], [SO4

2-
] [NO3

-
], [Cl

-
], [PO4

3-
]). In 269 

addition, a set of physico-chemical probes is deployed to measure pH, conductivity, dissolved O2, 270 

dissolved organic carbon (DOC), turbidity, and temperature. The discharge is measured continuously 271 

via a gauging station located at the River Lab site. 272 

All the technical qualities, calibration of the equipment, comparison with laboratory measurements, 273 

degree of accuracy, etc. have been well described in a publication by Floury et al. (2017). 274 
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 275 

Figure 5: Location of the River Lab (red dot) on the Avenelles River, Oracle-Orgeval observatory. 276 

 277 
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