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Abstract 7 

Soil moisture can be obtained from in-situ measurements, satellite observations, and model 8 

simulations. This study evaluates different methods of combining model, satellite, and in-situ soil 9 

moisture data to provide an accurate and spatially-continuous soil moisture product. Three 10 

independent soil moisture datasets are used, including an in situ-based product that uses regression 11 

kriging (RK) with precipitation, SMAP L4 soil moisture, and model-simulated soil moisture from 12 

the Noah model as part of the North American Land Data Assimilation System. Triple collocation 13 

(TC), relative error variance (REV), and RK were used to estimate the error variance of each parent 14 

dataset, based on which the least squares weighting (LSW) was applied to blend the parent datasets. 15 

These results were also compared with that using simple average (AVE). The results indicated no 16 

significant differences between blended soil moisture datasets using errors estimated from TC, 17 

REV or RK. Moreover, the LSW did not outperform AVE. The SMAP L4 data have a significant 18 

negative bias (-18%) comparing with in-situ measurements, and in-situ measurements are valuable 19 

for improving the accuracy of hybrid results. In addition, datasets using anomalies and percentiles 20 

have smaller errors than using volumetric water content, mainly due to the reduced bias. Finally, 21 

the in situ-based soil moisture and the simple-averaged product from in situ-based and Noah soil 22 

moisture are the two optimal datasets for soil moisture mapping. The in situ-based product 23 

performs better when the sample density is high, while the simple-averaged product performs 24 

better when the station density is low, or measurement sites are less representative.  25 

Keywords: soil moisture; in situ network; remote sensing, regression kriging; triple collocation; 26 

relative error variance;  27 

  28 
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1. Introduction 29 

 Soil moisture is a critical component of the climate system. It modulates the exchange of 30 

water and energy between land and atmosphere through evapotranspiration (Seneviratne et al., 31 

2010). Soil moisture has great value for understanding and predicting soil erosion and water quality 32 

(Keesstra et al., 2016;Abbaspour et al., 2015), agricultural and water resource management 33 

(Pittelkow et al., 2015;Dobriyal et al., 2012), runoff and flooding (Brocca et al., 2010;Wanders et 34 

al., 2014), drought monitoring (Dai, 2013;Wang et al., 2011) and weather and climate forecasting 35 

(Hirschi et al., 2011;Seneviratne et al., 2010).  Despite the importance of soil moisture, accurate, 36 

spatially-continuous soil moisture datasets with high temporal and spatial resolution are elusive. 37 

 There are three primary sources of soil moisture information: remote sensing (RS) 38 

observations, Land Surface Models (LSMs), and in-situ measurements. Microwave remote sensing 39 

is responsive to surface (~5-cm) soil moisture in regions with sparse to moderate vegetation density. 40 

The passive microwave satellites that are currently in orbit include the Soil Moisture and Ocean 41 

Salinity (SMOS) satellite (launched 2009, 35 km resolution, Kerr et al. (2001)), the Advanced 42 

Microwave Scanning Radiometer 2 (AMSR2) (25 km resolution, Imaoka et al. (2010)) onboard 43 

the GCOM-W1 satellite, and the Soil Moisture Active Passive (SMAP) satellite (launched 2015, 44 

9 km resolution, Entekhabi et al. (2010)). The Advanced Scatterometer-A/B (ASCAT-A/B) 45 

(Wagner et al., 2013) on board of the Meteorological Operational (METOP) satellite series 46 

(launched 2006 and 2012 respectively, 25 km resolution) is an active microwave satellite in orbit. 47 

The coarser spatial resolution of these sensors is compensated by their greater spatial coverage and 48 

more frequent revisit times. In contrast, the active synthetic aperture radar (SAR) systems, such as 49 

the one onboard the RADARSAT-2 satellite (launched 2007, 3 m resolution) (Lievens and 50 

Verhoest, 2012) and the ones onboard the Sentinel-1 (A/B) satellite constellation (launched in 51 
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2014 and 2016, respectively, 5 m resolution) (Paloscia et al., 2013), provide soil moisture 52 

information at finer spatial resolution, but with limited spatial coverage and less frequent revisit 53 

times.  54 

A limitation of all microwave RS soil moisture datasets is that they can only measure soil 55 

moisture in the top 5 cm (or less) of the soil due to the limited penetration depth of microwave 56 

signals. In addition, they cannot detect soil moisture under snow or ice, or in frozen soils. There 57 

are also challenges with retrievals in areas with complex topography, dense vegetation, near water 58 

bodies, or cities (Wagner et al., 1999;Parinussa et al., 2011). Ford and Quiring (2019) compared 59 

the RS soil moisture datasets from SMAP (SMAP L3 and SMAP L4), SMOS and ESA-CCI with 60 

in-situ measurements and found the SMAP L3 product consistently performed best among the four.  61 

 Model-simulated soil moisture is another source of spatially-continuous soil moisture. The 62 

NOAA Climate Prediction Center (CPC) (Huang et al., 1996), Global Land Data Assimilation 63 

System (GLDAS) (Rodell et al., 2004) and North American Land Data Assimilation System 64 

(NLDAS) (Mitchell et al., 2004) all provide simulated soil moisture operationally at various depths 65 

and time scales. Compared with in-situ measurements, Chen et al. (2013) found all four GLDAS 66 

LSMs systematically underestimate the surface soil moisture in the Tibetan Plateau. Bi et al. (2016) 67 

also found that all the GLDAS LSMs are strongly correlated with observations, but the Mosaic 68 

model consistently has larger biases than other LSMs (the largest bias reaches 0.192 m3m-3) in the 69 

Tibetan Plateau. By comparing GLDAS Noah model with the Standardized Precipitation Index 70 

and a multi-satellite surface soil moisture product, Spennemann et al. (2015) found that GLDAS 71 

Noah accurately captured the variability of soil moisture anomalies over southern South America, 72 

but the accuracy varied both regionally and seasonally. Soil moisture simulations from NLDAS 73 

phase 2 (NLDAS-2) are also found to have large biases when compared to in-situ observations 74 
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(Xia et al., 2014). Specifically, the Noah and VIC models tend to overestimate soil moisture, while 75 

Mosaic and SAC models underestimate soil moisture when compared with in-situ observations 76 

(Xia et al., 2015). Ford and Quiring (2019) compared the modeled soil moisture from NLDAS-2 77 

and CPC with in-situ measurements and that the found NLDAS-2 models consistently performed 78 

better than the CPC model.  79 

Similar to RS soil moisture, model-simulated soil moisture is difficult to validate because 80 

of the scale mismatch and the in-situ networks are not dense enough to adequately resolve soil 81 

moisture variability within each LSM pixel. In addition, the reliability of model-simulated soil 82 

moisture varies significantly from model to model, and over time and space (Ford and Quiring, 83 

2019;Spennemann et al., 2015). Models generally perform well in representing the variations in 84 

soil moisture and soil moisture anomalies (Downer and Ogden, 2003;Meng and Quiring, 85 

2008;Albergel et al., 2012), but they tend to have large biases in simulating the absolute volumetric 86 

water content of the soil (Xia et al., 2015;Bi et al., 2016).  87 

 In-situ soil moisture measurements from individual field campaigns and regional and 88 

national soil moisture monitoring networks are invaluable for calibrating and validating LSMs and 89 

RS-based soil moisture datasets and other hydrological and climatological studies. Great efforts 90 

have been made to assemble, homogenize, and standardize in-situ soil moisture measurements 91 

from different networks, time frames, sensors, depths and format (Cosh et al., 2016;Dorigo et al., 92 

2013;Zhang et al., 2017a;Ford and Quiring, 2014). Currently, the coordinated in-situ soil moisture 93 

networks include the International Soil Moisture Network (ISMN) (Dorigo et al., 2011) and the 94 

North American Soil Moisture Database (NASMD) (Quiring et al., 2016). Despite the coordinated 95 

and standardized in-situ measurements, the number of stations and networks measuring soil 96 

moisture continuously is still very limited at either regional or global scale. In addition, the small 97 

https://doi.org/10.5194/hess-2019-549
Preprint. Discussion started: 18 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 6 

spatial representativeness of in-situ data (a point measurement) also limits its application at larger 98 

spatial scales.  99 

 To fully apply in-situ soil moisture on a continuous basis, a variety of approaches have 100 

been adopted to generate spatial continuous soil moisture datasets based on in-situ measurements. 101 

For example, Takagi and Lin (2012) used regression kriging (RK) along with five topographic 102 

variables (elevation, curvature, slope, upslope contributing area, and topographic wetness index) 103 

to generate soil moisture maps of the Shale Hills. The RMSE of RK predictions ranged from 0.03 104 

to 0.08 m3m-3 in the surface layer (0-10 cm). Yao et al. (2013) compared ordinary kriging (OK), 105 

inverse distance weighting (IDW), linear regression and regression kriging (RK) to estimate soil 106 

moisture at small catchment (2 km2) with complex terrains. The auxiliary variables used in RK 107 

and linear regressions were land use types, slope, and annual average solar radiation. They found 108 

both OK and IDW did not perform well in complex terrains, while RK performed best with mean 109 

