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Abstract  7 

This technical note deals with the mathematical representation of concentrationςdischarge 8 

relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to 9 

the classic one-sided power scaling relationship (commonly ƪƴƻǿƴ ŀǎ άǇƻǿŜǊ lawέύ. We also discuss 10 

the identification of the parameters of the proposed relationship, using an appropriate numerical 11 

criterion. The application of 2S-APS to the high-frequency chemical time series of the Orgeval-Oracle 12 

observatory is presented (in calibration and validation mode): It yields better results for several solutes 13 

and for electrical conductivity in comparison with the power law relationship. 14 
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1. Introduction  17 

The relationship between solute concentrations and river discharge (from now on άC-Q relationshipέ) 18 

is an age-old topic in hydrology (see among others Durum, 1953;Hem, 1948;Lenz and Sawyer, 1944). 19 

It would be impossible to list here all the articles that have addressed this subject, and we refer our 20 

readers to the most recent reviews (e.g. Bieroza et al., 2018;Botter et al., 2019;Moatar et al., 2017) for 21 

an updated view of the ongoing research on C-Q relationships.  22 

Many complex models have been proposed to represent C-Q relationships, from the tracer mass 23 

balance (e.g. Minaudo et al., 2019) to the multiple regression methods (e.g. Hirsch et al., 2010). 24 

Nonetheless, for the past 50 years the simple mathematical formalism known as άǇƻǿŜǊ ƭŀǿέ has 25 

enjoyed lasting popularity among hydrologists and hydrochemists (see e.g. Edwards, 1973;Gunnerson, 26 

1967;Hall, 1970, 1971). Over the years, however, some shortcomings of this relationship have become 27 

apparent: Recently, Minaudo et al. (2019) mentioned that, άŦƛǘǘƛƴƎ ŀ ǎƛƴƎƭŜ ƭƛƴŜŀǊ ǊŜƎǊŜǎǎƛƻƴ ƻƴ /-Q 28 

plots is sometimes questionable due to large dispersion in C-Q plots (even log transformed)έ. Also, 29 
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Moatar et al. (2017) present an extensive typology of shapes (in logςlog space) for the French national 30 

water quality database, which shows that the power law must be modified to represent the C-Q 31 

relationship for dissolved components as well as for particulate-bound elements.  32 

This technical note presents a two-sided affine power scaling relationship (named ά2S-APSέ) that can 33 

be seen as a generalization of the power law. And although we do not wish to claim that it can be 34 

universally applicable, we argue here that it allows for a better description and modeling of the C-Q 35 

relationship of some solutes as a natural extension of the power law. 36 

2. Test dataset 37 

We used the half-hourly (every 30 min) hydrochemical dataset collected by the in situ River Lab 38 

laboratory at the Oracle-Orgeval observatory (Floury et al., 2017;Tallec et al., 2015). A short description 39 

of the study site is given in Appendix 1. We used dissolved concentrations of three ions ς sodium [Na+], 40 

sulphate [S-SO4
2-], and chloride [Cl-] ς as well as electrical conductivity (EC). This dataset was collected 41 

from June 2015 to March 2018, averaging 20,700 measurement points.  42 

As our main objective in this note is to compare the performance of two relationships (the new 2S-APS 43 

and the classic power law), we divided our dataset into two parts to perform a split-sample test 44 

(YƭŜƳŜǑΣ мфус): We used June 2015 to July 2017 for calibration (of both relationships), and August 45 

2017 to March 2018 for validation. Table 1 presents the main characteristics of both periods. 46 
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Table 1: Summary of high-frequency dissolved concentrations and electrical conductivity (EC; 47 

average, minimum, maximum values and coefficient of variation) from the River Lab at the Oracle-48 

Orgeval observatory, divided into two groups: June 2015 to July 2017 (calibration period) and August 49 

2017 to March 2018 (validation period). 50 

Solute Unit 
Calibration period (June 2015 to July 2017) 

aŜŀƴ ό˃ύ Min Max CV 

Sodium mg.L-1 13 2 17 0.12 

Sulphate mgS.L-1 19 2 32 0.19 

Chloride mg.L-1 30 4 40 0.15 

EC µS.cm-1 704 267 1015 0.11 

  Validation period (August 2017 to March 2018) 

Sodium mg.L-1 13 3 17 0.24 

Sulphate mgS.L-1 18 3 26 0.27 

Chloride mg.L-1 29 4 40 0.29 

EC µS.cm-1 576 171 813 0.25 

Table 1 shows a slight difference in the coefficient of variation (CV), which represents the dispersion 51 

of data with respect to their average value between the calibration and the validation period: this is 52 

due to the number of data used, which much larger in the case of the calibration period.  53 

