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Abstract- LDAS-Monde is a global offline Land Data Assimilation System (LDAS) that jointly
assimilates satellite-derived observations of Surface Soil Moisture (SSM) and Leaf Area Index
(LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) Land Surface Model
(LSM). This study demonstrates that LDAS-Monde is able to detect, monitor and forecast the
impact of extreme weather on land surface states. Firstly, LDAS-Monde is run globally at 0.25°
spatial resolution over 2010-2018. It is forced by the state-of-the-art ERAS reanalysis
(LDAS ERAS5) from the European Centre for Medium Range Weather Forecast (ECMWF). The
behaviour of the assimilation system is evaluated by comparing the analysis with the assimilated
observations. Then the Land Surface Variables (LSVs) are validated with independent satellite
datasets of evapotranspiration, Gross Primary Production, Sun Induced Fluorescence and snow
cover. Furthermore, in situ measurements of SSM, evapotranspiration and river discharge are
employed for the validation. Secondly, the global analysis is used to (i) detect regions exposed to
extreme weather such as droughts and heatwave events and (ii) address specific monitoring and
forecasting requirements of LSVs for those regions. This is performed by computing anomalies of
the land surface states. They display strong negative values for LAI and SSM in 2018 for two
regions: North Western Europe and the Murray-Darling basin in South Eastern Australia. For those
regions, LDAS-Monde is forced with the ECMWF Integrated Forecasting System (IFS) high
resolution operational analysis (LDAS HRES, 0.10° spatial resolution) over 2017-2018.
Monitoring capacities are studied by comparing open-loop and analysis experiments again against
the assimilated observations. Forecasting abilities are assessed by initializing 4- and 8-day
LDAS HRES forecasts of the LSVs with the LDAS HRES assimilation run compared to the open-

loop experiment. The positive impact of initialization from an analysis in forecast mode is
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particularly visible for LAI that evolves at a slower pace than SSM and is more sensitive to initial
conditions than to atmospheric forcing, even at an 8-day lead time. This highlights the impact of
initial conditions on LSV forecasts and the value of jointly analysing soil moisture and vegetation

states.

1 Introduction

Extreme events are likely to increase in frequency and/or magnitude as a result of anthropogenic
climate change (IPCC, 2012, Ionita et al., 2017). Amongst all the natural disasters, droughts are
arguably the most detrimental (Bruce, 1994; Obasi, 1994; Cook et al., 2007; Mishra and Singh,
2010; WMO 2017) as about one-fifth of damages caused by natural hazards can be attributed to
droughts (Wilhite, 2000). They cost society billions of dollars every year (WMO, 2017). It is
therefore important for communities to develop tools that can monitor and predict drought
conditions (Svoboda, 2002; Luo and Wood, 2007; Blyverket et al., 2019) as well as their impact on
land surface variables (LSVs) and society (Di Napoli et al., 2019). A major scientific challenge in
relation to the adaptation to climate change is to observe and simulate how land biophysical
variables respond to those extreme events (IPCC, 2012).

Droughts are generally caused by a lack of precipitation. However, different drought types are
classified according to the part of the hydrological cycle that suffers from a water deficit (IPCC,
2014; Barella-Ortiz and Quintana-Segui, 2018). They include meteorological droughts (lack of
precipitation), agricultural droughts (deficit of water in the soil), hydrological droughts (deficit of
streamflow or water level in rivers) and environmental droughts (a combination of the previous
droughts types). Because of the effect of precipitation deficit on the whole hydrological system, all
drought types are related (Wilhite, 2000). Complex interactions between continental surface and
atmospheric processes have to be combined with human action in order to fully understand the wide
ranging impacts of droughts on land surface conditions (Van Loon, 2015). As a consequence, Land
Surface Models (LSMs) driven by high-quality gridded atmospheric variables and coupled to river-
routing system, are key tools to address these challenges (Dirmeyer et al., 2006; Schellekens et al.,
2017). Initially developed to provide boundary conditions to atmospheric models, LSMs can now
be used to monitor and forecast land surface conditions (Balsamo et al., 2015; Balsamo et al., 2018;
Schellekens et al., 2017). Additionally, the representation of LSVs by LSMs can be improved by
coupling LSM’s with other models of the Earth system like atmosphere, oceans and river routing
(e.g., de Rosnay et al., 2013, 2014; Kumar et al., 2018, Balsamo et al., 2018; Rodriguez-Fernandez
et al., 2019; Munoz-Sabater et al., 2019).
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Earth Observations (EOs) provide long-term records, which can complement LSMs. Satellite
products are particularly relevant for the monitoring of LSVs. Satellite EOs related to the terrestrial
hydrological, vegetation and energy cycles are now available globally, at kilometric scales and
below (e.g., Lettenmaier et al., 2015, Balsamo et al., 2018). Combining EOs and LSMs through
Land Data Assimilation Systems (LDASs) can lead to enhanced initial land surface conditions (e.g.
Reichle et al., 2007; Lahoz and De Lannoy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a,
2019; Balsamo et al., 2018). Subsequently, this can benefit weather forecasts, including temperature
and precipitation. It can also indirectly benefit agricultural and vegetation productivity prediction,
streamflow prediction, warning systems for floods and droughts and the representation of the
carbon cycle (Bamzai and Shukla, 1999; Schlosser and Dirmeyer, 2001; Bierkens and van Beek,
2009; Koster et al., 2010; Bauer et al., 2015; Massari et al, 2018; Albergel et al., 2018a, 2019,
Rodriguez-Fernandez et al., 2019; Mufioz-Sabater et al., 2019). Amongst the current land-only
LDAS activities several are led by NASA (National Aeronautics and Space Administration)
projects. Examples of such activities are the Global Land Data Assimilation System (GLDAS,
Rodell et al., 2004), the North American Land Data Assimilation System (NLDAS, Xia et al.,
2012a, b) and the National Climate Assessment-Land Data Assimilation System (NCA-LDAS,
Kumar et al., 2016, 2018, 2019). The Famine Early Warning Systems Network (FEWS NET) Land
Data Assimilation System (FLDAS, McNally et al., 2017) is run over Western, Eastern and
Southern Africa. Additional examples include the Carbon Cycle Data Assimilation System
(CCDAS, Kaminski et al., 2002), the Coupled Land Vegetation LDAS (CLVLDAS, Sawada and
Koike, 2014, Sawada et al., 2015), the Data Assimilation System for Land Surface Models using
CLM4.5 (Fox et al., 2018) and the SMAP (Soil Moisture Active Passive) level 4 system (Reichle et
al., 2019). Finally, LDAS-Monde (Albergel et al., 2017, 2018, 2019) developed by the research
department of Météo-France. Details of these studies are provided by Kumar et al. (2018), Albergel
et al., (2019) but few applications are global and include the assimilation of multiple EOs.

LDAS-Monde consists in an offline (i.e. non coupled with the atmosphere) joint assimilation of
Surface Soil Moisture (SSM) and Leaf Area Index (LAI) EOs into the ISBA (Interaction between
Soil Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996).
Several previous studies using LDAS-Monde have been published at regional and continental scales
(Albergel et al., 2017, 2018, 2019, Leroux et al., 2018, Tall et al., 2019, Blyverket et al., 2019,
Bonan et al., 2020). In this study, LDAS-Monde is run at the global scale and is forced by the latest
atmospheric reanalysis (ERAS) from the European Centre for Medium Range Weather Forecast
(ECMWF), over 2010-2018. The resulting 0.25° spatial resolution reanalysis of the LSVs is
hereafter referred to as LDAS ERAS. In this paper, it is shown that LDAS-Monde can be used to
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detect, monitor and forecast the impact of extreme events on LSVs. The following items are
presented and discussed:

. An evaluation of LDAS-Monde at a global scale is carried out. This assessment involves the
assimilated observations to demonstrate that the system is working as intended. Importantly, LDAS-
Monde is then validated using diverse, independent and complementary satellite-derived datasets of
evapotranspiration (EVAP) from the GLEAM project (Miralles et al., 2011, Martens et al., 2017),
Gross Primary Production (GPP) from the FLUXCOM project (Tramontana et al., 2016, Jung et al.,
2017), Solar Induced Fluorescence (SIF) from the GOME-2 (Global Ozone Monitoring
Experiment-2) scanning spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data
from the Interactive  Multi-sensor Snow and Ice Mapping System  (IMS,

https://www.natice.noaa.gov/ims/, last accessed June 2019). Additional validations are performed

with in situ measurements of evapotranspiration from the FLUXNET 2015 synthesis data set (http://
fluxnet.fluxdata.org/, last accessed June 2019), soil moisture from the International Soil Moisture
Network (ISMN, Dorigo et al., 2011, 2015, https://ismn.geo.tuwien.ac.at/en/, last accessed June
2019) and river discharge from several networks across the world.

. The LDAS-Monde global analysis over 2010-2018 is used to detect droughts and heatwave
events in 2018. This identification is performed by computing anomalies of LSVs over the 9-year
period and identifying where the strongest negative anomalies are located in 2018. For the
identified regions, the abilities of LDAS-Monde to forecast such events in near-real-time is
investigated by forcing it with high resolution forecasts from ECMWF.

