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Abstract-  LDAS-Monde is a global offline Land Data Assimilation System (LDAS) that jointly

assimilates  satellite-derived observations  of  Surface  Soil  Moisture  (SSM) and Leaf  Area  Index

(LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) Land Surface Model

(LSM).  This  study demonstrates  that  LDAS-Monde is  able  to  detect,  monitor  and forecast  the

impact of extreme weather on land surface states. Firstly, LDAS-Monde is run globally at 0.25°

spatial  resolution  over  2010-2018.  It  is  forced  by  the  state-of-the-art  ERA5  reanalysis

(LDAS_ERA5) from the European Centre for Medium Range Weather Forecast (ECMWF). The

behaviour of the assimilation system is evaluated by comparing the analysis with the assimilated

observations.  Then  the  Land  Surface  Variables  (LSVs)  are  validated  with  independent  satellite

datasets  of  evapotranspiration,  Gross  Primary  Production,  Sun Induced  Fluorescence  and snow

cover.  Furthermore,  in  situ  measurements  of  SSM,  evapotranspiration  and  river  discharge  are

employed for the validation. Secondly, the global analysis is used to (i) detect regions exposed to

extreme weather such as droughts and heatwave events and (ii) address specific monitoring and

forecasting requirements of LSVs for those regions. This is performed by computing anomalies of

the land surface states. They display strong negative values for LAI and SSM in 2018 for two

regions: North Western Europe and the Murray-Darling basin in South Eastern Australia. For those

regions,  LDAS-Monde  is  forced  with  the  ECMWF  Integrated  Forecasting  System  (IFS)  high

resolution  operational  analysis  (LDAS_HRES,  0.10°  spatial  resolution)  over  2017-2018.

Monitoring capacities are studied by comparing open-loop and analysis experiments again against

the  assimilated  observations.  Forecasting  abilities  are  assessed  by  initializing  4-  and  8-day

LDAS_HRES forecasts of the LSVs with the LDAS_HRES assimilation run compared to the open-

loop  experiment. The  positive  impact  of  initialization  from  an  analysis  in  forecast  mode  is
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particularly visible for LAI that evolves at a slower pace than SSM and is more sensitive to initial

conditions than to atmospheric forcing, even at an 8-day lead time. This highlights the impact of

initial conditions on LSV forecasts and the value of jointly analysing soil moisture and vegetation

states. 

 1 Introduction

Extreme events are likely to increase in frequency and/or magnitude as a result of anthropogenic

climate change (IPCC, 2012, Ionita et al., 2017). Amongst all the natural disasters, droughts are

arguably the most detrimental (Bruce, 1994; Obasi, 1994; Cook et al.,  2007; Mishra and Singh,

2010; WMO 2017) as about one-fifth of damages caused by natural hazards can be attributed to

droughts  (Wilhite,  2000).  They  cost  society  billions  of  dollars  every  year  (WMO, 2017).  It  is

therefore  important  for  communities  to  develop  tools  that  can  monitor  and  predict  drought

conditions (Svoboda, 2002; Luo and Wood, 2007; Blyverket et al., 2019) as well as their impact on

land surface variables (LSVs) and society (Di Napoli et al., 2019). A major scientific challenge in

relation  to  the  adaptation  to  climate  change  is  to  observe  and  simulate  how land  biophysical

variables respond to those extreme events (IPCC, 2012).

Droughts are  generally  caused by a  lack of  precipitation.  However,  different  drought  types  are

classified according to the part of the hydrological cycle that suffers from a water deficit (IPCC,

2014;  Barella-Ortiz  and Quintana-Seguí,  2018). They  include  meteorological  droughts  (lack  of

precipitation), agricultural droughts (deficit of water in the soil), hydrological droughts (deficit of

streamflow or water level in rivers) and environmental droughts (a combination of the previous

droughts types). Because of the effect of precipitation deficit on the whole hydrological system, all

drought types are related (Wilhite, 2000). Complex interactions between continental surface and

atmospheric processes have to be combined with human action in order to fully understand the wide

ranging impacts of droughts on land surface conditions (Van Loon, 2015). As a consequence, Land

Surface Models (LSMs) driven by high-quality gridded atmospheric variables and coupled to river-

routing system, are key tools to address these challenges (Dirmeyer et al., 2006; Schellekens et al.,

2017). Initially developed to provide boundary conditions to atmospheric models, LSMs can now

be used to monitor and forecast land surface conditions (Balsamo et al., 2015; Balsamo et al., 2018;

Schellekens et al., 2017). Additionally, the representation of LSVs by LSMs can be improved by

coupling LSM’s with other models of the Earth system like atmosphere, oceans and river routing

(e.g., de Rosnay et al., 2013, 2014; Kumar et al., 2018, Balsamo et al., 2018; Rodríguez-Fernández

et al., 2019; Muñoz-Sabater et al., 2019). 
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Earth  Observations  (EOs)  provide  long-term  records,  which  can  complement  LSMs.  Satellite

products are particularly relevant for the monitoring of LSVs. Satellite EOs related to the terrestrial

hydrological,  vegetation and energy cycles are  now available  globally,  at  kilometric  scales  and

below (e.g., Lettenmaier et al., 2015, Balsamo et al., 2018). Combining EOs and LSMs through

Land Data Assimilation Systems (LDASs) can lead to enhanced initial land surface conditions (e.g.

Reichle et al., 2007; Lahoz and De Lannoy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a,

2019; Balsamo et al., 2018). Subsequently, this can benefit weather forecasts, including temperature

and precipitation. It can also indirectly benefit agricultural and vegetation productivity prediction,

streamflow  prediction,  warning  systems  for  floods  and  droughts  and  the  representation  of  the

carbon cycle (Bamzai and Shukla, 1999; Schlosser and Dirmeyer, 2001; Bierkens and van Beek,

2009; Koster et al.,  2010; Bauer et al.,  2015; Massari et al,  2018; Albergel et al.,  2018a, 2019,

Rodríguez-Fernández et  al.,  2019; Muñoz-Sabater  et  al.,  2019).  Amongst  the  current  land-only

LDAS  activities  several  are  led  by  NASA (National  Aeronautics  and  Space  Administration)

projects.  Examples  of  such activities  are  the  Global  Land Data  Assimilation  System (GLDAS,

Rodell  et  al.,  2004),  the North American Land Data Assimilation System (NLDAS,  Xia et  al.,

2012a,  b)  and  the  National  Climate  Assessment-Land  Data  Assimilation  System (NCA-LDAS,

Kumar et al., 2016, 2018, 2019). The Famine Early Warning Systems Network (FEWS NET) Land

Data  Assimilation  System  (FLDAS,  McNally  et  al.,  2017)  is  run  over  Western,  Eastern  and

Southern  Africa.  Additional  examples  include  the  Carbon  Cycle  Data  Assimilation  System

(CCDAS, Kaminski et al., 2002), the Coupled Land Vegetation LDAS (CLVLDAS, Sawada and

Koike, 2014, Sawada et al., 2015), the Data Assimilation System for Land Surface Models using

CLM4.5 (Fox et al., 2018) and the SMAP (Soil Moisture Active Passive) level 4 system (Reichle et

al.,  2019). Finally, LDAS-Monde (Albergel et al.,  2017, 2018, 2019) developed by the research

department of Météo-France. Details of these studies are provided by Kumar et al. (2018), Albergel

et al., (2019) but few applications are global and include the assimilation of multiple EOs. 

LDAS-Monde consists in an offline (i.e. non coupled with the atmosphere) joint assimilation of

Surface Soil Moisture (SSM) and Leaf Area Index (LAI) EOs into the ISBA (Interaction between

Soil Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996).

Several previous studies using LDAS-Monde have been published at regional and continental scales

(Albergel et al., 2017, 2018, 2019, Leroux et al., 2018, Tall et al., 2019,  Blyverket et al., 2019,

Bonan et al., 2020). In this study, LDAS-Monde is run at the global scale and is forced by the latest

atmospheric reanalysis (ERA5) from the European Centre for Medium Range Weather Forecast

(ECMWF),  over  2010-2018.  The  resulting  0.25°  spatial  resolution  reanalysis  of  the  LSVs  is

hereafter referred to as LDAS_ERA5. In this paper, it is shown that LDAS-Monde can be used to
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detect,  monitor  and  forecast  the  impact  of  extreme  events  on  LSVs.  The  following  items  are

presented and discussed:

• An evaluation of LDAS-Monde at a global scale is carried out. This assessment involves the

assimilated observations to demonstrate that the system is working as intended. Importantly, LDAS-

Monde is then validated using diverse, independent and complementary satellite-derived datasets of

evapotranspiration (EVAP) from the GLEAM project (Miralles et al., 2011, Martens et al., 2017),

Gross Primary Production (GPP) from the FLUXCOM project (Tramontana et al., 2016, Jung et al.,

2017),  Solar  Induced  Fluorescence  (SIF)  from  the  GOME-2  (Global  Ozone  Monitoring

Experiment-2) scanning spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data

from  the  Interactive  Multi-sensor  Snow  and  Ice  Mapping  System  (IMS,

https://www.natice.noaa.gov/ims/, last accessed June 2019). Additional validations are performed

with in situ measurements of evapotranspiration from the FLUXNET 2015 synthesis data set (http://

fluxnet.fluxdata.org/, last accessed June 2019), soil moisture from the International Soil Moisture

Network (ISMN, Dorigo et  al.,  2011, 2015, https://ismn.geo.tuwien.ac.at/en/,  last  accessed June

2019) and river discharge from several networks across the world.

