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Abstract. The influence of topographical features and rainfall intensity on the accuracy of precipitation values estimated by 

earth observing satellites has attracted attention in the past decade. Assessment of rainfall products delivered by the Integrated 

Multi-satellitE Retrievals of Global precipitation measurement (IMERG) against ground observations has risen as an important 

endeavour since the accuracy of these products remain unreliable. This study comprehensively evaluated the three GPM 15 

IMERG products (near and post-real-time), over the period March 2014 to June 2018. The evaluation approaches were carried 

out for different seasons, rainfall intensities, topographical features, and hydrological regions over an extremely arid and 

semiarid country of Saudi Arabia. In general, the results confirmed that the performance of the final-run product surpassed the 

near-real-time products in terms of consistency and estimated errors. The evaluation results showed that for seasonal-based 

evaluation, the precipitation products exhibited better performance in spring and summer, while having relatively lower 20 

accuracy and higher biases in fall and winter. In addition, the results showed that the IMERG products had high performance 

in capturing the various rainfall intensities, with light rain having the highest accuracy. This is particularly important for arid 

regions as most of the rainfall is of the low-intensity class. Overall, the higher the rainfall intensity, the higher the detection 

errors in the IMERG products. Moreover, the hydrological evaluation results showed that the hydrological regions with low 

density of rain gauge stations hinders the proper evaluation of satellite products and tends to underestimate the performance 25 

of the products. Furthermore, the accuracy of the precipitation products was affected by topography to different extents. 

IMERG precipitation products exhibited high detection accuracy over moderate elevation areas (inland regions); whereas it 

had poor performance over flat plains (coastal regions) and high altitudes (foothills and mountainous regions). The outcomes 

of this evaluation could help developers in improving the GPM IMERG calibration to achieve better detection accuracy over 

arid and semiarid regions. More importantly, these results are of interest for local authorities to help manage development 30 

activities and to plan precautionary measures for extreme rainfall events. 
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1 Introduction 

Precipitation is one of the most complex natural processes in the hydrological cycle that undergoes momentous variability at 

spatial and temporal scales. The acquisition of accurate precipitation measurements is crucial since it is the main input in a 

wide range of applications such as climate change prediction, environmental studies, hydrological modelling, flood forecasting, 35 

drought monitoring, and water resources assessment. In addition, precipitation measurements at a high spatial and temporal 

resolution are crucial to properly simulate the hydrological states of natural systems. Precipitation characteristics, such as the 

rainfall pattern, intensity, probability distribution of rainfalls and return periods, are considered the basis for studying the 

hydrological behavior of any catchment (Derin and Yilmaz, 2014; Li et al., 2013; Mahmoud et al., 2018; Wu et al., 2012). 

The main sources of rainfall data are measurements of rain gauge stations, observations of weather radar, and satellite-based 40 

rainfall measurements (Zhao et al., 2017). In most of the cases, rain gauge networks are poorly distributed, particularly in 

mountainous topographies. Thus, records of rain gauge stations may not reflect the hydro-metrological characteristics of such 

a region accurately (Eris and Agiralioglu, 2012). Many researchers tried to apply interpolation techniques to estimate rainfall 

for poorly gauged and ungauged regions. However, several drawbacks from using these techniques were reported due to 

technical limitations such as insufficient rain gauge stations and poor quality of data (Eris and Agiralioglu, 2012). In addition, 45 

most rain gauge stations have numerous measurement problems, for example, observer errors, evaporation of precipitation, 

and errors of heavy rain measurements due to splashing. Weather radars provide measurements that are with high spatial 

resolution over a certain region and can be easily achievable compared to developing networks of rain gauge stations. Radars, 

however, have deficiencies due to poor coverage and problems such as beam blockage in complex topographic features (Furl 

et al., 2015). On the other hand, satellite-based precipitation estimates offer timely, quasi-global coverage, and are not inhibited 50 

by local topography. Furthermore, a lot of effort has been put into the validation and verification of satellite-based perception 

estimates (Mantas et al., 2015; Nicholson et al., 2003). Nevertheless, sub-par performances of satellite estimates were 

commonly reported globally, particularly with their ability to precisely capture high rainfall magnitudes. The main superiority 

of satellite data over rain gauge data is that it provides uniform spatial coverage at high temporal resolution. Moreover, Satellite 

products are valuable in mountainous regions as it provides well coverage in comparison to both weather radar observations 55 

and gauges data (Boushaki et al., 2009). However, it is sometimes difficult to assess their accuracy due to the lack of reliable 

ground-based observations (Hirpa et al., 2010). 

In the last three decades, meteorologists and hydrologists were attracted by the advancement in the satellite information 

technology resulting in developing algorithms to retrieve precipitation data from cloud information. These algorithms estimate 

precipitation amounts from the characteristics of clouds as interpreted from infrared (IR), visible (VI), and microwave (MW) 60 

satellite images (Boushaki et al., 2009). Generally, passive microwave (PMW) measurements have demonstrated high 

performance on the global scale compared to the algorithms based on IR and VI while precipitation estimations that are based 

on IR have a higher temporal resolution than others (Ebert et al., 2007; Hobouchian et al., 2017). Currently, most of the 

recognized satellite-based precipitation products are a different combination of MW and IR to benefit from their 
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complementary strengths. For instance, the (PERSIANN) method which refers to Precipitation Estimation from Remotely 65 

Sensed Information using Artificial Neural Networks generates rainfall estimates by applying driving relations between IR 

and MW data to IR data (Sorooshian et al., 2000). Furthermore, other methods such as Climate Prediction Center Morphing 

Method CMORPH  generates a rainfall estimates that are derived from MW data while IR data, that used to propagate the rain 

pixels by a tracking approach to derive a cloud’s motion field (Joyce et al., 2004).  

