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Abstract. It has been demonstrated that the application of time-varying hydrological model parameters based on dynamic 10 

catchment behavior significantly improves the accuracy and robustness of conventional models. However, the fundamental 

problems for calibrating dynamic parameters still need to be addressed. In this study, five calibration schemes for dynamic 

parameters in hydrological models were designed to investigate the underlying causes of poor model performance. The five 

schemes were assessed with respect to the model performance in different flow phases, the transferability of the dynamic 

parameters to different time periods, the state variables and fluxes time series, and the response of the dynamic parameter set 15 

to the dynamic catchment characteristics. Furthermore, the potential reasons for the poor response of the dynamic parameter 

set to the catchment dynamics were investigated. The results showed that the underlying causes of poor model performance 

included time-invariant parameters, “compensation” among parameters, high dimensionality, and abrupt shifts in the 

parameters. The recommended calibration scheme exhibited good performance and overcame these problems by characterizing 

the dynamic behavior of the catchments. The main reason for the poor response of the dynamic parameter set to the catchment 20 

dynamics may be the poor convergence performance of the parameters. In addition, the assessment results of the state variables 

and fluxes, and the convergence performance of the parameters provided robust indications of the dominant response modes 

of the hydrological models in different sub-periods or catchments with distinguishing catchment characteristics. 

1 Introduction 

Hydrological modeling is an essential tool for understanding the hydrological processes of a catchment and forecasting 25 

streamflow (Liu et al., 2015, 2018; Turner et al., 2017; Delorit et al., 2017; Fenicia et al., 2014, 2018; Hublart et al., 2016; 

Höge et al., 2018; Sarrazin et al., 2016; Wi et al., 2015; Herman et al., 2013; Wagener et al., 2001, 2003; Madsen, 2000; Osuch 

et al., 2019; Zhang et al., 2020). Unfortunately, the paucity of progress in model development is partly due to structural 

inadequacy. For example, dynamic components in hydrological models are oversimplified due to a poor understanding of their 

physical mechanisms (Xiong et al., 2019; Deng et al., 2016, 2018; Dakhlaoui et al., 2017; Sarhadi et al., 2016; Pathiraja et al., 30 

2016; Ouyang et al., 2016). Previous studies have demonstrated that the assumption of time-invariant parameters is usually 
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inappropriate. The reasons are that a unique parameter set optimized by hydrological models only represents the average 

hydrological processes, which do not accurately represent the dynamic response modes of the catchments processes (Pathiraja 

et al., 2018; Fowler et al., 2018; Zhao et al., 2017; Kim and Han, 2017; Golmohammadi et al., 2017; Delorit et al., 2017; Chen 

et al., 2017). To investigate the problems caused by time-invariant parameters, a control scheme, i.e., Scheme 1 is designed 

and assessed in this study. In this regard, the dynamics of the hydrological model parameters may be a type of compensation 5 

for models that are missing key processes such as climate- and land surface-related changes (Xiong et al., 2019; Deng et al., 

2016, 2018; Wang et al., 2017b; Dakhlaoui et al., 2017; Sarhadi et al., 2016; Pathiraja et al., 2016; Ouyang et al., 2016; 

Todorovic and Plavsic, 2015). 

However, a critical but often overlooked issue related to dynamic parameters is that there are linear or nonlinear correlations 

among hydrological model parameters, also called the “compensation” between parameters (Wagener and Kollat, 2007). The 10 

compensation between parameters could even result in the dynamics of the individual parameters may not represent the time-

varying properties of river catchments (Höge et al., 2018; Cibin et al., 2010; Bárdossy and Singh, 2008; Bárdossy, 2007; Huang, 

2005; Wagener and Kollat, 2007). Hence, it has been conclusively demonstrated that the optimal parameters in hydrological 

models should not be considered as individual parameters but instead as parameter vector “teams” (Wagener and Kollat, 2007). 

In this research, the effects of the “compensation” between the parameters on the dynamics of hydrological model parameters 15 

are investigated using a control scheme i.e., Scheme 2. 

In view of the compensation between parameters, the most common approach for assessing the dynamics of the hydrological 

model parameters is that the calibration period is partitioned into different sub-periods based on the temporal dynamic 

catchment characteristics (Sarhadi et al., 2016; Merz et al., 2011; Lan et al., 2018; Xiong et al., 2019; Motavita et al., 2019; 

Deng et al., 2016, 2018; Dakhlaoui et al., 2017; Choi and Beven, 2007; Brigode et al., 2013; Kim et al., 2015; Kim and Han, 20 

2017; Zhao et al., 2017; Pfannerstill et al., 2015; Me et al., 2015; Coron et al., 2014; Vormoor et al., 2018; Luo et al., 2012; 

Guse et al., 2016; Zhang et al., 2015; Ouyang et al., 2016; Zhang et al., 2011). The parameter set in each sub-period is optimized 

to obtain the dynamic parameter “team”. Previous studies have demonstrated that sub-period calibration based on the dynamic 

catchment behaviour accurately captures the temporal variations of the catchment characteristics, thereby compensating for 

structural inadequacy (Lan et al., 2018; Zhao et al., 2017; Kim and Han, 2017; Zhang et al., 2011; De Vos et al., 2010; Gupta 25 

et al., 2009; Choi and Beven, 2007; van Griensven et al., 2006; Freer et al., 2003). In the study of Choi and Beven (2007), the 

sub-periods were identified based on different hydrological characteristics using a clustering technique. The results showed 

that the model that considered the dynamic catchment characteristics exhibited good performance at the global level (i.e., 

overall calibration and validation periods). Merz et al. (2011) demonstrated that the parameters of the catchment model related 

to snow and soil moisture showed clear time trends for the climate indicators. Zhang et al. (2011) proposed a general multi-30 

period calibration approach for improving the performance of hydrological models based on the fuzzy c-means clustering 

technique under time-varying climatic conditions. The results indicated that model simulations using parameters obtained from 

the multi-period calibration approach exhibited considerable improvements over those from the conventional single-period 
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model. Brigode et al. (2013) demonstrated the dependence of the optimal parameter set on the climate characteristics of the 

calibration period. Lan et al. (2018) focused on the sub-period clustering or partition based on the climate-land surface 

variations and relevant studies, such as the choice and pre-process of clustering indices in the light of various catchment 

characteristics, and the clustering operation based on different clustering index systems. The results showed that the sub-annual 

calibration with the CPP framework exhibited significant improvements in overall performance. 5 