3. Mathematical formulation s 54 

3.1 Classic one-sided power scaling relationship (power law)  55 

Since at least 50 years ago, a one-sided power scaling relationship (commonly known as power law) 56 

has been used to represent and model the relationship between solute concentration (ὅ) and 57 

discharge (ὗ) (Eq. (1)). 58 

ὅ ὥὗ  Eq. (1) 

From a numerical point of view, the relationship presented in Eq. (1) is generally adjusted by first 59 

transforming the dependent (ὅ) and independent (ὗ) variables using a logarithmic transformation, 60 

and then adjusting a linear model (Eq. (2)). 61 

ÌÎ ὅ ÌÎὥ ὦȢÌÎὗ  Eq. (2) 

Graphically, this is equivalent to plotting concentration and discharge in a logςlog space, where 62 

parameters ὥ and ὦ can be identified either graphically or numerically, under the assumptions of linear 63 

regression.  64 
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3.2 Limits of the power  law  65 

In many cases, the power law appears visually adequate (and conceptually simple), which explains its 66 

lasting popularity. With the advent of high-frequency measuring devices in recent years, the size of the 67 

datasets has exploded, and the C-Q relationship can now be analyzed on a wider span (Kirchner et al., 68 

2004). Figure 1 shows an example from our own high-frequency dataset: the 17,500 data points (which 69 

correspond to the calibration period of Table 1) represent half-hourly measurements collected over a 70 

2-year period, during which the catchment was exposed to a variety of high- and low-flow events, thus 71 

providing a great opportunity for exploring the shape of the C-Q relationship. This being said, we do 72 

not wish to imply that a similar behavior could not been identified in medium- and low-frequency 73 

datasets, which remain essential tools with which to analyze and understand long-term hydrochemical 74 

processes (e.g. Godsey et al., 2009;Moatar et al., 2017). 75 

 76 

 77 
Figure 1: Concentrationςdischarge relationship observed at the Oracle-Orgeval observatory 78 

(measurements from the River Lab) for chloride ions [Cl-]: (a) standard axes, (b) logarithmic axes. 79 
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Figure 1 illustrates the inadequateness of the power law for this dataset: The C-Q relationship evolves 81 

from a well-defined concave shape on the left to a slightly convex shape on the right in the logςlog 82 

space. From the point of view of a modeler wishing to adjust a linear model, one has gone beyond the 83 

straight shape that was aimed at. Note that this is true for our dataset, and that it does not need to 84 

always be the case: The logςlog space can be well adapted in some situations (see examples in the 85 

paper by Moatar et al., 2017).  86 

3.3 A two-sided affine power scaling relationship as a progressive  alternative 87 

to the power law  88 

As a progressive alternative to the one-sided power scaling relationship (power law), we propose to 89 

use a two-sided affine power scaling (2S-APS) relationship as shown in Eq. (3) (Box and Cox, 90 

1964;Howarth and Earle, 1979). 91 

ὅ ὥ ὦὗ 
Eq. (3) 

From a numerical point of view, the relationship presented in Eq. (3) is equivalent to first transforming 92 

the dependent (ὅ) and independent (ὗ) variables using a so-called BoxςCox transformation (Box and 93 

Cox, 1964), and then adjusting a linear model. In comparison with the logarithmic transformation, the 94 

additional degree of freedom offered by n allows for a range of transformations, from the 95 

untransformed variable (n = 1) to the logarithmic transformation (n Ҧ қύΦ ¢Ƙƛǎ άǇǊƻƎǊŜǎǎƛǾŜέ ǇǊƻǇŜǊǘȅ 96 

was underlined long ago by Box and Cox (1964): When n takes high values, Eq. (3) converges toward 97 

the one-sided power scaling relationship (power law) (Eq. (1)). The reason is simple: 98 

ὅ Ὡ ρ ὰὲὅ  when n is large. 
 