• The LDAS-Monde global analysis over 2010-2018 is used to detect droughts and heatwave

events in 2018. This identification is performed by computing anomalies of LSVs over the 9-year

period  and  identifying  where  the  strongest  negative  anomalies  are  located  in  2018.  For  the

identified  regions,  the  abilities  of  LDAS-Monde  to  forecast  such  events  in  near-real-time  is

investigated by forcing it with high resolution forecasts from ECMWF. 

The  paper  is  organised  in  five  sections:  section  2  details  the  various  components  constituting

LDAS-Monde (the ISBA LSM, the data assimilation scheme, the EOs assimilated as well as the

different atmospheric forcing datasets used), followed by the experimental and evaluation setup.

Section 3 describes and discusses the impact of the analysis on the representation of the LSVs.

Section 4 details the identification of 2 case studies over regions particularly affected by extreme

heatwave events during 2018. Furthermore the detailed monitoring and land surface forecasts of

these events are presented at higher spatial resolution. Finally section 5 provides conclusions and

prospects for future work.

 2 Material and methods

The following  subsections  briefly  describe  the  main  components  of  LDAS-Monde:  the  ISBA

LSM, its data assimilation scheme and two other key elements of the setup: atmospheric forcing

and assimilated satellite derived observations. The experimental setup and the evaluation datasets

used in this study are also presented.
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 2.1 LDAS-Monde

LDAS-Monde (Albergel et al., 2017) is embedded within the SURFEX (SURFace EXternalisée,

Masson et al.,  2013, version 8.1) modelling platform developed by the research department of

Météo-France  (CNRM,  Centre  National  de  Recherches  Météorologiques).  It  allows  the  joint

integration of satellite derived SSM and LAI into the CO2-responsive (Calvet, et al., 1998, 2004,

Gibelin et  al.,  2006), multilayer diffusion scheme (Boone et  al.,  2000, Decharme et al.,  2011)

version of  the  ISBA LSM (Noilhan and Planton,  1989,  Noilhan and Mahfouf,  1996).  LDAS-

Monde can also be coupled with the CTRIP (CNRM Total Runoff Integrating Pathways, Decharme

et al., 2019) hydrological model using a Simplified Extended Kalman Filter (SEKF, Mahfouf et al.,

2009).

 2.1.1 ISBA Land Surface Model

The ISBA LSM aims to model the evolution of LSVs. In the chosen configuration for this study,

ISBA is able to represent the transfer of water and heat through the soil based on a multilayer

diffusion scheme, as well as plant growth and leaf-scale physiological processes. ISBA models key

vegetation variables like LAI, above ground biomass and the diurnal cycle of water, carbon and

energy fluxes. In ISBA, the soil-vegetation composite is computed using a single-source energy

budget. In the CO2-responsive version of ISBA, ISBA-A-gs, the model can simulate the CO2 net

assimilation and GPP by considering the functional relationship between the photosynthesis rate

(A) and the stomatal aperture (gs) based on the biochemical A-gs model proposed by Jacob et al.,

1996. Photosynthesis controls the evolution of vegetation variables. It makes vegetation growth

possible as a result of an uptake of CO2. Contrastingly, a deficit of photosynthesis triggers higher

mortality rates. Ecosystem respiration (RECO) represents  the CO2 being released by the soil-plant

system and GPP by the carbon uptake via photosynthesis. Finally, the net ecosystem exchange

(NEE) consists of the difference between GPP and RECO. Each ISBA grid cell is composed of up

to 12 generic land surface types, namely bare soil, rocks, permanent snow and ice surfaces as well

as nine plant functional types (needle leaf trees, evergreen broadleaf trees, deciduous broadleef

trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous and wetlands). The

ECOCLIMAP-II land cover database (Faroux et  al.,  2013) provides these parameters  for each

patch and each grid cell of the ISBA model.

The ISBA multilayer diffusion scheme’s default discretization is 14 layers over 12 m depth. This

study follows Decharme et al. (2011), which is illustrated in Figure 1 of their paper. The thickness
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(depth) of each layer is (from top to bottom), 1 cm (0-1 cm), 3 cm (1-4 cm), 6 cm (4-10 cm), 10 cm

(10-20 cm), 20 cm (20-40 cm), 20 cm (40-60 cm), 20 cm (60-80 cm), 20 cm (80-100 cm), 50 cm

(100-150cm), 50 cm (150-200cm), 100 cm (200-300 cm), 200 cm (300-500 cm), 300 cm (500-800

cm) and 400 cm (800 to 1200 cm). Snow is represented using the ISBA 12-layer explicit snow

scheme (Boone and Etchevers, 2001, Decharme et al., 2016).

 2.1.2 CTRIP river routing system

The ISBA-CTRIP river routing system is able to simulate continental scale hydrological variables

based on a set  of three prognostic  equations.  They correspond to (i)  the groundwater,  (ii)  the

surface stream water and (iii) the seasonal floodplains. It converts the runoff simulated by ISBA

into  river  discharge.  The  ISBA-CTRIP river-routing  network  has  a  spatial  resolution  of  0.5°

globally and is coupled daily with ISBA through the OASIS3-LCT coupler (Voldoire et al., 2017).

ISBA provides  CTRIP  with  updated  fields  of  runoff,  drainage,  groundwater  and  floodplain

recharges. In turn, CTRIP provides ISBA with water table depth, floodplain fraction as well as

flood  potential  infiltration.  Subsequently,  ISBA can  simulate  capillary  rise,  evaporation  and

infiltration over flooded areas. A comprehensive overview of how CTRIP is coupled with ISBA is

available in Decharme et al. (2019).

 2.1.3 Data assimilation

The SEKF used in LDAS-Monde is a 2-step sequential approach in which a prior forecast step is

followed by an analysis step. The prior forecast propagates the initial states to the next time step

with the ISBA LSM and the analysis step then corrects this forecast by assimilating observations.

The  flow-dependency  (dynamic  link)  between  the  prognostic  variables  and the  observations  is

ensured  in  the  SEKF  through  the  observation  operator  and  its  Jacobians,  which  propagate

information from the observations to the analysis via finite-difference computations (de Rosnay et

al., 2013). The Jacobian matrix has as many rows as assimilated observation types (two in our case:

SSM and LAI) and as many columns as model control variables requested (8 in our case,  soil

moisture from layers 2 to 8 and LAI). In addition to a control run (i.e. the forecast step), computing

the  Jacobian  matrix  requires  perturbed  runs,  one  for  each  control  variable.  The  eight  control

variables  are  directly  updated  using  their  sensitivity  to  observed  variables  (i.e.  defined  by  the

Jacobian). Other variables are indirectly modified through biophysical processes and feedback from

the model. Several studies (e.g. Draper et al., 2009; Rüdiger et al., 2010) have demonstrated that

small  perturbations  lead to  a  good linear  approximation of  the  model  behaviour,  provided that

computational round-off error is not significant. Typically, for those runs, the initial state of the
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control variable is perturbed by about 0.1% (see Albergel et al., 2017; Rüdiger et al., 2010). The

length of the LDAS-Monde assimilation window is 24 hours. A mean volumetric standard deviation

error  of  0.04 m3m−3 is  prescribed for  soil  moisture  in  the  second layer  of  soil  (i.e.  the  model

equivalent of the observations, between 1 and 4 cm), it is 0.02 m3m−3 for soil moisture in deeper

layers (soil layers 3 to 8, 4-100cm). Both are then scaled by the dynamic range of soil moisture (the

difference between the volumetric field capacity and the wilting point, calculated as a function of

the soil type, as given by Noilhan et Mahfouf, 1996). The observational SSM error follows the same

approach and a value of 0.05 m3m-3 is used. This is consistent with errors typically expected for

remotely sensed SSM (e.g., de Jeu et al., 2008, Gruber et al., 2016). Based on previous results from

Jarlan et al., 2008, Rüdiger et al., 2010 and Barbu et al., 2011, observed LAI standard deviation

errors are set to 20 % of the LAI value itself. The LAI prior forecast errors are set equivalent to the

observation errors for values higher than 2 m2m-2. For values lower than 2 m2m-2, a fixed standard

deviation error of 0.04 m2m-2 has been used. More details about this approach can be found in Barbu

et al., 2011 (section 2.3 and figure 2).

 2.2 Atmospheric forcing

The lowest level of the atmospheric model (about 10 metres above ground level) of air temperature,

wind  speed,  specific  humidity  and  pressure,  the  downwelling  fluxes  of  shortwave,  longwave

radiations as well as precipitation (partitioned in solid and liquid phases) are needed to force LDAS-

Monde. In this study, LDAS-Monde is driven by several near-surface meteorological fields from

ECMWF:

• its  most  recent  atmospheric  reanalysis  (ERA5)  to  produce  an  LDAS-Monde  global

reanalysis

• its high resolution Integrated Forecast System (IFS HRES) to monitor and predict the

evolution of LSVs for regions under severe droughts and heatwaves. 