Even though the sub-period calibration performed well for describing the dynamics of the hydrological model parameters, 

some fundamental problems still need to be addressed, because the analysis involves the hydrological model structure, global 

optimization, physical mechanisms of dynamic catchment characteristics, as well as complex relationships between the 

parameters, state variables, and fluxes. For example, multiple parameter sets are optimized simultaneously in different sub-

periods. Question like ‘what possible disaster would be brought by parameter optimization in a high-dimensional parameter 10 

space’ remains to be answered. This study aims to investigate the underlying causes of poor model performance in hydrological 

models with dynamic parameters via designing five calibration schemes, and explore the potential reasons for the poor response 

of the dynamic parameter set to the catchment dynamics are explored. In addition to schemes 1 & 2 described above, this study 

designed and assessed a control scheme, i.e., Scheme 3 to investigate the problem of high dimensionality. Also, abrupt changes 

in the parameter set between two sub-periods may result in anomalous or incorrect values in the fluxes and state variables of 15 

the time series. Hence, control Scheme 4 is designed to investigate potential problems caused by abrupt changes in the 

parameters. These control schemes are assessed as follows: (1) the model performance is assessed at very low, low, medium, 

high, and very high phases of flow and the transferability of the dynamic parameter set to different time periods is determined; 

(2) the state variables and fluxes time series, and their changes between two consecutive sub-periods are evaluated; (3) the 

response of the dynamic parameter set to the dynamic catchment characteristics is evaluated. The underlying causes for poor 20 

model performance when sub-period calibration is used are investigated and an effective calibration scheme for dynamic 

hydrological model parameters, Scheme 5, is recommended as a solution. Furthermore, the underlying mechanism of the lack 

of a response of the dynamic parameter set to the dynamic catchment characteristics is investigated. 

The paper is structured as follows. Section 2 presents the study cases and data, the partition methods and the results of the sub-

periods based on the dynamic catchment characteristics. Section 3 elaborates on the five calibration schemes for the dynamic 25 

parameters of the hydrological model and the assessment approaches. Section 4 presents the assessment results of the different 

schemes, the potential problems, and the recommendation of an effective calibration scheme. Section 5 summarizes the 

underlying causes of poor model performance, followed by a discussion of the poor response of the dynamic parameters to the 

catchment dynamics. Section 6 summarizes the key conclusions of the study and outlines directions for future research. 
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2 Study cases and data 

In this study, three sub-basins with different spatial scales in the Hanjiang Basin, i.e., Hanzhong basin, Mumahe basin, and 

Xunhe basin, were selected to demonstrate the proposed approach (Figure 1a). Climatically, the Hanjiang basin is located in 

the monsoon region of the East Asia subtropical zone. The area is cold and dry in winter and warm and humid in summer (Lin 

et al., 2010) and there are seasonal changes in vegetation density and types (Fang et al., 2002). Subtropical vegetation affects 5 

temporal moisture conditions. Significant intra-annual changes in the climate and land-surface conditions allow for exploring 

the seasonal dynamics of the hydrological processes. Therefore, the three basins are ideal locations for investigating the 

dynamics of hydrological model parameters. Daily streamflow and climatic data from 1980 to 1990 were used. Nearly 73% of 

the data samples (1980–1987) were used for calibration and the remainder (1988-1990) was utilized to verify the model. 

The flowchart of the reasonable sub-period partition based on the dynamic catchment characteristics is shown in Figure 1b. 10 

The data mining techniques were integrated to develop a CPP framework for sub-period partition to simulate dynamic 

behaviour. The hydrological model was calibrated in each sub-period to achieve the dynamics of the parameter set, as 

illustrated in Figure 1b. In the CPP, a set of climatic-land surface indices was provided and pre-processed using the maximal 

information coefficient (MIC) and principal components analysis (PCA). The climatic indices included total precipitation, 

maximum 1-day precipitation, maximum five-day precipitation, moderate precipitation days, heavy precipitation days, total 15 

pan evaporation, maximum 1-day pan evaporation, and minimum 1-day pan evaporation. The land-surface indices included 

antecedent streamflow and runoff coefficient. Two clustering operations were performed based on the pre-processed climatic 

index system and land-surface index system, respectively. The clustering results are shown in Figure 1c. The results showed 

that the performance of the model with a CPP framework was significantly improved at high, middle and low streamflow. The 

transferability of the dynamic parameter set from the calibration to the validation period was also greatly improved. 20 

It is worth emphasizing that the dynamic parameters during the validation period are set to the same as in the calibration period. 

The values are dependent on the calendar days. This is because our previous research (Lan et al., 2018) showed that the 

clustering results of the validation period are almost the same as the results of the calibration period. In that study, the 

hydrological model was calibrated in each sub-period to achieve the dynamics of the parameter set. The calendar year is 

clustered into four sub-annual periods based on hydrological similarities, and the clustering results were further verified by the 25 

hydrological data in the validation period. The reason is that the study area, i.e., the Hanjiang River basin is located in the 

monsoon region of East Asia subtropical zone, the seasonal variations of both climate conditions and vegetation density and 

types are more important than inter-annual variations (Fang et al., 2002). 
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Figure 1: Study cases and data. a, Locations of the study region, the Hanjiang River and its three major tributaries considered in this study, 

i.e., the Hanzhong, Mumahe and Xunhe Rivers. b, Flowchart of the sub-period partition using the CPP framework. c, Heat map of sub-

period partition. 