Nash-Sutcliffe Efficiency (NSE) of 0.69 followed by linear regression. Yuan and Quiring (2017) 110 

compared the reduced optimal interpolation (ROI) based on in-situ and simulated soil moisture 111 

from VIC model with co-kriging and IDW methods for surface soil moisture mapping in 112 

Oklahoma, and found that ROI performs better than the other two methods with a mean NSE 113 

around 0.58 and a mean absolute error 0.03 m3 m-3.  114 

In general, the RK method performs better than other geostatistical and non-geostatistical 115 

methods (Keskin and Grunwald, 2018), but it requires a relatively high density of soil moisture 116 

measurements, strong correlations between soil moisture and auxiliary variables and the accurate 117 

measurement of auxiliary variables (Li and Heap, 2011;Keskin and Grunwald, 2018). In addition, 118 

none of the RK-gridded soil moisture datasets have been compared with the model‐simulated and 119 

satellite‐derived soil moisture. 120 
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 In summary, each source of soil moisture data has its strengths and weaknesses. However, 121 

none of them, at least by themselves, are adequate for providing accurate soil moisture data at high 122 

temporal and spatial resolutions. Therefore, it is useful to combine these three independent data 123 

sources to capitalize on the strengths of each and to generate an optimal soil moisture product to 124 

facilitate real-world applications. There are a number of methods that are commonly used for 125 

blending together different soil moisture datasets, including triple collocation (TC) (Stoffelen, 126 

1998) with least square weighting (LSW) and simple averaging (averaging parent datasets using 127 

equal weighting). For example, Yilmaz et al. (2012) generated a hybrid soil moisture anomaly 128 

product at 0.25° grid by merging model-derived soil moisture, thermal infrared RS-soil moisture, 129 

and microwave RS-based soil moisture using TC and LSW. The TC-merged product had less 130 

uncertainty, but it did not outperform the simple averaging method. Zeng et al. (2016) also used 131 

TC with LSW to blend the soil moisture from two satellite (AMSRE and ASCAT) and one 132 

reanalysis soil moisture product (ERA-Interim). Their merged product performed better than 133 

simple averaging in the sub-humid and semi-arid regions, but the performances of TC with LSW 134 

and simple averaging were similar in arid regions.  135 

 There are a number of knowledge gaps that still exist, including (1) of the lack of in-situ 136 

soil moisture inclusion in product blending. Current studies mainly focus on combining modeled 137 

and RS soil moisture, rather than combining all three sources (modeled, RS and in-situ). In-situ 138 

measurements can be useful for improving the accuracy of hybrid soil moisture datasets. (2) There 139 

is no comprehensive evaluation of different data blending methods. In addition to TC, there are a 140 

variety of other methods that are available for combining different datasets such as Kriging and 141 

Relative Error Variance (REV) (Vinnikov et al., 1996;Ford and Quiring, 2019). Therefore, it 142 

would be helpful to compare the accuracy of different blending methods to identify the optimal 143 
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approach for soil moisture. (3) The impact of measurement units (e.g., volumetric water content, 144 

soil moisture anomalies, and percentiles) is unknown. For example, is it better to convert all of the 145 

soil moisture measurements to anomalies or percentiles before blending? (4) A simple and 146 

operational methodology is still needed for accurate daily soil moisture mapping with high spatial 147 

resolution.  Current methods to generate gridded soil moisture data products cannot produce data 148 

with sufficient spatial resolution for many agricultural and hydrological applications. 149 

 This paper addresses all four of these knowledge gaps by assessing different blending 150 

methods to merge model-simulated, RS-based and in-situ soil moisture data into a 4-km soil 151 

moisture product. The impact of different measurement units (absolute, anomalies and percentiles) 152 

on the accuracy of the blended product are also investigated. Finally, two optimal datasets are 153 

identified and the utility of these datasets are demonstrated.  154 

2. Study area and data 155 

 This study is conducted in the south-central region of the United States, covering four states, 156 

including Texas, Oklahoma, Arkansas, and Louisiana with a total area ~1,150,400 km2. The south-157 

central U.S. an important agricultural region in the U.S., but also one that is drought-prone (Tian 158 

and Quiring, 2019). For example, the four states account for about 10% of national winter wheat 159 

production in 2017 (National Agricultural Statistics Service). According to the Köppen climate 160 

classification, the climate of this region varies from warm temperate (about three-fourths of the 161 

region) in the east to the arid (about one-fourth of the region) in the west (Kottek et al., 2006). The 162 

annual average temperature gradually decreases from south (27 °C) to north (13 °C), and the mean 163 

annual precipitation gradually increases from west (<25 cm) to east (>190 cm).  164 

 This study uses in-situ measurements of soil moisture, satellite-observed soil moisture, 165 

model-simulated soil moisture, precipitation and air temperature data. Detailed information on the 166 
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spatial and temporal resolution, period of record and measurement depths are listed in Table 1. To 167 

facilitate comparison, the common period of record from 2015/03/31 to 2018/12/31 (SMAP 168 

product) were extracted for all datasets.  169 

 170 

Table 1. Summary of datasets used in this study 171 

Data Sources Temporal 

Domain 

Temporal 

resolution 

Spatial 

resolution* 

Measurement 

depths (cm) 

In-situ 

OKM 1998-present Daily  115 out of 129 

sites 

5, 25, 60, 75  

WTM 2002-present Daily  64 out of 70 

sites 

5, 20, 60, 75  

SCAN 1994-present Daily  21 out of 219 

sites 

5, 10, 20, 50, 100 

CRN 2009-present Daily  15 out of 147 

sites 

5, 10, 20, 50, 100 

SMAP L4 
2015/03/31 - 

present 

3 hours;  

latency: 2 days 

9-km 5, 0-100 

NLDAS_V2 Noah 

Model 

1979-present Hourly  1/8° 0-10, 10-40, 40-100 

PRISM 
ppt,  

tmp 

1981-present Daily 4-km  

*: The in-situ measurements are point-based, thus the spatial resolution for in-situ data refers to 172 

the number of stations used in this study out of a total number of stations of the sparse network.  173 

    174 

2.1 In-Situ Soil Moisture Measurements  175 

 The in-situ soil moisture data are collected from four sparse networks: Oklahoma Mesonet 176 

(OKM), West Texas Mesonet (WTM), Soil Climate Analysis Network (SCAN) and Climate 177 

Reference Network (CRN). Daily soil moisture measurements were obtained from North 178 

American Soil Moisture Database (NASMD) in the units of volumetric water content (m3 m-3) 179 

(Quiring et al., 2016). Since different networks collect data at different time intervals ranging from 180 

every 5 minutes to once per day, for consistency a single morning measurement (7 am LST) is 181 

extracted to represent the daily value. This is not ideal, but it is reasonable for applications in which 182 

diurnal variations in soil water content are inconsequential, such as drought monitoring. The raw 183 
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measurements have passed through the Quality Assurance and Quality Control (QAQC) process 184 

(Ford and Quiring, 2014), with dubious or questionable values been removed and filled. The near-185 

surface measurements (5 cm) from a total of 215 stations (Fig. 1) were obtained for this study.  186 

 187 

Fig. 1 Study area and stations for in-situ soil moisture measurements. Background map (USA 188 

Topographic Basemap) Copyright:© 2013 National Geographic Society, i-cubed 189 

2.2 SMAP-L4 Soil Moisture  190 

 The SMAP Level-4 Surface and Root-Zone Soil Moisture are adopted in this study because 191 

it provides a temporally complete set of global soil moisture data. The SMAP L4 product is a 192 

merged soil moisture product from SMAP L-band brightness temperature observations and 193 

estimates from the NASA Catchment land surface model using a data assimilation system (Reichle 194 

et al., 2018). The L4 Geophysical Data are used, which are available from 31 March, 2015 to 195 

present (with 2-3 days latency). They include both surface (0-5 cm) and root-zone (0-100 cm) soil 196 

moisture every 3 hours at a spatial resolution of 9-km. The unbiased RMSE for SMAP L4_SM 197 

surface and root zone soil moisture are reported to be 0.038 m3 m−3 and 0.030 m3 m−3 respectively 198 
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(Reichle et al., 2017). Finally, to be consistent with the in-situ measurements, the SMAP L4 199 

product with time slot covering 7 am are extracted each day to represent the daily soil moisture 200 

from 2015/03/31 to 2018/12/31. The nearest neighbor assignment is used to resample SMAP L4 201 

surface soil moisture from 9-km to 4-km to match the spatial resolution of other datasets (e.g., 202 