The first devoted meteorological precipitation satellite is the Multi-satellite Precipitation Analysis (TMPA) 3B42R that was 70 

produced by the Tropical Rainfall Measuring Mission (TRMM). The National Aeronautics and Space Administration (NASA) 

launched the successful satellite in late 1997. The TRMM products were used widely, and the recent update was released in 

2012 including two products: the post-processed product (3B42-V7) and the near real-time product (3B42RT). The TMPA 

applies an estimation method that relies on using IR calibrated estimates with MW estimates. The TMPA product provides 

estimations of tropical precipitation with good accuracy (Hirpa et al., 2010; Huffman and Bolvin, 2007; Huffman et al., 2007; 75 

Prakash et al., 2018). Recently, in 2014, NASA and Japan Aerospace Exploration Agency (JAXA) cooperated to launch the 

Global Precipitation Measurement (GPM) satellite, after the impressive success of TRMM. It consists of one main observatory 

satellite and ten other partner satellites, carrying a up-to-date Dual-frequency Precipitation Radar (DPR), GPM Microwave 

Imager (GMI), and other innovative instruments (Huffman and Bolvin, 2007; Kim et al., 2017). The satellite is anticipated to 

perform efficiently in the prediction of flood hazards and reduce uncertainties in estimating short-term precipitation as it has 80 

a high spatiotemporal resolution (De Coning and Poolman, 2011; Sharifi et al., 2016).  According to NASA, the GPM provides 

four levels of data; which are Level-0, Level-1, Level-2 and Level-3. The concerned product that is representing Level-3, is 

the Integrated Multi-satellitE Retrievals for GPM (IMERG), released in the early 2015, and has since gained more attention 

and recommendations from researchers and practitioners. IMERG products have a high resolution (spatially 0.1° latitude × 

0.1° longitude) and multiple temporal resolutions (ranging from half-hourly, up to monthly basis). It includes three modes of 85 

output namely, early, late, and final (the post-real-time) runs based on latency and accuracy. Its data incorporate, merge and 

calibrate many features from TMPA, CMORPH, and PERSIANN precipitation products (Wang et al., 2017).  

While the recent advancement in satellite precipitation products promises a parallel advancements in related applications in 

the fields of meteorology and hydrology, it is important to note that there is a continuous  need for the investigation and critical 

evaluation of their products’ accuracy and performance in estimating precipitation events under varied conditions (Furl et al., 90 

2018).  Generally, satellite-based precipitation products provide more accurate estimates in tropical wet and dry zones than in 

mountainous and semi-arid regions (Thiemig et al., 2012). Several studies indicated that the Tropical Rainfall Measuring 

Mission (TRMM) and its continuation mission GPM provide more accurate and relatively consistent estimates. However, it 

could underestimate heavy rainfall events and overestimate average rainfall events (Omranian and Sharif, 2018; Vernimmen 

et al., 2012). 95 

One of the often-discussed challenges for satellite precipitation retrievals is areas with complex topography where the 

precipitation has high spatiotemporal variation (Hobouchian et al., 2017). It is not common to find rain gauges in mountainous 

regions due to accessibility issues. In addition, since most developments exist in lowlands, it follows that most of the rain 
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gauges are concentrated in lowlands while the highlands are left under-represented. Since this under-representation can be 

augmented with satellite products, researchers have started focusing on evaluating satellite precipitation products over complex 100 

topography (Blacutt et al., 2015; Dinku et al., 2010; Gao and Liu, 2013; Habib et al., 2014; Hirpa et al., 2010; Salio et al., 

2015). These efforts represent a good start, but more research is needed to cover different topographic and climatic regions 

around the globe. Results show that the main sources of error in the satellite precipitation measurement are from IR and PMW 

retrievals. The thermal thresholds of IR retrievals, which are used to differentiate between the rainy and unrainy clouds, will 

underestimate the heavy rainfall events (Dinku et al., 2008, 2010) and miss the light rain (Hong et al., 2007) resulting from 105 

warm orographic clouds over mountainous regions. Whereas, PMW retrievals depend on the ice loft to detect the heavy rainfall, 

where this is not the situation in the mountainous regions as heavy rain events could happen without ice particles due to the 

warm orographic clouds (Dinku et al., 2010). In some cases, PMW retrievals overestimate precipitation as they are misled by 

the ice covers and cold atmosphere on the top of the mountains and consider them as rainy clouds (Derin and Yilmaz, 2014; 

Hirpa et al., 2010; Hobouchian et al., 2017)  110 

In addition to complex topography, low rainfall intensity events represent another challenge for satellite precipitation products. 

Although light rain covers vast areas of the globe, particularly the subtropics, yet to-date there are limited studies attempting 

to evaluate the accuracy of satellite products in light rain detection. It has been observed that the trends of light rain decreased 

along the period of 1973 to 2009 in Asia, North America, and Europe (Qian et al., 2010; Song et al., 2017). Light rain can be 

classified into two types, either intense showers falling over small areas or light rain falling over large areas (e.g. drizzles). 115 

PMW sensors fail to detect these intense showers or light precipitation that happen over only a few kilometers since its footprint 

resolution ranges between 10 to 50 km (Song et al., 2017). TRMM Precipitation Radar TRMM PR is only sensitive to the 

precipitation over 0.5 mm/h. One of the missions of the GPM is to improve the monitoring of snowfall and light rain by using 

highly sensitive PMW sensors and taking higher samples (Hou et al., 2014).  GPM has a passive microwave radiometer that 

includes 13 channels called GPM Microwave Imager (GMI) coupled with Ka/Ku-band dual-frequency precipitation radar 120 

(DPR) (Draper et al., 2015). The sensitivity of the latter is 0.2 mm/h which is higher than that of the TRMM precipitation radar 

promising to detect light rain and snowfall at high latitudes (Prakash et al., 2018).  

The Kingdom of Saudi Arabia (KSA), is a relatively large (2.15 million km2) country that mostly falls within the same climatic 

zone, attracted several studies for evaluating satellite-based precipitation products. Studies that evaluated TRMM products 

over Saudi Arabia discovered that there was considerable variation in the accuracy of the products for different events and 125 

sub-regions; the conclusion was that TRMM cannot be the only source of data for hydrological as it provides limited input 

information (Almazroui, 2011; Kim et al., 2017). Another study validated the IMERG products throughout Saudi Arabia, the 

findings reflected that the final-run product had a greater performance in detecting and estimating the precipitation over large 

portion of the focused area (Mahmoud et al., 2018). This study was, however, limited to only two seasons (winter and fall 

2015-2016), which calls for a more comprehensive study over a longer period. 130 

This study performed to assess the accuracy of GPM IMERG three products namely; early, late and final run products, over 

Saudi Arabia. The evaluation was conducted by using ground observation data acquired from 275 rain gauge stations at daily 
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scale over the period March 2014 to June 2018. The evaluation of IMERG satellite products in this study will be threefold: (1) 

evaluate the impact of spatial characteristics (topographical and hydrological zones) on IMERG products; (2) evaluate the 

variation in IMERG performance in different seasons; and (3) evaluate the performance of IMERG in detecting rainfall at 135 

different intensities. Overall, this study presents a comprehensive evaluation that considers a wide range of evaluation 

approaches on both temporal and spatial scales. More importantly, for the first time in the study area, this study evaluates the 

IMERG precipitation products performance under the five rainfall intensity categories (light, moderate, heavy, storm and 

strong storm) with a focus on light rain detection. 

