Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces: Supplementary materials

Clément Albergel¹, Yongjun Zheng¹, Bertrand Bonan¹, Emanuel Dutra², Nemesio Rodríguez-Fernández³, Simon Munier¹, Clara Draper⁴, Patricia de Rosnay⁵, Joaquin Muñoz-Sabater⁵, Gianpaolo Balsamo⁵, David Fairbairn⁵, Catherine Meurey¹, Jean-Christophe Calvet¹

- ¹ CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
- ² Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Portugal
- ³ CESBIO, Université de Toulouse, CNRS, CNES, IRD, Toulouse, France
- ⁴ CIRES/NOAA Earth System Research Laboratory, Boulder, CO 80309, USA
- ⁵ European Centre for Medium-Range Weather Forecasts, Shinfield Road, Reading RG2 9AX, UK
- * Correspondence: <u>clement.albergel@meteo.fr</u>

This supplementary materials reports on illustrations from the evaluation of LDAS-Monde analysis (assimilation of satellite derived Surface Soil Moisture, SSM, and Leaf Area Index, LAI) and openloop (model-only, no assimilation) against in situ measurements of (i) evapotranspiration from the FLUXNET 2015 synthesis data set (<u>http://fluxnet.fluxdata.org/</u>, last access June 2019), (ii) soil moisture from the International Soil Moisture Network (ISMN, <u>https://ismn.geo.tuwien.ac.at/en/</u>, last access June 2019) as well as river discharge from several networks across the world.

Datasets (N stations used)	Website
AFD (14): Anuario de aforos digital, Spain	http://ceh-flumen64.cedex.es/anuarioaforos/ default.asp
ANA (23): HidroWeb, Brazil	http://hidroweb.ana.gov.br/default.as
FRENCH (37): Banque HYDRO, France	http://www.hydro.eaufrance.fr/
GRDC (360): Global Runoff Data Centre, Globe	https://www.bafg.de/GRDC/EN/02_srvcs/ 21_tmsrs/riverdischarge_node.html
HYBAM (11): ORE-HYBAM, Amazon Basin	http://www.ore-hybam.org/index.php/en
HYDAT (102): National Water Data Archive, Canada	https://www.canada.ca/en/environment-climate- change/services/water-overview/quantity/ monitoring/survey/data-products-services/ national-archive-hydat.html
USGS (435): United States Geological Survey, USA	https://www.usgs.gov/mission-areas/water- resources

Table SI. In situ river discharge datasets used in this study.