PRISM).  203 

2.3 NLDAS-2 Noah Soil Moisture  204 

 This study uses the simulated soil moisture from the NLDAS-2 Noah model. The Noah 205 

model provides hourly soil moisture fields at 1/8° grid from 1979 to present. The Noah model has 206 

four soil layers: 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm, but only the top layer is used 207 

in this study. Details about the NLDAS-2 configuration of the Noah LSM can be found in Xia et 208 

al. (2012). To be consistent with the in-situ measurements, the Noah output at 7 am are extracted 209 

each day to represent the daily soil moisture, and the data from 2015 to 2018 are adopted to match 210 

the record length of the SMAP data. Finally, the nearest neighbor method is used to resample the 211 

simulated soil moisture from 12.5-km to 4-km to match with other datasets.  212 

2.4 PRISM Climate Data  213 

 The PRISM (Parameter-elevation Relationships on Independent Slopes Model) datasets 214 

are developed by Oregon State University’s PRISM Climate Group (Daly et al., 2008). They are 215 

official climatological data sets of the USDA. PRISM use surface stations and a weighted 216 

regression scheme to generate daily updated spatial mapping of climate variables (e.g., 217 

precipitation, temperature, dew point, vapor pressure deficit) over the contiguous United States. 218 

There are more than 13,000 quality controlled surface stations used for precipitation interpolation 219 

and more than 10,000 stations used for temperature interpolation (Daly et al., 2008). The 220 
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climatological normals (average monthly and annual conditions over 1981-2010) and monthly and 221 

daily data are available at 4-km and 800-m resolution from 1981 to present.  222 

 The 4-km daily precipitation from PRISM are used in this study. Since there is strong 223 

coupling between soil moisture and precipitation (Koster et al., 2004), precipitation has been 224 

widely used as an important input for soil moisture estimation in various LSMs (Liu et al., 225 

2018;Xia et al., 2012;Liang et al., 1996). Here, the Antecedent Precipitation Index (API) is 226 

calculated based on precipitation and adopted for soil moisture interpolation using in-situ 227 

measurements and regression kriging. The API index is introduced in Section 2.5.2 and regression 228 

kriging is introduced in Section 3.  229 

2.5 Data Preparation 230 

2.5.1 Anomalies and Percentiles 231 

The volumetric water content of the soil varies as a function of weather conditions, soil 232 

characteristics, vegetation, topography, among other factors, and so it cannot be directly compared 233 

between different locations. In contrast, relative measures of soil wetness, such as anomalies and 234 

percentiles can used to standardize soil moisture from different sensors and locations and make 235 

them comparable (Ford et al., 2015;Zhang et al., 2017a). In this study, anomalies and percentiles 236 

are calculated for all 3 datasets (In-situ, SMAP, NLDAS and PRISM). Anomalies are calculated 237 

by removing the seasonal climatology from the absolute soil moisture at each day (Crow and Van 238 

den Berg, 2010). The climatological mean is calculated using a moving-window approach (Chen 239 

et al., 2017), which averages all available soil moisture estimates across all years within a 31-day 240 

window (Dong et al., 2018) centered on the target day.  241 

Percentiles are calculated using an empirical probability distribution function and moving 242 

window approach as well. At each day of the year, all the data fall within a 31-day window centered 243 
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on that day was used to construct the empirical probability distribution function. Ford et al. (2016) 244 

found sample sizes of 93 to 186 daily soil moisture observations were required to generate robust 245 

percentiles. In our case, SMAP has the shortest data record (3 years), thus has 93 data points (31 246 

days in window × 3 years) from which to build the distribution and compute the quartiles and 247 

percentiles. This has met the sampling size to generate robust percentiles. For other datasets, the 248 

total length of records is used to generate the percentiles (e.g., 20 years for in-situ, 40 years for 249 

NLDAS). Percentiles range from 0 or (0%) to 1 (or 100%), which corresponds to the driest (0%) 250 

and wettest (100%) soil conditions at a specific site over the entire study period. 251 

2.5.2 Antecedent Precipitation Index (API) 252 

The API is precipitation-based moisture index. It is used to indicate the wetness of a 253 

location and has been widely applied in drought monitoring (Crow et al., 2012a), runoff forecasting 254 

(Anctil et al., 2004), soil moisture estimation (Ochsner et al., 2019) and crop yield prediction 255 

(Zhang et al., 2017b). API takes preceding precipitation into account to estimate the current 256 

moisture status, and is formulated as (Kohler and Linsley, 1951): 257 

𝐴𝑃𝐼(𝑖) = API(i − 1) ∗ k + PPT(i)   (1) 258 

Where API(i) is the API at day i, PPT(i) is the precipitation occurring on day i; k is an 259 

empirical decay factor between 0.80 and 0.98 (Heggen, 2001). In this study, a set of k values (from 260 

0.80 to 0.99) is tested to determine the optimal k value that results in the highest correlation 261 

between API and soil moisture based on 215 stations. Fig. S1 shows the variation in correlation as 262 

a function of different k values. The highest correlation (r = 0.4) is achieved at k = 0.92. Therefore, 263 

k = 0.92 is used in this study for API calculation.  264 
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2.5.3 Site Selection 265 

In this study, 40% of the stations with soil moisture measurements (88 sites) are used for 266 

modeling (black circles in Fig. 1), while the remaining 60% of stations (127 sites) are used for out-267 

of-sample validation. The 88 modeling sites are selected based on the Index of Temporal Stability 268 

(ITS) (Jacobs et al., 2010;Zhao et al., 2010). ITS is an indicator of the temporal representative 269 

locations. The location with the lowest ITS value is the location with the highest temporal stability. 270 

The ITS at location i (𝐼𝑇𝑆𝑖) is calculated as: 271 

𝐼𝑇𝑆𝑖 = √𝑀𝑅𝐷𝑖
2 + 𝑆𝐷𝑅𝐷𝑖

2
         (2) 272 

𝑀𝑅𝐷𝑖 =
1

T
∑ 𝑅𝐷𝑖,𝑗

T
𝑗=1         (3) 273 

𝑆𝐷𝑅𝐷𝑖 = √
1

T−1
∑ (𝑅𝐷𝑖𝑗 − 𝑀𝑅𝐷𝑖)

2𝑇
𝑗=1     (4) 274 

𝑅𝐷𝑖𝑗 =
𝜃𝑖𝑗−𝜃𝑗

̅̅ ̅

𝜃𝑗
̅̅ ̅         (5) 275 

Where  𝜃𝑖𝑗 is individual daily measurement of soil moisture at location 𝑖 ⊂ [1, … , 𝑁] and 276 

time j ⊂ [1, … , 𝑇], and 𝜃�̅� is the spatial average of soil moisture at all locations at time j. 𝑅𝐷𝑖,𝑗 is  277 

the relative difference of location i at time j, which is introduced by Vachaud et al. (1985). 𝑀𝑅𝐷𝑖 278 

is the mean relative difference of location i. It averages the RD at location i across an entire period 279 

(T days), and represents the location’s temporal bias or whether the location is wetter or drier than 280 

the average of the area during T days. 𝑆𝐷𝑅𝐷𝑖 is the standard deviation of the RD at location i. It 281 

describes the degree of the temporal stability of a location, or whether a location is temporally 282 

stable. Therefore, a temporally representative site is one with a small mean bias and can be 283 

characterized by low values of both MSD and SDRD, and a low value of ITS (Cho and Choi, 284 

2014;Penna et al., 2013;Brocca et al., 2012).  285 
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Since anomalies can be negative, the absolute value of the difference between 𝐴𝑖,𝑗 and 𝐴�̅� 286 

(Eq. 6) is adopted to represent the relative difference of anomalies at location i and time j (𝑅𝐷_𝐴𝑖𝑗) 287 

(Wang et al., 2017;Mittelbach and Seneviratne, 2012): 288 

𝑅𝐷_𝐴𝑖𝑗 = |𝐴𝑖,𝑗 − 𝐴�̅�|       (6) 289 

where 𝐴�̅� =
1

𝑁
∑ 𝐴𝑖𝑗

N
𝑖=1 , indicates the spatial average of anomalies of all stations at time j.  290 

 In this study, the 88 modeling sites are selected by three steps: (1) Calculate and rank the 291 

ITS of 215 stations in ascending order; (2) Evenly divide the ranked ITS into four groups; (3) 292 

Within each group, select the 22 sites with the smallest ITS values. The 88 sites are selected in this 293 

way to ensure an evenly sampled sites across the ITS range, which best mimic the reality that in-294 

situ stations have different temporal representativeness. Although ITS ranking using absolute soil 295 

moisture, anomalies and percentiles are not exactly the same, the differences are minor. To be 296 

consistent across datasets and facilitate comparison, the same 88 (127) sites selected using the 297 

absolute soil moisture were used for calibration (validation) using soil moisture anomalies and 298 

percentiles, because the selected sites are also evenly distributed within the ITS range calculated 299 

by anomalies and percentiles (Fig. S2).  300 

3. Blending Methods 301 

 The soil moisture blending schemes used in this study are summarized in Fig. 2. Two 302 

categories of parent datasets are adopted in this study (Fig. 2). The first category is consist of 303 

SMAP observations, NLDAS simulations, and RK-gridded soil moisture using in-situ soil 304 

moisture and API. The datasets from the first category are implemented with three data formats: 305 

absolute values (PP1), anomalies (PP2), and percentiles (PP3). The second category consists of 306 
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the RK-gridded soil moisture (PP4) using in-situ soil moisture with the absolute values of API, 307 