Note. The sub-periods include the dry period, rainfall period I, rainfall period II, and rainfall period III. In the dry period, both the total 5 
amount and the variance values of all the precipitation series reach the minimum. In contrast, the total amount and the variance values of the 

precipitation series in the rainfall II (wettest period) reach the maximum and the frequency of heavy rain is highest. In the two normal sub-

annual periods (rainfall period I and rainfall period III), the climatic patterns are similar but the streamflow volume is higher in rainfall 

period III than in rainfall period I. The reason is that higher antecedent soil moisture content contributed to the higher runoff in rainfall period 

III than in rainfall period I. More detailed descriptions of the clustering are described in Lan et al. (2018). 10 

3 Methodology 

3.1 Calibration schemes 

The five calibration schemes are designed and compared (see Figure 2). The potential problems when dynamics of hydrological 

model parameters are used include time-invariant parameters, “compensation” among parameters, the high dimensionality of 

the parameters, and abrupt changes in the parameters; these factors are investigated and a solution is recommended. For 15 

illustration purposes, the HYMOD model (Moore, 1985; Wagener et al., 2001; Vrugt et al., 2002; Yadav et al., 2007; De Vos 

et al., 2010; Pathiraja et al., 2018), which is a commonly used lumped rainfall-runoff model with five parameters, is utilized. 

It consists of a simple rainfall excess model based on the probability-distributed moisture store which characterizes the 
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catchment storage as a Pareto distribution of buckets of varying depth as the soil moisture accounting component. It routes 

through three parallel tanks for quick flow and a tank for slow flow and required five adjustable parameters: 𝐻𝑈𝑍, 𝐵, 𝛼, 𝐾𝑞 

and 𝐾𝑠. 𝑋𝐻𝑈𝑍 and 𝑋𝐶𝑈𝑍 are state variables characterizing the upper soil moisture content; 𝐴𝐸 is actual evapotranspiration 

which is calculated by linear correlations between the soil moisture state and the potential evapotranspiration; 𝑒𝑓𝑓𝑃 is effective 

precipitation; 𝑂𝑉 is excess precipitation to routing module generated from overflow of soil moisture accounting component; 5 

See (Moore, 1985) for a detailed description of the soil moisture accounting model; 𝑋𝑞1, 𝑋𝑞2, 𝑋𝑞3 and 𝑋𝑠 are the state variables 

of the individual tanks of the routing module; 𝑄𝑞 and 𝑄𝑠 are the flow values generated from the quick- and slow-flow tanks, 

respectively. The definition of the model parameters, state variables, and fluxes are presented in Table 1. All schemes with the 

same set of shuffled complex evolution method were developed at the University of Arizona (SCE-UA). The SCE-UA 

algorithm is a subset of a global evolution algorithm (Duan et al., 1993; Hanne, 2000; Michalewicz and Schoenauer, 1996; 10 

Omran and Mahdavi, 2008; Storn and Price, 1997; Yiu-Wing and Yuping, 2001), which was used as an example of a global 

optimization algorithm in this study. More information is presented in section 1 of the supporting information. The simulations 

have a warm-up period of one year in the calibration period and three months in the validation period. The objective function 

is defined as the combination of the Nash-Sutcliffe efficiency index (NSE) and the logarithmic transformation (LNSE) (Nash 

and Sutcliffe, 1970), The NSE is sensitive to the discharge dynamics and the LNSE emphasizes the low flows because the log 15 

of the discharge is used (Nash and Sutcliffe, 1970; Guntner et al., 1999; Kiptala et al., 2014; Nijzink et al., 2016). It is expressed 

as 

𝑂𝐹 = 1 − 0.5 ∙ (NSE + LNSE) ,          (1) 

where OF (0, ∞) is the objective function value. The closer the value of OF is to zero, the better the model performance. 

Scheme 1. This scheme investigates the problem of time-invariant parameters. The parameters do not change during the entire 20 

calibration and validation periods. 

Scheme 2. This scheme investigates the “compensation” among the parameters. In the calibration period, a specific dynamic 

parameter and the other fixed parameters in different sub-periods are optimized simultaneously. For example, 8 parameters, 

namely one specific parameter in the 4 sub-periods and another 4 fixed (i.e., temporally invariant) parameters are optimized 

simultaneously during one run in HYMOD. The transition of the state variables and fluxes between two consecutive sub-25 

periods is achieved by considering the last values of the former period as the initial values of the next period. In the validation 

period, the model is run using the inputs with the specific dynamic parameter and other fixed parameters. The transitions of 

parameters, state variables, and fluxes between two consecutive sub-periods are handled the same as in the calibration period. 

The specific dynamic parameter is usually identified by whether it responds to the dynamic catchment characteristics. However, 

due to the complex correlations among the parameters and imperfect model structures (missing processes or oversimplified 30 

parameterizations in the model), the individual parameters may not represent their defined physical characteristics, such as 
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temporal changes in soil, land cover and climate conditions. Hence, the parameter with the highest sensitivity was chosen as 

dynamic parameter (Merz et al., 2011; Pfannerstill et al., 2014; Zhang et al., 2015; Deng et al., 2016, 2018; Guse et al., 2016; 

Ouyang et al., 2016; Xiong et al., 2019). In this study, the dynamic parameter 𝐾𝑞 with the highest identifiability and the other 

fixed parameters are optimized. The chosen parameter is marked in Table 1. 