FLUXNET-ID	(latitude, longitude)	data-years used	data DOI	
AR-Vir	(-33,4648, -66,4598)	2010-2012	10.18140/FLX/1440192	
AT-Neu	(47.1167, 11.3175)	2010-2012	10.18140/FLX/1440121	
AU-ASM	(-22.2830, 133.2490)	2010-2013	10.18140/FLX/1440194	
AU-Cpr	(-34.0021, 140.5891)	2010-2014	10.18140/FLX/1440195	
AU-DaP	(-14.0633, 131.3181)	2010-2013	10.18140/FLX/1440123	
AU-DaS	(-14.1593, 131.3881)	2010-2014	10.18140/FLX/1440122	
AU-Dry	(-15.2588, 132.3706)	2010-2014	10.18140/FLX/1440197	
AU-Emr	(-23.8587, 148.4746)	2011-2013	10.18140/FLX/1440198	
AU-Gin	(-31.3764, 115.7138)	2011-2014	10.18140/FLX/1440199	
AU-How	(-12.4943, 131.1523)	2010-2014	10.18140/FLX/1440125	
AU-Rig	(-36.6499, 145.5759)	2011-2014	10.18140/FLX/1440202	
AU-Stp	(-17.1507, 133.3502)	2010-2014	10.18140/FLX/1440204	
AU-TTE	(-22.2870 133.6400)	2012-2013	10.18140/FLX/1440205	
AU-Tum	(-35.6566, 148.1517)	2010-2014	10.18140/FLX/1440126	
AU-Whr	(-36.6732, 145.0294)	2011-2014	10.18140/FLX/1440206	
AU-Wom	(-37.4222, 144.0944)	2010-2012	10.18140/FLX/1440207	
BE-Bra	(51.3076, 4.5198)	2010-2014	10.18140/FLX/1440128	
BE-Lon	(50.5516, 4.7461)	2010-2014	10.18140/FLX/1440129	
BE-Vie	(50.3050, 5.9981)	2010-2014	10.18140/FLX/1440130	
CH-Cha	(47.2102, 8.4104)	2010-2014	10.18140/FLX/1440131	
CH-Dav	(46.8153, 9.8559)	2010-2014	10.18140/FLX/1440132	
CH-Fru	(47.1158, 8.5378)	2010-2014	10.18140/FLX/1440133	
CH-Lae	(4/.4/81, 8.3650)	2010-2014	10.18140/FLX/1440134	
CH-Oe2	(4/.2863, /./343)	2010-2014	10.18140/FLX/1440136	
CN-SW2	(41./902, 111.89/1) (40.0247, 14.7704)	2010-2012	10.18140/FLX/1440212 10.18140/ELX/1440145	
DE Alm	(49.0247, 14.7704) (52.8662, 12.6824)	2010-2014	10.18140/FLA/1440143	
DE-AKII DE Geb	(53.8002, 13.0834) (51.1001, 10.0143)	2010-2014	10.18140/FLA/1440213	
DE-Geo	(51,1001,10,5145) (50,9500,13,5126)	2010-2014	10.18140/FLX/1440140	
DE-OII DE-Kli	(50.9300, 13.5120) (50.8931, 13.5224)	2010-2014	10.18140/FLX/1440147	
DE-Lkb	$(49\ 0996\ 13\ 3047)$	2010-2013	10.18140/FLX/1440214	
DE-Obe	(49.0990, 13.0047) (50.7867, 13.7212)	2010-2014	10 18140/FLX/1440151	
DE-RuR	(50.6219, 6.3041)	2011-2014	10.18140/FLX/1440215	
DE-RuS	(50.8659, 6.4472)	2011-2014	10.18140/FLX/1440216	
DE-SfN	(47.8064, 11.3275)	2012-2014	10.18140/FLX/1440219	
DE-Spw	(51.8922, 14.0337)	2010-2014	10.18140/FLX/1440220	
DE-Tha	(50.9624, 13.5652)	2010-2014	10.18140/FLX/1440152	
DK-NuF	(64.1308, -51.3861)	2010-2014	10.18140/FLX/1440222	
DK-Sor	(55.4859, 11.6446)	2010-2014	10.18140/FLX/1440155	
DK-ZaH	(74.4733, -20.5503)	2010-2011	10.18140/FLX/1440224	
FI-Hyy	(61.8474, 24.2948)	2010-2014	10.18140/FLX/1440158	
FI-Sod	(67.3624, 26.6386)	2010-2014	10.18140/FLX/1440160	
IT-BCi	(40.5237, 14.9574)	2010-2014	10.18140/FLX/1440166	
IT-CA1	(42.3804, 12.0266)	2011-2014	10.18140/FLX/1440230	
IT-CA2	(42.3772, 12.0260)	2011-2014	10.18140/FLX/1440231	
IT-CA3	(42.3800, 12.0222)	2011-2014	10.18140/FLX/1440232	
IT-Col	(41.8494, 13.5881)	2010-2014	10.18140/FLX/1440167	
IT-Lav	(45.9562, 11.2813)	2010-2014	10.18140/FLX/1440169	
II-MB0	(46.0147, 11.0458)	2010-2013	10.18140/FLX/1440170	
II-Ken	(40.3869, 11.4337)	2010-2013	10.18140/FLX/14401/3	
II-KOZ	(42.3905, 11.9209) (42.7270, 10.2844)	2010-2012	10.18140/FLA/14401/5 10.18140/ELV/1440176	
IT Tor	(45.1219, 10.2844) ($15.8414, 7.5791$)	2013-2014	10.10140/FLA/14401/0 10.18140/ELV/1440227	
	(+3.0444, 7.3701) (52.1666, 5.7426)	2010-2014	10.10140/FLA/144023/ 10.18140/FLV/1440179	
RU-Cok	(32.1000, 3.7430) (70.8201 147 4042)	2010-2015	10.10140/ <u>FLZ</u> /14401/0 10.18140/FLY/1440182	
RU-Evo	(70.0271, 147.4743) (56.4615, 32.0221)	2010-2014	10.18140/FLX/1440182	
US-AR1	(36, 4267, -99, 4200)	2010-2014	10 18140/FLX/1440103	
US-AR2	(36.6358, -99.5975)	2010-2012	10.18140/FLX/1440104	
	(,,,,,,,			