SMAP, and NLDAS soil moisture respectively.  308 

 309 

Fig. 2 Framework of soil moisture blending, and their associated parent datasets, data format, 310 

blending methods and output products. 311 

3.1 Regression Kriging (RK) 312 

 Regression Kriging (RK) is one of the most popular and robust hybrid spatial interpolation 313 

techniques in the digital mapping of soil properties (Keskin and Grunwald, 2018). RK combines a 314 

regression between the target variable and auxiliary variables with simple kriging of the regression 315 

residuals (Hengl et al., 2007;Odeha et al., 1994). Previous studies revealed RK often outperforms 316 

non-geostatistical methods (Mishra et al., 2010;Yang et al., 2019;Li and Heap, 2011), ordinary 317 

kriging (Hengl et al., 2004), and co-kriging (Eldeiry and Garcia, 2010). The RK models can be 318 

expressed as two parts (Hengl et al., 2004):  319 

�̂�(𝑠0) =  �̂�(𝑠0) +  �̂�(𝑠0)       (7) 320 

Where �̂�(𝑠0) is the fitted trend, �̂�(𝑠0) is the interpolated residual. In this study, the trend term 321 

�̂�(𝑠0) is fitted by a linear model between the auxiliary variable and soil moisture.  322 

�̂�(𝑠0) = �̂� ⋅ 𝑞(𝑠0)       (8) 323 
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Where, �̂� is the estimated model coefficients using generalized least squares, 𝑞(𝑠0) is the auxiliary 324 

variable (e.g., API) at the target location 𝑠0. The residual from the linear model is then interpolated 325 

by simple kriging with an assumed 0 mean.  326 

�̂�(𝑠0) = ∑ 𝜆𝑖 ⋅ 𝑒(𝑠𝑖)
𝑛
𝑖=1        (9) 327 

Where,  𝜆𝑖 are kriging weights determined by the spatial dependence structure of the residual, and 328 

𝑒(𝑠𝑖) is the residual at location 𝑠𝑖. By adding the kriging residuals to the predicted trend, the final 329 

RK prediction are obtained. RK also provide the error estimation of predicted values as (Hengl et 330 

al., 2007): 331 

𝜎𝑅𝐾
2 (𝑠0) = (𝐶0 + 𝐶0) − 𝑐0

𝑇 ∙ 𝐶−1 ∙ 𝑐0 + (𝑞0 − 𝑞𝑇 ∙ 𝐶−1 ∙ 𝑐0)𝑇 ∙ (𝑞𝑇 ∙ 𝐶−1 ∙ 𝑞)−1 ∙ (𝑞0 − 𝑞𝑇 ∙ 𝐶−1 ∙332 

𝑐0)           (10) 333 

Where C is the covariance matrix of the residuals, 𝐶0 + 𝐶0 is the sill variation, 𝑐0 is the vector of 334 

covariance of residuals at the unvisited locations, q is a matrix of predictors at the sampling 335 

locations, and 𝑞0 is the vector of p+1 predictors (p=1 in our case). 336 

 In this study, two sets of auxiliary variables are tested for RK. The first set of auxiliary 337 

variables are API in the format of absolute values, anomalies, and percentiles respectively. Given 338 

that precipitation is the chief driver of soil moisture, and a strong positive relationship was 339 

observed between the soil moisture and API over the contiguous United States (Fig. S3), thus API 340 

can be used as an important predictor of soil moisture variations. The second set of auxiliary 341 

variables are respectively the SMAP L4 and the NLDAS surface soil moisture in the format of 342 

volumetric water content (Fig. 2).  343 

3.2 Triple collocation (TC) 344 

 Triple collocation (TC) is a technique for estimating the error variance (errVar, m3 m-3) of 345 

three independent datasets with respect to the unknown truth (Stoffelen, 1998). It assumes a linear 346 
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error model (Eq. 11- Eq.13) between each product and the unknown truth (t). The errors from the 347 

independent sources are assumed to have zero mean (𝐸(𝑒𝑖) = 0) and are uncorrelated with each 348 

other (𝐶𝑜𝑣(𝑒𝑖, 𝑒𝑗) = 0, 𝑖 ≠ 𝑗) and with the truth (𝐶𝑜𝑣(𝑒𝑖, 𝑡) = 0). TC analysis has been widely 349 

used to estimate the errors of various measurement systems, such as the ocean waves (Caires and 350 

Sterl, 2003), wind fields (McColl et al., 2014;Stoffelen, 1998), leaf area index (Fang et al., 2012), 351 

precipitation (Roebeling et al., 2012), and soil moisture (Su et al., 2014;Yilmaz et al., 2012;Dorigo 352 

et al., 2010;Gruber et al., 2013). Gruber et al. (2016) reviewed the previous TC analysis on soil 353 

moisture, and found there are two different notations of TC formula, the difference notation 354 

(Stoffelen, 1998;Scipal et al., 2008;Yilmaz et al., 2012) and the covariance notation (Stoffelen, 355 

1998;McColl et al., 2014). They demonstrated that two different notations are mathematically 356 

identical in the ideal case that each product is bias-free (𝛼𝑖 = 0 in Eq. 11 to Eq. 13). However, in 357 

reality, there is always bias in each product, which results in a slightly different value of errVar 358 

estimated using the two notations. The difference notation format of TC accounts for the total 359 

errVar (including variance from both bias 𝛼𝑖 and error term 𝑒𝑖), while the covariance notation of 360 

TC only focuses on the errVar from the error term (𝑒𝑖). In this study, the difference notation of TC 361 

is adopted to account for the total error variance of parent datasets.  362 

𝜃𝐾 = 𝛼𝐾 + 𝛽𝐾𝜃𝑡 + 𝑒𝐾     (11) 363 

𝜃𝑆 =  𝛼𝑆 + 𝛽𝑆𝜃𝑡 + 𝑒𝑆    (12) 364 

𝜃𝑁 = 𝛼𝑁 +  𝛽𝑁𝜃𝑡 + 𝑒𝑁   (13) 365 

 Where, 𝜃𝑖 (i ∈ (S, N, K)) are three collocated soil moisture datasets for SMAP, NLDAS 366 

and RK-gridded soil moisture, respectively; 𝜃𝑡 is the unknown true soil moisture; 𝛼𝑖 (i ∈ (K, S, 367 

N)) and 𝛽𝑖 (i ∈ (K, S, N)) are systematic additive and multiplicative biases of product i with respect 368 

to the truth, and 𝑒𝑖 (i ∈ (K, S, N)) are the additive zero-mean random errors for each system. When 369 
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anomalies or percentiles are used, the additive bias 𝛼𝑖 can be deemed as zero, because these two 370 

methods either removed the climatology mean from each product or standardized each product.  371 

 A reference dataset must be selected from the three input datasets and rescaling is required 372 

to transfer the other two datasets into the same observation space of the reference dataset. Our 373 

preliminary results showed that the choice of reference dataset did not impact the final results, thus 374 

the RK-gridded soil moisture is selected as the reference dataset in this study (𝜃𝑅 = 𝜃𝐾). The 375 

rescaling method (Eq. 14) from Dorigo et al. (2010) is used.  376 

𝜃𝑖
∗ = 𝜃𝑅

̅̅ ̅ + √
𝑉𝐴𝑅(𝜃𝑅)

𝑉𝐴𝑅(𝜃𝑖)
∙ (𝜃𝑖 − 𝜃�̅�)        (14) 377 

Where, 𝜃𝑅
̅̅ ̅ and 𝑉𝐴𝑅(𝜃𝑅) are respectively the mean and variance of the reference soil moisture. 378 

After the rescaling of the parent datasets, Eq. (11) to (13) can be rewritten as: 379 

𝜃𝐾
∗ =  𝛽𝐾𝜃𝑡 + 𝑒𝐾

∗     (15) 380 

𝜃𝑆
∗ =  𝛽𝐾𝜃𝑡 + 𝑒𝑆

∗    (16) 381 

𝜃𝑁
∗ =  𝛽𝐾𝜃𝑡 + 𝑒𝑁

∗     (17) 382 

where, 𝜃𝑖
∗ (i ∈ (K, S, N)) are the rescaled soil moisture datasets. Finally, the error variances can be 383 

estimated by averaging the cross-multiplied differences between the three datasets: 384 

𝜎𝐾
∗ 2

= (𝜃𝐾
∗ − 𝜃𝑆

∗)(𝜃𝐾
∗ − 𝜃𝑁

∗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (18) 385 

𝜎𝑆
∗2

= (𝜃𝑆
∗ − 𝜃𝐾

∗ )(𝜃𝑆
∗ − 𝜃𝑁

∗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (19) 386 

𝜎𝑁
∗ 2 = (𝜃𝑁

∗ − 𝜃𝑆
∗)(𝜃𝑁

∗ − 𝜃𝐾
∗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (20) 387 

 Different combinations of triplets are also tested in this study to examine the impact of 388 

triplets on TC estimates. The triplet candidates include the in-situ measurements (denoted by “I” 389 

in the following figure and text), the SMAP L-4 surface soil moisture (denoted by “S”), simulated 390 

soil moisture from NLDAS-2 Noah model (denoted by “N”), and the RK-gridded soil moisture 391 
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using regression kriging (denoted by “K”). Four combinations of the candidates are tested, 392 

including (I, S, N), (I, K, S), (I, K, N), and (K, S, N). The triplet candidates are extracted from the 393 