2 Study Area 140 

The study is focused on The Kingdom of Saudi Arabia (KSA) that occupies an area of about 2,250,000 km2, which is just 

under eighty percent of the Arabian Peninsula. The country covers a complex topographical surface, which falls between 43°- 

55°E and 32°-16°N, as represented in Fig. 1. Its vast area (with a wide latitude expanse) combined with its topographical 

variation resulted in diverse precipitation over the area (Hasanean and Almazroui, 2015; Mahmoud et al., 2018). The country 

has thirteen administrative regions and about 400 rainfall stations (Al-Zahrani and Husain, 1998). 145 

Although the country has a wide climatic range due to spatial and temporal temperature variability, it is considered one of the 

driest countries in the world. In addition, the eastern and southeastern regions of KSA include the largest sand desert in the 

world, called The Rub Al-Khali (Empty Quarter) (Hasanean and Almazroui, 2015). Based on the aridity index, as defined by 

(Topographic, seasonal and aridity influences on rainfall variability in western Saudi Arabia), the majority of the country’s 

area is classified as a desert climate, where precipitation is infrequent, and temperatures are high, with an exception of the 150 

mountainous region as it is considered a semiarid region. The main factors behind the peculiar climate of KSA are its sub-

tropical latitude and location. It is sandwiched between the massive continental land of Africa and Asia, and at the same time 

close to the circum-global latitudinal belt, that has high atmospheric pressure. These factors make KSA one of the hottest and 

lowest humidity countries in the world, except for its coastal lands (Hasanean and Almazroui, 2015; Horton et al., 2010).  

In general, precipitation over KSA is variable with around 100 mm total annual rainfall. In the northern half of the country, 155 

the rainy season starts in October and ends by April while there is almost no precipitation for the remainder of the year. Rain 

in this area results from the feeble weather originating from the Mediterranean or North Africa. The southwestern region, on 

the other hand, experiences a different precipitation pattern resulting from a mountain range that extends to western Yemen in 

a north-south orientation along the Red Sea, with heights more than 1500 m. These mountains cause an uplifting of the Indian 

monsoon and the occurrence of heavy rainfall in the region. Overall, this part of KSA is characterized by rainfall during the 160 

whole year due to convective rain driven by topography (Hasanean and Almazroui, 2015; Horton et al., 2010).  
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Figure 1. Distribution of rain gauge network operated by Ministry of Environment, Water, and Agriculture (MEWA), KSA. 

3 Rainfall Datasets 

3.1 Rain Gauge Dataset 165 

This study intends to validate the accuracy of the satellite precipitation estimates over the whole KSA, which has different 

topographical and hydrological zones. Ideally, well-distributed and sufficiently dense rain gauge stations should be used for 

such a study. Many researchers used the GPCC (http://www.dwd.de/) gauge data for evaluation purposes; this data is not of 

sufficient density nor distribution for obtaining ground observation data at fine spatial resolution (Wang et al., 2017). In this 

study, we have used daily rainfall data obtained from the Ministry of Environment, Water, and Agriculture (MEWA) of Saudi 170 

Arabia. The data includes more than 270 gauges distributed over the country (see Fig. 1), and extending for the period from 

March 2014 to June 2018 to match the GPM Satellite data availability. These MEWA rain gauge stations are not included in 

the GPCC data; therefore, the evaluation carried out in this study is independent of the calibrated satellite data especially since 

the IMERG final product is only calibrated using GPCC data. Overall, the data covers most of the study area with a slight 

variation in distribution. It can be observed that the rain gauge stations are concentrated in the western and southwestern parts 175 

of the country as well as the middle part, which has the country’s capital city Riyadh. The eastern part also has a good 
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distribution of the gauges. On the other hand, the northern part and the southeastern parts of the country have a sparse 

distribution of rain gauge stations.     

3.2 IMERG Dataset 

The IMERG data is provided at a spatial scale of approximately 11 × 11 km and between 60°S - 60°N with different temporal 180 

scales. In this study, we have used the finest temporal resolution (half-hourly) data. It includes three modes of runs, near real-

time: early-run (IMERG-E) and late-run (IMERG-L), and post-real-time: final-run (IMERG-F). The differences between the 

three products are the time of release and the calibration process. The near-real-time products are pure satellite products, which 

are released 4 hours and 12 hours after a real-time, respectively; while the post-real-time IMERG-F is calibrated with the 

GPCC data and released after about 2 months. The IMERG products were requested and collected from NASA’s website 185 

through the link (https://pmm.nasa.gov/data-access/downloads/gpm). 

4 Methodology 

The primary objective of this study is to assess the capability of the IMERG products for detecting the rainfall under low 

intensity, and over various topography over the KSA. Rainfall ground observations during the period from March 2014 to June 

2018 were used as a reference in this study. The evaluation was carried out in the following main steps: preparation of rain 190 

gauge data, processing of the satellite data, and performing the spatiotemporal evaluation of the GPM satellite data versus the 

gauged-based data using a set of statistical indices. 

4.1 Data Preparation and Processing 

Precipitation data was downloaded from MEWA website for all KSA rain gauges that observed a rainfall during the study 

period. The data was stored in a database containing the longitude, latitude, altitude, and the UTM zone of each station to use 195 

in subsequent steps. The data was provided with Hijri dates and was converted to Gregorian date to be able to match it with 

the IMERG data. Regarding the GPM IMERG data, a script written in R was used to extract data for the study area, as the 

GPM data covers almost the entire globe. The raw GPM IMERG data provides each half-hourly data in one file. Therefore, 

the number of processed files to cover the study period was 75,480 for the period from March 2014 to June 2018. In addition, 

the data was adjusted to match KSA day, as the day begins 3 hours ahead of GMT. Since the reference rainfall (gauge-based) 200 

data was available at the daily temporal resolution, the IMERG data was aggregated from half-hourly to daily to sustain the 

homogeneity in the comparison. 