Table S2: Fluxnet-2015 sites used in this study

US-ARM	(36.6058, -97.4888)	2010-2012	10.18140/FLX/1440066
US-GLE	(41.3665, -106.2399)	2010-2014	10.18140/FLX/1440069
US-Ha1	(42.5378, -72.1715)	2010-2012	10.18140/FLX/1440071
US-Los	(46.0827, -89.9792)	2010-2014	10.18140/FLX/1440076
US-Me2	(44.4523, -121.557)	2010-2014	10.18140/FLX/1440079
US-Me6	(44.3233, -121.6078)	2010-2014	10.18140/FLX/1440099
US-MMS	(39.3232, -86.4131)	2010-2014	10.18140/FLX/1440083
US-Myb	(38.0499, -121.7650)	2010-2014	10.18140/FLX/1440105
US-Ne1	(41.1651, -96.4766)	2010-2013	10.18140/FLX/1440084
US-Ne2	(41.1649, -96.4701)	2010-2013	10.18140/FLX/1440085
US-Ne3	(41.1797, -96.4397)	2010-2013	10.18140/FLX/1440086
US-NR1	(40.0329, -105.5464)	2010-2014	10.18140/FLX/1440087
US-PFa	(45.9459, -90.2723)	2010-2014	10.18140/FLX/1440089
US-Prr	(65.1237, -147.4876)	2010-2013	10.18140/FLX/1440113
US-SRG	(31.7894, -110.8277)	2010-2014	10.18140/FLX/1440114
US-SRM	(31.8214, -110.8661)	2010-2014	10.18140/FLX/1440090
US-Syv	(46.2420, -89.3477)	2010-2014	10.18140/FLX/1440091
US-Ton	(38.4316, -120.9660)	2010-2014	10.18140/FLX/1440092
US-Tw1	(38.1074, -121.6469)	2012-2014	10.18140/FLX/1440108
US-Twt	(38.1087, -121.6531)	2010-2014	10.18140/FLX/1440106
US-UMB	(45.5598, -84.7138)	2010-2014	10.18140/FLX/1440093
US-UMd	(45.5625, -84.6975)	2010-2014	10.18140/FLX/1440101
US-Var	(38.4133, -120.9507)	2010-2014	10.18140/FLX/1440094
US-WCr	(45.8059, -90.0799)	2010-2014	10.18140/FLX/1440095
US-Whs	(31.7438, -110.0522)	2010-2014	10.18140/FLX/1440097
US-Wkg	(31.7365, -109.9419)	2010-2014	10.18140/FLX/1440096
ZA-Kru	(-25.0197, 31.4969)	2010-2010	10.18140/FLX/1440188

Table S3: Evaluation of LDAS-ERA5 analysis and open-loop surface soil moisture against in situ measurements of surface soil moisture from the International Soil Moisture Network (ISMN, <u>https://ismn.geo.tuwien.ac.at/en/</u>, last access June 2019). Unbiased RMSD, correlation (R) and bias values are reported along with informations specific to each network used (acronyms, sensor depth, localisation, number of sensors used in the study as well as mean sampling).