127 out-of-sample stations. Scipal et al. (2008) found at least 100 collocated triplet samples are 394 

required for a reliable estimation of the variance. In our case, the time series from 2015/03/31 to 395 

2018/12/31 is used for TC analysis, which results in 1372 collocated triplet samples at every station 396 

with a serially complete record. The stations with less than 100 observations are removed from the 397 

TC error estimation.  398 

3.3 Relative Error Variance (REV) 399 

Relative Error Variance (REV) is the ratio of measurement error variance to real soil 400 

moisture variance. It measures the displacement of autocorrelation in a measured quantity. 401 

Delworth and Manabe (1988) recognized that a soil moisture time series behaves like a first-order 402 

Markov process. Later Vinnikov and Yeserkepova (1991) validated and confirmed this and noted 403 

the autocorrelation function of soil moisture can be expressed as an exponential form of lag length: 404 

𝛾(𝜏) = exp (−𝜏/𝑇)    (21) 405 

where 𝛾(𝜏) is the autocorrelation function, 𝜏 is the lag, and T is the decay time scale. Robock et 406 

al. (1995) also found a linear best fit of ln (𝛾) verse 𝜏 does not cross zero at a value of 𝛾(𝜏 = 0) =407 

1. The displacement of the autocorrelation 𝛾(𝜏) at 𝜏 = 0 is related to the measurement error (𝑎) as:  408 

𝛾(𝜏 = 0) = 1 − 𝑎     (22) 409 

 Successively, Vinnikov et al. (1996) partitioned the soil moisture variation into red noise 410 

(σ2, actual variance of the soil moisture measurement) and white noise (δ2, random error of 411 

measurements), and noted that the ratio 𝛿2/𝜎2 can be used as a measure of the random error in the 412 

measurement. Dirmeyer et al. (2016) related the ratio 𝛿2/𝜎2 to the measurement error (𝑎), and 413 

used it to estimate the random measurement error of different sparse soil moisture networks. Ford 414 
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and Quiring (2019) applied relative error variance (REV) to quantify the proportion of 415 

measurement error within real soil moisture variance, as: 416 

𝑅𝐸𝑉 =  
𝛿2

𝜎2
=

𝑎

(1+𝑎)
     (23) 417 

Thus, a higher REV value represents a larger proportion of random measurement error. 418 

REV is a powerful measurement of random measurement error or uncertainties, and it does not 419 

require independent data, unlike the TC method.  420 

3.4 Least square weighting (LSW) 421 

 Yilmaz et al. (2012) adopted the least square framework to achieve an objective blending 422 

of satellite and modeled soil moisture. The same methodology was adopted by Zeng et al. (2016) 423 

to merge the satellite and reanalysis soil moisture data. In this study, the least square weighting 424 

(LSW) is used to blend soil moisture data from satellite, model and in-situ measurements based on 425 

error variances estimated from the TC, REV and RK methods, respectively (Fig. 2). The desired 426 

estimate of soil moisture (𝑆𝑚) via blending different sources of data using least squares framework, 427 

can be expressed as:  428 

𝑆𝑚 = 𝑤𝑥𝑆𝑥 + 𝑤𝑦𝑆𝑦 + 𝑤𝑧𝑆𝑧    (24) 429 

Where, 𝑤𝑥, 𝑤𝑦 and 𝑤𝑧 are the relative weights of three parent datasets 𝑆𝑥, 𝑆𝑦 and 𝑆𝑧 respectively. 430 

Then a cost function (J) is constructed using the weights and the error variance of the parent 431 

datasets, such that:  432 

𝐽 = 𝜎𝑚
2 = 𝑤𝑥

2𝜎𝑥
2 + 𝑤𝑦

2𝜎𝑦
2 + 𝑤𝑧

2𝜎𝑧
2   (25) 433 

Where, 𝜎𝑥
2, 𝜎𝑦

2, and 𝜎𝑧
2 are the estimated error variance for the three parent datasets. To have an 434 

unbiased estimation of 𝑆𝑚, the sum of weights should be 1 (𝑤𝑥 + 𝑤𝑦 + 𝑤𝑧 = 1), thus:  435 

𝐽 = 𝑤𝑥
2𝜎𝑥

2 + 𝑤𝑦
2𝜎𝑦

2 + (1 − 𝑤𝑥 − 𝑤𝑦)2𝜎𝑧
2  (26) 436 
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 Finally, by minimizing the cost function and the partial derivative of function J with respect 437 

to 𝑤𝑥 and 𝑤𝑦 (
𝜕𝐽

𝜕𝑤𝑥
= 0,

𝜕𝐽

𝜕𝑤𝑦
= 0), the optimal estimation of the weights are obtained as  438 

𝑤𝑥 =
𝜎𝑦

2𝜎𝑧
2

𝜎𝑥
2𝜎𝑦

2+𝜎𝑥
2𝜎𝑧

2+𝜎𝑦
2𝜎𝑧

2     (27) 439 

𝑤𝑦 =
𝜎𝑥

2𝜎𝑧
2

𝜎𝑥
2𝜎𝑦

2+𝜎𝑥
2𝜎𝑧

2+𝜎𝑦
2𝜎𝑧

2     (28) 440 

𝑤𝑧 =
𝜎𝑥

2𝜎𝑦
2

𝜎𝑥
2𝜎𝑦

2+𝜎𝑥
2𝜎𝑧

2+𝜎𝑦
2𝜎𝑧

2     (29) 441 

 It can be seen that the weights are functions of the error variance of the parent datasets, and 442 

the product with larger error variance will be given smaller weights and vice versa. If only blending 443 

two soil moisture datasets, the least square method can be applied similar, with weights: 444 

𝑤𝑥 =
𝜎𝑦

2

𝜎𝑥
2+𝜎𝑦

2      (30) 445 

𝑤𝑦 =
𝜎𝑥

2

𝜎𝑥
2+𝜎𝑦

2      (31) 446 

 In this study, all three parent datasets (K, S, N) and combinations of two from them (KS, 447 

KN, SN) are tested to generate hybrid datasets. By comparing the hybrid results using all three and 448 

two out of three datasets, the optimal blending product can be identified using the least datasets 449 

while maintaining the accuracy. 450 

3.5 Goodness of fit 451 

In this study, 88 sites (40%) out of the total 215 stations were used for RK modeling, while 452 

the remaining 127 sites (60%) were used for out-of-sample validation. The Mean Absolute Error 453 

(MAE), Root Mean Square Error (RMSE), the Nash-Sutcliffe Efficiency (NSE) score, and the 454 

decomposition of Mean Square Error (MSE) by its mean difference (MSE_MD2) and its pattern 455 

variation (MSE_VAR) were used for the validation and comparison of hybrid datasets. The 456 
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decomposition MSE is helpful to diagnose whether the error is mainly due to the bias or variation. 457 

A detailed description of above mentioned indicators (including equations) are provided in 458 

Supplementary Text S1.  459 

4. Results and Discussions 460 

4.1 Patterns of parent datasets 461 

 Fig. 3 compares three statistic features, such as mean, standard deviation (STD) and 462 

coefficient of variation (CV) of the absolute values of four soil moisture datasets over 127 out-of-463 

sample sites. The four datasets include the in-situ soil moisture measurements, the RK-gridded soil 464 

moisture from API (K-API) and the SMAP and NLDAS soil moisture. Compared with in-situ 465 

measurements, the three soil moisture datasets (K-API, SMAP and NLDAS) show an 466 

underestimation of soil moisture (Fig. 3a) with bias ratios of -9%, -18% and -8%, respectively. 467 

The large negative bias of SMAP L4 data indicates that the produce may overestimate dryness if 468 

used alone without animalization or standardization. The largest values of STD are observed for 469 

in-situ soil moisture, followed by SMAP and K-API, while NLDAS has the smallest STD values 470 

(Fig. 3b). This is reasonable since field measurements are point scale and contain more information 471 

on spatial heterogeneity and thus exhibit a higher degree of variability. As spatial resolution 472 

increases, a smoother pattern and less variability are expected. Another reason that NLDAS has 473 

the smallest STD is because the model-simulated soil moisture are solved at each grid cell using a 474 

land surface model. SMAP presents the highest (and significantly larger than others) CV among 475 

all datasets (Fig. 3c), which indicates that there is a large degree of variability in the SMAP soil 476 

moisture. The large CV of SMAP is jointly attributed to its small mean value and large STD. In 477 

contrast, the NLDAS has the smallest CV among all datasets (Fig. 3c), which is mainly due to its 478 

smallest STD among all datasets. K-API has the most comparable CV values and smaller range 479 
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than that of in-situ measurements. This indicates that K-API is the product that is most similar to 480 

the in-situ measurements.   481 

 482 

Fig. 3 Comparison of the (a) means, (b) standard deviation and (c) coefficient of variation of four 483 

datasets over 127 out-of-sample sites. The four data sets include the in-situ soil moisture 484 

measurements, the kriged soil moisture from API (K-API) and the SMAP and NLDAS soil 485 

moisture. All datasets are in the format of absolute values. 486 

4.2 Errors of parent datasets 487 

 Fig. 4 shows the error (uncertainties) estimated using TC, REV and RK using different 488 

combinations of parent datasets. Fig. 4 (a)-(d) reveal that the error estimated from TC depends on 489 

the parent triplets used. Changing the parent triplets changes the magnitude and ranking of the 490 

parent datasets. For example, the errors estimated for in-situ data are higher when it is grouped 491 

with SMAP and NLDAS (Fig. 4a), than when it is grouped with K-API and NLDAS (Fig. 4b) or 492 

with K-API and SMAP (Fig. 4c). In addition, in-situ data have significantly higher errors than 493 