The paper is organised in five sections: section 2 details the various components constituting
LDAS-Monde (the ISBA LSM, the data assimilation scheme, the EOs assimilated as well as the
different atmospheric forcing datasets used), followed by the experimental and evaluation setup.
Section 3 describes and discusses the impact of the analysis on the representation of the LSVs.
Section 4 details the identification of 2 case studies over regions particularly affected by extreme
heatwave events during 2018. Furthermore the detailed monitoring and land surface forecasts of
these events are presented at higher spatial resolution. Finally section 5 provides conclusions and

prospects for future work.

2 Material and methods

The following subsections briefly describe the main components of LDAS-Monde: the ISBA
LSM, its data assimilation scheme and two other key elements of the setup: atmospheric forcing
and assimilated satellite derived observations. The experimental setup and the evaluation datasets

used in this study are also presented.
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2.1 LDAS-Monde

LDAS-Monde (Albergel et al., 2017) is embedded within the SURFEX (SURFace EXternalisée,
Masson et al., 2013, version 8.1) modelling platform developed by the research department of
Meétéo-France (CNRM, Centre National de Recherches Météorologiques). It allows the joint
integration of satellite derived SSM and LAI into the CO,-responsive (Calvet, et al., 1998, 2004,
Gibelin et al., 2006), multilayer diffusion scheme (Boone et al., 2000, Decharme et al., 2011)
version of the ISBA LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996). LDAS-
Monde can also be coupled with the CTRIP (CNRM Total Runoff Integrating Pathways, Decharme
et al., 2019) hydrological model using a Simplified Extended Kalman Filter (SEKF, Mahfouf et al.,
2009).

2.1.1 ISBA Land Surface Model

The ISBA LSM aims to model the evolution of LSVs. In the chosen configuration for this study,
ISBA is able to represent the transfer of water and heat through the soil based on a multilayer
diffusion scheme, as well as plant growth and leaf-scale physiological processes. ISBA models key
vegetation variables like LAI, above ground biomass and the diurnal cycle of water, carbon and
energy fluxes. In ISBA, the soil-vegetation composite is computed using a single-source energy
budget. In the CO2-responsive version of ISBA, ISBA-A-gs, the model can simulate the CO2 net
assimilation and GPP by considering the functional relationship between the photosynthesis rate
(A) and the stomatal aperture (gs) based on the biochemical A-gs model proposed by Jacob et al.,
1996. Photosynthesis controls the evolution of vegetation variables. It makes vegetation growth
possible as a result of an uptake of CO2. Contrastingly, a deficit of photosynthesis triggers higher
mortality rates. Ecosystem respiration (RECO) represents the CO2 being released by the soil-plant
system and GPP by the carbon uptake via photosynthesis. Finally, the net ecosystem exchange
(NEE) consists of the difference between GPP and RECO. Each ISBA grid cell is composed of up
to 12 generic land surface types, namely bare soil, rocks, permanent snow and ice surfaces as well
as nine plant functional types (needle leaf trees, evergreen broadleaf trees, deciduous broadleef
trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous and wetlands). The
ECOCLIMAP-II land cover database (Faroux et al., 2013) provides these parameters for each
patch and each grid cell of the ISBA model.

The ISBA multilayer diffusion scheme’s default discretization is 14 layers over 12 m depth. This
study follows Decharme et al. (2011), which is illustrated in Figure 1 of their paper. The thickness
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(depth) of each layer is (from top to bottom), 1 cm (0-1 cm), 3 cm (1-4 cm), 6 cm (4-10 cm), 10 cm
(10-20 cm), 20 cm (20-40 cm), 20 cm (40-60 cm), 20 cm (60-80 cm), 20 cm (80-100 cm), 50 cm
(100-150cm), 50 cm (150-200cm), 100 cm (200-300 cm), 200 cm (300-500 c¢m), 300 cm (500-800
cm) and 400 cm (800 to 1200 cm). Snow is represented using the ISBA 12-layer explicit snow
scheme (Boone and Etchevers, 2001, Decharme et al., 2016).

2.1.2 CTRIP river routing system

The ISBA-CTRIP river routing system is able to simulate continental scale hydrological variables
based on a set of three prognostic equations. They correspond to (i) the groundwater, (ii) the
surface stream water and (iii) the seasonal floodplains. It converts the runoff simulated by ISBA
into river discharge. The ISBA-CTRIP river-routing network has a spatial resolution of 0.5°
globally and is coupled daily with ISBA through the OASIS3-LCT coupler (Voldoire et al., 2017).
ISBA provides CTRIP with updated fields of runoff, drainage, groundwater and floodplain
recharges. In turn, CTRIP provides ISBA with water table depth, floodplain fraction as well as
flood potential infiltration. Subsequently, ISBA can simulate capillary rise, evaporation and
infiltration over flooded areas. A comprehensive overview of how CTRIP is coupled with ISBA is

available in Decharme et al. (2019).

2.1.3 Data assimilation
The SEKF used in LDAS-Monde is a 2-step sequential approach in which a prior forecast step is
followed by an analysis step. The prior forecast propagates the initial states to the next time step
with the ISBA LSM and the analysis step then corrects this forecast by assimilating observations.
The flow-dependency (dynamic link) between the prognostic variables and the observations is
ensured in the SEKF through the observation operator and its Jacobians, which propagate
information from the observations to the analysis via finite-difference computations (de Rosnay et
al., 2013). The Jacobian matrix has as many rows as assimilated observation types (two in our case:
SSM and LAI) and as many columns as model control variables requested (8 in our case, soil
moisture from layers 2 to 8 and LAI). In addition to a control run (i.e. the forecast step), computing
the Jacobian matrix requires perturbed runs, one for each control variable. The eight control
variables are directly updated using their sensitivity to observed variables (i.e. defined by the
Jacobian). Other variables are indirectly modified through biophysical processes and feedback from
the model. Several studies (e.g. Draper et al., 2009; Riidiger et al., 2010) have demonstrated that
small perturbations lead to a good linear approximation of the model behaviour, provided that

computational round-off error is not significant. Typically, for those runs, the initial state of the
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control variable is perturbed by about 0.1% (see Albergel et al., 2017; Riidiger et al., 2010). The
length of the LDAS-Monde assimilation window is 24 hours. A mean volumetric standard deviation
error of 0.04 m’m™ is prescribed for soil moisture in the second layer of soil (i.e. the model
equivalent of the observations, between 1 and 4 cm), it is 0.02 m’m™ for soil moisture in deeper
layers (soil layers 3 to 8, 4-100cm). Both are then scaled by the dynamic range of soil moisture (the
difference between the volumetric field capacity and the wilting point, calculated as a function of
the soil type, as given by Noilhan et Mahfouf, 1996). The observational SSM error follows the same
approach and a value of 0.05 m’m™ is used. This is consistent with errors typically expected for
remotely sensed SSM (e.g., de Jeu et al., 2008, Gruber et al., 2016). Based on previous results from
Jarlan et al., 2008, Riidiger et al., 2010 and Barbu et al., 2011, observed LAI standard deviation
errors are set to 20 % of the LAI value itself. The LAI prior forecast errors are set equivalent to the
observation errors for values higher than 2 m*m™. For values lower than 2 m*m™, a fixed standard
deviation error of 0.04 m’m™ has been used. More details about this approach can be found in Barbu

etal., 2011 (section 2.3 and figure 2).

2.2 Atmospheric forcing

The lowest level of the atmospheric model (about 10 metres above ground level) of air temperature,
wind speed, specific humidity and pressure, the downwelling fluxes of shortwave, longwave
radiations as well as precipitation (partitioned in solid and liquid phases) are needed to force LDAS-
Monde. In this study, LDAS-Monde is driven by several near-surface meteorological fields from
ECMWEF:
* its most recent atmospheric reanalysis (ERAS5) to produce an LDAS-Monde global
reanalysis
e its high resolution Integrated Forecast System (IFS HRES) to monitor and predict the
evolution of LSVs for regions under severe droughts and heatwaves.
ERAS (Hersbach et al., 2018, 2020) is the fifth generation of global reanalyses produced by
ECWME. This atmospheric reanalysis is a key element of the Copernicus Climate Change Service
(C3S) and is available from 1979 onward (data is released about 2 months behind real time). ERAS
produces analyses at an hourly output, at 31 km horizontal resolution and consisting of 137 levels in
the vertical. Several studies have validated the ERAS dataset. For example, Urraca et al. (2018)
have compared incoming solar radiation from both ERAS and the ERA-interim reanalysis (Dee et
al., 2011) at a global scale and found evidence that ERAS outperforms ERA-Interim. In another
study, Beck et al. (2019) have highlighted the good performance of ERAS precipitation with respect
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to a set of 26 gridded (sub-daily) precipitation data sources by comparing them to Stage-IV gauge-
radar data over the CONUS domain (CONtinental United States of America). Tall et al. (2019) have
used in situ measurements of precipitation at more than 100 stations spanning all over Burkina-Faso
in Western Africa as well as incoming solar radiation from 4 in situ stations. They evaluated the
performance of ERAS compared to ERA-Interim and found improved results for ERAS as well.
Furthermore, they evaluated both reanalysis datasets for their ability to force the ISBA LSM, which
demonstrates a clear advantage for ERAS in terms of the performance of LSVs. Albergel et al.
(2018a) made similar comparisons of the ISBA LSM forcing over North America. They showed
enhanced performances in the representation of evapotranspiration, snow depth, soil moisture and
river discharge for ERAS relative to ERA-Interim.