	ubRMSD (m ³ m ⁻³)	R (-)	Bias (Analysis or	ubRMSD (m ³ m ⁻³)	R (-)	Bias (Analysis or
			Model - insitu) (m ³ m ⁻³)	(Model - insitu) (m ³ m ⁻³)
	AMMA-CATCH (0.05-0.05 cm) Benin, Niger, Mali, 9 sensors, Npt=1661 (Lebel et al., 2009)			FR-Aqui (0.05-0.05cm) France, 3 sensors, Npt=1200		
Model	0.032	0.74	0.124	0.044	0.80	0.068
Analysis	0.034	0.72	0.123	0.044	0.80	0.071
	OZNET (0.00-0.05 cm) Australia, 19 sensors, Npt=1891 (Smith et al., 2012)			HOBE (0.00-0.05cm) Denmark, 137 sensors, Npt=795 (Bircher et al., 2011)		
Model	0.067	0.74	0.079	0.055	0.58	0.024
Analysis	0.067	0.75	0.086	0.055	0.58	0.024
	OZNET (0.00-0.08 cm) Australia, 19 sensors, Npt=949 (Smith et al., 2012)			HYDROL-NET-PERUGIA (0.05-0.05 cm) Italy, 1 sensors, Npt=998 (Morbidelli et al., 2014)		
Model	0.041	0.71	0.105	0.046	0.74	0.040
Analysis	0.040	0.73	0.111	0.046	0.74	0.040
	BIEBRZA-S-1 (0.05-0.05 cm) Poland, 38 sensors, Npt=617 (http://www.igik.edu.pl/en)			MOL-RAO (0.08-0.08 cm) Germany, 1 sensors, Npt=953 (Beyrich et al., 2007)		
Model	0.096	0.58	-0.032	0.040	0.79	0.045
Analysis	0.097	0.56	-0.042	0.040	0.80	0.047
	DAHRA (0.05-0.05 cm) Sénégal, 2 sensors, Npt=1821 (Tagesson et al., 2015)			PBO-H20 (0.00 0.05 cm) USA, 146 sensors, Npt = 1432 (Larson et al., 2008)		
Model	0.026	0.72	0.063	0.051	0.61	0.085
Analysis	0.025	0.72	0.062	0.051	0.62	0.087
	DAHRA (0.05-0.05 cm) Sénégal, 1 sensors, Npt=1821 (Tagesson et al., 2015)		REMEDHUS (0.00-0.05 cm) Spain, 20 sensors, Npt=2309 (http://campus.usal.es/~hidrus/)			
Model	0.024	0.69	0.076	0.046	0.73	0.134
Analysis	0.024	0.69	0.075	0.046	0.73	0.133
	FMI (0.05-0.05 cm) Finland, 46 sensors, Npt=1108 (<u>http://fmiarc.fmi.fi/</u>)		RSMN (0.00-0.05 cm) Romania, 19 sensors, Npt=1032 (http://assimo.meteoromania.ro)			
Model	0.035	0.68	0.254	0.049	0.56	0.141
Analysis	0.036	0.67	0.248	0.049	0.56	0.143
	ARM (0.05-0.05 cm) USA, 10 sensors, Npt=932 (<u>http://www.arm.gov/</u>)		SCAN (0.05-0.05 cm) USA, 160 sensors, Npt=1841 (<u>http://www.wcc.nrcs.usda.gov/</u>)			
Model	0.092	0.30	-0.023	0.059	0.63	0.078
Analysis	0.091	0.29	-0.018	0.058	0.64	0.080