ERA5  (Hersbach  et  al.,  2018,  2020)  is  the  fifth  generation  of  global  reanalyses  produced  by

ECWMF. This atmospheric reanalysis is a key element of the Copernicus Climate Change Service

(C3S) and is available from 1979 onward (data is released about 2 months behind real time). ERA5

produces analyses at an hourly output, at 31 km horizontal resolution and consisting of 137 levels in

the vertical. Several studies have validated the ERA5 dataset. For example, Urraca et al. (2018)

have compared incoming solar radiation from both ERA5 and the ERA-interim reanalysis (Dee et

al., 2011) at a global scale and found evidence that ERA5 outperforms ERA-Interim. In another

study, Beck et al. (2019) have highlighted the good performance of ERA5 precipitation with respect
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to a set of 26 gridded (sub-daily) precipitation data sources by comparing them to Stage-IV gauge-

radar data over the CONUS domain (CONtinental United States of America). Tall et al. (2019) have

used in situ measurements of precipitation at more than 100 stations spanning all over Burkina-Faso

in Western Africa as well as incoming solar radiation from 4 in situ stations. They evaluated the

performance of ERA5 compared to ERA-Interim and found improved results for ERA5 as well.

Furthermore, they evaluated both reanalysis datasets for their ability to force the ISBA LSM, which

demonstrates a clear advantage for ERA5 in terms of the performance of LSVs. Albergel et al.

(2018a) made similar comparisons of the ISBA LSM forcing over North America. They showed

enhanced performances in the representation of evapotranspiration, snow depth, soil moisture and

river discharge for ERA5 relative to ERA-Interim. 

At the time of writing, the ERA5 model and data assimilation system (Cycle 41r2 of the ECMWF

IFS) are very similar to that of the operational weather forecast, HRES, which has production cycles

ranging  from  41r2  to  45r1  during  the  study  period  (more  information  at

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model,  last

accessed July 2019). The main difference between ERA5 and HRES over the considered period is

the horizontal resolution, consisting of 9 km in HRES and 31 km in ERA5. The atmospheric forcing

is  interpolated  from the  native  grids  of  ERA5 and  HRES to  regular  grids  at  0.25°  and  0.1°,

respectively, using a bilinear interpolation from the native grid to the regular grid. ERA5 and HRES

were used in Albergel et al. (2019) to force LDAS-Monde in order to study the impact of the 2018

summer heatwave in Europe. Authors have highlighted that the HRES configuration (LDAS_HRES

hereafter) exhibits better monitoring skills than the coarser resolution ERA5 configuration.

In forecasting mode, the HRES forecast is also available daily from 00:00 UTC with a 10-day lead

time. The HRES forecast step frequency is hourly up to time step 90 (i.e. day 3), 3-hourly from

time-step 90 to 144 (i.e. day 6) and 6-hourly from time-step 144 to 240 (i.e. day 10). In the forecast

experiments in this study (see section 2.4 for details on the experimental setup) HRES forecasts

with  a  10-day  lead  time  are  used  to  force  the  LSM  forecasts  of  the  LSVs.  By  comparing

LDAS_HRES open-loop and analysis configurations it is possible to evaluate the impact of the

initialisation on the forecast of LSVs. The original 3-hourly time steps are used up to day 6 (time

step 144). The 6-hourly time steps from day 6 to 10 are interpolated to 3-hourly frequency to avoid

discontinuities.

 2.3 Assimilated satellite Earth Observations
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Two types of satellite-derived variables are assimilated in LDAS-Monde: ASCAT Soil Water Index

(SWI)  and  LAI  GEOV1.  They  are  both  freely  available  through  the  Copernicus  Global  Land

Service (CGLS, https://land.copernicus.eu/global/index.html, last accessed June 2019).  

ASCAT stands for Advanced Scatterometer, which is an active C-band microwave sensor that is

onboard the European MetOp polar orbiting satellites (METOP-A, from 2006, B from 2012 and

also C from 2019). From ASCAT radar backscatter coefficients, it is possible to derive information

on SSM following a change detection approach (Wagner et al., 1999, Bartalis et al., 2007). The

recursive form of an exponential filter (Albergel et al., 2008) is then applied to estimate the SWI

using a timescale parameter, T (varying between 1 day and 100 days). T is a surrogate parameter for

all  the  processes  potentially  affecting  the  temporal  dynamics  of  soil  moisture  including  soil

hydraulic properties, soil layer thickness, evaporation, runoff and vertical gradient of soil properties.

The  obtained SWI then  ranges  between  0  (dry)  and 100 (wet).  In  this  study,  CGLS SWI-001

(produced with a T-value of 1 day) is used as a proxy for SSM (Kidd et al., 2013). Grid points with

an average altitude exceeding 1500 m above sea level as well as those with more than 15 % of

urban land cover are rejected as those conditions are known to inhibit the retrieval of SSM from

space. Prior to the assimilation, SSM has to be converted from the observation space to the model

space. This is done through a linear rescaling as proposed by Scipal et al. (2007), where the mean

and variance of observations are matched to the mean and variance of the modelled soil moisture

from the second layer of soil (1-4 cm depth). In practice, the rescaling gives similar results to CDF

(cumulative distribution function) matching. The linear rescaling is performed on a seasonal basis

(with a 3-month moving window) as suggested by Draper et al., (2011) and Barbu et al., (2014). 

The LAI GEOV1 observations are based on data from both SPOT-VGT (up to 2014) and PROBA-

V (from 2014) satellites. They span from 1999 to present, have 1 km spatial resolution and are

produced according to the methodology developed by Baret et al. (2013). LAI GEOV1 observations

have a  temporal  frequency of 10 days at  best  and no observations are available  during cloudy

conditions. LAI data are masked in the presence of modelled snow by the ISBA LSM.

As in previous studies (e.g, Barbu et al., 2014, Albergel et al., 2019), observations are interpolated

by an arithmetic average to the model grid points (0.25° or 0.10° in this study), if at least 50 % of

the model grid points are observed (i.e. half the maximum amount). ASCAT SSM and LAI GEOV1

are illustrated by Figure 1.

 2.4 Experimental setup

LDAS-Monde is first run globally, at  0.25° spatial resolution, forced by the ERA5 atmospheric

reanalysis. It assimilates both SSM and LAI EOs from 2010 to 2018 (LDAS_ERA5). LDAS_ERA5
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is  spun-up  by  running  the  year  2010  twenty  times.  The  LDAS_ERA5 analysis  and  its  model

counterpart (open-loop, i.e. no data assimilation) are presented and evaluated in this study.

This 9-yr global reanalysis is then used to provide a monthly climatology for estimating anomalies

of the land surface conditions. For each month (and variable considered) of 2018 we have removed

the  monthly  mean  and  scaled  by  the  monthly  standard  deviation  of  the  2010-2018  period.

Significant anomalies are used to trigger more detailed monitoring and forecasting activities for a

region of interest. A total of 19 regions across the globe have been selected, which are known for

being potential hot spots for droughts and heatwaves. They are listed in  Table I and presented in

Figure 2. Monthly anomalies of SSM and LAI in the LDAS_ERA5 analysis are calculated for 2018

(with respect to the 2010-2018 period) over these 19 regions. In turn, regions presenting significant

level of negative anomalies are selected and further investigated. For those regions, a new LDAS-

Monde experiment was driven by the HRES atmospheric analysis leading to a 0.1° analysis of the

LSVs from April 2016 to December 2018 (LDAS_HRES). Note that HRES is only available at a

0.1° spatial resolution from April 2016. April to December 2016 is used as a short period for spin-

up and results are presented for the period 2017-2018. Although a 9-month spin-up period is rather

short, evaluating LDAS_HRES over either 2017-2018 or 2018 (using instead a 21-month spin-up)

lead to similar results on surface soil moisture and LAI (not shown). While the system is not fully

spun-up,  it  is  long  enough  to  capture  the  system response  to  data  assimilation.  LDAS_HRES

complements the coarser spatial resolution LDAS_ERA5. 

HRES forecasts with a 10 day lead time are initialized either from LDAS_HRES analysis or open-

loop experiments (LDAS_Fc hereafter)  in order to assess the impact of the initialisation on the

forecast. For simplicity, only forecasts with a four and eight day lead time are presented (LDAS_fc4

and LDAS_fc8, respectively). A summary of the experimental setup is given in Table II.

 2.5 Evaluation datasets and metrics

Both satellite-derived estimates of EOs and in situ measurements are used as reference datasets in

this study. The LDAS_ERA5 analysis performance is assessed with respect to the open-loop model

run (i.e. no assimilation). The two assimilated datasets, CGLS SSM and LAI, are firstly used to

verify that the data assimilation is behaving as expected. Then several independent datasets are used

for  the  validation,  namely  evapotranspiration  from the  GLEAM project  (Miralles  et  al.,  2011,

Martens  et  al.,  2017,  version  3b  entirely  satellite  driven),  GPP from  the  FLUXCOM  project

(Tramontana et al.,  2016, Jung et al.,  2017), SIF from the GOME-2 (Global Ozone Monitoring

Experiment-2) scanning spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data

from  the  Interactive  Multi-sensor  Snow  and  Ice  Mapping  System  (IMS,
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https://www.natice.noaa.gov/ims/). The IMS snow cover product combines ground observations and

satellite data from microwave and visible sensors (using geostationary and polar orbiting satellites)

to provide snow cover information in all weather conditions. The IMS product is available daily for

the northern hemisphere. 

Soil moisture is validated using in situ measurements of soil moisture from the ISMN, a pool of

stations which consists of 19 networks across 14 countries (see Table S3). In total, 782 stations are

represented with at least 2 years of daily data over 2010-2018. In situ measurements at 5 cm depth

(SSM) are compared with soil moisture from the third layer of soil (4-10 cm) in LDAS_ERA5. In

situ measurements at 20 cm depth are compared with LDAS_ERA5 soil moisture from the fourth

layer of soil (10-20 cm, 685 stations from 10 networks). Besides 11 stations located in 4 countries

of Western Africa (Benin, Mali, Sénégal and Niger) and 21 stations in Australia, most of the stations

are located in North America and Europe (see Table S3).