The next step of the analysis was to determine and compile the rainfall events happening during the study period based on 

ground observations. In this study, daily precipitation values that amounted to zero was discarded and values greater than zero 

were considered as ‘rainfall observation’. The next step in the analysis was to determine the GPM grids points representing 205 

rain gauge stations (point to point analysis). An algorithm (a script) was used to select the accurate grid point in the IMERG 
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file that matches the coordinates of the ground station. Based on the event date and UTM zone, the developed code would 

select and read the corresponding IMERG processed file and take the nearest intersection of grids to the ground station 

coordinates. This extracted value was then compared to the value obtained by the rain gauge station. Statistical performance 

measures were calculated to evaluate the accuracy of the IMERG products. The aforementioned steps were coded to ease and 210 

automate the analysis process. Fig. 2 demonstrates the structure of each module and how each part of the analysis was 

implemented.   

 
Figure 2. Schematic diagram of the event determination, matching coordinates, and data analysis modules. 

4.2 Statistical Evaluation Indices 215 

Quantitative statistical indices were used to evaluate the accuracy of the GPM IMERG products against the ground station 

observations. In this study, statistical measures were divided into three main groups: the categorical statistical indices, the 

classical statistical indices, and the correlation coefficient index. The first group of indices describes the detection accuracy of 

the IMERG measurements. It includes the probability of detection (POD), which measures the ratio of ground observations 

that were correctly detected by the IMERG estimates, with an optimum value equal to 1; and the critical success index (CSI), 220 

which also describes the ability of IMERG products to detect the precipitation over an area. In this study, since the data analysis 

and the evaluation process are based on the events and not on the whole time series, both POD and CSI will give same values 

as there will be no precipitation events detected only by satellite. The second group measures the level of error and bias in 

IMERG products; it includes mean absolute error (MAE), root mean square error (RMSE) and relative bias (RBIAS). MAE 

provides a general assessment of the errors of IMERG precipitation data versus rain gauge observations while RMSE quantifies 225 

the magnitude of these errors. On the other hand, RBIAS shows the systematic errors between the two precipitation data sets. 

The third group indicates the consistency of the IMERG products with ground observations which is represented by the 
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correlation coefficient (CC) that provides a measure of agreement between IMERG products and ground observations. The 

following formulas used to calculate the statistical indices. 

Table 1. List of statistical evaluation indices utilized to assess the IMERG-E, IMERG-L, and IMERG-F 230 

Statistical Indices Formulae Optimum Value 

Probability of Detection (POD) 𝑃𝑂𝐷 =  
𝑁𝑂𝐷

𝑁𝑂𝐷 + 𝑁𝑂

 1 

Critical Success Index (CSI) 𝐶𝑆𝐼 =
𝑁𝑂𝐷

𝑁𝑂𝐷 + 𝑁𝐷 + 𝑁𝑂

 1 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
1

𝑛
∑ |𝐷𝑖 − 𝑂𝑖|

𝑛

𝑖=1
 0 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐷𝑖 − 𝑂𝑖)2

𝑛

𝑖=1
 0 

Relative Bias (RBIAS) 𝑅𝐵𝐼𝐴𝑆 =

1
𝑛

∑ (𝐷𝑖 − 𝑂𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

× 100% 0% 

Correlation Coefficient (CC) 
𝐶𝐶 =

∑ (𝐷𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝐷𝑖 − �̅�) ∑ (𝑂𝑖 − �̅�)𝑛
𝑖=1

𝑛
𝑖=1

 
1 

Where 𝑛 is number of records, 𝐷𝑖  is detected precipitation value by the satellite, 𝑂𝑖  is observed rainfall value by ground 

stations, �̅�, �̅� are mean values of 𝐷𝑖  and 𝑂𝑖 , 𝑁𝑂𝐷 is the number of observed and detected events by both satellite and rain gauge 

, 𝑁𝑂 is the number of events that are observed by rain gauge but not detected by the satellite, 𝑁𝐷 is the number of events that 

are not observed by the rain gauge but detected by the satellite. 

4.3 Evaluation Techniques 235 

In this study, the evaluation of the accuracy of GPM IMERG precipitation products was divided into three main areas, namely: 

temporal evaluation, spatial evaluation (topographical and hydrologic), and rainfall intensity-based evaluation. 

4.3.1 Seasonal Evaluation 

The seasonal evaluation was conducted by analyzing rainfall on a seasonal basis throughout the study period over the entire 

study area. Ground observations and IMERG datasets were prepared and grouped to represent the four seasons of KSA which 240 

are: December to February (winter), March to May (spring), June to August (summer), and September to November (fall) as 

stated by (Hasanean and Almazroui, 2015). The evaluation focused on investigating the capability of IMERG products to 

accurately detect the rainfall in the season and determine the rainfall distribution variability within the season. The objective 

of this analysis is to verify the utility of IMERG products as a source of data that could help bring a better understanding of 

the climate of Saudi Arabia. This analysis could also highlight the use of GPM data in monitoring climate change in the region, 245 
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particularly with respect to forecasting possible future changes of both potentially hazardous events and recurring seasonal 

events. This information is important for development sectors, such as agriculture and tourism. In order to contextualize these 

potential future changes, this evaluation of current and recent time periods needs to be well understood both in terms of seasonal 

phenomena and extremes (Horton et al., 2010). 

4.3.2 Rainfall Intensity-Based Evaluation 250 

The objective of this evaluation was to explore the ability of IMERG products in detecting the different precipitation intensities 

ranging from light rain to large storms events. The focus was on the detection of light rain since it is the most frequent type of 

precipitation in arid regions such as Saudi Arabia. The evaluation was neither strictly temporal nor spatial, but rather a 

combination of both. It evaluates the detectability of events that had fallen over the entire study area, and throughout the entire 

study period categorized only by precipitation intensity. The approach required imposing various thresholds to classify 255 

precipitation intensities thresholds were adopted from Chinese Meteorological department (Zheng et al., 2014) (Table 2). 

Table 2. Rainfall classification according to the Chinese meteorological department (Zheng et al., 2014) 

Rainfall Class 24h Rainfall Amount (mm) 

Light rainfall < 10 

Moderate Rainfall 10-25 

Heavy Rainfall 25-50 

Storm 50-100 

Large Storm 100-250 

Extreme Large Storm ≥ 250 

 4.3.3 Spatial Evaluation 

The spatial evaluation was conducted based on two major approaches: topographical and hydrological zoning of the study 

area. The first approach was a topographical-based evaluation, carried out in order to assess the influence of topography on 260 

the performance of the IMERG precipitation measurements. This is particularly important since Saudi Arabia has a complex 

topography. The study area was divided into five topographical regions according to (Elnesr et al., 2010) as shown in Fig. 3. 