At the time of writing, the ERAS model and data assimilation system (Cycle 4112 of the ECMWF
IFS) are very similar to that of the operational weather forecast, HRES, which has production cycles
ranging from 4112 to 45r1 during the study period (more information at
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model, last
accessed July 2019). The main difference between ERAS and HRES over the considered period is
the horizontal resolution, consisting of 9 km in HRES and 31 km in ERAS. The atmospheric forcing
is interpolated from the native grids of ERAS and HRES to regular grids at 0.25° and 0.1°,
respectively, using a bilinear interpolation from the native grid to the regular grid. ERAS and HRES
were used in Albergel et al. (2019) to force LDAS-Monde in order to study the impact of the 2018
summer heatwave in Europe. Authors have highlighted that the HRES configuration (LDAS_HRES
hereafter) exhibits better monitoring skills than the coarser resolution ERAS configuration.

In forecasting mode, the HRES forecast is also available daily from 00:00 UTC with a 10-day lead
time. The HRES forecast step frequency is hourly up to time step 90 (i.e. day 3), 3-hourly from
time-step 90 to 144 (i.e. day 6) and 6-hourly from time-step 144 to 240 (i.e. day 10). In the forecast
experiments in this study (see section 2.4 for details on the experimental setup) HRES forecasts
with a 10-day lead time are used to force the LSM forecasts of the LSVs. By comparing
LDAS HRES open-loop and analysis configurations it is possible to evaluate the impact of the
initialisation on the forecast of LSVs. The original 3-hourly time steps are used up to day 6 (time
step 144). The 6-hourly time steps from day 6 to 10 are interpolated to 3-hourly frequency to avoid

discontinuities.

2.3 Assimilated satellite Earth Observations
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Two types of satellite-derived variables are assimilated in LDAS-Monde: ASCAT Soil Water Index
(SWI) and LAI GEOVI1. They are both freely available through the Copernicus Global Land

Service (CGLS, https://land.copernicus.eu/global/index.html, last accessed June 2019).

ASCAT stands for Advanced Scatterometer, which is an active C-band microwave sensor that is
onboard the European MetOp polar orbiting satellites (METOP-A, from 2006, B from 2012 and
also C from 2019). From ASCAT radar backscatter coefficients, it is possible to derive information
on SSM following a change detection approach (Wagner et al., 1999, Bartalis et al., 2007). The
recursive form of an exponential filter (Albergel et al., 2008) is then applied to estimate the SWI
using a timescale parameter, T (varying between 1 day and 100 days). T is a surrogate parameter for
all the processes potentially affecting the temporal dynamics of soil moisture including soil
hydraulic properties, soil layer thickness, evaporation, runoff and vertical gradient of soil properties.
The obtained SWI then ranges between 0 (dry) and 100 (wet). In this study, CGLS SWI-001
(produced with a T-value of 1 day) is used as a proxy for SSM (Kidd et al., 2013). Grid points with
an average altitude exceeding 1500 m above sea level as well as those with more than 15 % of
urban land cover are rejected as those conditions are known to inhibit the retrieval of SSM from
space. Prior to the assimilation, SSM has to be converted from the observation space to the model
space. This is done through a linear rescaling as proposed by Scipal et al. (2007), where the mean
and variance of observations are matched to the mean and variance of the modelled soil moisture
from the second layer of soil (1-4 cm depth). In practice, the rescaling gives similar results to CDF
(cumulative distribution function) matching. The linear rescaling is performed on a seasonal basis
(with a 3-month moving window) as suggested by Draper et al., (2011) and Barbu et al., (2014).
The LAI GEOV1 observations are based on data from both SPOT-VGT (up to 2014) and PROBA-
V (from 2014) satellites. They span from 1999 to present, have 1 km spatial resolution and are
produced according to the methodology developed by Baret et al. (2013). LAl GEOV1 observations
have a temporal frequency of 10 days at best and no observations are available during cloudy
conditions. LAI data are masked in the presence of modelled snow by the ISBA LSM.

As in previous studies (e.g, Barbu et al., 2014, Albergel et al., 2019), observations are interpolated
by an arithmetic average to the model grid points (0.25° or 0.10° in this study), if at least 50 % of
the model grid points are observed (i.e. half the maximum amount). ASCAT SSM and LAI GEOV1
are illustrated by Figure 1.

24 Experimental setup

LDAS-Monde is first run globally, at 0.25° spatial resolution, forced by the ERAS5 atmospheric
reanalysis. It assimilates both SSM and LAI EOs from 2010 to 2018 (LDAS_ERAS). LDAS ERAS
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is spun-up by running the year 2010 twenty times. The LDAS ERAS5 analysis and its model
counterpart (open-loop, i.e. no data assimilation) are presented and evaluated in this study.

This 9-yr global reanalysis is then used to provide a monthly climatology for estimating anomalies
of the land surface conditions. For each month (and variable considered) of 2018 we have removed
the monthly mean and scaled by the monthly standard deviation of the 2010-2018 period.
Significant anomalies are used to trigger more detailed monitoring and forecasting activities for a
region of interest. A total of 19 regions across the globe have been selected, which are known for
being potential hot spots for droughts and heatwaves. They are listed in Table I and presented in
Figure 2. Monthly anomalies of SSM and LAI in the LDAS ERAS analysis are calculated for 2018
(with respect to the 2010-2018 period) over these 19 regions. In turn, regions presenting significant
level of negative anomalies are selected and further investigated. For those regions, a new LDAS-
Monde experiment was driven by the HRES atmospheric analysis leading to a 0.1° analysis of the
LSVs from April 2016 to December 2018 (LDAS HRES). Note that HRES is only available at a
0.1° spatial resolution from April 2016. April to December 2016 is used as a short period for spin-
up and results are presented for the period 2017-2018. Although a 9-month spin-up period is rather
short, evaluating LDAS HRES over either 2017-2018 or 2018 (using instead a 21-month spin-up)
lead to similar results on surface soil moisture and LAI (not shown). While the system is not fully
spun-up, it is long enough to capture the system response to data assimilation. LDAS HRES
complements the coarser spatial resolution LDAS ERAS.

HRES forecasts with a 10 day lead time are initialized either from LDAS HRES analysis or open-
loop experiments (LDAS Fc hereafter) in order to assess the impact of the initialisation on the
forecast. For simplicity, only forecasts with a four and eight day lead time are presented (LDAS _fc4

and LDAS _fc8, respectively). A summary of the experimental setup is given in Table II.

2.5 Evaluation datasets and metrics

Both satellite-derived estimates of EOs and in situ measurements are used as reference datasets in
this study. The LDAS ERAS analysis performance is assessed with respect to the open-loop model
run (i.e. no assimilation). The two assimilated datasets, CGLS SSM and LAI, are firstly used to
verify that the data assimilation is behaving as expected. Then several independent datasets are used
for the validation, namely evapotranspiration from the GLEAM project (Miralles et al., 2011,
Martens et al., 2017, version 3b entirely satellite driven), GPP from the FLUXCOM project
(Tramontana et al., 2016, Jung et al., 2017), SIF from the GOME-2 (Global Ozone Monitoring
Experiment-2) scanning spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data

from the Interactive  Multi-sensor Snow and Ice Mapping System (IMS,

10
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https://www.natice.noaa.gov/ims/). The IMS snow cover product combines ground observations and
satellite data from microwave and visible sensors (using geostationary and polar orbiting satellites)
to provide snow cover information in all weather conditions. The IMS product is available daily for
the northern hemisphere.

Soil moisture is validated using in situ measurements of soil moisture from the ISMN, a pool of
stations which consists of 19 networks across 14 countries (see Table S3). In total, 782 stations are
represented with at least 2 years of daily data over 2010-2018. In situ measurements at 5 cm depth
(SSM) are compared with soil moisture from the third layer of soil (4-10 cm) in LDAS ERAS. In
situ measurements at 20 cm depth are compared with LDAS ERAS soil moisture from the fourth
layer of soil (10-20 cm, 685 stations from 10 networks). Besides 11 stations located in 4 countries
of Western Africa (Benin, Mali, Sénégal and Niger) and 21 stations in Australia, most of the stations
are located in North America and Europe (see Table S3).

Evaluation datasets are listed in Table III along with the metrics used for the evaluation. For satellite
datasets of SWI, LAI, evapotranspiration and GPP, the metrics consist of the correlation coefficient
(R), Root Mean Square Difference (RMSD) and Normalized RMSD (Nrumsp, Eq.(1)).