SMAP in Fig. 4(a), while Fig. 4c shows in-situ data have significantly lower errors than that of 494 

SMAP. Similar, contrasting results are also found between In-situ and NLDAS by comparing Fig. 495 

4a and Fig. 4b. These results indicate that TC only provides a relative measure of accuracy. Yilmaz 496 

et al. (2012) also noted that TC is not ideal for capturing absolute error and can only estimate the 497 

relative error. They found that the absolute error depends on the reference dataset selected.  498 
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 499 

Fig. 4 (a)-(d) Estimated errors (uncertainties) using TC with different combination of four datasets 500 

(In-situ, K-API, SMAP and NLDAS soil moisture). (e) Estimated errors using REV for four 501 

datasets; and (f) Estimated errors using RK for three datasets (K-API, SMAP and NLDAS soil 502 

moisture). The datasets used here are absolute soil moisture over 127 out-of-sample stations. The 503 

same color indicates the same dataset used in TC and REV analysis.  Note, both TC and REV 504 

provide one error estimation through the entire period (1372 days) for each station, while RK 505 

provides one error estimation at each day for each station. Therefore, there are 127 points within 506 

the boxplots using TC and REV (Fig. 6a-e), while there are 174244 points (127 sites*1372 days) 507 

within the boxplots using RK (Fig. 6f).  508 

 Moreover, our study reveals that the relative errors of a single soil moisture dataset, 509 

estimated from TC, are sensitive to the choice of input datasets (Fig. 4a-d). Thus, caution should 510 

be used when selecting the input datasets for TC analysis. In this study, K-API, SMAP and NLDAS 511 

are used for soil moisture blending with TC error estimation (Fig. 4d). The error ranking of the 512 
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three datasets from TC are K-API>API>NLDAS (Fig. 4d), and the differences among the three 513 

datasets are statistically significant.  514 

Our study also demonstrates that the measurement units (Fig. S4) do not impact the relative 515 

relationship (error ranking) between the different datasets. It is also interesting to note that the in-516 

situ data always have relatively larger error when compared with other datasets using TC (Fig. 4a 517 

to 8c). This may due to its high spatial representativeness errors (Miralles et al., 2010;Crow et al., 518 

2012b;Yilmaz et al., 2012). If this is true, then using in-situ data as the ground truth for validation 519 

may not be the best choice.  520 

  The REV (Fig. 4e) and RK (Fig. 4f) can also be used to estimate error in different datasets. 521 

REV (Fig. 4e) and RK (Fig. 4f) provide consistent results and both indicate that K-API has 522 

significantly smaller errors than SMAP and NLDAS, while SMAP and NLDAS are similar (i.e., 523 

there is not a statistically significant difference between the two). Although REV is a relative ratio 524 

between measurement error variance to real soil moisture variance, unlike TC, it does not depend 525 

on another dataset during calculation. Therefore, REV provides a consistent estimate for each 526 

product that does not change depending on the other datasets that are included. By comparing Fig. 527 

4(b)-(c) with Fig. 4(e), in-situ data have larger errors than K-API based on both the TC and REV 528 

methods. 529 

 Fig. 5A and 5B illustrate the spatial distribution of errors estimated using TC (Fig. 5A) and 530 

REV (Fig. 5B) for the three parent datasets (K-API, SMAP and NLDAS). When using TC 531 

estimates, the results agree well with Fig. 4d. NLDAS has the smallest error among the three, with 532 

low errors found in the central and southwestern portions of the study area. The K-API has larger 533 

errors near the Gulf of Mexico and in Oklahoma, while SMAP has larger errors scattered 534 

throughout the study region. On the contrary, when using REV, the K-API has the smallest errors 535 
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among the three datasets over the entire study area, while SMAP data has larger errors in the 536 

western part of the study region and NLDAS has larger errors in the eastern part of the study region.  537 

 538 

Fig. 5 Spatial maps of errors (A and B) and LSW weights (C and D) based on errors from TC and 539 

REV for each parent product. All products are in the format of absolute soil moisture. The black 540 

circles indicate the locations of 127 out-of-sample stations.  541 

4.3 Weights of parent datasets 542 

 Fig. 5C and 5D reveal the spatial distribution of LSW weights calculated using the errors 543 

estimated from TC and REV. Fig. 6 compares the weights derived from TC, REV and RK based 544 

on 127 out-of-sample stations. Generally, larger weights are given to the product with smaller 545 
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errors (Fig. 5), and the weighting of each product are not impacted by the data format used (Fig. 546 

S5). When using TC, larger weights are given to the NLDAS (median value of 0.42) and SMAP 547 

(median value of 0.32), while K-API tends to be given lower weight, with a median value about 548 

0.2 (Fig. 6a). In contrast, higher weights are given to K-API (median value of 0.6), especially in 549 

the central part of study area, when REV is used, while smaller weights are given to SMAP and 550 

NLDAS with a median value of 0.2 for both (Fig. 6b). SMAP has higher weights in the eastern 551 

part of the study region than in the west. NLDAS is given higher weights in the western part of the 552 

study region (Fig. 5D). In general, the weighting scheme derived from TC (Fig. 5C and Fig. 6a) 553 

has patterns that are opposite to those based on REV (Fig. 5D and Fig. 6b). It is also interesting to 554 

note that the weighting scheme derived from RK (Fig. 6c) is similar to the mean weighting (0.33 555 

weighting line in green). This analysis has demonstrated that the choice of weighting scheme can 556 

have a substantial influence on the relative weights that are assigned to each product.  557 

 558 

Fig. 6 Weights of each product (K-API, SMAP and NLDAS) based on LSW using errors estimated 559 

from (a) TC, (b) REV and (c) RK. The weights are calculated based on absolute soil moisture over 560 

127 out-of-sample stations. The green lines indicate the averaging weighting, where each product 561 

is given the same weight of 0.33. 562 

 Considering each dataset has errors and the inclusion of additional datasets may increase 563 

the uncertainty, therefore it is important to evaluate whether it is necessary to use all three soil 564 

moisture datasets to achieve the highest accuracy. Therefore, we iteratively selected pairs of the 565 
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parent datasets and generated a hybrid soil moisture product. The results for each combination are 566 

provided in Fig. 7. Similar to the results from Fig. 6 and Fig. S5, the TC and REV provide opposite 567 

weighting results, and the weighting from RK is similar to the simple average (equal weight of 568 

two datasets). This analysis also demonstrates that the data format has little impact on the results, 569 

especially for REV (right column in Fig. 7). 570 

 571 

Fig. 7 Weights of soil moisture products in the format of anomalies (top row) and percentiles 572 

(bottom row) based on least square weighting using errors estimated from TC (left column) and 573 

REV (right column). The green line indicates the simple average weighting scheme with equal 574 
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weight (0.5 here) for each product.  K-A is short for regression kriging using API, K-S is short for 575 

regression kriging using SMAP, and K-N is short for regression kriging using NLDAS data. 576 

4.4 Evaluation of hybrid results 577 

 Fig. 8 evaluates the hybrid results of soil moisture anomalies from different methods 578 

(simple average (AVE), REV and TC) based on MAE, RMSE, MSE_MD2, MSE_VAR and NSE. 579 

The assessment of hybrid datasets in other formats (absolute values, percentiles and RK-gridded 580 

soil moisture) are presented in Fig. S6, S7 and S8, respectively. In terms of MAE (Fig. 8a), K-API 581 

has the smallest errors (MAEmedian = 0.037) among the three parent datasets, while SMAP has the 582 

largest errors (MAEmedian =0.050) and NLDAS falls in the middle (MAEmedian =0.046). The 583 

analysis demonstrates that after blending the three parent datasets, the merged datasets do not 584 

outperform the parent products, especially in comparison to K-API. Although the MAEs of the 585 

AVE3, REV3 and TC3 are significantly smaller than that of SMAP and NLDAS (boxes' notches 586 

do not overlap in Fig. 8a), they are not statistically significantly different from K-API (overlapped 587 

notches in Fig. 8a). Our findings contrast with those of Yilmaz et al. (2012), who found that a 588 

merged soil moisture product generated from ALEXI, Noah and LPRM using TC is more accurate 589 

than the individual parent products. However, our study evaluated different parent datasets, and 590 

the TC-based weights did vary with the input datasets (Fig. 4a-d). Since the K-API was found the 591 

most accurate among the three parent products, and Yilmaz et al. (2012) did not use this product, 592 

our results are not directly comparable. But both our study and Yilmaz et al. (2012) utilized 593 