Evaluation datasets are listed in Table III along with the metrics used for the evaluation. For satellite

datasets of SWI, LAI, evapotranspiration and GPP, the metrics consist of the correlation coefficient

(R), Root Mean Square Difference (RMSD) and Normalized RMSD (NRMSD, Eq.(1)). 

NRMSD=
RMSD(Analysis )− RMSD( Model )

RMSD(Model )

×100 Eq.(1)

Regarding  the  SIF  satellite  dataset,  fluorescence  is  not  simulated  directly  in  the  ISBA LSM.

However, photosynthesis activity is simulated through the calculation of the GPP, which is driven

by plant growth and mortality in the model. Modelled GPP values are expressed in g(C)·m−2·day−1,

while SIF is an energy flux emitted by the vegetation (mW·m−2·sr−1·nm−1). Hence, GPP and SIF

cannot  be  directly  compared  as  they  do not  represent  the  same physical  quantities.  However,

several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found a high

correspondence in both time and space between those two variables, highlighting the potential of

SIF  products  to  support  the  validation  of  modelled  GPP.  Therefore,  the  correlation  between

modelled  GPP and observed SIF is  used as  an evaluation  metric.  Concerning the  snow cover

dataset, differences between observed and modelled snow cover is considered for the evaluation.

For in situ datasets of soil moisture and evapotranspiration, the standard metrics are considered,

namely  the  correlation  coefficient,  RMSD, unbiased  RMSD and bias.  Moreover,  a  Normalized

Information Contribution (NIC, Eq.(2)) measure is applied to the correlation values to quantify the

improvement or degradation due to the specific configuration.

NICR=
R (Analysis )− R (Model )

1− R (Model )

×100 Eq. (2)
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NIC scores are classified according to three categories: (i) negative impact from the analysis with

respect to the open-loop with values smaller than -3 %, (ii) positive impact from the analysis with

respect to the open-loop with values greater than +3 % and (iii) neutral impact from the analysis

with respect to the open-loop with values between -3 % and 3 %.

In addition, for surface soil moisture, the correlation is calculated for both absolute (R) and anomaly

(Ranomaly) time-series in order to remove the strong impact from the SSM seasonal cycle (see e.g.

Albergel et al., 2018a, 2018b).

The Nash-Sutcliffe Efficiency score (NSE, Nash and Sutcliffe, 1970, Eq.(3)) is used to evaluate

LDAS_ERA5 experiments ability to represent the monthly discharge dynamics.

NSE=1−
∑
mt=1

T

(Qs
mt
−Qo

mt
)

2

∑
mt=1

t

(Qs
mt
−Qs

mt
)

2

 Eq.(3)

where Qs
mt is the monthly river discharge from LDAS_ERA5 (analysis or open-loop) at month mt,

and  Qo
mt is the observed river discharge at month  mt. NSE can vary between −∞ and 1. An exact

match between model predictions and observed data is defined as a value of 1, whereas a value of 0

means that the model predictions have the same accuracy as the mean of the observed data. Finally

negative values represent situations where the observed mean is a better predictor than the model

simulation. NIC presented in Eq.(1) has also been applied to NSE scores to assess the added value

of LDAS_ERA5 analysis over its open-loop counterpart. Stations with NSE values less that -2 have

been discarded. A similar threshold has already been used in previous studies evaluating LDAS-

Monde (e.g. Albergel et al., 2017, 2018a). Many anthropogenic processes are not yet represented in

ISBA, including water management from dams and reservoirs, irrigation, water uptake in urban

areas. This could lead to a poor representation of river discharges in those regions. As with previous

studies it has been decided to exclude these areas by focusing on stations with reasonable NSE

values.

 3  Global assessment of LDAS_ERA5

 3.1  Gridded datasets

In  this  sub-section,  the  LDAS-Monde  open-loop  and analysis  are  firstly  compared  against  the

assimilated observations (SSM and LAI) to demonstrate that the assimilation system is working as

intended. Both experiments are also compared with independent sources of information to evaluate

the analysis impact (GPP, EVAP and SIF). 
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Figure  3 presents mean LAI  RMSD values between the observations and LDAS_ERA5 for the

open-loop (Figure 3a), and for the analysis (Figure 3b) over 2010-2018. Because LAI observations

are ingested into the model, the assimilation reduces the LAI RMSD values almost everywhere. It

should be noted that rather large LAI RMSD values (> 1.5 m2m-2) can remain in some areas after

the assimilation, especially in densely forested areas.

Figure  4 illustrates  latitudinal  plots  of  LAI,  SSM,  GPP and  EVAP for  LDAS_ERA5  before

assimilation  (the  open-loop)  and  after  assimilation  (the  analysis)  along  with  observations.  The

number of points considered per 0.25° stripe is also represented. From Figure 4a it is possible to see

the positive impact the analysis has on LAI compared to the open-loop, with the former being closer

to the observations. Improvements in the analysis fit are visible between nearly 80° North to about

55°  South  and  areas  around  the  equator  are  impacted  the  most  from  the  assimilation.  This

demonstrates that the data assimilation system is working as intended. A smaller impact is obtained

for SSM, GPP and EVAP relative to LAI, which is hardly visible at this scale. The mean latitudinal

results  show a consistent difference in terms of GPP and EVAP between LDAS_ERA5 and the

observational products. These differences are systematic with higher values in tropical regions. 

Figure 5 presents latitudinal plots of score differences (correlations and NRMSD) for LAI, SSM, GPP,

EVAP and SIF. For SIF, it only makes sense to show the correlation differences, since this metric is

used to  evaluate  GPP variability  as  in  Leroux et  al.,  2018.  Score differences  are  computed  by

subtracting the open loop from the analysis. Monthly averages are calculated over 2010-2018 for

LAI and SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. For each panel of

Figure  5,  the  vertical  dashed  line  represents  the  0-value.  For  plots  of  correlation  differences,

positive values indicate an improvement in the analysis with respect to the open-loop simulation.

Similarly, for plots of RMSD differences, negative values indicate an improvement in the analysis

with respect to the open-loop simulation. Given that LAI and SSM are assimilated variables, the

analysis leads to a clear improvement in both correlation and RMSD. Such an improvement is

expected and reflects the healthy behaviour of the assimilation system. Both variables are improved

at almost all latitudes with the exception around 45°S for LAI correlation values (very few land

points). For SSM a noticeable improvement in both correlation and RMSD is found around 20°N,

which corresponds mainly to an improvement in the Sahara desert (not shown). Being linked to

LAI,  GPP is  also  improved  across  almost  all  latitudes  (to  a  lesser  extent  than  LAI)  with  a

particularly positive impact below 20°N. As seen on Figure 5 d) and i), there is a negligible impact

of the assimilation on EVAP. It highlights the difficulty of land surface data assimilation to impact

model fluxes by modifying model states. 
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The panels of Figure 6 illustrate histograms of score differences (correlation and RMSD, analysis

minus  open-loop)  for  LAI,  SSM,  GPP,  EVAP and SIF.  The  number  of  available  data  and the

percentage  of  positive  and  negative  values  are  reported.  For  correlations  (RMSD)  differences,

positive  (negative)  values  indicate  an  improvement  in  the  analysis  relative  to  the  open-loop.

Regarding LAI, the analysis  improves 96.9% of the grid points  for correlations and 99.9% for

NRMSD. As for SSM, correlation values are improved for 92.8% of the grid points (92.4% for RMSD).

The independent GPP and SIF datasets also demonstrate improvements in the analysis relative to

the open loop. Indeed, the GPP correlation (RMSD) is better for 81.1% (74.1%) of the gridpoints

and  the  SIF  correlation  is  enhanced  for  79.7%.  Results  using  the  GLEAM  dataset  for

evapotranspiration  are  more  contrasting  with  63.6%  (48.9%)  of  the  grid  points  showing  an

improvement from the analysis. It is worth mentioning that 24.9% (39.6%) of the grid point shows a

decrease in  skill.  However,  GLEAM is an evaporation model designed to be driven by remote

sensing  observations  only.  GLEAM  only  estimates  (root-zone)  soil  moisture  and  terrestrial

evaporation while the CO2-responsive version of ISBA in LDAS_ERA5 is a physically-based land

surface model, accounting for more processes linked to vegetation (see section 2.1.1). It should be

noted that the auxiliary datasets used to represent the different land cover types also differ. Within

GLEAM, the land cover types are sourced from the Global Vegetation Continuous Fields product

(MOD44B),  based  on  observations  from  the  Moderate  Resolution  Image  Spectroradiometer

(MODIS). Four land cover types are considered, namely bare soil, low vegetation (e.g. grass), tall

vegetation (e.g. trees), and open water (e.g. lakes). In ISBA, the fraction of the 12 land cover types

over some areas departs from prevalent land cover products such as CLC2000 (Corine Land Cover)

and GLC2000 (Global Land Cover). It could potentially impact the distribution of the terrestrial

evaporation between GLEAM and ISBA. Further work at CNRM will focus on understanding the

differences  between  ISBA  and  GLEAM,  in  particular  investigating  the  sub-components  of

terrestrial evaporation.