N RMSD |Analysis | - RMSD
Rsp RMSD [Model |

[Model| % 100 Eq(l)

Regarding the SIF satellite dataset, fluorescence is not simulated directly in the ISBA LSM.
However, photosynthesis activity is simulated through the calculation of the GPP, which is driven
by plant growth and mortality in the model. Modelled GPP values are expressed in g(C)-m~-day ™,
while SIF is an energy flux emitted by the vegetation (mW-m™-sr '-nm™). Hence, GPP and SIF
cannot be directly compared as they do not represent the same physical quantities. However,
several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found a high
correspondence in both time and space between those two variables, highlighting the potential of
SIF products to support the validation of modelled GPP. Therefore, the correlation between
modelled GPP and observed SIF is used as an evaluation metric. Concerning the snow cover
dataset, differences between observed and modelled snow cover is considered for the evaluation.

For in situ datasets of soil moisture and evapotranspiration, the standard metrics are considered,
namely the correlation coefficient, RMSD, unbiased RMSD and bias. Moreover, a Normalized
Information Contribution (NIC, Eq.(2)) measure is applied to the correlation values to quantify the

improvement or degradation due to the specific configuration.

R, =Ry ..
NICR: ‘Analy_sm‘ {Model | x 100 Eq (2)
1 RYModel}
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NIC scores are classified according to three categories: (i) negative impact from the analysis with
respect to the open-loop with values smaller than -3 %, (i1) positive impact from the analysis with
respect to the open-loop with values greater than +3 % and (iii) neutral impact from the analysis
with respect to the open-loop with values between -3 % and 3 %.
In addition, for surface soil moisture, the correlation is calculated for both absolute (R) and anomaly
(Ranomaty) time-series in order to remove the strong impact from the SSM seasonal cycle (see e.g.
Albergel et al., 2018a, 2018b).
The Nash-Sutcliffe Efficiency score (NSE, Nash and Sutcliffe, 1970, Eq.(3)) is used to evaluate
LDAS ERAS experiments ability to represent the monthly discharge dynamics.

>
NSE=1-2=

th th
z th th

t=1

Eq.(3)

3

where Q" is the monthly river discharge from LDAS ERAS5 (analysis or open-loop) at month mz,

and Q" is the observed river discharge at month mt. NSE can vary between —oo and 1. An exact

match between model predictions and observed data is defined as a value of 1, whereas a value of 0
means that the model predictions have the same accuracy as the mean of the observed data. Finally
negative values represent situations where the observed mean is a better predictor than the model
simulation. NIC presented in Eq.(1) has also been applied to NSE scores to assess the added value
of LDAS ERAS analysis over its open-loop counterpart. Stations with NSE values less that -2 have
been discarded. A similar threshold has already been used in previous studies evaluating LDAS-
Monde (e.g. Albergel et al., 2017, 2018a). Many anthropogenic processes are not yet represented in
ISBA, including water management from dams and reservoirs, irrigation, water uptake in urban
areas. This could lead to a poor representation of river discharges in those regions. As with previous
studies it has been decided to exclude these areas by focusing on stations with reasonable NSE

values.

3 Global assessment of LDAS ERAS

3.1 Gridded datasets
In this sub-section, the LDAS-Monde open-loop and analysis are firstly compared against the
assimilated observations (SSM and LAI) to demonstrate that the assimilation system is working as
intended. Both experiments are also compared with independent sources of information to evaluate

the analysis impact (GPP, EVAP and SIF).
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Figure 3 presents mean LAI RMSD values between the observations and LDAS ERAS for the
open-loop (Figure 3a), and for the analysis (Figure 3b) over 2010-2018. Because LAI observations
are ingested into the model, the assimilation reduces the LAI RMSD values almost everywhere. It
should be noted that rather large LAI RMSD values (> 1.5 m*m™) can remain in some areas after
the assimilation, especially in densely forested areas.

Figure 4 illustrates latitudinal plots of LAI, SSM, GPP and EVAP for LDAS ERAS before
assimilation (the open-loop) and after assimilation (the analysis) along with observations. The
number of points considered per 0.25° stripe is also represented. From Figure 4a it is possible to see
the positive impact the analysis has on LAI compared to the open-loop, with the former being closer
to the observations. Improvements in the analysis fit are visible between nearly 80° North to about
55° South and areas around the equator are impacted the most from the assimilation. This
demonstrates that the data assimilation system is working as intended. A smaller impact is obtained
for SSM, GPP and EVAP relative to LAI, which is hardly visible at this scale. The mean latitudinal
results show a consistent difference in terms of GPP and EVAP between LDAS ERAS5 and the
observational products. These differences are systematic with higher values in tropical regions.
Figure 5 presents latitudinal plots of score differences (correlations and Ngrusp) for LAI, SSM, GPP,
EVAP and SIF. For SIF, it only makes sense to show the correlation differences, since this metric is
used to evaluate GPP variability as in Leroux et al., 2018. Score differences are computed by
subtracting the open loop from the analysis. Monthly averages are calculated over 2010-2018 for
LAI and SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. For each panel of
Figure 5, the vertical dashed line represents the 0-value. For plots of correlation differences,
positive values indicate an improvement in the analysis with respect to the open-loop simulation.
Similarly, for plots of RMSD differences, negative values indicate an improvement in the analysis
with respect to the open-loop simulation. Given that LAI and SSM are assimilated variables, the
analysis leads to a clear improvement in both correlation and RMSD. Such an improvement is
expected and reflects the healthy behaviour of the assimilation system. Both variables are improved
at almost all latitudes with the exception around 45°S for LAI correlation values (very few land
points). For SSM a noticeable improvement in both correlation and RMSD is found around 20°N,
which corresponds mainly to an improvement in the Sahara desert (not shown). Being linked to
LAI, GPP is also improved across almost all latitudes (to a lesser extent than LAI) with a
particularly positive impact below 20°N. As seen on Figure 5 d) and 1), there is a negligible impact
of the assimilation on EVAP. It highlights the difficulty of land surface data assimilation to impact

model fluxes by modifying model states.
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The panels of Figure 6 illustrate histograms of score differences (correlation and RMSD, analysis
minus open-loop) for LAL, SSM, GPP, EVAP and SIF. The number of available data and the
percentage of positive and negative values are reported. For correlations (RMSD) differences,
positive (negative) values indicate an improvement in the analysis relative to the open-loop.
Regarding LAI the analysis improves 96.9% of the grid points for correlations and 99.9% for
Nrumsp. As for SSM, correlation values are improved for 92.8% of the grid points (92.4% for Rusp).
The independent GPP and SIF datasets also demonstrate improvements in the analysis relative to
the open loop. Indeed, the GPP correlation (RMSD) is better for 81.1% (74.1%) of the gridpoints
and the SIF correlation is enhanced for 79.7%. Results using the GLEAM dataset for
evapotranspiration are more contrasting with 63.6% (48.9%) of the grid points showing an
improvement from the analysis. It is worth mentioning that 24.9% (39.6%) of the grid point shows a
decrease in skill. However, GLEAM is an evaporation model designed to be driven by remote
sensing observations only. GLEAM only estimates (root-zone) soil moisture and terrestrial
evaporation while the CO2-responsive version of ISBA in LDAS ERAS is a physically-based land
surface model, accounting for more processes linked to vegetation (see section 2.1.1). It should be
noted that the auxiliary datasets used to represent the different land cover types also differ. Within
GLEAM, the land cover types are sourced from the Global Vegetation Continuous Fields product
(MOD44B), based on observations from the Moderate Resolution Image Spectroradiometer
(MODIS). Four land cover types are considered, namely bare soil, low vegetation (e.g. grass), tall
vegetation (e.g. trees), and open water (e.g. lakes). In ISBA, the fraction of the 12 land cover types
over some areas departs from prevalent land cover products such as CLC2000 (Corine Land Cover)
and GLC2000 (Global Land Cover). It could potentially impact the distribution of the terrestrial
evaporation between GLEAM and ISBA. Further work at CNRM will focus on understanding the
differences between ISBA and GLEAM, in particular investigating the sub-components of
terrestrial evaporation.

Finally, Figure S1 and Figure S2 illustrate snow cover evaluation. LDAS ERAS snow cover is
evaluated against the IMS snow cover. Figure S1 shows the averaged northern hemisphere snow
cover fraction for the 2010-2018 period. It is complemented by Figure S2 which shows (i) maps of
IMS snow cover (top row) for 3 seasons, (ii) equivalent maps of snow cover from LDAS ERAS
open-loop (second row), (ii1) maps of snow cover differences between the open-loop and IMS data
and (iv) maps of snow cover differences between the analysis and the open-loop. LDAS_ERAS5
open-loop compares very well with the IMS snow-cover data in the accumulation season from
September to February (Figure S2 and panels d to i of Figure S1), except for an overestimation over

the Tibetan Plateau. The issue over Tibet from ERAS is not new and is consistent with Orsolini et
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al. (2019). An early melt in spring is visible in LDAS_ERAS compared to observations and could
be related to the snow cover parametrization in ISBA. As expected, the analysis has an almost
neutral impact on snow as both SSM and LAI observations are filtered out during frozen/snow-
covered conditions and there is no snow data assimilation yet in LDAS_ERAS5 (Figure S2 and
panels (j), (k) and (1) of Figure S1). Clearly an area of potential improvement in LDAS-Monde is to
incorporate snow data assimilation using satellite data such as IMS (as in e.g. de Rosnay et al.,

2014).