The topography in KSA varies from low altitudes in the coastal areas (0 up to 100m) to high altitudes in the mountainous areas 

(more than 2000m). The second approach was a hydrological-based evaluation. The KSA is divided into ten hydrological 

regions with unique characteristics, as discussed in previous studies (Al-Zahrani and Husain, 1998). The study area was divided 265 

into the 10 hydrological regions, each of which including several ground stations. The objective of this approach was to test 

whether or not the IMERG products can perform accurately in the different hydrological regions. The results can be of interest 

to government authorities conducting development plans in the different hydrological regions. Fig. 4 shows the hydrological 

regions of Saudi Arabia based on the Ministry of Agriculture and Water map (1984) (Elnesr et al., 2010).  
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 270 
Figure 3. KSA rain gauges distribution over the different topographical regions. 

 
Figure 4. KSA rain gauge network distribution over the different hydrological regions. 
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5 Results 

5.1 Seasonal-based Evaluation 275 

Saudi Arabia has four seasons along the year; hence, the study period included 17 seasons in total (4 falls, 4 summers, 4 

winters, and 5 springs). Table 3 illustrates the results of the performance indices of the three IMERG products, designed to 

guide the analysis of the performance of these products on a seasonal basis. The analysis was based on the three indices: 

categorical statistical indices, classical statistical indices, and correlation coefficient.  

In terms of categorical statistical indices that indicate the detection accuracy, the three IMERG products performed irregularly 280 

during the four seasons over the study period. Most of the seasons showed high POD/CSI with an average of 0.9 while some 

seasons showed fair values decreasing to a minimum of 0.68. In general, IMERG-F and IMERG-L performed better than 

IMERG-E, and both had almost the same results during the study period. All IMERG products performed accurately in summer 

with high POD/CSI values ranging between 0.9 to 0.99.  Spring comes after the summer in the level of detection accuracy 

where all IMERG products showed relatively high PODs/CSIs with an average of 0.897. Regarding fall seasons, the highest 285 

POD/CSI values, around 0.92, were observed in 2014 by the three IMERG products. The remaining years had lower POD/CSI 

values with an average of 0.854 with a slight improvement in IMERG-L and IMERG-F over IMERG-E. winter was the season 

with the least detection accuracy. IMERG-E showed only an acceptable PODs/CSIs ranging between 0.68 and 0.83. Whereas, 

both IMERG-L and IMERG-F showed an improvement in accuracy with higher PODs/CSIs values reaching 0.88. 

Classical statistical indices (MAE, RMSE, and RBIAS) showed reasonably low error values compared to similar studies (Kim 290 

et al., 2017; Mahmoud et al., 2018, 2019) for IMERG products throughout the seasons. IMERG-F had the least MAE and 

RMSE values for all seasons (Table 3). Based on the calculated statistical errors, the seasonal analysis showed a clear 

improvement moving from IMERG-E to IMERG-L and finally to IMERG-F. In addition, all IMERG products showed very 

small values of RBIAS fluctuating between underestimation and overestimation of the rainfall during all the seasons (RBIAS 

< ± 0.7%), except for one calculation of RBIAS of IMERG-L on winter 2014-2015. The spring season exhibited the lowest 295 

estimated errors amongst other seasons for the three IMERG products, followed by the summer season. In the fall season, 

estimation errors for all the IMERG products showed similar trends; however, the averages of these errors were higher than 

those observed during spring and summer. The winter season had the highest errors (MAEs and RMSEs) compared to the rest 

of the seasons. 

In term of consistency, IMERG products showed low CCs for all the seasons throughout the study period. However, the results 300 

revealed that IMERG-F had a better consistency than the other two products as it resulted in most of the highest CCs with a 

maximum CC (> 0.5 in fall 2017). Fall seasons showed the highest CCs compared to other seasons ranged between 0.185 to 

0.557. 
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Table 3. Statistical indices for the seasonal-based evaluation of IMERG products 

 CC MAE RMSE RBIAS POD/CSI 

S
ea

so
n

 

Year 
IMER

G-E 

IMER

G-L 

IMER

G-F 

IMER

G-E 

IMER

G-L 

IMER

G-F 

IMER

G-E 

IMER

G-L 

IMER

G-F 

IMER

G-E 

IMER

G-L 

IMER

G-F 

IMER

G-E 

IMER

G-L 

IMER

G-F 

F
al

l 

2014 0.192 0.262 0.185 11.41 10.68 9.91 15.89 14.87 14.23 0.06 0.06 -0.02 0.92 0.92 0.92 

2015 0.173 0.201 0.327 13.61 13.12 9.04 21.22 20.7 14.28 0.04 0.04 -0.06 0.84 0.86 0.86 

2016 0.361 0.403 0.48 11.22 10.83 9.25 17.55 16.97 12.76 -0.04 -0.03 -0.11 0.84 0.86 0.86 

2017 0.444 0.483 0.557 9.8 9.37 8.68 14.92 14.27 14.11 -0.14 -0.14 -0.41 0.84 0.87 0.87 

S
p

ri
n

g
 

2014 0.113 0.118 0.342 7.7 7.81 6.45 11.59 11.58 10.37 -0.13 -0.12 -0.36 0.9 0.91 0.9 

2015 0.21 0.089 0.216 10.89 11.45 8.24 16.76 18.04 13.06 0.02 -0.01 -0.17 0.91 0.95 0.95 

2016 0.273 0.222 0.415 10.47 9.98 9.42 16.95 16.13 16.15 -0.04 -0.04 -0.07 0.91 0.93 0.93 

2017 0.289 0.096 0.251 9.69 8.75 8.16 14.89 13.41 12.72 -0.02 -0.13 -0.12 0.89 0.92 0.88 

2018 0.033 -

0.248 

0.228 12.85 9.19 6.83 18.31 12.96 10.34 0.15 -0.66 -0.1 0.88 0.73 0.89 

S
u

m
m

er
 

2014 0.071 0.183 0.193 10.73 10.12 9.65 14.61 13.57 13.17 -0.27 -0.2 -0.33 0.9 0.9 0.9 

2015 0.291 0.296 0.296 9.97 10.07 10.62 14.21 14.41 14.32 -0.23 -0.25 -0.51 0.93 0.94 0.94 