NLDAS Noah, and both studies found that the hybrid datasets that use NLDAS have smaller errors 594 

(MAEs and RMSEs).  595 
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 596 

Fig. 8 Comparison of parent and hybrid products of soil moisture anomalies using different 597 

blending methods (simple average (AVE), REV- and TC-based) on (a) MAE, (b) RMSE, (c) NSE, 598 

(d) MSE_MD2 and (e) MSE_VAR. The green line indicates the median error of K-API among 127 599 

out-of-sample stations. AVE3, REV3 and TC3 respectively indicate the hybrid results using all 600 

three parent products based on simple average, REV and TC analysis. 601 

 The lack of significant improvement of the merged datasets verses the parent products may 602 

be attributed to (1) sub-optimal weights because neither TC and REV consider temporal variations 603 

in errors. Both TC and REV give only one error estimation at each location for the entire period. 604 

In reality, the error in each parent product likely varies both spatially (from location to location) 605 

and temporally (from day to day). Thus, the temporally fixed error estimation that is provided by 606 

TC and REV is likely not optimal. (2) The in-situ measurements cannot be considered the “truth” 607 
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because they are point measurements that may not reflect the soil moisture value for each 4 km 608 

grid cell. In addition, the use of in situ measurements as truth may also be biased towards the K-609 

API. As we found in Fig. 4, the in-situ soil moisture have large spatial representativeness errors. 610 

Even for the densest in-situ network used in this study, such as the Oklahoma Mesonet, there is 611 

only one station within each 4-km grid cell. Considering K-API is generated using in-situ soil 612 

moisture, the error patterns of K-API may follow closely with that of in-situ data, which is also 613 

confirmed by Fig. 4. This bias may result in smaller errors of K-API when evaluated using in-situ 614 

data. (3) The validation data are not spatially exhaustive. Although 60% (127) of total stations 615 

have been used in the validation, they are still relatively sparse and not evenly distributed in the 616 

study area. Fig. 1 shows most validation stations are clustered in Oklahoma and west Texas, while 617 

few stations are located in south Texas, Arkansas and Louisianan. It is possible that the places 618 

where hybrid results showed an improvement over the parent product (K-API) are not well 619 

captured using only 127 stations. 620 

 When comparing the results from the various blending methods, there is no statistically 621 

significant difference between the merged datasets using AVE, REV or TC, even though the REV-622 

weighted datasets perform slightly better (slightly lower MAE/ RMSE, and slightly higher NSE) 623 

than other two methods. This indicates that the more complicated blending methods (LSW using 624 

TC and REV estimates) are not necessarily superior to the simple average. This result agrees with 625 

the findings from Yilmaz et al. (2012) that the merged soil moisture anomalies using LSW and TC 626 

estimates did not outperform the equally-weighted results.  627 

 Considering the different blending methods correspond to different weighting schemes 628 

(Fig. 7 and Fig. S5), this result suggests two possible conclusions: (1) if the optimal weighting 629 

(either TC- or REV-based) has been achieved, then the weighting scheme does not have a 630 
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significant impact on the merged results; (2) if the optimal weight has not been achieved, then 631 

there is still an optimal weighting scheme to be identified that can significantly reduce the errors. 632 

The evaluation of hybrid datasets using the two parent datasets (Fig. 8) suggests the first conclusion 633 

(weighting scheme does not have a significant impact on the merged results) is most likely. 634 

According to Fig. 6, the weights calculated using AVE, REV and TC-based methods have covered 635 

all the possible weighting schemes of two datasets, including equal weighting (AVE) and two 636 

cases of unbalanced weighing (the product given larger weights by TC will be given smaller 637 

weights by REV). Still, no significant differences are observed when different weighting schemes 638 

are applied. In this case, the simple average (equal weighting) is recommended for soil moisture 639 

blending, as the more complicated weighting schemes do not outperform this approach.  640 

 It is also found that the combination of SMAP and NLDAS (e.g., AVE(S,N), REV(S,N) 641 

and TC(S,N)) result in a statistically significant increase in MAE values, while combining K-API 642 

with either SMAP or NLDAS has similar accuracy as the merged datasets using all three datasets. 643 

This indicates (1) incorporating three datasets may not be necessary to generate the most accurate 644 

soil moisture product and, (2) in-situ measurement is valuable for improving the accuracy of 645 

blended soil moisture datasets. K-API is the only dataset that incorporates the in-situ 646 

measurements, and it has the lowest error among all parent datasets (Fig. 8). These results are 647 

consistent when RMSE (Fig. 8b) or NSE (Fig. 8c) as considered instead of MAE.   648 

The impact of data format on hybrid results is examined by comparing Fig. 8 with Fig. S6 649 

to S8. It is found the MAE of hybrid datasets using anomalies (about 0.035 m3m-3) is lower than 650 

that of the absolute datasets (about 0.055 m3m-3). The hybrid datasets using anomalies and 651 

percentiles also have higher NSE (around 0.6) values than that of (around 0.3) absolute and RK-652 

gridded datasets. The improved performance of the anomaly and percentile datasets are mainly 653 
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due to the removal of bias error (MSE_MD2). Using Eq.S2 to Eq. S4 from the Supplementary Text, 654 

the MSE can be decomposed to differences in the mean or bias (MSE_MD2) and differences in the 655 

variance (MSE_VAR). It is found that the bias for both the soil moisture anomalies (Fig. 8d) and 656 

soil moisture percentiles (Fig. S6d) are close to zero. Therefore, most of their error is due to 657 

differences in variance (Fig. 8e and Fig. S6e). This is reasonable since both anomalies and 658 

percentiles are methods for standardizing the datasets and they are useful for removing the 659 

systematic bias between different data sets (Ford et al., 2015;Zhang et al., 2017a). In contrast, the 660 

errors of absolute soil moisture (Fig. S7d and S7e) and RK-gridded absolute soil moisture (Fig. 661 

S8d and S8e) have similar proportions of error that are due to bias (0.02 m3m-3) and variance (0.02 662 

m3m-3). This indicates when using soil moisture data in absolute formats, the bias-related errors 663 

are present in the final datasets.  664 

 Fig. 9 shows maps of soil moisture anomalies on March 31, 2015 for each of the parent 665 

datasets (a-c) and the merged datasets based on using three products (d-f) and two products (g-i). 666 

There are distinct differences between the three parent datasets. The K-API (Fig. 9a) has a 667 

smoother pattern than the other two datasets. In addition, the in-situ anomalies (with blue dots 668 

indicate positive anomalies and red dots indicate negative anomalies) seem to match better with 669 

that of K-API. However, the differences between the maps become less distinguishable after 670 

blending the three datasets using AVE (Fig. 9d), REV- (Fig. 9e) and TC-based LSW (Fig. 9f). 671 

There is also no dramatic change of spatial patterns when changing the number of input datasets 672 

from three (Fig. 9d) to two (Fig. 9g-i) using simple average, which agrees with the results from 673 

Fig. 8.  674 
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 675 

Fig. 9 Maps of parent and hybrid products of soil moisture anomalies on March 31, 2015. (a)-(c) 676 

present the three parent products (K-API, SMAP and NLDAS); (d)-(f) respectively represent the 677 

hybrid product from 3 parent products using simple average, least square weighting using REV 678 

estimated errors and TC estimated errors; (g)-(i) represent the hybrid products using simple 679 

average of two parent products. The red dots represent the in-situ stations with negative anomalies, 680 

the blue dots present the in-situ stations with positive anomalies, and the empty circles present the 681 

in-situ stations with no measurement on that day. 682 

 Finally, the spatial patterns of errors for K-API and AVE(K,N) are shown in Fig. 10. By 683 

overlaying the ITS, a consistent pattern is observed between the spatial distribution of MAE and 684 

ITS (Fig. 10). That is, sites that are less temporally representative sites have higher MAE values 685 

than those that are more temporally representative. This agrees with previous finding that the 686 
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kriging performance declines as the data variation increases (Schläpfer and Schmid, 687 

1999;Martínez-Cob, 1996;Li and Heap, 2011;Keskin and Grunwald, 2018). Gotway et al. (1996) 688 

found that the performance of both inverse distance weighting and ordinary kriging declines as 689 

CV increases when mapping soil properties. Based on a review of more than 50 spatial 690 

interpolation studies, Li and Heap (2011) found that data variation has a significant impact on the 691 

performance of spatial interpolation methods. Generally, accuracy decreases as CV increases. 692 

Keskin and Grunwald (2018) also found an inverse relationship between the accuracy of RK 693 

models and the variation of soil properties based on a review of more than 70 studies of RK model. 694 

 695 

Fig. 10 The spatial distribution of MAE of AVE(K,N), K-API and ITS index using anomalies soil 696 

moisture.  697 
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 The correlation between temporal stability and error is further demonstrated in Fig. 11. The 698 

results show that the MAE has a higher correlation with ITS than REV or CV. This finding is 699 

consistent for all data formats (absolute, anomalies and percentiles). As the variability in the data 700 

increases, the predictive accuracy of RK decreases.  701 

 702 

Fig. 11 Relationship between MAE and three indices (ITS, REV and CV) using absolute soil 703 

moisture (first row), anomalies (second row) and percentiles (third row). 704 

 Another interesting finding from Fig. 10 is that the MAEs of K-API (red circles) are 705 

generally smaller than that of AVE(K,N) (blue circles), especially in Oklahoma and northwest 706 