Finally, Figure S1 and Figure S2 illustrate snow cover evaluation.  LDAS_ERA5 snow cover is

evaluated against the IMS snow cover. Figure S1 shows the averaged northern hemisphere snow

cover fraction for the 2010-2018 period. It is complemented by Figure S2 which shows (i) maps of

IMS snow cover (top row) for 3 seasons, (ii) equivalent maps of snow cover from LDAS_ERA5

open-loop (second row), (iii) maps of snow cover differences between the open-loop and IMS data

and (iv) maps of snow cover differences between the analysis and the open-loop. LDAS_ERA5

open-loop compares  very well  with the IMS snow-cover  data in  the accumulation season from

September to February (Figure S2 and panels d to i of Figure S1), except for an overestimation over

the Tibetan Plateau. The issue over Tibet from ERA5 is not new and is consistent with Orsolini et
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al. (2019). An early melt in spring is visible in LDAS_ERA5 compared to observations and could

be related to the snow cover parametrization in ISBA. As expected, the analysis  has an almost

neutral impact on snow as both SSM and LAI observations are filtered out during frozen/snow-

covered conditions and there is  no snow data assimilation yet in LDAS_ERA5 (Figure S2 and

panels (j), (k) and (l) of Figure S1). Clearly an area of potential improvement in LDAS-Monde is to

incorporate snow data assimilation using satellite data such as IMS (as in e.g. de Rosnay et al.,

2014).

 3.2 Ground-based datasets

LDAS_ERA5 analysis and open-loop are also evaluated using independent in situ measurements of

evapotranspiration,  river  discharge  and  surface  soil  moisture  across  the  world.  Daily  in  situ

measurements  of  evapotranspiration  from  the  FLUXNET-2015  synthesis  data  set

(http://fluxnet.fluxdata.org/, last accessed June 2019) are first used in this study. The LDAS_ERA5

evapotranspiration performance is evaluated using the correlation coefficient (R), RMSD, ubRMSD

and the bias (LDAS_ERA5 minus observations) using the 85 selected FLUXNET-2015 stations.

The median R, RMSD, ubRMSD and bias for LDAS_ERA5 analysis (open-loop) are 0.73 (0.72),

28.74 (29.60) W.m-2, 27.37 (26.92) W.m-2 and 4.64 (4.40) wm-2, respectively. Although these values

depict  a  small  advantage of  the analysis  over  the  open-loop,  it  is  worth mentioning that  these

differences are rather small and likely to fall within the uncertainty of the in situ measurements.

Figure 7(a) represents the added value of the analysis based on NICR (Eq.(2)), the large blue circles

represent a positive impact from the analysis (20 stations) with a NICR greater than +3 (i.e. R values

are better when the analysis is used than when the model is used) while large red circles represent a

degradation from the analysis (5 stations) with a NICR smaller than -3. Stations with a rather neutral

impact (60 stations) have a NICR between [-3 ; +3] and are reported using small dots. Note that at

the scale of Figure 7(a), some stations are overlapping. Figure 7(a) is complemented by panels (b),

(c),  (d)  and  (e)  which  show  scatter-plots  of  R,  ubRMSD,  absolute  bias  and  RMSD  between

LDAS_ERA5 analysis (x-axis) and the open-loop (y-axis) for the 85 stations from the Fluxnet2015.

Out of the 85 stations considered, 56 have better R values in the analysis compared to the open

loop.  The respective numbers of improved stations for ubRMSD, RMSD and the absolute  bias

equate to 41,47 and 44 respectively. The set of 20 stations from Figure 7(a) where the analysis has a

positive impact on the NICR (greater than +3) are reported in green on Figure 7(b).

Results on river discharge are illustrated by Figure 8 (panels a and b). Figure 8(a) represents NSE

scores for the subset  of 982 stations selected.  Most of them are located in North America and

Europe while a few are available in South America and Africa. Figure  8(a) is complemented by
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Figure 8(b) which shows the NIC score applied to the NSE score. It emphasizes the added value of

the LDAS_ERA5 analysis over the open-loop. From this subset of stations 74% present a rather

neutral  impact from the analysis  (with a NIC ranging between -3% and +3%) while 26% (254

stations) present a significant impact (with a NIC above +3% or below -3%). When the analysis

significantly impacts the representation of river discharge, this impact tends to be positive. Indeed,

74% of this subset of stations (189 stations) have a NIC score greater than 3% while only 26% (65

stations) show NIC score smaller than -3%.

The statistical scores for soil moisture from LDAS_ERA5 open-loop and analysis are presented for

the third and fourth layers of soil, corresponding to 4-10 cm depth and 10-20 cm depth respectively.

The soil moisture at layers 3 and 4 is compared with ground measurements over 2010-2018 from

the ISMN at depths of 5 cm and 20 cm respectively. The results are displayed in Table S3 for each

individual network. Averaged statistical scores (ubRMSD, R, Ranomaly and bias) are similar for both

LDAS_ERA5 analysis and open-loop even if local differences exist. For the analysis, averaged R

(Ranomaly) values for the third layer, along with their 95% Confidence Intervals (CI) (782 stations

from 19 networks), are 0.68±0.03 (0.53±0.04). For the open loop, the averaged R (Ranomaly) values

are 0.67±0.03 (0.53±0.04). Averaged-network values are highest for the SOILSCAPE network with

values of 0.88±0.01 (0.58±0.04) for the analysis (49 stations in the USA). For all networks, the

average R values are higher than 0.55, with the exception of ARM (10 stations in the USA), which

presents an averaged R value of 0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in

situ) are 0.060 m3m-3 and 0.077 m3m-3 for the analysis respectively. The open loop has a similar

performance, with an ubRMSD and bias of 0.060 m3m-3 and 0.076 m3m-3 respectively. NIC (Eq.2)

has also been applied to R values. In total, 65% of stations present a neutral impact of the analysis

compared to the open loop (511 stations at NIC ranging between -3 and +3), 12% present a negative

impact (91 stations at NIC < -3) and 23% present a positive impact (180 stations at NIC > +3).

The number of stations where R differences between the analysis and the open-loop are significant

(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement

from the analysis with respect to the open-loop for 128 stations (about 69%) and a degradation for

58 stations (about 31%). Figure 9 illustrates R differences between the analysis and the open-loop

runs over  CONUS where  most  of  the stations  are  located (552 out  of  782).  When differences

(analysis minus openloop) are not significant stations are represented by a small dot (425 stations

out of 552). When they are significant (127 stations out of 552), large circles have been used, with

blue corresponding to positive differences (99 stations out of 127) and red to negative differences

(28 stations out  of  127).  For most  of  the stations  where a significant  difference is  obtained,  it

represents an improvement from the analysis. 
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Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10

networks) are 0.65±0.03, 0.049 m3m-3 and 0.055 m3m-3, respectively. For the open-loop, they are

0.64±0.03,  0.048 m3m-3 and  0.056 m3m-3,  respectively.  In  terms of  the NIC,  about  60% of  the

stations demonstrate a neutral impact of the analysis compared with the open loop, while 28% show

a positive impact and 12% a negative impact. Although differences between the open-loop run and

the analysis are rather small, these results underline the added value of the analysis with respect to

the model run. Figure S3 represents the distribution of the scores values for LDAS_ERA5 open-

loop and analysis using boxplots centred on the median value. It is difficult to see any important

differences between them.

For evapotranspiration, river discharge and surface soil moisture there is a slight advantage for the

LDAS_ERA5 analysis with respect to its open-loop counterpart. Even if the averaged statistical

metrics are rather similar for both, there are significant differences at the regional scale.

4. Monitoring and forecasts for areas under severe/extreme conditions

4.1 Selection of two regional case studies 

For each individual region presented in Table I and Figure 2, monthly anomalies (scaled by the

standard deviation) of analysed SSM (second layer of soil, 1-4cm) and LAI for 2018 are assessed

with respect to the 2010-2018 average. The anomalies (see Figure 10) highlight three regions, two

of which present strong negative anomalies for both SSM and LAI for almost all of 2018. These are

North  Western  Europe  (WEUR),  and  the  Murray-Darling  basin  (MUDA),  in  South  Eastern

Australia. Contrastingly,  Eastern Africa (EAFR) presents strong positive anomalies of SSM and

LAI. WEUR and MUDA regions were affected by a severe heatwave and a drought in 2018, which

impacted the LSVs analysed by LDAS_ERA5. According to Figure 10, monthly anomalies of SSM

and LAI for MUDA are negative through 2018 with 7 (6) months presenting LAI (SSM) anomalies

below -1 standard deviation (stdev), respectively. WEUR has negative SSM anomalies from May to

December 2018 with values dipping below -2 stdev. LAI was severely impacted as well with July to

October 2018 presenting negative anomalies below -2 stdev. For WEUR, 5 months show LAI and

SSM anomalies below -1 stdev. On the other hand, EAFR experienced 3 (7) months with positive

anomalies for SSM and LAI in 2018 above 1 stdev.

According to the National Oceanic and Atmospheric Administration (NOAA), Europe experienced

its warmest summer since continental records began in 1910 with a positive anomaly at +2.16°C

above mean (Global  Climate Report,  https://www.ncdc.noaa.gov/sotc/global/  last  accessed April
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2019). In Europe, temperatures over all the summer months in 2018 were above the climatological

mean. The summer 2018 heatwave in Europe has already been reported in the scientific literature

(e.g. Magnusson et al., 2018, Albergel et al., 2019, Blyverket et al., 2019). 