Thus, for large values of n, Eq. (3) can be written as: 99 

ρ
ρ

ὲ
ὰὲὅὥ ὦ

ὦ

ὲ
ὰὲὗ 

 

That is equivalent to: 100 

ÌÎὅ ὃ ὦȢÌÎὗ (with ὃ ὲὥ ὦ ρ)  

The progressive behavior and the convergence toward the logςlog space are clearly evident in Figure 101 

2. 102 

 103 
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 104 

Figure 2: Evolution of the shape of the concentrationςdischarge scatterplot for chloride ion with two-105 

sided affine power scaling (2S-APS) and an increasing value of parameter n.  106 

3.4 Choosing an appropriate transformation for different ion species  107 

(calibration mode)  108 

Because the hydro-biogeochemical processes that control the transport and reaction of ions are 109 

different, different ionic species may have a C-Q relationship of distinct shape (Moatar et al., 2017). In 110 

Figure 3, we show the behavior of three ions and the EC from the same catchment and the same 111 

dataset (all four from the Oracle-Orgeval observatory) with different transformations (n =1, 3, 5 and 112 

logarithmic transformation). The optimal shape was chosen numerically: We transformed our data 113 

series of ὅ and ὗ using different values of ὲ (i.e., ὅᶻ ὅȾ  and ὗᶻ ὗȾ ) and logarithmic 114 

transformation (i.e., ὅᶻz ÌÏÇὅ and ὗᶻz ÌÏÇὗ ). With these transformed values, we performed 115 
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a linear regression and computed parameter ὥ and ὦ and the coefficient of determination (R2) (see 116 

Table 2). The ὲ considered as optimal has the highest R2 value (see Table 2). However, we could also 117 

have followed the advice of Box et al. (2016, p. 331) and done it visually (Figure 3).  118 

 119 

 120 
Figure 3: C-Q behavior of three different chemical species and the electrical conductivity with 121 

different 2S-APS transformations (n =1, 3, 5, and log). The optimal power parameter (black dots) was 122 

chosen based on the R2 criterion. Note that we have removed the scale on the axes to focus only on 123 

the change in shape in the C-Q relationship. 124 

 125 

 126 

 127 

 128 
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Table 2: Coefficient of determination (R²) calculated for n =1 (no transformation), n = optimal value 129 

for two-sided affine power scaling relationship (Figure 3) and n Ą Ð (logςlog space) for each ion and 130 

for electrical conductivity (EC). Note that the R² is computed from transformed values. 131 

Solute n R2 

Sodium 

n = 1 (no transformation) 0.53 

n = 3 (optimal) 0.73 

n Ҧ қ όƭƻƎςlog) 0.53 

Sulphate 
n = 1 (no transformation) 0.32 
n = 5 (optimal) 0.81 
n Ҧ қ όƭƻƎςlog) 0.77 

Chloride 
n = 1 (no transformation) 0.52 
n = 3 (optimal) 0.88 
n Ҧ қ όƭƻƎςlog) 0.69 

EC 

n = 1 (no transformation) 0.38 

n = 5 (optimal) 0.79 

n Ҧ қ όƭƻƎςlog) 0.74 

 132 

The results given in Table 2 show the better quality of the fit obtained with the optimal value of ὲ.  133 

4. Numerical i dentification of the parameters for  the 2S-APS 134 

relationship   135 

The extremely large number of values in this high-frequency dataset may cause problems for a robust 136 

identification over the full range of discharges using a simple linear regression. Indeed, the largest 137 

discharge values are in small numbers (in our dataset only 1% of discharges are in the range [2.6 m3s-138 

1, 12.2 m3s-1], and they correspond to the lowest concentrations (see Figure 1)).  139 

To address this question, we successively tested a large number of (ὥ,ὦ) pairs from Eq. (3) (ὲ remaining 140 

fixed at the optimal value given in Table 2). Each pair yields a series of simulated concentrations (ὅ ) 141 

that can be compared with the observed concentrations (ὅ ). Among the many numerical criteria 142 

that could be used, we chose the bounded version of the Nash and Sutcliffe (1970) efficiency criterion 143 

NSEB (Mathevet et al., 2006), which is commonly used in hydrological modeling. NSEB can be 144 

computed on concentrations or on discharge-weighted concentrations (which corresponds to the 145 

load). We chose the average of both, because we found that it allows more weight to be given to the 146 

extremely low concentrations and thus to avoid the issue of under-representation of high-147 

discharge/low-concentration measurement points. Table 3 presents the formula for these numerical 148 

criteria. 149 

We retained as optimal the pair of (ὥ,ὦ) that yielded the highest ὔὛὉὄ  value (we explored in a 150 

systematic fashion the range [1ς5] for ὥ and [-1.2ς1.2] for ὦ). 151 
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Table 3: Numerical criteria used for optimization (Cobs ς observed concentration, Csim ς simulated 152 

concentration, Q ς observed discharge). The Nash and Sutcliffe (1970) efficiency (NSE) criterion is 153 

well known and widely used in the field of hydrology. The rescaling proposed by Mathevet et al. 154 