Table 1. Definition of parameters, state variables, and fluxes used in HYMOD model (Wagener et al., 2001). 5 
Label Property Range Description 

Huz Parameter 0-1000 [mm] Maximum height of soil moisture accounting tank 

B Parameter 0-1.99 Scaled distribution function shape 

alpha Parameter 0-0.99 Quick/slow split 

Kq Parameter 0-0.99 Quick-flow routing tanks' rate 

Ks Parameter 0-0.99 Slow-flow routing tank's rate 

XHuz State variable [mm] Upper zone soil moisture tank state height 

XCuz State variable [mm] Upper zone soil moisture tank state contents 

Xq State variable [mm] Quick-flow tank states contents 

Xs State variable [mm] Slow-flow tank state contents 

AE Fluxes [mm/day] Actual evapotranspiration flux 

OV Fluxes [mm/day] Precipitation excess flux 

Qq Fluxes [mm/day] Quick-flow flux 

Qs Fluxes [mm/day] Slow-flow flux 

Qsim Fluxes [mm/day] Total streamflow flux 

Note. The Kq with the highest identifiability is chosen as the dynamic parameter in scheme 2. 

Scheme 3. This scheme investigates the high dimensionality of the parameters. In the calibration period, the parameter sets in 

different sub-periods are optimized simultaneously. For example, 20 parameters, namely 5 parameters of the hydrological 

model in 4 sub-periods, are optimized simultaneously in one run. The transition of the state variables and fluxes between two 

consecutive sub-periods is achieved by considering the last values of the former period as the initial values of the next period. 10 

In the validation period, the model is run using the dynamic parameter set. The transitions of the parameters, state variables, 

and fluxes between two consecutive sub-periods are handled the same as in the calibration period. 

Scheme 4. This scheme investigates the abrupt changes in the parameters. In the calibration period, only the data from the 

individual sub-periods are used for minimizing the objective function, while the model is run for the whole period. For example, 

five parameters of the hydrological model in 4 sub-periods are optimized in four runs. The calibrated flow data from each sub-15 

period are then combined and compared with the observed flow. In the validation period, the transitions of parameters, state 

variables, and fluxes between two consecutive sub-periods are handled the same as in the validation period of scheme 3. In the 

validation period, the effects of the correlations and high dimensions of the parameters are excluded and the influences caused 

by the abrupt changes in the parameters are investigated. 

Scheme 5. A solution is recommended to overcome the above problems that are caused by the time-invariant parameters, 20 

“compensation” among parameters, high dimensionality, and abrupt shifts in the parameters. In the calibration period, the 

model run is the same as that of the calibration period of scheme 4. In the validation period, the simulated flow data from each 

sub-period are combined and compared with the observed flow. 
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The above description reveals that the model run in the calibration period is the same in scheme 4 and scheme 5. However, the 

model run in the validation period is actually different. In the validation period of scheme 4, the model runs one time using the 

dynamic parameter set. The parameter set between two consecutive sub-periods is switched. As a result, the transition of the 

state variables and fluxes between two consecutive sub-periods is abrupt and achieved by considering the last values of the 

former period as the initial values of the next period. In the validation period of scheme 5, the model runs N times (N is the 5 

number of the divided sub-periods) combining the simulated flow data in the sub-periods, respectively. The comparison 

between scheme 4 and scheme 5 is to investigate the effect of the abrupt shifts in the parameters on the model run with dynamic 

parameters. 

 

Figure 2: Calibration schemes. a, Objectives of the schemes. b, Schematic illustration of the five schemes. 10 
Note. In scheme 1, the parameters are time-invariant; In scheme 2, the dynamic of only the specific parameter is operated. The specific 

parameters in different sub-periods and the other fixed parameters are optimized simultaneously; In scheme 3, the parameter set is dynamized. 

The parameter sets in different sub-periods are optimized simultaneously; In scheme 4, only the data from the individual sub-periods are 

used for minimizing the objective function, while the model is run for the whole period. The parameter sets in different sub-period are 

optimized. In the validation period, the parameter set between two consecutive sub-periods is updated accordingly. In scheme 5, the 15 
calibration is the same as in scheme 4. In the validation period, the simulated flow data from each separate sub-period are combined and 

compared with the observed flow. 

3.2 Assessment 

Assessment of model performance. The performance assessments of the calibration schemes include (1) an assessment of the 

performance in different phases of the streamflow and (2) an assessment of the transferability of the dynamic parameters to 20 

different time. Seven performance metrics are used to assess the performance for different parts of the hydrograph in the 

calibration and validation periods. The metrics are listed and defined in Table 2. The differences in these metrics between the 

calibration period and the validation period are used to assess the transferability of the optimized parameters. The 
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transferability of the parameters to different time periods is considered a requirement for the successful validation of the model 

(Gharari et al., 2013; Klemeš, 1986). 

Assessment of the state variables and fluxes. The internal processes of the hydrological model run include the state variables 

and fluxes time series. The abrupt changes in the parameters between two consecutive sub-periods may result in changes in 

the state variables and fluxes, thereby affecting the simulation results. Hence, all the state variables and fluxes obtained from 5 

the different schemes are investigated and the underlying physical mechanisms are discussed (Kim and Han, 2017). 

Assessment of the dynamic parameter set. The response of the dynamic parameter sets to the dynamic catchment 

characteristics in all schemes is investigated for the two response modes of HYMOD, i.e., soil moisture mode and routing 

mode. Furthermore, the underlying physical mechanisms based on dynamic catchment characteristics are analyzed. 