In its 70th Special Climate Statement, the Australian Bureau of Meteorology (BoM) reported a very

hot and dry summer 2018 in eastern Australia (BoM, 2019). Like much of Australia, the Murray

Darling basin also experienced remarkably dry and hot weather during 2018. The annual maximum

temperature for the Murray Darling basin as a whole was more than two degrees above average

during 2018. The northern Murray–Darling Basin in particular was severely affected with inflows to

all rivers catchments persistently well below normal (http://www.bom.gov.au/state-of-the-climate/,

last visited: April 2019). Finally, the East African Seasonal Monitor based on the Famine Early

Warning  System  Network  (FEWS)  confirms  above-average  rainfall  amounts  and  significantly

greener  than  normal  vegetation  conditions  (e.g.,  https://reliefweb.int/report/somalia/east-africa-

seasonal-monitor-july-27-2018, last visited: April 2019). As this study focuses on monitoring and

forecasting the impact of severe drought conditions on LSVs, the WEUR and MUDA regions are

selected for further investigation. 

4.2 Case studies: LDAS-Monde medium resolution (0.25°) experiments

Figure  11 illustrates  seasonal  cycles  of  observed  LAI  (Figure  11a)  and  SWI  (Figure  11e),

LDAS_ERA5 analysis  and open-loop LAI  (Figure  11b)  and SSM (Figure  11f)  for  the  WEUR

domain. The 2018 period is compared to 2010-2017 average. Figure 11a shows the heatwave impact

with a sharp drop in observed LAI values from June to November 2018 (solid green line). Such low

LAI values have never been observed over the eight previous years (it is below the minimum value

in shaded green). A similar behaviour is also visible in the ASCAT SWI dataset in Figure 11e with

the lowest values recorded in 2018 for the 2010-2018 period. Over WEUR, LDAS_ERA5 open-

loop overestimates LAI in the second part of the year, as already highlighted by several studies (e.g.

Albergel et al., 2017, 2019). The LDAS_ERA5 analysis has a positive impact and reduces LAI

values, as seen in Figure 11b. Panels c, d, g and h of Figure 11) depict a similar situation for the

MUDA area, almost every month of 2018 presents the lowest values for both SSM and LAI. For

both MUDA and WEUR, the smaller differences for LAI and SSM between LDAS_ERA5 analysis

and open-loop in 2018 indicates that both extreme events were well captured in the atmospheric

forcing used to drive LDAS_ERA5.

4.3 Case studies: LDAS-Monde high resolution (0.1°) analysis and forecast experiments
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For the two selected areas (WEUR and MUDA), LDAS-Monde is also run over April  2016 to

December 2018 with the atmospheric forcing from HRES (LDAS_HRES) at 0.1° spatial resolution.

Additionally daily forecast experiments are performed and the results presented for LAI and SSM

for lead-times of 4-days and 8-days. These forecasts are initialised by either LDAS_HRES analysis

or  open-loop  over  2017-2018  in  order  to  assess  the  impact  of  the  initial  conditions.  In  this

subsection,  this  new  set  of  six  experiments  is  verified  against  the  assimilated  observations.

Verification of the forecasts with these observations can be viewed as an independent validation as

those observations are not assimilated yet. It is worth mentioning that there is a difference between

the use of SSM and LAI observations to evaluate the forecast. For SSM, the assimilation is done

after a rescaling of the observations to the model climatology (see section 2.3), which removes bias.

However, for LAI this is not the case and the assimilation process removes the bias in the modelled

LAI with respect to the observations. This difference, together with the longer memory of LAI

(compared to SSM), contributes to the results presented in this sub-section. Statistical scores for

LDAS_HRES open-loop  and  analysis  are  also  presented,  which  serve  as  a  benchmark  for  the

forecast experiments.

Figure  12 (for WEUR) and Figure  13 (for MUDA) upper panels illustrate  the seasonal  RMSD

(Figure 12a,  13a) and correlation (Figure 12b, 13b) between LDAS_HRES SSM from the second

layer of soil (1–4 cm) and ASCAT SSM estimates over 2017-2018. Scores are also reported for the

LDAS_HRES 4-day (LDAS_fc4) and 8-day forecasts (LDAS_fc8). From the upper panels of those

figures one may notice a small improvement from the analysis (solid red line) over the open-loop

simulation (solid blue line), with slightly reduced RMSD values and increased correlation values.

However, no improvement (nor degradation) is visible from the 4-d and 8-d forecast experiments

initialised  by  LDAS_HRES  analysis  over  those  initialised  by  LDAS_HRES  open-loop.  As

expected,  LDAS_HRES  SSM  is  closer  to  the  observations  compared  with  LDAS_fc4  and

LDAS_fc8. It is worth pointing out that for the MUDA area there is a small positive impact of the

initialisation on the 4-d and 8-d forecast of surface soil moisture (Figure  13a,  b). These results

suggest that the fast evolving SSM model variable is more sensitive to the atmospheric forcing than

to the initial conditions (at least within the forecast range presented in this study). Results for LAI

are  different  from  SSM  (lower  panels  of  Figure  12 and  Figure  13).  Firstly,  there  is  a  large

improvement from the analysis (solid red line) over the open-loop (solid blue line), particularly

during the LAI decaying phase (Boreal and Austral autumns mainly). Secondly, the LDAS_HRES

open-loop  (solid  blue  line)  and  the  forecasts  initialized  by  the  open  loop  (LDAS_fc4  and

LDAS_fc8)  perform  similarly.  Furthermore,  the  LDAS_fc4  and  LDAS_fc8  forecasts  are  quite

consistent when initialised by the LDAS_HRES analysis. Importantly, the LDAS_HRES analysis
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and forecasts outperform the LDAS_HRES open-loop initial conditions and forecasts. This suggests

that LAI forecasts are more sensitive to initial conditions than to the atmospheric forcing within the

4-8 day range for both WEUR and MUDA regions.

These results are corroborated by Figures 14 (for WEUR) and 15 (for MUDA), for both SSM (top)

and LAI (bottom). Figures 14(a) and 15(a) show RMSD values between LDAS_HRES open-loop

SSM (1-4 cm) and ASCAT SSM over 2017-2018 for the WEUR and MUDA domains, respectively.

Due to the seasonal linear rescaling applied to ASCAT estimates, the RMSD values are rather small.

For the WEUR (MUDA) domain they range from 0 to 0.048 m3m-3 (0 to 0.040 m3m-3). Figures

14(b) and  15(b) present maps of RMSD differences between LDAS_HRES analysis (open-loop)

and ASCAT SSM estimates over 2017-2018 for the WEUR and MUDA domains. Both maps are

dominated by negative values (in blue) indicating that RMSD values are consistently smaller when

using LDAS_HRES analysis than when using LDAS_HRES open-loop. For the MUDA domain,

the RMSD values are reduced by about 15%. Figures 14(c, d) and 15(c, d) show maps of RMSD

differences for forecast experiments (LDAS_fc4, LDAS_fc8). It appears that over both domains,

the impact from the initialisation is rather small. This supports previous results indicating that the

forcing quality is more important than the initial conditions for the SSM forecast. However, the

results for LAI support the opposite conclusion. The RMSD values for LDAS_HRES open-loop

range from 0 to 1.6 m2m-2 over WEUR and 0 to 1 m2m-2 over MUDA (Figures 14(e) and 15(e)). The

RMSD values are reduced by up to 37 % over WEUR and up to 60% over MUDA by the analysis

(Figures 14(f) and 15(f)). The enhancement from the data assimilation is consistent throughout the

WEUR domain while the improvement over the MUDA domain is concentrated in the southeastern

part (the northwestern part is largely unchanged). 

Similarly to Figures 14(a, b, c, d), Figure 16 illustrates the impact of the analysis on SSM in terms

of the correlation coefficient. But this time, ASCAT SWI (i.e. no rescaling) has been used for the

validation.  Figure  16 (top panels)  shows maps of R values based on the absolute  values while

Figure 16 (bottom panels) shows R values based on the anomaly time series (capturing short term

variability) as defined in Albergel  et  al.,  2018a.  Figure  16 (a) and (e)  represents R values and

anomaly R values for LDAS_HRES, respectively. As expected R values are higher than anomaly R

values. Maps of differences (panels b and f) of Figure 16 suggest that after assimilation, both scores

are improved almost equally. The 4-day and 8-day forecasts still show improvements from using

initial conditions from the analysis over the open loop on R values (panels c and d of Figure 16).

Looking at Ranomaly values (panels g and h of Figure 16), no negative or positive impact from the

initial conditions can be seen.
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Finally, the top panels of Figure 17 illustrate the impact of the analysis on drainage monitoring and

forecasts over WEUR. Fig. 17 a) represents drainage from the LDAS_HRES open-loop with values

ranging  between  0  and  1  kg.m-2.day-1.  Fig.17 b)  shows  the  drainage  difference  between

LDAS_HRES analysis and open-loop. The analysis impact on drainage is rather small (within ±3%)

and more pronounced in areas where the analysis has largely affected LAI (see panels f, g and h of

Figure 14). As seen in Figure 17 (c) and (d), the forecasts are also sensitive to the initialisation in

areas where the analysis  effectively corrected LAI. The bottom panels of Figure  17 illustrate a

similar impact on runoff. Although we did not validate drainage and runoff in this study, previous

findings  suggest  a  neutral  to  positive  impact  of  the  analysis  on  river  discharge  through

modifications to drainage and runoff (Albergel et al., 2017, 2018a).