3.2 Ground-based datasets

LDAS ERAS analysis and open-loop are also evaluated using independent in situ measurements of
evapotranspiration, river discharge and surface soil moisture across the world. Daily in situ
measurements of evapotranspiration from the FLUXNET-2015 synthesis data set

(http:/fluxnet.fluxdata.org/, last accessed June 2019) are first used in this study. The LDAS ERAS

evapotranspiration performance is evaluated using the correlation coefficient (R), RMSD, ubRMSD
and the bias (LDAS_ERAS minus observations) using the 85 selected FLUXNET-2015 stations.
The median R, RMSD, ubRMSD and bias for LDAS ERAS5 analysis (open-loop) are 0.73 (0.72),
28.74 (29.60) W.m?, 27.37 (26.92) W.m” and 4.64 (4.40) wm™, respectively. Although these values
depict a small advantage of the analysis over the open-loop, it is worth mentioning that these
differences are rather small and likely to fall within the uncertainty of the in situ measurements.
Figure 7(a) represents the added value of the analysis based on NICr (Eq.(2)), the large blue circles
represent a positive impact from the analysis (20 stations) with a NICy greater than +3 (i.e. R values
are better when the analysis is used than when the model is used) while large red circles represent a
degradation from the analysis (5 stations) with a NICg smaller than -3. Stations with a rather neutral
impact (60 stations) have a NICr between [-3 ; +3] and are reported using small dots. Note that at
the scale of Figure 7(a), some stations are overlapping. Figure 7(a) is complemented by panels (b),
(¢), (d) and (e) which show scatter-plots of R, ubRMSD, absolute bias and RMSD between
LDAS ERAS analysis (x-axis) and the open-loop (y-axis) for the 85 stations from the Fluxnet2015.
Out of the 85 stations considered, 56 have better R values in the analysis compared to the open
loop. The respective numbers of improved stations for ubRMSD, RMSD and the absolute bias
equate to 41,47 and 44 respectively. The set of 20 stations from Figure 7(a) where the analysis has a
positive impact on the NICr (greater than +3) are reported in green on Figure 7(b).

Results on river discharge are illustrated by Figure 8 (panels a and b). Figure 8(a) represents NSE
scores for the subset of 982 stations selected. Most of them are located in North America and

Europe while a few are available in South America and Africa. Figure 8(a) is complemented by
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Figure 8(b) which shows the NIC score applied to the NSE score. It emphasizes the added value of
the LDAS ERAS analysis over the open-loop. From this subset of stations 74% present a rather
neutral impact from the analysis (with a NIC ranging between -3% and +3%) while 26% (254
stations) present a significant impact (with a NIC above +3% or below -3%). When the analysis
significantly impacts the representation of river discharge, this impact tends to be positive. Indeed,
74% of this subset of stations (189 stations) have a NIC score greater than 3% while only 26% (65
stations) show NIC score smaller than -3%.

The statistical scores for soil moisture from LDAS ERAS open-loop and analysis are presented for
the third and fourth layers of soil, corresponding to 4-10 cm depth and 10-20 cm depth respectively.
The soil moisture at layers 3 and 4 is compared with ground measurements over 2010-2018 from
the ISMN at depths of 5 cm and 20 cm respectively. The results are displayed in Table S3 for each
individual network. Averaged statistical scores (UbDRMSD, R, Raomay and bias) are similar for both
LDAS ERAS analysis and open-loop even if local differences exist. For the analysis, averaged R
(Ranomaty) values for the third layer, along with their 95% Confidence Intervals (CI) (782 stations
from 19 networks), are 0.68+0.03 (0.53+0.04). For the open loop, the averaged R (Ranomay) Values
are 0.67+0.03 (0.53+£0.04). Averaged-network values are highest for the SOILSCAPE network with
values of 0.88+0.01 (0.58+0.04) for the analysis (49 stations in the USA). For all networks, the
average R values are higher than 0.55, with the exception of ARM (10 stations in the USA), which
presents an averaged R value of 0.29+0.05. Averaged ubRMSD and bias (LDAS_ERAS minus in
situ) are 0.060 m’m™ and 0.077 m’m” for the analysis respectively. The open loop has a similar
performance, with an ubRMSD and bias of 0.060 m’m™ and 0.076 m’m™ respectively. NIC (Eq.2)
has also been applied to R values. In total, 65% of stations present a neutral impact of the analysis
compared to the open loop (511 stations at NIC ranging between -3 and +3), 12% present a negative
impact (91 stations at NIC < -3) and 23% present a positive impact (180 stations at NIC > +3).

The number of stations where R differences between the analysis and the open-loop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis with respect to the open-loop for 128 stations (about 69%) and a degradation for
58 stations (about 31%). Figure 9 illustrates R differences between the analysis and the open-loop
runs over CONUS where most of the stations are located (552 out of 782). When differences
(analysis minus openloop) are not significant stations are represented by a small dot (425 stations
out of 552). When they are significant (127 stations out of 552), large circles have been used, with
blue corresponding to positive differences (99 stations out of 127) and red to negative differences
(28 stations out of 127). For most of the stations where a significant difference is obtained, it

represents an improvement from the analysis.
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Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65+0.03, 0.049 m’m™~ and 0.055 m’m~, respectively. For the open-loop, they are
0.64+0.03, 0.048 m’m™ and 0.056 m’m~, respectively. In terms of the NIC, about 60% of the
stations demonstrate a neutral impact of the analysis compared with the open loop, while 28% show
a positive impact and 12% a negative impact. Although differences between the open-loop run and
the analysis are rather small, these results underline the added value of the analysis with respect to
the model run. Figure S3 represents the distribution of the scores values for LDAS ERAS open-
loop and analysis using boxplots centred on the median value. It is difficult to see any important
differences between them.

For evapotranspiration, river discharge and surface soil moisture there is a slight advantage for the
LDAS ERAS analysis with respect to its open-loop counterpart. Even if the averaged statistical

metrics are rather similar for both, there are significant differences at the regional scale.

4. Monitoring and forecasts for areas under severe/extreme conditions

4.1 Selection of two regional case studies

For each individual region presented in Table I and Figure 2, monthly anomalies (scaled by the
standard deviation) of analysed SSM (second layer of soil, 1-4cm) and LAI for 2018 are assessed
with respect to the 2010-2018 average. The anomalies (see Figure 10) highlight three regions, two
of which present strong negative anomalies for both SSM and LAI for almost all of 2018. These are
North Western Europe (WEUR), and the Murray-Darling basin (MUDA), in South Eastern
Australia. Contrastingly, Eastern Africa (EAFR) presents strong positive anomalies of SSM and
LAI. WEUR and MUDA regions were affected by a severe heatwave and a drought in 2018, which
impacted the LSVs analysed by LDAS ERAS. According to Figure 10, monthly anomalies of SSM
and LAI for MUDA are negative through 2018 with 7 (6) months presenting LAI (SSM) anomalies
below -1 standard deviation (stdev), respectively. WEUR has negative SSM anomalies from May to
December 2018 with values dipping below -2 stdev. LAI was severely impacted as well with July to
October 2018 presenting negative anomalies below -2 stdev. For WEUR, 5 months show LAI and
SSM anomalies below -1 stdev. On the other hand, EAFR experienced 3 (7) months with positive
anomalies for SSM and LAI in 2018 above 1 stdev.

According to the National Oceanic and Atmospheric Administration (NOAA), Europe experienced
its warmest summer since continental records began in 1910 with a positive anomaly at +2.16°C

above mean (Global Climate Report, https://www.ncdc.noaa.gov/sotc/global/ last accessed April
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2019). In Europe, temperatures over all the summer months in 2018 were above the climatological
mean. The summer 2018 heatwave in Europe has already been reported in the scientific literature
(e.g. Magnusson et al., 2018, Albergel et al., 2019, Blyverket et al., 2019).

In its 70™ Special Climate Statement, the Australian Bureau of Meteorology (BoM) reported a very
hot and dry summer 2018 in eastern Australia (BoM, 2019). Like much of Australia, the Murray
Darling basin also experienced remarkably dry and hot weather during 2018. The annual maximum
temperature for the Murray Darling basin as a whole was more than two degrees above average
during 2018. The northern Murray—Darling Basin in particular was severely affected with inflows to
all rivers catchments persistently well below normal (http://www.bom.gov.au/state-of-the-climate/,
last visited: April 2019). Finally, the East African Seasonal Monitor based on the Famine Early
Warning System Network (FEWS) confirms above-average rainfall amounts and significantly
greener than normal vegetation conditions (e.g., https:/reliefweb.int/report/somalia/east-africa-

seasonal-monitor-july-27-2018, last visited: April 2019). As this study focuses on monitoring and

forecasting the impact of severe drought conditions on LSVs, the WEUR and MUDA regions are

selected for further investigation.