2016 0.278 0.343 0.329 14.48 13.83 12.41 21.51 20.45 18.88 -0.06 -0.04 -0.17 0.94 0.97 0.97 

2017 -

0.004 

-

0.031 

-

0.005 

12.65 11.36 10.73 17.46 15.9 15.41 -0.09 -0.23 -0.52 0.99 0.99 0.99 

W
in

te
r 

2014-

15 

0.082 0.101 0.094 11.97 11.58 10.47 15.15 14.78 10.39 0.31 5.68 -0.5 0.78 0.71 0.8 

2015-

16 

0.095 0.119 0.147 12.09 12.58 11.36 16.32 16.5 12.28 -0.05 -0.03 -0.1 0.72 0.73 0.74 

2016-

17 

0.106 0.194 0.356 15.63 13.25 12.19 21.66 20.56 20.24 -0.2 -0.19 -0.18 0.68 0.76 0.76 

2017-

18 

0.301 0.317 0.286 14.23 14.28 12.89 19.35 21.35 14.22 0.43 0.55 0.16 0.83 0.87 0.88 
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On the other hand, it is worth to mention that the three IMERG products showed very weak correlations (CC < 0.5) during the 305 

seasons with slight enhancement in IMERG-F. This might be because Saudi Arabia is characterized by unreliable precipitation 

and high spatial and temporal temperature variability which makes the IMERG-F calibration done by GPCC, which is based 

on the monthly scale, not daily scale, sub-optimal (Tan and Santo, 2018). Therefore, it is better to use daily precipitation in the 

calibration as a further step to improve the IMERG-F algorithm. This is reinforced by similar findings and justifications 

stipulated when the IMERG products were assessed over Malaysia by (Tan and Santo, 2018).  310 

As for seasons, it can be noticed that based on the averages of the statistical measures, spring and summer were better 

represented by the IMERG products than fall and winter seasons. Summer is the drier season in Saudi Arabia that has the 

lowest amount of precipitation while the highest precipitation values occurred in spring (Hasanean and Almazroui, 2015). This 

indicates that IMERG products have the capability to detect seasons with the highest precipitation values as well as the seasons 

with the lowest ones. On the other hand, IMERG products had relatively low performance in the winter; this may be due to 315 

the fact that most winter precipitation particularly falls over the southwest region which are mountainous areas (Hasanean and 

Almazroui, 2015). This will be corroborated by the topography-based evaluation in section 5.3.1. 

5.2 Rainfall Intensity-based Evaluation 

Overall, in terms of detection accuracy, the three products of IMERG presented high detection accuracy for the four various 

rainfall classes over KSA over the period from March 2014 to June 2018. The observed PODs/CSIs ranged between 0.71 and 320 

0.96. However, IMERG-F and IMERG-L showed higher performance in detecting all rainfall classes than IMERG-E. They 

both had the same detection accuracy with values of 0.96, 0.91, 0.9, 0.87, and 0.86 for storm events, heavy rainfall, moderate 

rainfall, light rainfall, and large storm events, respectively.  

In terms of detection errors, it can be observed that the classical errors (MAE and RMSE) increased with the increase of rainfall 

intensity for all IMERG products. Light rain, moderate rain, heavy rain, storm, and large storm events came in ascending order 325 

in term of errors. The values of error increased gradually with an average increase of about 10 mm except for storm events as 

it showed the highest errors with a significant increase (more than 50mm) compared to the class preceding it (storm). Regarding 

the RBIAS, very small percentages (0% to -0.69%) were observed for the three IMERG products during light, moderate and 

heavy rainfall. However, a clear underestimation was observed in large storm events amounting to around -11.83%, -12.64% 

and -13.03% for IMERG-E, IMERG-L, and IMERG-F respectively. Overall, both light rain and moderate rain showed an 330 

acceptable level of errors, while the remaining rainfall classes had high errors compared to previous studies (Mahmoud et al., 

2018). In general, IMERG-F exhibited the least errors in almost all the rainfall classes, while IMERG-E and IMERG-L 

fluctuated in performance across the different classes.    

All the IMERG products had very low correlations with ground observations. This was observed for four classes of the rainfall, 

with the exception of large storm events. Large storm events showed a higher correlation (0.74 observed by IMERG-L) in 335 

comparison to the other classes.  
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In summary, IMERG products showed high performance in capturing the various rainfall intensities. Light rain was the most 

detected class by IMERG products. Light rain accounted for about 60% of the total precipitation occurring over Saudi Arabia, 

which makes it particularly important to have a high detection accuracy for this class with minimum errors. The higher results 

of CCs for large storms events may be due to the fact that these events are quite rare over Saudi Arabia; it represents less than 340 

0.2% of the total precipitation. Thus, there is little probability of the temporal variability between the ground data and the 

satellite data for these large storms (i.e. higher CC). IMERG-F had the most accurate performance for most of the rainfall 

classes while it showed a close performance to IMERG-E and IMERG-L for the heavy rainfall and storm events as evidenced 

in errors (MAE and RMSE).  

The multichannel GPM Microwave Imager (GMI) consists of 11 radiometric channels with a range of 10 GHz to 85.5 GHz, 345 

and modern Dual-frequency Precipitation Radar (DPR) that operates with both Ka-band (35.3 GHz) and Ku band (13.6 GHz)  

(Kim et al., 2017). These high-frequency GMI and DPR lead to the high detection accuracy of light rain by GPM products. 

Kim (Kim et al., 2017) assessed the performance of GPM (IMERG) products over Far-East Asia and they verified the high 

detection of light rain by IMERG products in comparison to TRMM (TMPA). Another study carried out by (Tan and Santo, 

2018) to evaluate IMERG products against other satellite products over Malaysia revealed that IMERG products had the ability 350 

to detect light rain more accurately than other satellite products. Moreover, a study carried out by Xu et al. evaluated the 

IMERG and TRMM precipitation estimates over southern Tibetan Plateau region in China (Xu et al., 2017). Their results 

indicated that the IMERG products had a high capability to detect the light rain with an intensity of 0 to 5 mm/day. Moreover, 

we have noted that despite the small RBIAS in the various rainfall classes, except for the large storms, only the light rain 

showed overestimations while the other classes showed underestimations. This finding is consistent with the findings of Tian 355 

(Tian et al., 2017). They also proved that light rain has lower PODs than heavy rain and that the POD increased with the 

rainfall intensity, which is also reflected in our results (Table 4). 