(2006) transforms NSE into NSEB, which varies between -1 and 1 (its optimal value). The advantage 155 

of this rescaled version is to avoid the occurrence of large negative values (the original NSE criterion 156 

varies in the range [-қΣ мϐύΦ 157 

ὔὛὉ ρ  
В ὅ ὅ

В ὅ ὅ
 Eq. (4) 

ὔὛὉὄ
ὔὛὉ

ς ὔὛὉ
 Eq. (5) 

ὔὛὉ ρ  
В ὗὅ ὗὅ

В ὗὅ ὗὅ
 Eq. (6) 

ὔὛὉὄ
ὔὛὉ

ς ὔὛὉ
 Eq. (7) 

ὔὛὉὄ
ρ

ς
ὔὛὉὄ ὔὛὉὄ  Eq. (8) 

In Appendix 2, we show that our proposed methodology for the identification of parameters ὥ, ὦ and 158 

ὲ , based on the  ὔὛὉὄ  criterion, is effective also from the point of view of the predictive 159 

confidence interval. 160 

5. Results 161 

5.1 Results in calibration mode  162 

The optimal values of ὥ and ὦ corresponding to the simulation of each ion and EC with the highest 163 

ὔὛὉὄ  criterion and the n value identified in Figure 3 and Table 2 are presented in Table 4.  164 

Table 4: Summary of values ╪, ╫ȟ and ▪ used to obtain the optimal ╝╢╔║╬▫□╫ criterion. 165 

Ion n a b NSEBcomb 

Sodium 3 2.70 -0.60 0.68 

Sulphate 5 2.20 -0.55 0.69 

Chloride 3 3.70 -1.00 0.83 

EC 5 4.20 -0.70 0.77 

The five NSE criteria (defined in Table 3) used to identify the parameters of the 2S-APS relationship 166 

have also been computed for the power-law relationship. The results are given in Table 5: the values 167 

obtained for the 2S-APS relationship are always higher than those calculated for the power-law 168 

relationship. 169 
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Table 5: NSE criteria computed for the three ions and EC. 170 

Solute 
2S-APS Power-law 

NSEconc NSEBconc NSEload NSEBload NSEBcomb NSEconc NSEBconc NSEload NSEBload NSEBcomb 

Sodium 0.58 0.41 0.97 0.95 0.68 0.27 0.16 0.67 0.51 0.33 

Sulfate 0.61 0.44 0.97 0.94 0.69 0.58 0.41 0.87 0.77 0.59 

Chloride 0.83 0.71 0.97 0.95 0.83 0.68 0.52 0.60 0.43 0.47 

EC 0.73 0.57 0.99 0.98 0.77 0.68 0.51 0.96 0.91 0.71 

 171 

Also for comparing the two relationships, we used the RMSE criterion. The results are shown in Table 172 

6; they illustrate (for our catchment) the better performance (i.e., lower RMSE value) of the proposed 173 

2S-APS relationship for the three ions (sodium, sulphate, and chloride) over the power law relationship. 174 

For EC, there is a slight advantage over the power law. A test of the equality of variance (F-test) was 175 

performed between the RMSE obtained for the two relationships: Because of the very large number 176 

of points in our dataset, all differences were highly significant (p-value <0.001) 177 

Table 6: Summary of values of RMSE criterion calculated for the three ions and EC. 178 

Solute Mean 
2S-APS Power law 

RMSE RMSE 

Sodium 13 mgL-1 1.10 mgL-1 1.22 mgL-1 

Sulphate 19 mgL-1 2.17 mgL-1 2.22 mgL-1 

Chloride 30 mgL-1 2.00 mgL-1 2.91 mgL-1 

EC 704 µS.cm-1 41.9 µS.cm-1 41.3 µS.cm-1 

 179 

Figure 4 illustrates the comparison of the quality of simulation over the entire calibration dataset 180 

between the power law and 2S-APS relationships. In general, the two-sided affine power scaling 181 

relationship yields better simulated concentrations than the classic power law relationship for the two 182 

ions (according to the results of Table 6). This is particularly evident over the low concentrations (see 183 

Figure 4). This better performance is more apparent in the case of sodium and chloride ions.  184 
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 185 

  186 

Figure 4: Comparison of simulated concentrations with observed concentrations for: (a) two-sided 187 

affine power scaling (2S-APS) relationship, (b) power law (calibration mode).  188 