5. Discussion and conclusions

This study has demonstrated the potential  of LDAS-Monde for assimilating Earth Observations

(EOs) into a Land Surface Model (LSM) to predict the impact of heatwaves and droughts on land

surface conditions. LDAS-Monde is now ready for various applications including (i) land surface

reanalyses of Essential Climate Variables (ECVs), (ii) monitoring of water resources, such as the

impact of droughts on vegetation, (iii) the detection of extreme land surface conditions; and (iv) the

effective initialisation of LSVs for land surface forecasting. LDAS-Monde has been applied in this

study to past events of 2018 with respect to a relatively short climatology (2010-2018). It is planned

that it will be applied to much longer periods for future reanalysis applications. The operational

application  of  LDAS-Monde  near-real-time  could  potentially  improve  emergency  monitoring

systems for LSVs. Using high quality atmospheric reanalyses like ERA5 to force LDAS-Monde

guarantees a high level of consistency since the configuration is frozen in time (no changes in

spatial and vertical resolutions, data assimilation or parametrizations). The coarse spatial resolution

of ERA5 makes it affordable to run long time periods and large-scale LDAS-Monde experiments.

With ERA5 available from 1979 and now covering near real-time needs with its ERA5T version

(https://climate.copernicus.eu/climate-reanalysis), an LDAS_ERA5 configuration would be able to

provide a long term climatology as well as near-real-time anomaly detections of the land surface

conditions at coarse resolution (0.25°). Significant anomalies could then be used to trigger  more

focused  “on-demand”  simulations  for  regions  experiencing  extreme  conditions.  For  these

simulations, LDAS-Monde could be run at higher resolution by forcing the LSM with an enhanced

resolution forecast in order to provide more information,  such as the ECMWF operational high

resolution product (0.10°). The capability of such an approach was illustrated in our study for two
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regions  in  northwestern  Europe  and  northeastern  Australia.  In  term of  the  RMSD,  our  results

showed a very small impact of initial conditions on the forecasts of SSM. This was expected due to

the  short  term  memory  of  the  surface  soil  layer,  which  is  dominated  by  the  antecedent

meteorological forcing. However, the LAI initialisation had significant impact on the LAI forecast

skill. This was also expected due to the long-term memory of vegetation evolution. For SSM, the

assimilation is performed after a rescaling of the observations to the model climatology (see section

2.3),  which  ensures  that  the  model  and  observations  are  unbiased  with  respect  to  each  other.

However, LAI is not bias-corrected, which allows the assimilation process to remove bias in the

modelled LAI (with respect to the observation). This technical difference between SSM and LAI

assimilation, combined with the longer memory of LAI compared to SSM, contributes to the results

presented in this study. Despite the expected behaviour of these two LSVs in forecasting, our results

show that the LDAS-Monde system is capable of propagating the initial LAI conditions, which is

relevant for LSV medium-range forecasting and potentially for longer lead-times, such as seasonal

forecasts. The strong impact of LAI initialisation on the forecast does not seem to propagate to the

surface soil moisture and further studies are necessary to test the impact of initial conditions on

other  variables  from  LDAS-Monde  (including  soil  moisture  in  deeper  layers  and

evapotranspiration).  Another  possibility  would  be  to  force  LDAS-Monde using  the  51-member

ECMWF ensemble forecasts. Although the ensemble system has coarser spatial-resolution (~0.20°)

than the deterministic forecast, it accounts for forcing uncertainty in the LSVs through the ensemble

spread and extends to a 15-day lead time. The maximum range of the soil and vegetation forecasts

could even be extended to six months if seasonal atmospheric forecasts were used as forcing.

LDAS-Monde  has  some  limitations,  where  future  developments  are  needed  to  improve  the

representation of LSVs. For instance, it does not consider snow data assimilation yet. It has been

shown in this study that if the snow accumulation seems to be represented correctly in the system,

the onset of snow-melt is too early in the spring. To overcome this issue, two possibilities will be

explored. Firstly, a recently developed ISBA parametrisation, MEB (Multiple Energy Budget), is

known to  lead  to  a  better  representation  of  the  snowpack (Boone et  al.,  2017).  This  could  be

particularly useful in the densely forested areas of the Northern Hemisphere where large differences

between LDAS-Monde and the IMS snow cover were found in spring (Figure S2(i), Aaron Boone

CNRM, personal communication June 2019). Another enhancement of LDAS-Monde will be to

adapt the current data assimilation scheme to permit the assimilation the IMS snow cover data,

which is implemented at NWP centres such as ECMWF (de Rosnay et al., 2014). The current SEKF

data assimilation scheme is also being revisited. Even though it has provided good results, one of its

limitations is the computational cost of the Jacobian matrix, which needs one model run for each

22

695

700

705

710

715

720

725



control variable. As the number of control variables is expected to increase, this approach would

require  significant  computational  resources.  Therefore,  more  flexible  ensemble  based  data

assimilation approaches have recently been implemented in LDAS-Monde, such as the Ensemble

Square Root Filter (EnSRF,  Fairbain et al., 2015, Bonan et al., 2020).  Bonan et al., 2020 have

evaluated performances from the EnSRF and the SEKF over the Euro-Mediterranean area. Both

data assimilation schemes have a similar behaviour for LAI while for SSM, the EnSRF estimates

tend  to  be  closer  to  observations  than  those  from  the  SEKF.  They  have  also  conducted  an

independent  evaluation  of  both  assimilation  approaches  using  satellite  estimates  of

evapotranspiration and GPP together with river discharge observations from gauging stations. They

have found that the EnSRF gives a systematic (moderate) improvement for evapotranspiration and

GPP and a highly positive impact on river discharges, while the SEKF lead to more contrasting

performance.  As for applications in hydrology, the 0.5° spatial resolution TRIP river network is

currently being improved to 1/12° globally. 

CNRM is also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,

2019). This has the potential to improve the way vegetation is accounted for in the change detection

approach used to retrieve SSM with an improved representation of its effect. Assimilating ASCAT

radar backscatter also raises the question of how to properly specify SSM observation, background,

and model error covariance matrices, which are currently based on soil properties (see section 2.1.3

on data assimilation). The last decade has seen the development of techniques to estimate those

matrices. Approaches based on Desroziers diagnostics (Desroziers et al., 2005) are computationally

affordable  for  land  data  assimilation  systems  and  could  provide  insightful  information  on  the

various sources of the data assimilation system.

Furthermore, a comparison of LDAS-Monde with existing datasets from other centres needs to be

considered. Current work at Météo-France has began to compare its quality against state of the art

reanalyses  such  as  those  from NASA at  both  the  global  scale  (GLDAS,  Rodell  et  al.,  2004,

MERRA-2,  Reichle  et  al.,  2017,  Draper  et  al.,  2018)  and regional  scale  (NCALDAS over  the

continental  USA,  FLDAS over  Africa).  Finally,  first  work  has  begun  to  run  LDAS-Monde  at

kilometric and sub-kilometric scale spatial resolutions. Promising results have been obtained by

assimilating  SSM  and  LAI  over  the  AROME  domain  (Applications  de  la  Recherche  à

l'Opérationnel  à  Méso-Echelle,  https://www.umr-cnrm.fr/spip.php?  article120  ,  last  accessed  July

2019) of Météo-France.

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open

source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at
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http: //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL

licence;  http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively

low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is

not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the

procedure  to  get  a  SVN  account  and  to  access  real-time  modifications  of  the  code  (see  the

instructions  at  the  first  link).  The developments  presented  in  this  study stemmed on SURFEX

version 8.1. LDAS-Monde technical documentation and contact point are freely available at: https://

opensource.umr-cnrm.fr/projects/openldasmonde/files

Data availability: upon request by contacting the corresponding author.
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Tables

Table I: Continental hot spots for droughts and heatwaves and number of monthly anomalies SSM
and LAI below -1 standard deviation (stdev), above 1 stdev in 2018 with respect to the 2010-2018
period.

Region name abbreviation LON-W LON-E LAT-S LAT-N

Number of monthly
SSM anomalies

below -1 (above 1)
stdev 

Number of monthly
LAI anomalies

below -1 (above 1)
stdev 

Western-Europe WEUR -1 15 48 55 5(1) 5(0)

Western
Mediterranean

WMED -10 15 35 45 0(7) 4(4)

Eastern Europe EEUR 15 30 45 55 2(1) 0(2)

Balkans BALK 15 30 40 45 3(3) 1(4)

Western Russia WRUS 30 60 55 67 0(1) 1(3)

Lower Volga LVOL 30 60 45 55 2(1) 2(1)

India INDI 73 85 12 27 3(0) 2(1)

Southwestern
China

SWCH 100 110 20 32 0(2) 0(6)

Northern China NRCH 110 120 30 40 0(3) 0(4)

Murray-Darling MUDA 140 150 -37 -26 6(0) 7(0)

California CALF -125 -115 30 42 2(0) 5(0)

Southern Plains SPLN -110 -90 25 37 0(3) 0(4)

Midwest MIDW -105 -85 37 50 1(2) 1(3)

Eastern North ENRT -85 -70 37 50 0(3) 0(7)

Nordeste NDST -44 -36 -20 -2 0(3) 1(2)

Pampas PAMP -64 -58 -36 -23 2(2) 2(0)

Sahel SAHL -18 25 13 19 2(0) 1(2)

East Africa EAFR 38 51 -4 12 2(3) 1(7)

Southern Africa SAFR 14 26 -35 -26 2(0) 2(1)
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Table II: Set up of the experiments performed in this study. LDAS_ERA5 and LDAS_HRES have an analysis (assimilation of surface soil moisture,
SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation), LDAS_fc4 and LDAS_fc8 are model runs initialized by either
LDAS_HRES open-loop or analysis. N/A stands for not applicable.