Table 2. Definitions of the performance metrics. 10 
Performance metric Description 

NSE Sensitive to peaks and discharge dynamic 

LNSE Emphasizing low flows with log of discharge 

RMSE_Q5 RMSE in FDC Q5 very low segment volume 

RMSE_Q20 RMSE in FDC between Q5 and Q20 low segment volume 

RMSE_Qmid RMSE in FDC between Q20 and Q70 mid segment volume 

RMSE_Q70 RMSE in FDC between Q70 and Q95 high segment volume 

RMSE_Q95 RMSE in FDC Q95 very high segment volume 

Note. The flow duration curve (FDC) is usually split into different segments to describe different flow characteristics of a catchment (Cheng 

et al., 2012; Coopersmith et al., 2012; Kim and Kaluarachchi, 2014; Pugliese et al., 2014; Pfannerstill et al., 2014). The RMSE with quadratic 

character is usually used to evaluate poor model performance due to the strong sensitivity to extreme positive and negative error values. 

4 Results 

4.1 Model performance 15 

 For a concise model evaluation, the model performance is analyzed with multi-metric frameworks with appropriate 

performance metrics, including five-segment evaluation (5FDC, flow duration curve with root mean square error) (Pfannerstill 

et al., 2014), Nash-Sutcliffe efficiency index (NSE) (Nash and Sutcliffe, 1970) and the logarithmic transformation (LNSE). 

For the robustness of model evaluation, the transferability of the optimized parameters between the calibration period and the 

validation period is considered. The results of the assessment are shown in Figure 3. 20 

The performance of scheme 2 is only slightly better than that of scheme 1, which indicates only a slight increase in the model 

performance. Scheme 3 has the worst model performance at the global level, i.e., all metrics are much higher than 1 in the 

calibration period and validation period. Scheme 4 has the highest overall model performance in the calibration period. For 

example, the NSE and LNSE are 45.3% and 13.8% respectively; these values are considerably higher than the metrics of 

scheme 1. The other metrics also indicate that scheme 4 performs best in all flow phases in the calibration period. However, 25 
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the model performance of scheme 4 in the validation period is only slightly better than that of scheme 1. Scheme 5 has the 

same model performance as scheme 4 in the calibration period. Nevertheless, the overall model performance of scheme 5 is 

significantly higher than that of the other schemes in the validation period. The transferability of the optimized parameters is 

analyzed in all schemes. Scheme 5 has the smallest differences and scheme 4 has the largest differences in the metrics between 

the calibration period and validation period. 5 

In summary, scheme 5 does not only have the highest overall performance under different flow conditions in the calibration 

period and validation period but also exhibits good transferability of the model parameters. Scheme 4 exhibits good 

performance in the calibration period but does not perform well in the validation period. Scheme 3 has extremely poor model 

performance at the global level. Scheme 2 does not have better performance than scheme 1. The evaluation results of the five 

schemes in the Mumahe basin and Xunhe basin are listed in section 3 of the supporting information. The results are similar to 10 

those of the Hanzhong basin and will be discussed in section 5.1. 

 

Figure 3: Model performance. Model performance of the five schemes in the Hanzhong basin; (1) the performance in different phases of 

the streamflow, and (2) the transferability of dynamic parameters to different time periods. 
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4.2 State variables and fluxes 

The assessment results of the state variables and fluxes are shown in Figures 4 and 5. The variables of scheme 2 are similar to 

those of scheme 1. The model performance of scheme 2 is only slightly better than that of scheme 1. In scheme 3, there are 

some unexpected values of the state variables in the time series. In scheme 4, invalid values of the fluxes and state variables 

are found at the junction of sub-periods, where the parameter set exhibits abrupt changes. In scheme 5, (1) 𝑄𝑠, 𝑋𝐻𝑈𝑍 and 𝑋𝐶𝑈𝑍 5 

are lower in the dry period and higher in the rainfall period II than those in scheme 1. The results indicate that the performance 

of the model run is better in the dry period and the rainfall period II because the runoff is usually overestimated in the dry 

period (Pool et al., 2017; Wang et al., 2017a; Tongal and Booij, 2018; Xiong et al., 2018) and underestimated in the wettest 

period (Guo et al., 2018; Höge et al., 2018; Pande and Moayeri, 2018; Wang et al., 2018). It is observed that the state variable 

𝑋𝑠 and the flux 𝑄𝑠 have larger effects on simulating runoff than the quick flow (𝑄𝑞 and 𝑋𝑞) mode in the rainfall period II. The 10 

reason is that most of the excess streamflow is diverted to the slow-flow routing, hence the fluxes and state variables present 

more representativeness of the slow-flow tank mode. (2) A comparison of the observations and simulations of the runoff in 

scheme 1 and scheme 5 indicates that both peak flows in the rainfall period II are more accurately simulated by scheme 5. (3) 

Scheme 5 also exhibits superior performance in the two normal periods, because the state variables provide a good 

representation of the physical mechanism. The state variables 𝑋𝐻𝑈𝑍 and 𝑋𝐶𝑈𝑍 are lower in the rainfall period I and higher in 15 

the rainfall period III than in scheme 1. The reason is that the antecedent soil moisture content in the rainfall period III is higher 

than in the rainfall period I (Lan et al., 2018). Consequently, the results are consistent with the results in section 4.1. The 

dynamic parameters in scheme 5 provided a good representation of the dynamic catchment characteristics. 
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Figure 4: Result of fluxes assessment. The fluxes (including 𝑨𝑬, 𝑶𝑽, 𝑸𝒒, 𝑸𝒔, and 𝑸𝒔𝒊𝒎) for the five schemes in the reference year in the 

validation period in the Hanzhong basin. 

Note. The variables in different sub-periods are denoted by different colors (same colors as in Figure 2a. The variables of scheme 0 are 

denoted by the thin grey lines in each box. The observed streamflow time series data are denoted as thin red lines. All fluxes and state 5 
variables in the calibration and validation periods are presented in section 3 of the supporting information. 