	ubRMSD (m³m⁻³)	R (-)	Bias (Analyse or Model - insitu) (m ³ m ⁻³)	ubRMSD (m³m⁻³)	R (-)	Bias (Analyse or Model - insitu) (m ³ m ⁻³)
	SMOSMANIA (0.05-0.05 cm) France, 23 sensors, Npt=1985 (Albergel et al., 2008)			UMBRIA (0.05-0.05 cm) Italy, 16 sensors, Npt=1288 (Brocca et al., 2011)		
Model	0.047	0.80	0.076	0.065	0.73	0.057
Analysis	0.047	0.80	0.077	0.064	0.73	0.057
	SNOTEL (0.05-0.05 cm) USA, 269 sensors, Npt=1160 (<u>http://www.wcc.nrcs.usda.gov//</u>)			TERENO (0.05-0.05cm) Germany, 14 sensors, Npt=1449 (Zacharias et al., 2011)		
Model	0.073	0.65	0.075	0.055	0.76	0.025
Analysis	0.073	0.65	0.075	0.054	0.76	0.024
	SOILSCAPE (0.04-0.04 cm) USA, 7 sensors, Npt=785 (Moghaddam et al., 2016)			USCRN (0.05 0.05 cm) USA, 114 sensors, Npt=2090 (Bell et al., 2013)		
Model	0.061	0.55	0.014	0.050	0.73	0.083
Analysis	0.060	0.56	0.018	0.050	0.73	0.085
	SOILSCAPE (0.05-0.05 cm) USA, 49 sensors, Npt=999 (Moghaddam et al., 2016)					
Model	0.054	0.88	0.064			
Analysis	0.054	0.88	0.064			

Figure S1: (a) Map of Normalized Information Contribution (NIC, Equation 1) applied on correlation values between evapotranspiration from LDAS_ERA5 analysis (open-loop) and observations from the FLUXNET 2015 synthesis data set. NIC scores are classified into 2 categories (i) negative impact from the analysis with respect to the model with values smaller than - 3 % (red circles, 5 stations), (ii) positive impact from the analysis with respect to the model with values greater than +3 % (blue circles, 20 stations). For sack of clarity stations presenting a neutral impact with values between -3 % and +3 % (60 stations) are not reported. (b), (c), (d) and (e) scatter-plots of R, ubRMSD, absolute bias and RMSD between LDAS_ERA5 open-loop and the 85 stations from the FLUXNET 2015 (y-axis) and LDAS_ERA5 analysis and the same pool of stations (x-axis).

Figure S2: Global map of Nash-Sutcliff Efficiency score (NSE) between river discharge from LDAS_ERA5 open-loop and in situ measurements from the networks presented in Table S1 over 2010-2016. Only stations where more than 4-year of data are available, with a drainage area greater than 10000km² are considered. Stations with NSE values smaller than -2 are discarded, also, leading to a subset 982 stations available.

Figure S3: (a) Normalized Information Contribution scores (NIC) based on NSE scores on river discharge. Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an improvement from LDAS_ERA5 analysis over LDAS_ERA5 open-loop while values smaller than - 3% (large red circles) suggest a degradation. (b) density of NIC values for LDAS_ERA5 open-loop (in blue) and analysis (in red), (c) scatter-plots of NIC values for LDAS_ERA5 open-loop (x-axis) and analysis (y-axis).

Figure S4: (a) Normalized Information Contribution scores (NIC) based on correlations (R) scores between in situ surface soil moisture and surface soil moisture from LDAS_ERA5 (analysis or openloop). Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an improvement from LDAS_ERA5 analysis over LDAS_ERA5 open-loop while values smaller than - 3% (large red circles) suggest a degradation. (b) Same as (a) zooming on the continental USA.

References

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on insitu observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, 2008.

Bell, J. E., M. A. Palecki, C. B. Baker, W. G. Collins, J. H. Lawrimore, R. D. Leeper, M. E. Hall, J. Kochendorfer, T. P. Meyers, T. Wilson, and H. J. Diamond. 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeorol., 14, 977-988. doi: 10.1175/JHM-D-12-0146.1

Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., Bittelli, M. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sensing of Environment, 115, 3390-3408, doi:10.1016/j.rse.2011.08.003.