Texas. However, in places where in-situ measurements are sparse, such as the central to the south 707 
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of Texas and east Arkansas, the AVE(K,N) has similar and sometimes smaller MAE than K-API. 708 

This indicates when in-situ measurements are sparse, using additional sources of soil moisture 709 

information (such that from NLDAS) may help to increase the accuracy. To further confirm this 710 

point, the assessment of K-API and AVE(K,N) with varying numbers of sampling points and 711 

different sampling schemes are provided in Fig. 12 using (a) NSE and (b) MAE, respectively. 712 

Three different sampling schemes are compared, including tail sampling (choosing sampling 713 

points from the tail of ascending ITS), head sampling (choosing sampling points from the head of 714 

ascending ITS) and even sampling (choosing sampling points evenly from the ascending ITS). 715 

Since ITS is an indicator of the temporal stability, a more ‘‘representative’’ site is characterized 716 

by a lower ITS. Therefore, the tail sampling scheme selects the least “representative” sites for RK, 717 

head sampling selects the most “representative” sites for RK, while even sampling selects the sites 718 

most close to the population distribution for RK.  719 

 720 

Fig. 12 Assessment of K-API and AVE(K,N) under different sampling scheme and sampling 721 

points in terms of (a) NSE and (b) MAE. Both the NSE and MAE are calculated using the out-of-722 

sample stations over the entire study period. “Tail Sampling” indicate choosing sampling points 723 

from the tail of ascending ITS (denoted by line with square), “Head Sampling” indicates choosing 724 

sampling points from the head of ascending ITS (denoted by line with asterisk), while “Even 725 
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Sampling” indicates choosing sampling points evenly from the ascending ITS (denoted by line 726 

with dot). 727 

 A positive NSE trend is observed as sample density increases (Fig. 12a). The most 728 

significant improvement is observed for K-API using tail sampling (black line with squares). When 729 

used alone, the K-API under tail sampling shows the lowest NSE values among all datasets using 730 

all sampling schemes. However, when combined with the NLDAS, or the AVE(K,N) product (red 731 

line with squares) using tail sampling shows comparable NSE values with other product and other 732 

sampling schemes. Generally, the NSE variation of AVE(K,N) (red shaded area) under different 733 

sampling schemes is much smaller than that of K-API product (grey shaded area). This indicates 734 

that the hybrid product AVE(K,N) can reduce uncertainties and it is especially helpful for reducing 735 

the errors caused by using too few stations or using unrepresentative stations, as compared with 736 

the K-API product. 737 

 A decreasing trend in MAE is observed as sample density increases using both the tail and 738 

even sampling schemes, which is consistent with the NSE results (Fig. 12b). Although the 739 

AVE(K,N) has a larger MAE than K-API when using even sampling, the differences are not 740 

statistically significant (p>0.05) based on ANOVA. However, when using tail sampling, the 741 

AVE(K,N) shows a statistically significant (p<0.05) improvement over K-API, especially at lower 742 

sample densities. The MAE of K-API is 0.055 m3m-3 using 15 stations, but it drops to only 0.004 743 

m3m-3 when AVE(K,N) is used. This indicates when sampling sites are less representative and 744 

sparsely distributed, adding an extra source of soil moisture information (e.g., the product of 745 

AVE(K,N)) significantly improves the accuracy. This finding has practical significance for real-746 

world applications, where achieving dense and representative sampling is always challenging. The 747 

Oklahoma Mesonet is a unique and uncommonly densely network, in most cases, soil moisture 748 
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stations are sparsely distributed. In these cases, the hybrid product, AVE(K,N), may perform better 749 

than K-API.  750 

 It is also worth noting that the sampling scheme has a larger impact on RK results than the 751 

sample density. Although increasing the station density generally improves the accuracy, the 752 

improvement gradually decreases and it levels off when the number of stations is >50 (Fig. 12a 753 

and b. This agrees well with previous findings (Yuan and Quiring, 2017). In contrast, the change 754 

in the sampling scheme may yield a completely different trend of MAE. As shown in Fig. 12(b), 755 

an increasing trend of MAE is observed for both K-API and AVE(K,N) when head sampling is 756 

adopted. This increasing trend may due to the higher degree of heterogeneity in validation data of 757 

head sampling. Considering the head sampling selects the most representative sites for RK 758 

modeling, while the remaining sites are less representative and have larger temporal variability, 759 

which may yield larger errors. Thus, the head sampling should be avoided for RK modeling, and 760 

the even sampling scheme or the bootstrapping random sampling may be more reasonable. In 761 

reality, the sampling sites are always a mix of more and less representative sites.  762 

 In summary, both increasing sample density and adding an extra source of soil moisture 763 

data can improve the accuracy, especially when the station representativeness and station density 764 

are low (Fig. 12). Increasing the station density helps to capture the spatial variation of the target 765 

variable, while using an additional source of soil moisture tends to lead to a more substantial 766 

improvement in accuracy. 767 

5. Conclusions 768 

 This work is the first study that compared multiple methods (REV-, TC- and RK-based 769 

LSW and simple average) and considered multiple data formats (absolute, anomalies and 770 

percentiles) for  soil moisture blending from multiple sources, including satellite (SMAP L4-SM), 771 
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model (NLDAS-V2 Noah), and in-situ measurement. All soil moisture datasets are generated at 4-772 

km spatial resolution and updated daily. The results indicate that the SMAP data have a large 773 

negative bias (-18%) compared with in-situ measurements (Fig. 3), thus it should be used with 774 

caution without standardization, especially for drought monitoring. Both the absolute and relative 775 

errors from TC vary with the input datasets (Fig. 4). In contrast, REV provides an absolute 776 

measurement error, but in a relative (ratio) format. Generally, the TC-estimated error variance tend 777 

to show the opposite pattern as REV. That is, the soil moisture products that have a low error 778 

variance based on REV, tend to have a larger error variance using TC. The RK-estimated error 779 

variances are similar for different datasets (Fig. 4 and Fig. 6). 780 

 The hybrid results are not sensitive to the weighting scheme that is used. There were no 781 

statistically significant differences between the hybrid datasets when using different weighting 782 

methods (TC, REV, RK). There is also no significant advantage to using more complicated 783 

weighting (LSW) over the simple average (AVE). The merged products from two datasets (with 784 

one fixed as K-API) are found to have comparable accuracy with merged products using three 785 

datasets. This indicates that in-situ measurements are valuable for improving the accuracy of 786 

blended soil moisture datasets. In terms of different data formats (absolute, anomalies, percentiles 787 

or RK-gridded soil moisture), the NSE for anomalies and percentiles (0.60) is higher than that of 788 

absolute soil moisture (0.25) mainly due to reduced biases when using anomalies and percentiles 789 

(Supplementary. Fig. 6-8). However, the relative errors (or error ranking) is independent of the 790 

data format used. The errors from RK are highly correlated with ITS (Fig. 10 and Fig. 11). This 791 

indicates that the predictive capability of RK decreases as the heterogeneity increases. 792 

 Both K-API and AVE(K,N) are recommended as optimal soil moisture datasets. 793 

Considering the PRISM dates back to 1895 and NLDAS dates back to 1979, a long-term soil 794 
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moisture record can be generated by adopting the methods in this study. It is also found K-API can 795 

be used alone if the station density is high (>50 stations in our case). However, when the station 796 

density is low (<50 stations) and the stations are not representative, the hybrid product (AVE(K,N)) 797 

has significantly better performance. Increasing station density helps to capture the spatial 798 

variation of the target variable, while using an extra source of soil moisture information may help 799 

to reduce the overall uncertainties (Fig. 12). This has significant practical implications for real-800 

world applications because achieving a high density of stations that are spatially representative is 801 

always challenging.  802 

 Finally, there are some limitations of this study, such as: (1) the soil moisture products used 803 

in this study were extracted with time slot covering 7 am. However, a temporal mismatch between 804 

different soil moisture products may still exist due to their different temporal resolutions. Future 805 

work can adopt the daily average or other methods to ensure the temporal coherence of different 806 

datasets. (2) this study only considered precipitation (API) in soil moisture kriging, while in future 807 

studies other variables, such as soil properties, land cover and topography (DEM), may be helpful 808 

for soil moisture estimation (Ochsner et al., 2019) and should be considered to improve the 809 

accuracy using RK. (3) Geographically weighted regression kriging (GWRK) (Brunsdon et al., 810 

1996;Fotheringham et al., 2003) considers the spatially non-stationarity relationships between 811 

dependent variable and independent variables and weights the regression points by their distance 812 

to the target point. Therefore, it may be more accurate than RK (Yang et al., 2019;Kumar et al., 813 

2012), and should be explored in future studies for estimating soil moisture. (4) Further study is 814 

required to test whether these conclusions are valid in other parts of the world.  815 

 816 
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