4.2  Case studies: LDAS-Monde medium resolution (0.25°) experiments

Figure 11 illustrates seasonal cycles of observed LAI (Figure 11a) and SWI (Figure 11le),
LDAS_ERAS analysis and open-loop LAI (Figure 11b) and SSM (Figure 11f) for the WEUR
domain. The 2018 period is compared to 2010-2017 average. Figure 11a shows the heatwave impact
with a sharp drop in observed LAI values from June to November 2018 (solid green line). Such low
LAI values have never been observed over the eight previous years (it is below the minimum value
in shaded green). A similar behaviour is also visible in the ASCAT SWI dataset in Figure 1le with
the lowest values recorded in 2018 for the 2010-2018 period. Over WEUR, LDAS_ERAS5 open-
loop overestimates LAI in the second part of the year, as already highlighted by several studies (e.g.
Albergel et al., 2017, 2019). The LDAS_ERAS5 analysis has a positive impact and reduces LAI
values, as seen in Figure 11b. Panels c, d, g and h of Figure 11) depict a similar situation for the
MUDA area, almost every month of 2018 presents the lowest values for both SSM and LAI. For
both MUDA and WEUR, the smaller differences for LAI and SSM between LDAS_ERAS analysis
and open-loop in 2018 indicates that both extreme events were well captured in the atmospheric

forcing used to drive LDAS_ERAS.

4.3 Case studies: LDAS-Monde high resolution (0.1°) analysis and forecast experiments
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For the two selected areas (WEUR and MUDA), LDAS-Monde is also run over April 2016 to
December 2018 with the atmospheric forcing from HRES (LDAS_HRES) at 0.1° spatial resolution.
Additionally daily forecast experiments are performed and the results presented for LAI and SSM
for lead-times of 4-days and 8-days. These forecasts are initialised by either LDAS_HRES analysis
or open-loop over 2017-2018 in order to assess the impact of the initial conditions. In this
subsection, this new set of six experiments is verified against the assimilated observations.
Verification of the forecasts with these observations can be viewed as an independent validation as
those observations are not assimilated yet. It is worth mentioning that there is a difference between
the use of SSM and LAI observations to evaluate the forecast. For SSM, the assimilation is done
after a rescaling of the observations to the model climatology (see section 2.3), which removes bias.
However, for LAI this is not the case and the assimilation process removes the bias in the modelled
LAI with respect to the observations. This difference, together with the longer memory of LAI
(compared to SSM), contributes to the results presented in this sub-section. Statistical scores for
LDAS_HRES open-loop and analysis are also presented, which serve as a benchmark for the
forecast experiments.

Figure 12 (for WEUR) and Figure 13 (for MUDA) upper panels illustrate the seasonal RMSD
(Figure 12a, 13a) and correlation (Figure 12b, 13b) between LDAS_HRES SSM from the second
layer of soil (1-4 cm) and ASCAT SSM estimates over 2017-2018. Scores are also reported for the
LDAS_HRES 4-day (LDAS_fc4) and 8-day forecasts (LDAS_fc8). From the upper panels of those
figures one may notice a small improvement from the analysis (solid red line) over the open-loop
simulation (solid blue line), with slightly reduced RMSD values and increased correlation values.
However, no improvement (nor degradation) is visible from the 4-d and 8-d forecast experiments
initialised by LDAS_HRES analysis over those initialised by LDAS_HRES open-loop. As
expected, LDAS_HRES SSM is closer to the observations compared with LDAS_fc4 and
LDAS_fc8. It is worth pointing out that for the MUDA area there is a small positive impact of the
initialisation on the 4-d and 8-d forecast of surface soil moisture (Figure 13a, b). These results
suggest that the fast evolving SSM model variable is more sensitive to the atmospheric forcing than
to the initial conditions (at least within the forecast range presented in this study). Results for LAI
are different from SSM (lower panels of Figure 12 and Figure 13). Firstly, there is a large
improvement from the analysis (solid red line) over the open-loop (solid blue line), particularly
during the LAI decaying phase (Boreal and Austral autumns mainly). Secondly, the LDAS_HRES
open-loop (solid blue line) and the forecasts initialized by the open loop (LDAS_fc4 and
LDAS_fc8) perform similarly. Furthermore, the LDAS_fc4 and LDAS_fc8 forecasts are quite
consistent when initialised by the LDAS_HRES analysis. Importantly, the LDAS_HRES analysis
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and forecasts outperform the LDAS_HRES open-loop initial conditions and forecasts. This suggests
that LAI forecasts are more sensitive to initial conditions than to the atmospheric forcing within the
4-8 day range for both WEUR and MUDA regions.

These results are corroborated by Figures 14 (for WEUR) and 15 (for MUDA), for both SSM (top)
and LAI (bottom). Figures 14(a) and 15(a) show RMSD values between LDAS_HRES open-loop
SSM (1-4 cm) and ASCAT SSM over 2017-2018 for the WEUR and MUDA domains, respectively.
Due to the seasonal linear rescaling applied to ASCAT estimates, the RMSD values are rather small.
For the WEUR (MUDA) domain they range from 0 to 0.048 m®m™ (0 to 0.040 m®m™). Figures
14(b) and 15(b) present maps of RMSD differences between LDAS_HRES analysis (open-loop)
and ASCAT SSM estimates over 2017-2018 for the WEUR and MUDA domains. Both maps are
dominated by negative values (in blue) indicating that RMSD values are consistently smaller when
using LDAS_HRES analysis than when using LDAS_HRES open-loop. For the MUDA domain,
the RMSD values are reduced by about 15%. Figures 14(c, d) and 15(c, d) show maps of RMSD
differences for forecast experiments (LDAS_fc4, LDAS_fc8). It appears that over both domains,
the impact from the initialisation is rather small. This supports previous results indicating that the
forcing quality is more important than the initial conditions for the SSM forecast. However, the
results for LAI support the opposite conclusion. The RMSD values for LDAS_HRES open-loop
range from 0 to 1.6 m’m™ over WEUR and 0 to 1 m’m™ over MUDA (Figures 14(e) and 15(e)). The
RMSD values are reduced by up to 37 % over WEUR and up to 60% over MUDA by the analysis
(Figures 14(f) and 15(f)). The enhancement from the data assimilation is consistent throughout the
WEUR domain while the improvement over the MUDA domain is concentrated in the southeastern
part (the northwestern part is largely unchanged).

Similarly to Figures 14(a, b, c, d), Figure 16 illustrates the impact of the analysis on SSM in terms
of the correlation coefficient. But this time, ASCAT SWI (i.e. no rescaling) has been used for the
validation. Figure 16 (top panels) shows maps of R values based on the absolute values while
Figure 16 (bottom panels) shows R values based on the anomaly time series (capturing short term
variability) as defined in Albergel et al., 2018a. Figure 16 (a) and (e) represents R values and
anomaly R values for LDAS_HRES, respectively. As expected R values are higher than anomaly R
values. Maps of differences (panels b and f) of Figure 16 suggest that after assimilation, both scores
are improved almost equally. The 4-day and 8-day forecasts still show improvements from using
initial conditions from the analysis over the open loop on R values (panels c and d of Figure 16).
Looking at Ranomay values (panels g and h of Figure 16), no negative or positive impact from the

initial conditions can be seen.
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Finally, the top panels of Figure 17 illustrate the impact of the analysis on drainage monitoring and
forecasts over WEUR. Fig. 17 a) represents drainage from the LDAS_HRES open-loop with values
ranging between 0 and 1 kg.m?day'. Fig.17 b) shows the drainage difference between
LDAS_HRES analysis and open-loop. The analysis impact on drainage is rather small (within +3%)
and more pronounced in areas where the analysis has largely affected LAI (see panels f, g and h of
Figure 14). As seen in Figure 17 (c) and (d), the forecasts are also sensitive to the initialisation in
areas where the analysis effectively corrected LAI. The bottom panels of Figure 17 illustrate a
similar impact on runoff. Although we did not validate drainage and runoff in this study, previous
findings suggest a neutral to positive impact of the analysis on river discharge through

modifications to drainage and runoff (Albergel et al., 2017, 2018a).