Scheme 1

Scheme 3

Scheme 5

Dry period

Rainfall period I

Rainfall period III
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Figure 5: Result of state variables assessment. The state variables (including 𝑿𝑯𝑼𝒁 𝑿𝑪𝑼𝒁 𝑿𝒒𝟏, 𝑿𝒒𝟐, 𝑿𝒒𝟑, and 𝑿𝒔) for the five schemes in 

the reference year in the validation period in the Hanzhong basin. 
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4.3 Dynamic parameter set 

The dynamic parameter values optimized by the four sub-period calibration schemes in the Hanzhong basin are shown in 

Figure 6. In scheme 2, the dynamic parameter 𝐾𝑞 with the highest identifiability and the other fixed parameters are optimized. 

The result shows that the responses of the dynamic parameter 𝐾𝑞 to the dynamic catchment characteristics are not clear. In 

scheme 3, the parameters 𝐻𝑈𝑍 and 𝐵 in the soil moisture mode of HYMOD (Moore, 1985; Vrugt et al., 2002) show no regular 5 

patterns in any of the schemes and this is similar for 𝛼, 𝐾𝑞, and 𝐾𝑠 in the slow- and quick-flow routing mode. In short, the 

dynamic parameters do not show clear responses to the dynamic catchment characteristics in scheme 2 or scheme 3. In scheme 

5, which is the same as scheme 4 in the calibration period, 𝐾𝑠 accurately describes the model responses in the sub-periods for 

the different catchment characteristics. The value of 𝐾𝑠 is lowest in the dry period and highest in the wettest period. However, 

the parameter 𝐾𝑞 exhibits no significantly regular changes. The main reason is that most of the excess streamflow in the three 10 

rainfall periods is diverted to the slow-flow tank because the 𝛼 values are close to zero. This means that the quick-flow tanks 

do not have an effect on the simulations. The parameter sets optimized by scheme 1 and scheme 5 in the Mumahe basin and 

Xunhe basin are listed in section 3 of supporting information. The results are similar to those of the Hanzhong basin. 

In summary, scheme 5 performs best for identifying the dominant parameters and their responses to the dynamic catchment 

characteristics. The dynamic features of the parameters also demonstrate the necessity for sub-period calibration. Furthermore, 15 

it is interesting that the state variables and fluxes describe the dynamic catchment behavior more robustly than the dynamic 

parameters. In light of this, the underlying causes for the poor response of the dynamic parameter set to the catchment dynamics 

are investigated. 

 

Figure 6: Result of dynamic parameter set assessment. The dynamic parameter sets optimized by the four sub-period calibration schemes 20 
in the Hanzhong basin. 

5 Discussion 

5.1 Underlying causes of poor model performance 

The evaluation results of the five schemes are summarized to explore the possible reasons for poor model performance: 
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1. Time-invariant parameters: Scheme 1 with the time-invariant parameter set averages the hydrological responses. As a 

result, scheme 1 resulted in a poor simulation accuracy or weak transferability of the optimized parameters in different 

flow conditions. The results were consistent with Delorit et al. (2017), Fowler et al. (2018) and Xiong et al. (2019). 

2. “Compensation” among parameter: In scheme 2, the individual parameters with high identifiability did show clear 

responses to the dynamic catchment characteristics. Bárdossy (2007) demonstrated that changes in one parameter may 5 

be compensated for by changes in other parameters due to their interdependence (Westra et al., 2014; Klotz et al., 2017; 

Wang et al., 2017b, 2018). Therefore, although a specific parameter is dynamic, the other parameters may counteract 

those changes, resulting in no overall change in the hydrological processes. Hence, the model performance in scheme 2 

was relatively low. 

3. High dimensionality of parameters: In scheme 3, it has a sound logic by continuously running the model with the 10 

dynamic parameter set like the real system. However, the results showed that all fluxes and state variables in the time 

series were anomalous and the model exhibited extremely poor performance. It was demonstrated that parameter 

optimization in high-dimensional parameter space with correlated parameters resulted in the failure of the modeling run 

(Beven and Binley, 1992; Sivakumar, 2004; Bárdossy and Singh, 2008; Laloy and Vrugt, 2012). 

4. Abrupt shifts in parameters: In scheme 4, the abrupt shifts in the parameter set between the sub-periods resulted in 15 

anomalous values in the fluxes and state variables in the time series, which results in failure of the model in the validation 

period. Kim and Han (2017) also emphasized the negative effects of abrupt shifts in the parameter set on the model 

performance. 

In summary, scheme 5 is recommended for dynamic hydrological model parameters because it can capture the temporal 

variations of the dynamic catchment characteristics and overcome the underlying problems responsible for poor model 20 

performance. Although scheme 5 has a higher computational cost, this does not represent a large problem with current 

computing devices. 

5.2 Underlying causes of the poor response of the dynamic parameters to the catchment dynamics 

The dynamic parameter set was estimated using global optimization algorithms. However, if the convergence fails, the global 

optimum cannot be determined and the optimal parameter values may be anomalous. In this case, the optimal results do not 25 

represent the hydrological processes in a catchment (Gomez, 2019; Weise, 2009). In order to investigate the underlying causes 

of the poor response of the dynamic parameters to the catchment dynamics, we assessed the convergence performance of the 

dynamic parameters and determined the ability of the parameters to respond to the catchment dynamics (Zecchin et al., 2012; 

Zheng et al., 2017; Azad and Optimization, 2019). 
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5.2.1 A tool for the convergence evaluation of the dynamic parameters 

In order to overcome the limitation of traditional tools for evaluating the convergence behavior of global optimization 

algorithms for hydrological models, including the visualization of the high-dimensional parameter response surface, rough 

response surfaces with discontinuous derivatives, poor or inconsistent sensitivities of the response surface, non-convex mesh 

surfaces and the dynamic convergence process in high-dimensional parameter spaces (Duan et al., 1992, 1994; Sorooshian et 5 

al., 1993; Cooper et al., 1997; Gupta et al., 1998; Vrugt et al., 2005; Weise, 2009; Zhang et al., 2009; Sun et al., 2012; Arora 

and Singh, 2013; Derrac et al., 2014; Piotrowski et al., 2017; Gomez, 2019), a simple and powerful approach is proposed, 

namely, the Evaluate the Convergence Performance using Violin Plots (ECP-VP). This tool represents the potential features 

of the fitness landscapes (see Figure 7) and provides a visualization of the convergence behavior in multi-parameter space. 