Beyrich, F. and W.K. Adam, Site and Data Report for the Lindenberg Reference Site in CEOP -Phase 1, Berichte des Deutschen Wetterdienstes, 230, Offenbach am Main, 2007

Bircher, S., Skou, N., Jensen, K.H., Walker, J.P., and Rasmussen, L.: A soil moisture and temperature network for SMOS validation in Western Denmark. Hydrology and Earth System Sciences Discussions, 8, 9961-10006, doi:10.5194/hessd-8-9961, 2011

Larson, M., K., Eric E. Small, Ethan D. Gutmann, Andria L. Bilich, John J. Braun, Valery U. Zavorotny: Use of GPS receivers as a soil moisture network for water cycle studies. GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L24405, doi:10.1029/2008GL036013, 2008.

Lebel, Thierry, Cappelaere, Bernard, Galle, Sylvie, Hanan, Niall, Kergoat, Laurent, Levis, Samuel, Vieux, Baxter, Descroix, Luc, Gosset, Marielle, Mougin, Eric, Peugeot, Christophe and Seguis, Luc: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. JOURNAL OF HYDROLOGY, 375, 3-13, 2009.

Moghaddam, M., A.R. Silva, D. Clewley, R. Akbar, S.A. Hussaini, J. Whitcomb, R. Devarakonda, R. Shrestha, R.B. Cook, G. Prakash, S.K. Santhana Vannan, and A.G. Boyer. 2016. Soil Moisture Profiles and Temperature Data from SoilSCAPE Sites, USA. ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1339

Morbidelli, R., Saltalippi, C., Flammini, A., Rossi, E. & Corradini, C., Soil water content vertical profiles under natural conditions: Matching of experiments and simulations by a conceptual model. Hydrological Processes. 28(17), 4732-4742, doi: 10.1002/hyp.9973, 2014.

Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W.: Bioclimatic and soil moisture monitoring across elevation in a mountain watershed: Opportunities for research and resource management. Water Resources Research, 55. <u>https://doi.org/10.1029/2018WR023653</u>, 2019.

Smith, A. B., J. P.Walker, A. W.Western, R. I.Young, K. M.Ellett, R. C.Pipunic, R. B.Grayson, L.Siriwardena, F. H. S.Chiew, and H.Richter, The Murrumbidgee soil moisture monitoring network data set, Water Resour. Res., 48, W07701, doi:10.1029/2012WR011976, 2012.

Schlenz, F., Dall'Amico, J., Loew, A., Mauser, W. (2012): Uncertainty Assessment of the SMOS Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 50(5), pp.1517–1529. doi: 10.1109/TGRS.2011.2171694.;

Tagesson T, Fensholt R, Guiro I et al. ,Ecosystem properties of semi-arid savanna grassland in West Africa and its relationship to environmental variability. Global Change Biology, 2015 Jan;21(1):250-64. doi: 10.1111/gcb.12734. Epub 2014 Oct 18.

Yang, K., J. Qin, L. Zhao, Y. Y. Chen, W. J. Tang, M. L. Han, Lazhu, Z. Q. Chen, N. Lv, B. H. Ding, H. Wu, C. G. Lin, 2013. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-12-00203.1

Zacharias, S., H.R. Bogena, L. Samaniego, M. Mauder, R. Fuß, T. Pütz, M. Frenzel, M. Schwank, C. Baessler, K. Butterbach-Bahl, O. Bens, E. Borg, A. Brauer, P. Dietrich, I. Hajnsek, G. Helle, R. Kiese, H. Kunstmann, S. Klotz, J.C. Munch, H. Papen, E. Priesack, H. P. Schmid, R. Steinbrecher, U. Rosenbaum, G. Teutsch, H. Vereecken. 2011. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 10. 955–973. doi:10.2136/vzj2010.0139