Experiments 
(time period)

Model version
Atmospheric

forcing
Domain 

& spatial resolution
DA method

Assimilated
observations

Model
equivalents

Control
variables

LDAS_ERA5
(2010 to 2018)

ISBA
Multi-layer soil

model
CO2-responsive

version
(Interactive
vegetation)

ERA5
Global, ~0.25°x

0.25°
SEKF

SSM 
(ASCAT)

LAI
(GEOV1)

Second layer of
soil (1-4cm)

LAI

Layers of soil 2
to 8 (1-100cm)

LAI

LDAS_HRES
(04/2016 to

12/2018)

IFS-HRES

North Western
Europe (WEUR) and

Murray-Darling
River basin (MUDA)
(see spatial extend in

Table I)
~0.10° x 0.10°

LDAS_fc4
(2017 to 2018)

N/A N/A N/A N/A
LDAS_fc8

(2017 to 2018)
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Table III: Evaluation datasets and associated metrics used in this study.

Datasets used for the
evaluation 

Source Metrics associated
Independent source of

evaluation

In situ measurements
of soil moisture 

(ISMN Dorigo et al.,
2011, 2015)

https://
ismn.geo.tuwien.ac.at/

en/

R for both absolute and
anomaly time-series, 
unbiased RMSD and
bias, NIC on R values

Yes

In situ measurements
of river discharge

See Table S1

Nash Efficiency (NSE),
Normalized
Information

Contribution (NIC)
based on NSE, 

Yes

In situ measurements
of evapotranspiration
 (FLUXNET-2015)

http://
fluxnet.fluxdata.org/

data/fluxnet2015-
dataset/

R, unbiased RMSD,
Bias, NIC on R values 

Yes

Satellite derived
surface soil wetness

index (ASCAT, Wagner
et al., 1999, Bartalis et

al., 2007) 

http://
land.copernicus.eu/

global/
R,  RMSD and NRMSD

No 
(assimilated dataset)

Satellite derived Leaf
Area Index (GEOV1,

Baret et al., 2013)

http://
land.copernicus.eu/

global/
R,  RMSD and NRMSD

No
(assimilated dataset)

Satellite-driven model
estimates of land

evapotranspiration
(GLEAM, Martens et

al., 2017) 

http://www.gleam.eu R, RMSD and NRMSD Yes

Upscaled estimates of
Gross Primary

Production (GPP, Jung
et al., 2017)

https://www.bgc-
jenna.mpg.de/geodb/
projects/Home.php

R,  RMSD and NRMSD Yes

Solar Induced
Fluorescence (SIF)

from GOME-2
(Munro et al., 2006,
Joiner et al., 2016)

See references R Yes

Interactive Multi-
sensor Snow and Ice
Mapping System (or

IMS) snow cover 

https://
www.natice.noaa.gov/

ims/
Differences Yes
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Figures
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Figure 1: (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for
pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea
level, (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness
Index (SWI) to the model climatology, grey areas on (a) represent filtered out data (see Section
2.3).

Figure  2:  Selection  of  19  regions  across   the  globe  known for  being  potential  hot  spots  for
droughts and heatwaves. The regions are defined in Table I. 
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Figure  3: RMSD values between observed Leaf Area Index (LAI) and LDAS_ERA5 (a) before
assimilation and (b) after assimilation of surface soil moisture (SSM) and LAI.
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Figure  4: Latitudinal plots of (a) Leaf Area Index (LAI), (b) Surface Soil Moisture (SSM), (c)
Gross Primary Production (GPP) and (d) Evapotranspiration (EVAP) for LDAS_ERA5 before
assimilation (Model, blue solid line) and after assimilation (Analysis, red solid line) as well as
observations (black solid line). Cyan dashed line represents the number of points considered per
latitudinal stripes of 0.25°.



39

Figure 5: Latitudinal plots of score differences (analysis minus open-loop) for correlations (a-
e) and normalized RMSD (f-i) for LAI (a,f),  SSM (b,g), GPP (c,h), EVAP (d,i) and SIF (e,
correlations only). Scores are computed based on monthly average over 2010-2018 for LAI and
SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. Dashed lines represent
the zero lines (equal scores for open-loop and analysis).
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Figure 6: Histograms of score differences (correlation and RMSD, analysis minus open-loop) for
a),b) LAI, c),d) SSM, e),f) GPP, g),h) EVAP and i) SIF. For SIF only differences in correlation are
represented. Number of available data (in blue) as well as the percentage of positive and negative
values (in red) are reported. Note that for sake of clarity, the y-axis is logarithmic. 
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Figure  7:(a) Map of Normalized Information Contribution (NIC, Eq. 2 ) applied on correlation
values between evapotranspiration from LDAS_ERA5 analysis (open-loop) and observations from
the FLUXNET 2015 synthesis data set. NIC scores are classified into 2 categories (i)  negative
impact from the analysis with respect to the model with values smaller than -3 % (red circles, 5
stations), (ii) positive impact from the analysis with respect to the model with values greater than
+3 % (blue circles, 20 stations). Stations presenting a neutral impact with values between -3 %
and +3 % (60 stations) are reported as small  dots.  Note that  at  this  scale some stations are
overlapping. (b), (c), (d) and (e) scatter-plots of R, ubRMSD, absolute bias and RMSD between
LDAS_ERA5 open-loop and the 85 stations from the FLUXNET 2015 (y-axis) and LDAS_ERA5
analysis and the same pool of stations (x-axis). The set of 20 stations for which the analysis has a
positive impact in R values at NICR greater than +3 are reported on a) in green.
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Figure  8:(a) Global map of Nash-Sutcliff Efficiency score (NSE) between river discharge from
LDAS_ERA5 open-loop and in situ measurements from the networks presented in Table S1 over
2010-2016. (b) Normalized Information Contribution scores (NIC, Eq.2) based on NSE scores on
river discharge. Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral
impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an
improvement from LDAS_ERA5 analysis over LDAS_ERA5 open-loop while values smaller than -
3% (large red circles) suggest a degradation. Only stations where more than 4-year of data are
available and with a drainage area greater than 10000km2 are considered. Stations with NSE
values smaller than -2 are discarded, also, leading to a subset of 982 stations available.
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Figure 10: 2018 monthly anomalies scaled by standard deviation of analysed (a)SSM and (b)LAI,
with respect to 2010-2018, for the 19 regions presented in Table 1 and Figure  2. Solid red line,
dashed red line and solid green line represent regions MUDA, WEUR and EAFR. Solid cyan line
represent all other boxes (see Table 1 and Figure 2).

Figure 9: Map of correlations (R) differences (analysis minus open-loop) for stations measuring
soil moisture at 5 cm depth and being available over North America. Small dots represent stations
where  R differences  are not  significant  (i.e.  95% confidence intervals  are  overlapping),  large
circles where differences are significant.
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Figure 11: Upper panels represent seasonal cycles of a) observed GEOV1 LAI from CGLS, b) LAI
from the  open-loop (in  blue)  and  the  analysis  (in  red)  for  the  WEUR area  (see  Table  I  for
geographical extent). c) and d) panels are similar to a) and b) for the MUDA area . Lower panels
represents seasonal cycles of e) ASCAT SWI from CGLS, f) SSM from the open-loop (in blue) and
the analysis (in red) for the WEUR area. Panels g) and h) are similar to e) and f) for the MUDA
area.  For  each  panels  dashed  line  represents  the  averaged  over  2010-2017  along  with  the
minimum and maximum values, the solid lines are for the year 2018.
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Figure  12: Upper panel, seasonal  (a) RMSD and (b) correlation values between soil moisture
from the second layer of soil (1–4 cm) from the model forced by HRES (LDAS_HRES, open-loop
in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017-2018 over the
WEUR  area.  Scores  between  SSM  from  the  second  layer  of  soil  of  LDAS_HRES,  4-day
(dashed/dotted  blue  –  when  initialised  by  the  open-loop-  and  red  –  when  initialised  by  the
analysis- lines) and 8-day (dashed blue and red lines) forecasts and ASCAT SSM estimates are
also reported. Lower panel (c) and (d) , same as upper panel between modeled/analyzed Leaf Area
index (LAI)  and GEOV1 LAI estimates .
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Figure  13: Same as Figure  12 for the Murray-Darling river (MUDA) area in  South  Eastern
Australia.
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Figure 14: Top row, (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates
over  2017-2018 for  the WEUR domain,  (b)  RMSD differences  between LDAS_HRES analysis
(open-loop) and ASCAT SSM. (c), (d) and (e) Same as (b) between LDAS_fc4 initialised by the
analysis  (open-loop)  and LDAS_fc8.  Bottom row,  same as  top  row for  LAI from the  different
experiments and LAI GEOV1.
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Figure 15: Same as Figure 14 or the Murray-Darling river (MUDA) area in  South  Eastern 
Australia.
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Figure  17:  Top row,  (a)  drainage values  for  LDAS_HRES open-loop over  2017-2018 for  the
WEUR domain, (b) drainage differences between LDAS_HRES analysis and open-loop. (c), (d),
same as (b) between LDAS_fc4 initialised by the analysis and LDAS_fc4 initialised by the open-
loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8 initialised by the open-loop.
Bottom row, same as top row for runoff. Units are kg.m-2.day-1

Figure 16: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over
2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis (open-loop)
and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop)
and LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.