The strategy is as follows. 10 

1. The end of each evolution loop in the optimization process is regarded as a cut-off point. The parameter set with the best 

objective function value in each evolution loop is recorded in the “convergence process”. 

2. Violin plots, which are an excellent tool to visualize the kernel density distribution of the data points (Hintze and Nelson, 

1998; Piel et al., 2010), are used to configure the convergence process in the individual parameter spaces. The probability 

distributions of the violin plots are used to represent the possible properties of the fitness landscapes. The anatomy of the 15 

violin plot and the associated information can be found in section 2 of the supporting information. With an adequate 

parameter space and sufficient density of coverage, the four types of distributions of violin plots are matched to the 

property’ sketches of the fitness landscapes (Weinberger, 1990; Forrest, 1995; Harik et al., 1999; Gibbs et al., 2004; 

Arsenault et al., 2014; Maier et al., 2014). 

3. A decrease in the performance of the convergence and the candidate mechanisms are interpreted as (I) an unimodal 20 

distribution: an ideal global convergence process is used to estimate the best solution. The unimodal distribution matches 

two types of fitness landscape sketches including the best case and low variation. (II) Bimodal distribution: there are two 

main local optima and the distance to the two local convergence regions is far. It becomes more complicated for the 

optimization process to find the global optimum and the premature convergence to a local optimum may occur (Duan et 

al., 1992; 1993; 1994; Weise, 2009; Sun et al., 2012; Derrac et al., 2014; Gomez, 2019). The bimodal distribution 25 

symbolizes the two types of fitness landscape sketches including the multimodal and deceptive types. (III) Multimodal 

distribution: the response surface may be multi-modal plus steep ascends and descends. This means that multiple local 

optima exist. With the maze of minor local optima, the calibration algorithm may fail to reach the global optimum. 

Because the minor optima may be found quite far from the global optimum, the search may terminate prematurely without 

finding an approximate solution (Dakhlaoui et al., 2017; Duan et al., 1992; 1993; 1994). The multimodal distribution 30 

matches the three types of fitness landscape sketches including the multimodal, rugged, and deceptive types. (IV) Flat 

distribution: this is similar to the multimodal distribution and its surface may be noisy. The very poor sensitivity of the 

objective function to the parameter fluctuation causes weak convergence of the parameter (Duan et al., 1992; 1993; 1994; 
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Dakhlaoui et al., 2017; Rahnamay Naeini et al., 2018; Vrugt and Beven, 2018). The flat distribution matches the three 

types of fitness landscape sketches including the neutral, needle-in-a-haystack, and nightmare types.  

 

Figure 7: Evaluation of the ability of the dynamic parameters to respond to the catchment dynamics. a, Evaluation of the convergence 

processes using violin plots (ECP-VP). The horizontal axis of the violin plot denotes the parameter values and the vertical axis denotes the 5 
probability values. The probability distribution of elements of the search space is represented by the violin plots. b, All possible properties 

of the fitness landscapes. c, The basic cycle of the global evolution algorithm. Initial population: create an initial population of random 

individuals; evaluation: compute the objective values of the solution candidates; fitness assignment: use the objective values to determine 

the fitness values; selection: select the fittest individuals for reproduction; reproduction: create new individuals from the mating pool by 

crossover and mutation. 10 
Note. Fitness landscapes are a very powerful metaphor for visualizing the convergence processes in global optimization. Some intuitive 

sketches of fitness landscapes with possible properties are as follows. The horizontal axis denotes the parameter values and the vertical axis 

denotes the objective function values. The direction of the arrow represents the direction of evolution. The possible properties include (a) 

best case: an optimization process is ideal for estimating the globally optimal parameters. (b) Low variation: an optimization process with 

low variation is fair for estimating the globally optimal parameters. (c) Premature convergence: an optimization process has prematurely 15 
converged to a local optimum if it is no longer able to explore other parts of the search space than the area currently being examined and 

there exists another region that contains a superior solution. (d) Ruggedness: if the objective function values are fluctuating, i.e., increasing 

or decreasing, it is difficult to determine the correct direction for the optimization process. In short, ruggedness is multi-modality plus steep 

ascends and descends in the fitness landscape. (e) Deceptiveness: the gradient of the deceptive objective function values leads the optimizer 

away from the optima. (f) Neutrality: the outcome of the application of a search operation to an element of the search space is neutral if it 20 
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yields no change in the objective function values. (g) Needle-In-A-Haystack: the optimum occurs as an isolated spike in a plane, representing 

the occurrences of extreme ruggedness combined with a general lack of information in the fitness landscape. (h) Nightmare: the optimum is 

difficult to achieve in an approximate plane. More details on the fitness landscapes and their properties can be found int Weise (2009). 

5.2.2 Convergence assessment 

The convergence assessment results of scheme 1 and scheme 5 in the Hanzhong basin are shown in Figure 8. In scheme 1, (1) 5 

the parameter 𝐵  represents the bimodal distribution in the parameter space, indicating that the fitness landscape of 𝐵  is 

unsteady or fluctuating (see Figure 8 (a)). It is inferred that the convergence processes of the parameter 𝐵 may be affected by 

a prominent local optimum. The outcomes of the search operations may be arbitrary, which leads to a divergence away from 

the global optima. As a result, the convergence performance of 𝐵 is poor. (2) Although 𝐻𝑈𝑍, 𝛼, 𝐾𝑞, and 𝐾𝑠 rapidly converge 

and the range is small, the magnification (Figure 8 (b)) shows bimodal or multimodal distributions. The global optima cannot 10 

be determined in the 𝐻𝑈𝑍, 𝛼, 𝐾𝑞, and 𝐾𝑠 parameter space. As a consequence, the convergence of the parameters in scheme 1 

is poor and the response of the parameters to the catchment behavior with a low level of confidence. 