5.3 Spatial Evaluation 

The three GPM IMERG products were evaluated spatially by investigating the topographical effect and the performance of 

the satellite over different hydrological regions. The following subsections will demonstrate the difference in the performance 360 

of the IMERG products in representing the spatial variation of rainfall. 

5.3.1 Topographical evaluation 

Fig. 5 shows the distribution of CCs and PODs over the five topographical regions of Saudi Arabia for the three IMERG 

products. From first glance, there was a clear enhancement in the performance of IMERG-F while IMERG-L had the lowest 

performance. In terms of consistency, all IMERG products showed very low CCs ranging between 0.18 and 0.3. The coastal 365 

region, which has the lowest elevations (<100 m) and the inland region of Saudi Arabia that ranges between altitudes of more 

than 200 and less than 1000 showed similar trends of CC values. Lands that are adjacent to the coastal region with elevations 

less than 200 also showed an improvement in performance for IMERG-F as CC increased to 0.3 from less than 0.18 for both 
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IMERG-E and IMERG-L. The mountainous areas were divided into two regions: foothills and high mountains. Overall, all 

the results for the different topographical regions presented improvements in the consistency observed in IMERG-F with the 370 

ground observations except the foothills region. 

Table 4. Rainfall intensity-based evaluation matrices. 

Event Date Product CC MAE RMSE BIAS POD/CSI 

Light IMERG-E 0.093 7.51 13.04 0.03 0.84 

IMERG-L 0.075 8.68 17.17 0.04 0.87 

IMERG-F 0.145 4.26 6.66 0 0.87 

Moderate IMERG-E 0.045 12.59 16.49 -0.01 0.89 

IMERG-L 0.039 13.32 18.83 -0.01 0.9 

IMERG-F 0.073 11.41 13.39 -0.03 0.9 

Heavy IMERG-E 0.012 23.58 26.55 -0.1 0.9 

IMERG-L 0.034 23.18 26.36 -0.09 0.91 

IMERG-F 0.113 24.46 26.55 -0.14 0.91 

Storm IMERG-E 0.173 41.68 45.66 -0.64 0.93 

IMERG-L 0.147 40.46 44.52 -0.61 0.96 

IMERG-F 0.175 43.22 47.24 -0.69 0.96 

Large storm IMERG-E 0.488 121.19 123.97 -13.03 0.71 

IMERG-L 0.714 117.57 119.64 -12.64 0.86 

IMERG-F 0.621 110.01 112.5 -11.83 0.86 
 

In terms of detection accuracy, the three IMERG products showed relatively high PODs (> 0.85), with some exceptions, which 

indicates a high level of detection. IMERG-L and IMERG-F showed similar patterns and results of POD over the five 375 

topographical regions, and they had slightly higher PODs than IMERG-E in three regions. The detection accuracy improved 

in the foothills and high mountains regions for the IMERG-L and IMERG-F as well as the region adjacent to the coastal areas.  

Fig. 6 shows the maps of the errors (MAE and RMSE) distribution for the three IMERG products over the various 

topographical regions. It can be seen that there was a strong improvement in the results (fewer errors) for IMERG-F, while 

IMERG-L had a lower performance than IMERG-E. Regarding MAE comparisons, the MAE of the inland, foothills and the 380 

region adjacent to coastal areas remained the same in both IMERG-E and IMERG-L while it dropped to less than 5 mm in 

IMERG-F. The estimated errors of the coastal region decreased to reach MAE between 7 and 10 mm for IMERG-F. The same 

trend was observed for RMSE as the best product with the lowest RMSE in all topographical regions was IMERG-F, and the 

worst one was IMERG-L. The most improvement was observed for the coastal and high mountains region for which RMSE 

decreased from 10 mm to 15 mm for IMERG-E to 5 mm to 10 mm for IMERG-F. These regions represent the topographic 385 

extremes, flat plain areas, and the highest altitudes, in the study area. Furthermore, the observed RMSEs in the inland region 
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and the region adjacent to the coastal areas decreased to less than 5 mm for IMERG-F. Minor percentages of RBIAS, almost 

negligible, were observed for all the IMERG products as seen in Table 5.  

The results indicate the high detection accuracy of IMERG-F in different topographical regions.  Even though all the IMERG 

products presented low correlation values with ground observations over the different topographical regions, IMERG-F 390 

showed a good improvement compared to IMERG-E and IMERG-L. Moreover, the coastal, foothills and high mountains 

regions exhibited the highest errors compared to other topographical regions.  

This conclusion is in agreement with the findings of a previous study conducted by Prakash (Prakash et al., 2018) who assessed 

the performance of IMERG products over India. They claimed that IMERG products were affected by the orographic process, 

which leads to higher errors and negative bias in mountainous areas. Another study carried out by Kim (Kim et al., 2017) also 395 

revealed the drawbacks of IMERG products over the mountainous and coastal regions. They attributed the poor performance 

of IMERG at coastal regions to a deficiency in the calibration algorithm that identifies rainy clouds over coastal areas. In the 

same context, similar results obtained by Anjum (Anjum et al., 2018) prompted them to caution users from using IMERG 

products in mountainous areas because of the high uncertainty in the daily precipitation, particularly light rainfall.   

 400 

Table 5. RBIAS measurements for IMERG-E, IMERG-L, and IMERG-F using the topographical-based evaluation. 

Region Name Altitude (m) IMERG-E IMERG-L IMERG-F 

Coastal region 0-100 0 -0.03 0.01 

Areas adjacent to the coasts 100 to 200 -0.02 -0.03 -0.01 

Inland region 200 to 1000 0.01 -0.02 0.02 

Foothills region 1000 to 2000 -0.08 -0.25 0.11 

High mountains region More than 2000 -0.09 -0.23 -0.05 
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Figure 5. Evaluation of IMERG products for the different topographical regions using CC measurements for a) IMERG-E, b) 

IMERG-L, and c) IMERG-F and POD indicator for d) IMERG-E, e) IMERG-L, and f) IMERG-F. 
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 405 
Figure 6. Evaluation of IMERG products for the different topographical regions using MAE measurements for a) IMERG-E, 

b) IMERG-L, and c) IMERG-F and RMSE indicator for d) IMERG-E, e) IMERG-L, and f) IMERG-F 
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5.3.2 Hydrological Regions Assessment  

Fig. 7 demonstrates the results of two groups of performance measures (CC and POD/CSI) across the different hydrological 

regions over Saudi Arabia. Region VII that is located in the southeast of the country and region II which is located in the south 410 

of the country had almost perfect correlations (CC = 1) while low to moderate correlation (CC is 0.3 to 0.5) was observed in 

one region (region V) that is located in the middle of the country. The rest of the regions showed low correlations (CC < 0.5). 