5. Discussion and conclusions

This study has demonstrated the potential of LDAS-Monde for assimilating Earth Observations
(EOs) into a Land Surface Model (LSM) to predict the impact of heatwaves and droughts on land
surface conditions. LDAS-Monde is now ready for various applications including (i) land surface
reanalyses of Essential Climate Variables (ECVs), (ii) monitoring of water resources, such as the
impact of droughts on vegetation, (iii) the detection of extreme land surface conditions; and (iv) the
effective initialisation of LSVs for land surface forecasting. LDAS-Monde has been applied in this
study to past events of 2018 with respect to a relatively short climatology (2010-2018). It is planned
that it will be applied to much longer periods for future reanalysis applications. The operational
application of LDAS-Monde near-real-time could potentially improve emergency monitoring
systems for LSVs. Using high quality atmospheric reanalyses like ERAS to force LDAS-Monde
guarantees a high level of consistency since the configuration is frozen in time (no changes in
spatial and vertical resolutions, data assimilation or parametrizations). The coarse spatial resolution
of ERAS makes it affordable to run long time periods and large-scale LDAS-Monde experiments.
With ERAS available from 1979 and now covering near real-time needs with its ERAST version
(https://climate.copernicus.eu/climate-reanalysis), an LDAS ERAS configuration would be able to
provide a long term climatology as well as near-real-time anomaly detections of the land surface
conditions at coarse resolution (0.25°). Significant anomalies could then be used to trigger more
focused “on-demand” simulations for regions experiencing extreme conditions. For these
simulations, LDAS-Monde could be run at higher resolution by forcing the LSM with an enhanced
resolution forecast in order to provide more information, such as the ECMWF operational high

resolution product (0.10°). The capability of such an approach was illustrated in our study for two
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regions in northwestern Europe and northeastern Australia. In term of the RMSD, our results
showed a very small impact of initial conditions on the forecasts of SSM. This was expected due to
the short term memory of the surface soil layer, which is dominated by the antecedent
meteorological forcing. However, the LAI initialisation had significant impact on the LAI forecast
skill. This was also expected due to the long-term memory of vegetation evolution. For SSM, the
assimilation is performed after a rescaling of the observations to the model climatology (see section
2.3), which ensures that the model and observations are unbiased with respect to each other.
However, LAI is not bias-corrected, which allows the assimilation process to remove bias in the
modelled LAI (with respect to the observation). This technical difference between SSM and LAI
assimilation, combined with the longer memory of LAI compared to SSM, contributes to the results
presented in this study. Despite the expected behaviour of these two LSVs in forecasting, our results
show that the LDAS-Monde system is capable of propagating the initial LAI conditions, which is
relevant for LSV medium-range forecasting and potentially for longer lead-times, such as seasonal
forecasts. The strong impact of LAI initialisation on the forecast does not seem to propagate to the
surface soil moisture and further studies are necessary to test the impact of initial conditions on
other variables from LDAS-Monde (including soil moisture in deeper layers and
evapotranspiration). Another possibility would be to force LDAS-Monde using the 51-member
ECMWF ensemble forecasts. Although the ensemble system has coarser spatial-resolution (~0.20°)
than the deterministic forecast, it accounts for forcing uncertainty in the LSVs through the ensemble
spread and extends to a 15-day lead time. The maximum range of the soil and vegetation forecasts
could even be extended to six months if seasonal atmospheric forecasts were used as forcing.

LDAS-Monde has some limitations, where future developments are needed to improve the
representation of LSVs. For instance, it does not consider snow data assimilation yet. It has been
shown in this study that if the snow accumulation seems to be represented correctly in the system,
the onset of snow-melt is too early in the spring. To overcome this issue, two possibilities will be
explored. Firstly, a recently developed ISBA parametrisation, MEB (Multiple Energy Budget), is
known to lead to a better representation of the snowpack (Boone et al., 2017). This could be
particularly useful in the densely forested areas of the Northern Hemisphere where large differences
between LDAS-Monde and the IMS snow cover were found in spring (Figure S2(i), Aaron Boone
CNRM, personal communication June 2019). Another enhancement of LDAS-Monde will be to
adapt the current data assimilation scheme to permit the assimilation the IMS snow cover data,
which is implemented at NWP centres such as ECMWF (de Rosnay et al., 2014). The current SEKF
data assimilation scheme is also being revisited. Even though it has provided good results, one of its

limitations is the computational cost of the Jacobian matrix, which needs one model run for each
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control variable. As the number of control variables is expected to increase, this approach would
require significant computational resources. Therefore, more flexible ensemble based data
assimilation approaches have recently been implemented in LDAS-Monde, such as the Ensemble
Square Root Filter (EnSRF, Fairbain et al., 2015, Bonan et al., 2020). Bonan et al., 2020 have
evaluated performances from the EnSRF and the SEKF over the Euro-Mediterranean area. Both
data assimilation schemes have a similar behaviour for LAI while for SSM, the EnSRF estimates
tend to be closer to observations than those from the SEKF. They have also conducted an
independent evaluation of both assimilation approaches wusing satellite estimates of
evapotranspiration and GPP together with river discharge observations from gauging stations. They
have found that the EnSRF gives a systematic (moderate) improvement for evapotranspiration and
GPP and a highly positive impact on river discharges, while the SEKF lead to more contrasting
performance. As for applications in hydrology, the 0.5° spatial resolution TRIP river network is
currently being improved to 1/12° globally.

CNRM s also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,
2019). This has the potential to improve the way vegetation is accounted for in the change detection
approach used to retrieve SSM with an improved representation of its effect. Assimilating ASCAT
radar backscatter also raises the question of how to properly specify SSM observation, background,
and model error covariance matrices, which are currently based on soil properties (see section 2.1.3
on data assimilation). The last decade has seen the development of techniques to estimate those
matrices. Approaches based on Desroziers diagnostics (Desroziers et al., 2005) are computationally
affordable for land data assimilation systems and could provide insightful information on the
various sources of the data assimilation system.

Furthermore, a comparison of LDAS-Monde with existing datasets from other centres needs to be
considered. Current work at Météo-France has began to compare its quality against state of the art
reanalyses such as those from NASA at both the global scale (GLDAS, Rodell et al., 2004,
MERRA-2, Reichle et al., 2017, Draper et al., 2018) and regional scale (NCALDAS over the
continental USA, FLDAS over Africa). Finally, first work has begun to run LDAS-Monde at
kilometric and sub-kilometric scale spatial resolutions. Promising results have been obtained by

assimilating SSM and LAI over the AROME domain (Applications de la Recherche a

'Opérationnel a Méso-Echelle, https://www.umr-cnrm.fr/spip.php?article120, last accessed July

2019) of Météo-France.

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open
source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at
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http: //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL
licence; http://www.cecill.info/licences/Licence CeCILL-C V1-en.txt). It is updated at a relatively
low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is
not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the
procedure to get a SVN account and to access real-time modifications of the code (see the
instructions at the first link). The developments presented in this study stemmed on SURFEX
version 8.1. LDAS-Monde technical documentation and contact point are freely available at: https://

opensource.umr-cnrm.fr/projects/openldasmonde/files
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Tables

Table I: Continental hot spots for droughts and heatwaves and number of monthly anomalies SSM
and LAI below -1 standard deviation (stdev), above 1 stdev in 2018 with respect to the 2010-2018

period.
1130
Number of monthly | Number of monthly
Region name | abbreviation| LON-W | LON-E | LAT-S | LAT-N | , OoM anomalies LAT anomalies
below -1 (above 1) | below -1 (above 1)

stdev stdev
Western-Europe WEUR -1 15 48 55 5(1) 5(0)
Megfesrtf;ean WMED -10 15 35 45 0(7) 44)
Eastern Europe EEUR 15 30 45 55 2(1) 0(2)
Balkans BALK 15 30 40 45 3(3) 1(4)
Western Russia WRUS 30 60 55 67 0(1) 1(3)
Lower Volga LVOL 30 60 45 55 2(1) 2(1)
India INDI 73 85 12 27 3(0) 2(1)
Soug‘}‘l’ivﬁztem SWCH 100 110 20 32 0(2) 0(6)
Northern China NRCH 110 120 30 40 0(3) 0(4)
Murray-Darling MUDA 140 150 -37 -26 6(0) 7(0)
California CALF -125 -115 30 42 2(0) 5(0)
Southern Plains SPLN -110 -90 25 37 0(3) 0(4)
Midwest MIDW -105 -85 37 50 1(2) 1(3)
Eastern North ENRT -85 -70 37 50 0(3) 0(7)
Nordeste NDST -44 -36 -20 -2 0(3) 1(2)
Pampas PAMP -64 -58 -36 -23 2(2) 2(0)
Sahel SAHL -18 25 13 19 2(0) 1(2)
East Africa EAFR 38 51 -4 12 2(3) 1(7)
Southern Africa SAFR 14 26 -35 -26 2(0) 2(1)
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Table II: Set up of the experiments performed in this study. LDAS ERAS5 and LDAS HRES have an analysis (assimilation of surface soil moisture,
SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation), LDAS fc4 and LDAS fc8 are model runs initialized by either

1135 LDAS HRES open-loop or analysis. N/A stands for not applicable.

Experiments . Atmospheric Domain Assimilated Model Control

. . Model version . . . DA method . . .
(time period) forcing & spatial resolution observations equivalents variables
LDAS_ERA5 Global, ~0.25°x SSM .
(2010 to 2018) ERAS 0.25° (ASCAT) Secqnd layer of | Layers of soil 2

ISBA SEKF soil (1-4cm) to 8 (1-100cm)

LI())Z\gaEERES Multi-layer soil North Western LAI

( to model Europe (WEUR) and (GEOV1) LAI LAI

12/2018) COz-responswe Murray-Darling

LDAS fc4 version IFS-HRES | River basin (MUDA)
(2017 to 2018) (Interactive (see spatial extend in

LDAS_ch Vegetatl()n) }—‘a?le I)l ) N/A N/A N/A N/A
(2017 to 2018) ~0.10°x0.10




Table III: Evaluation datasets and associated metrics used in this study.