In scheme 5, the four sub-periods are evaluated separately. (1) In the dry period, except for 𝐾𝑠, the distributions of the other 

parameters are oscillating in the entire feasible parameter space. Indeed, the magnification of parameter 𝐾𝑠 (see Figure 8 (b)) 

shows a multimodal distribution. The result indicates that the convergence performance of the parameter set in the dry period 15 

is poor. Due to the weak relationship between precipitation and runoff in the dry period (Moore, 1985; Yadav et al., 2007; De 

Vos et al., 2010), most modules of the model in the dry period do not accurately characterize the behavior of the catchment. 

(2) In the rainfall periods I, II, and III, the parameters 𝛼  and 𝐾𝑠  with unimodal distribution have the best convergence 

performance. The 𝛼 values in the three rainfall periods are close to the minimum, hence the slow-flow tank controls the cascade 

routing component of the model. The 𝛼 and 𝐾𝑠 with high identicality and best convergence performance also demonstrate that 20 

the chosen model is most suitable for the streamflow simulation in the three rainfall periods. The main reason is that the 

HYMOD model is well suited for catchments dominated by “saturation excess overland flow” processes. Intense rainfall events 

contribute to saturation excess overland flow in the rainfall periods (Herman et al., 2013; Sarrazin et al., 2016; Wang et al., 

2017a; 2018). Moreover, the results also illustrate that the optimal 𝛼 and 𝐾𝑞 (or 𝐾𝑠) in the cascade routing component have 

higher reliability than the optimal 𝐻𝑈𝑍 and 𝐵 in the soil moisture component. In summary, the dynamic parameters 𝛼 and 𝐾𝑞 25 

(or 𝐾𝑠) in scheme 5 have good convergence performance and accurately describe the response to the dynamic catchment 

characteristics. However, the parameters 𝐻𝑈𝑍 and 𝐵 with poor convergence performance exhibit a poor ability to describe the 

response to the dynamic catchment characteristics. Interestingly, the convergence performance results of the parameters for 

the dominant response modes in HYMOD are consistent with the results of the performance of the state variables and fluxes 

and the dynamic parameter set. The evaluation results of ECP-VP for scheme 1 and scheme 5 in the Mumahe basin and Xunhe 30 

basin are shown in section 4 of the supporting information. The results are similar to those of the Hanzhong basin. 
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Figure 8: Convergence performance for scheme 1 and scheme 5 in the Hanzhong basin. (a) The convergence processes in the parameter 

spaces; (b) magnification of the convergence processes of the parameters. 
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The following results were observed: (1) the proposed ECP-VP tool accurately described the convergence behavior of the 

models in the individual parameter spaces, demonstrating the reliability of the optimized dynamic parameter values to respond 

to dynamic catchment characteristics. The tool can be used to determine the reason for the potentially poor convergence 

performance. (2) The convergence performance can be used to identify the operation modes of hydrological models and 

provides valuable guidance for the improvement of hydrological models with different catchment characteristics. (3) The 5 

convergence performance of the parameters in one sub-period might be superior or inferior to those of other sub-periods. For 

example, the convergence performance of all parameters was worse in the dry period than in the three rainfall periods. Indeed, 

due to the complex correlations between the parameters in a parameter set, the convergence performance of an individual 

parameter may be significantly affected by the other parameters. For this reason, it is not recommended to use the convergence 

performance of individual parameters but rather the convergence performance of the parameter set. However, the application 10 

of this solution requires a significant amount of experiments, validation, analysis, and discussion and these points will be 

investigated in future studies. 

6 Conclusions 

We designed five calibration schemes for the dynamics of hydrological model parameters to investigate the underlying causes 

of poor model performance. An assessment system was proposed to determine an appropriate calibration scheme. The potential 15 

reasons for the poor response of the dynamic parameter set to the catchment dynamics were discussed. The following 

conclusions were drawn: 

1. The five schemes were systematically evaluated with respect to the model performance in different flow phases, the 

transferability of the dynamic parameters to different time periods, the state variable and flux time series, and the response 

of the dynamic parameter set to the dynamic catchment characteristics. The possible reasons for the poor model 20 

performance included (1) time-invariant parameters, (2) “compensation” among parameters, (3) high dimensionality of 

the parameters, and (4) abrupt shifts of the parameters. Interestingly, the results also proved that changes in the state 

variables and fluxes time series provided a more robust description of the dynamic catchment characteristics than the 

dynamic parameters. 

2. The proposed calibration (1) compensated for the deficiencies in the model structure, (2) provided high forecast accuracy 25 

for different flow phases, (3) exhibited good transferability of the model parameters between the calibration and validation 

periods, (4) improved the ability to identify the dominant parameters and their responses to the catchment processes, and 

(5) accurately characterized the dynamic behavior of the catchments. 

3. The reasons for the poor response of the dynamic parameter to the catchment dynamics were determined by assessing 

the convergence performance of the dynamic parameters. The results indicated that the dynamic parameters with good 30 

convergence performance accurately described the response to the dynamic catchment characteristics, whereas 
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parameters with poor convergence performance had poor ability to describe the response to the dynamic catchment 

characteristics. 

4. The assessment results of the state variables and fluxes and the convergence performance of the parameters provided 

robust indications of the dominant response modes of the hydrological models in different sub-periods or catchments 

with distinguishing catchment characteristics. 5 
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