Correlations visibly improved for IMERG-F to reach CC > 0.5 throughout most of the regions.  

The three IMERG products showed a very high probability of detection in all regions except region VII, which presented lower 

POD for the three IMERG products (0.75). It is observed (Fig. 7) that IMERG-L and IMERG-F showed the same high detection 415 

accuracy with superiority for IMERG-L.  

Fig. 8 presents the classical errors (MAE, RMSE) across the hydrological regions. The performance of the three products can 

be ranked as IMERG-F, IMERG-L, and IMERG-E in descending order. Most of the regions showed lower MAEs for IMERG-

F. The MAEs for IMERG-F were about 2 mm lower than MAEs for IMERG-L in each region. The MAEs observed in region 

II, region VI south and region VII did not show any improvement through the IMERG (-E-L-F) products, nonetheless region 420 

II already had the lowest MAEs (<5 mm). The same trend for the order of the three IMERG products was observed in the 

calculated RMSEs. The minimum RMSE was observed in three regions while the maximum RMSE occurred in two regions.  

Regarding RBIAS, it is shown in Table 6 that IMERG products had insignificant fluctuation of RBIAS percentages for most 

of the hydrological regions. However, relatively high underestimation reflected by RBIAS percentages were observed in two 

regions (region II and region VII) for the three IMERG products with an average of -10.813% and 17.137% for region II and 425 

region VII respectively. In addition, region II had the lowest MAE and RMSE while it had the highest RBIAS percentages for 

the three IMERG products.  

In conclusion, IMERG-F outperformed IMERG-E and IMERG-L in the hydrological-based evaluation in terms of consistency 

and errors. Region VII and region II showed perfect correlation with the ground observations this probably resulted from the 

fact that both regions contain few rain gauge stations (one and two respectively) which leads to very high correlation. Region 430 

VII showed the lowest POD values compared to other regions. Overall, low density of rain gauge stations makes it inefficient 

to evaluate satellite products and results in an underestimation of the performance of these products. This is in agreement with 

the results of a previous study that investigated the relationship between the density of rainfall gauge stations and the 

performance of IMERG products (Tian et al., 2017). 

Table 6. RBIAS measurements for IMERG-E, IMERG-L, and IMERG-F using the hydrological-based evaluation. 435 

Regions IMERG-E IMERG-L IMERG-F 

Region I 0.08 0.11 -0.02 

Region II -10.93 -5.04 -16.47 

Region III -0.08 -0.06 -0.24 

Region IV 0.04 0.07 -0.02 
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Region V 0.02 0.04 -0.02 

Region VI-North 0.02 0.13 -0.27 

Region VI-South -0.02 -0.01 -0.03 

Region VII -16.49 -17.33 -17.59 

Region VIII 0.1 0.32 -0.13 

Region IX -0.13 -0.23 -0.7 
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Figure 7. Evaluation of IMERG products for the different hydrological regions using CC measurements for a) IMERG-E, b) 

IMERG-L, and c) IMERG-F and POD indicator for d) IMERG-E, e) IMERG-L, and f) IMERG-F 
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 440 
Figure 8. Evaluation of IMERG products for the different hydrological regions using MAE measurements for a) IMERG-E, 

b) IMERG-L, and c) IMERG-F and RMSE indicator for d) IMERG-E, e) IMERG-L, and f) IMERG-F 
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6 Conclusions 

This study assessed the performance the GPM three IMERG products; early, late, and final-run product, over KSA. Ground 

observations from 275 rain gauge stations over the period March 2014 to June 2018 were used as a reference. The evaluation 445 

of IMERG satellite products was carried out, considering three approaches. The first approach evaluated the seasonal effect 

on the performance of IMERG products; the second was to evaluate the impact of spatial characteristics, represented by the 

topographical and hydrological zones, on the accuracy of IMERG products; and the last approach focused on evaluating the 

performance of IMERG in detecting rainfall at different intensities. Quantitative statistical indices were used to quantify the 

performance of the IMERG products. The main conclusions of this study can be summarized as follows: 450 

 The seasonal analysis showed an improvement in the performance from IMERG-E, to IMERG-L, to IMERG-F. 

Nevertheless, all IMERG products showed very weak correlations (CC < 0.5) with ground observations throughout 

all the seasons. 

 Spring and summer are the most detected seasons by IMERG products. This leads to a conclusion that IMERG 

products have the capability to detect seasonal rainfall with both the highest (maximum daily rainfall observed on 455 

spring) and the lowest precipitation.   

 It was interesting to observe the high performance of IMERG products across the various rainfall intensity classes. 

According to the calculated classical statistical indices, the light rain had the lowest detection errors by IMERG 

products. However, the higher the rainfall intensity, the higher the detection errors in the IMERG products. The 

detectability of the rainfall, as indicated by POD, exhibit a reversed trend with moderate, heavy rainfall and storms 460 

having gradually higher detectability. 

 Even though the CC values are generally low for different rainfall intensities, large storm events showed significantly 

higher CCs (0.5 to 0.7) compared to lower intensity events. This is probably induced by the rarity of such large storms 

over arid regions such as Saudi Arabia.  

 Results of the evaluation based on hydrological regions were similar to other evaluations as IMERG-F outperformed 465 

IMERG-E and IMERG-L in terms of consistency and estimated errors. Hydrologic Region VII and region II showed 

perfect correlation with ground observations. This probably resulted from the fact that both regions contain few rain 

gauge stations (one and two respectively) which could have led to such a high correlation. Contrarily, region VII 

showed the lowest POD values compared to other regions. Overall, low density of rain gauge stations hinders the 

proper evaluation of satellite products and tends to underestimate the performance of the products. 470 

 Topographical features had a significant influence on the performance of IMERG products. The detectability (POD) 

was improved significantly in higher altitudes (mountains, and foothills regions), particularly for IMERG-F. 

However, the areas adjacent to the coasts showed a significant reduction in the estimation errors of IMERG-F; 

whereas the highest estimation errors were observed in coastal regions, foothills, and mountainous regions. 
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