Datasets used for the

Independent source of

. Source Metrics associated .
evaluation evaluation
In situ measurements R for both absolute and
of soil moisture https:// anomaly time-series, Yes
(ISMN Dorigo et al., | ismn.geo.tuwien.ac.at/ | unbiased RMSD and
2011, 2015) en/ bias, NIC on R values
Nash Efficiency (NSE),
Normalized
In situ measurements See Table S1 Information Yes
of river discharge Contribution (NIC)
based on NSE,
In situ measurements http://
of evapotranspiration fluxnet.fluxdata.org/ R, unbiased RMSD, Yes
(FLUXNET-2015) data/fluxnet2015- Bias, NIC on R values
dataset/
Satellite derived
surface soil wetness http:// No
index (ASCAT, Wagner| land.copernicus.eu/ R, RMSD and Ngrumsp (assimilated dataset)
et al., 1999, Bartalis et global/
al., 2007)
Satellite derived Leaf http:// No
Area Index (GEOVI1, land.copernicus.eu/ R, RMSD and Ngwmsp (assimilated dataset)
Baret et al., 2013) global/

Satellite-driven model
estimates of land

evapotranspiration http://www.gleam.eu | R, RMSD and Ngrumsp Yes
(GLEAM, Martens et
al., 2017)
Up SCC}i)es(l ;S:ilr?ll:tes of https://www.bgc-
. Y jenna.mpg.de/geodb/ | R, RMSD and Ngrumsp Yes
Production (GPP, Jung roiects/Home.nh
etal, 2017) pro] PAp
Solar Induced
Fluorescence (SIF)
from GOME-2 See references R Yes
(Munro et al., 2006,
Joiner et al., 2016)
Interactive Multi- https://
sensor Snow and Ice ) .
. WWww.natice.noaa.gov/ Differences Yes
Mapping System (or ims/

IMS) snow cover
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1140  Figures

Figure 1: (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for
pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea
level, (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness
Index (SWI) to the model climatology, grey areas on (a) represent filtered out data (see Section
2.3).

Figure 2: Selection of 19 regions across the globe known for being potential hot spots for
droughts and heatwaves. The regions are defined in Table I.
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RMSD: Model vs. Obs RMSD: Analysis vs. Obs

0.96
RMSD of LAl (m’m?)

Figure 3: RMSD values between observed Leaf Area Index (LAI) and LDAS_ERA5 (a) before
assimilation and (b) after assimilation of surface soil moisture (SSM) and LAL
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Figure 4: Latitudinal plots of (a) Leaf Area Index (LAI), (b) Surface Soil Moisture (SSM), (c)
Gross Primary Production (GPP) and (d) Evapotranspiration (EVAP) for LDAS_ERA5 before
assimilation (Model, blue solid line) and after assimilation (Analysis, red solid line) as well as
observations (black solid line). Cyan dashed line represents the number of points considered per

latitudinal stripes of 0.25°.
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Correlation differences (analysis minus open-loop)
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Figure 5: Latitudinal plots of score differences (analysis minus open-loop) for correlations (a-
e) and normalized RMSD (f-i) for LAI (a,f), SSM (b,g), GPP (c,h), EVAP (d,i) and SIF (e,
correlations only). Scores are computed based on monthly average over 2010-2018 for LAI and
SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. Dashed lines represent

the zero lines (equal scores for open-loop and analysis).
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Correlation (Analysis minus open-loop) RMSD (Analysis minus open-loop)
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0.60

>0: 79.7%
<0: 20.0%

SIF

Figure 6: Histograms of score differences (correlation and RMSD, analysis minus open-loop) for
a),b) LAI, c),d) SSM, e),f) GPP, g),h) EVAP and i) SIF. For SIF only differences in correlation are
represented. Number of available data (in blue) as well as the percentage of positive and negative
values (in red) are reported. Note that for sake of clarity, the y-axis is logarithmic.
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Normalized Information Contribution (NIC) based on R values, LDAS_Monde EKF-OL
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Figure 7:(a) Map of Normalized Information Contribution (NIC, Eq. 2 ) applied on correlation
values between evapotranspiration from LDAS_ERAS analysis (open-loop) and observations from
the FLUXNET 2015 synthesis data set. NIC scores are classified into 2 categories (i) negative
impact from the analysis with respect to the model with values smaller than -3 % (red circles, 5
stations), (ii) positive impact from the analysis with respect to the model with values greater than
+3 % (blue circles, 20 stations). Stations presenting a neutral impact with values between -3 %
and +3 % (60 stations) are reported as small dots. Note that at this scale some stations are
overlapping. (b), (c), (d) and (e) scatter-plots of R, ubRMSD, absolute bias and RMSD between
LDAS_ERAS open-loop and the 85 stations from the FLUXNET 2015 (y-axis) and LDAS_ERA5
analysis and the same pool of stations (x-axis). The set of 20 stations for which the analysis has a
positive impact in R values at NIC greater than +3 are reported on a) in green.
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NSE scores for open-loop - 982 stations
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Figure 8:(a) Global map of Nash-Sutcliff Efficiency score (NSE) between river discharge from
LDAS_ERAS open-loop and in situ measurements from the networks presented in Table S1 over
2010-2016. (b) Normalized Information Contribution scores (NIC, Eq.2) based on NSE scores on
river discharge. Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral
impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an
improvement from LDAS_ERAS5 analysis over LDAS_ERAS5 open-loop while values smaller than -
3% (large red circles) suggest a degradation. Only stations where more than 4-year of data are
available and with a drainage area greater than 10000km’ are considered. Stations with NSE
values smaller than -2 are discarded, also, leading to a subset of 982 stations available.

42



45°N

40°N

35°N

30°N

25°N

120°wW 110°wW 100°W 90°W 80°W

—-0.050 -0.025 0.000 0.025 0.050
R differences

Figure 9: Map of correlations (R) differences (analysis minus open-loop) for stations measuring
soil moisture at 5 cm depth and being available over North America. Small dots represent stations

where R differences are not significant (i.e. 95% confidence intervals are overlapping), large
circles where differences are significant.
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Figure 10: 2018 monthly anomalies scaled by standard deviation of analysed (a)SSM and (b)LAI,
with respect to 2010-2018, for the 19 regions presented in Table 1 and Figure 2. Solid red line,
dashed red line and solid green line represent regions MUDA, WEUR and EAFR. Solid cyan line
represent all other boxes (see Table 1 and Figure 2).
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Figure 11: Upper panels represent seasonal cycles of a) observed GEOV1 LAI from CGLS, b) LAI
from the open-loop (in blue) and the analysis (in red) for the WEUR area (see Table I for
geographical extent). c) and d) panels are similar to a) and b) for the MUDA area . Lower panels
represents seasonal cycles of e) ASCAT SWI from CGLS, f) SSM from the open-loop (in blue) and
the analysis (in red) for the WEUR area. Panels g) and h) are similar to e) and f) for the MUDA
area. For each panels dashed line represents the averaged over 2010-2017 along with the
minimum and maximum values, the solid lines are for the year 2018.
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Figure 12: Upper panel, seasonal (a) RMSD and (b) correlation values between soil moisture
from the second layer of soil (1-4 cm) from the model forced by HRES (LDAS_HRES, open-loop
in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017-2018 over the
WEUR area. Scores between SSM from the second layer of soil of LDAS_HRES, 4-day
(dashed/dotted blue — when initialised by the open-loop- and red — when initialised by the
analysis- lines) and 8-day (dashed blue and red lines) forecasts and ASCAT SSM estimates are
also reported. Lower panel (c) and (d) , same as upper panel between modeled/analyzed Leaf Area
index (LAI) and GEOV1 LAI estimates .
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Figure 13: Same as Figure 12 for the Murray-Darling river (MUDA) area in South Eastern
Australia.
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RMSD: LDAS_HRES OL vs. ASCAT SSM RMSD differences:
a) b) LDAS_HRES AN-OL
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Figure 14: Top row, (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates
over 2017-2018 for the WEUR domain, (b) RMSD differences between LDAS_HRES analysis
(open-loop) and ASCAT SSM. (c), (d) and (e) Same as (b) between LDAS_fc4 initialised by the
analysis (open-loop) and LDAS_fc8. Bottom row, same as top row for LAI from the different
experiments and LAI GEOV1.
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RMSD: LDAS_HRES OL vs. ASCAT SSM RMSD differences:
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Figure 15: Same as Figure 14 or the Murray-Darling river (MUDA) area in South Eastern
Australia.
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R : LDAS_HRES OL vs. ASCAT SWI R differences:
a) b) LDAS_HRES AN-OL ) LDAS_fc4 AN-OL d) LDAS_fc8 AN-OL
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Figure 16: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over
2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis (open-loop)
and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop)
and LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.
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Figure 17: Top row, (a) drainage values for LDAS_HRES open-loop over 2017-2018 for the
WEUR domain, (b) drainage differences between LDAS_HRES analysis and open-loop. (c), (d),
same as (b) between LDAS_fc4 initialised by the analysis and LDAS_fc4 initialised by the open-
loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8 initialised by the open-loop.
Bottom row, same as top row for runoff. Units are kg.m>.day™
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