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Abstract-This study demonstrates that LDAS-Monde, a global and offline Land Data Assimilation

System (LDAS), that integrates satellite Earth Observations into the ISBA (Interaction between Soil

Biosphere and Atmosphere) Land Surface Model (LSM), is able to detect, monitor and forecast the

impact of extreme weather on land surface states. LDAS-Monde jointly assimilates satellite derived

Earth observations of Surface Soil Moisture (SSM) and Leaf Area Index (LAI). First, LDAS-Monde

is run at a global scale forced by the latest atmospheric reanalysis from the European Centre for

Medium  Range  Weather  Forecast  (ECMWF),  ERA5  (ECMWF  fifth  global  reanalysis,

LDAS_ERA5  hereafter)  over  2010-2018,  leading  to  a  9-yr,  ~0.25°  x  0.25°  spatial  resolution

reanalysis of Land Surface Variables (LSVs). The quality of this global analysis is evaluated using

several  satellite-based  datasets:  assimilated  SSM  and  LAI,  but  also  independent  datasets  of

evapotranspiration,  Gross  Primary  Production,  Sun  Induced  Fluorescence  and  snow  cover.  In

addition, in situ measurements of SSM, evapotranspiration and river discharge are also employed

for the evaluation. This assessment is conducted by comparing LDAS-Monde analysis with a model

simulation (open-loop, no assimilation). Secondly, the global analysis is used to (i) detect regions

exposed  to  extreme  weather  such  as  droughts  and  heatwave  events  and  (ii)  address  specific

monitoring  and  forecasting  requirements  of  LSVs  for  those  regions.  This  is  performed  by

computing anomalies of the land surface states. They display strong negative values for LAI and

SSM in 2018 for two regions experiencing severe heatwave and/or droughts: North Western Europe

and the Murray-Darling basin in South Eastern Australia. For those two regions, monitoring and

forecasting LSVs under extreme conditions are examined by forcing LDAS-Monde with ECMWF

Integrated Forecasting System (IFS) high resolution operational analysis (LDAS_HRES, ~0.10° x

0.10° spatial resolution) over 2017-2018. Monitoring capacities are studied by comparing open-loop
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and  analysis  experiments  again  against  the  assimilated  observations.  Forecasting  abilities  are

assessed by initializing 4- and 8-day LDAS_HRES forecasts of the LSVs with the LDAS_HRES

assimilation run compared to open-loop experiments. The impact of initialization in forecast mode

is particularly visible for LAI that evolves at a slower pace than SSM and is more sensitive to initial

conditions than to atmospheric forcing, even at an 8-day lead time. This highlights the importance

of initial conditions to forecast LSVs and it confirms that LDASs should jointly analyse both soil

moisture and vegetation states.

 1 Introduction

Extreme weather and climate events like heatwaves and droughts are likely to increase in frequency

and/or magnitude (IPCC, 2012, Ionita et al., 2017). Amongst all the natural disasters, droughts are

the most detrimental (Bruce, 1994; Obasi, 1994; Cook et al., 2007; Mishra and Singh, 2010; WMO

2017) and about  one-fifth  of  damages caused by natural  hazards  can  be attributed  to  droughts

(Wilhite 2000). They also cost society billions of dollars every year (WMO, 2017). It is therefore of

paramount  importance to  implement  tools  that  can monitor  and warn about  drought  conditions

(Svoboda, 2002; Luo and Wood, 2007;  Blyverket  et  al.,  2019) as well  as their  impact  on land

surface  variables  (LSVs)  and society  (Di  Napoli  et  al.,  2019).  A major  scientific  challenge  in

relation  to  the  adaptation  to  climate  change  is  to  observe  and  simulate  how  land  biophysical

variables respond to those extreme events (IPCC, 2012).

Droughts can be described as a deficit of water caused by a lack of precipitation. This definition is

broad but droughts are generally classified according to the part  of the hydrological cycle  that

suffers from a water deficit (IPCC, 2014; Barella-Ortiz and Quintana-Seguí, 2018). Drought types

are all related to precipitation deficit and they have severe impacts in regions with rain-fed crops

and no possible irrigation. They include meteorological droughts (lack of precipitation), agricultural

droughts (deficit of water in the soil), hydrological droughts (deficit of streamflow, water level in

rivers) and environmental droughts (a combination of the previous droughts types). Because of the

effect  of  precipitation  deficit   on  the  whole  hydrological  system,  all  drought  types  are  related

(Wilhite, 2000). Complex interactions between continental surface and atmospheric processes have

to  be  combined  with  human  action  in  order  to  fully  understand  the  wide  ranging  impacts  of

droughts on land surface conditions (Van Loon, 2015). As a consequence, Land Surface Models

(LSMs) driven by high-quality gridded atmospheric variables and coupled to river-routing system

are key tools to address these challenges (Dirmeyer et al., 2006; Schellekens et al., 2017). Initially

developed  to  provide  boundary  conditions  to  atmospheric  models,  LSMs can  now be  used  to

monitor  and  forecast  land  surface  conditions  (Balsamo  et  al.,  2015;  Balsamo  et  al.,  2018;
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Schellekens et al., 2017). Additionally, the representation of LSVs by LSMs can be improved by

coupling them with other models of the Earth system like atmosphere, oceans, river routing systems

(e.g., de Rosnay et al., 2013, 2014; Kumar et al., 2018, Balsamo et al., 2018; Rodríguez-Fernández

et al., 2019; Muñoz-Sabater et al., 2019). 

Complementary to LSMs are Earth Observations (EOs). Satellite products are particularly relevant

for the monitoring of LSVs. Satellite EOs related to the terrestrial hydrological, vegetation and

energy cycles are now available at a global scale at kilometric scale and below and with long-term

records (e.g., Lettenmaier et al., 2015, Balsamo et al., 2018). Combining EOs and LSMs through

Land Data Assimilation Systems (LDASs)  leads to enhanced initial land surface conditions (e.g.

Reichle et al., 2007; Lahoz and De Lannoy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a,

2019; Balsamo et al., 2018), which, in turn, lead to improved forecasts of weather patterns, sub-

seasonal  temperature  and  precipitation,  agricultural  and  vegetation  productivity,  seasonal

streamflow, floods and droughts, as well as the carbon cycle (Bamzai and Shukla, 1999; Schlosser

and Dirmeyer, 2001; Bierkens, M. and van Beek, 2009; Koster et al., 2010; Bauer et al., 2015;

Massari et al, 2018; Albergel et al., 2018a, 2019, Rodríguez-Fernández et al., 2019; Muñoz-Sabater

et  al.,  2019).  Amongst  the  current  land-only  LDAS activities  several  are  NASA-led  (National

Aeronautics and Space Administration) projects. Examples of such activities are the Global Land

Data Assimilation System (GLDAS, Rodell et al., 2004) which is run at a global scale. While the

North American Land Data Assimilation System (NLDAS,  Xia et al., 2012a, b) and the National

Climate Assessment-Land Data Assimilation System (NCA-LDAS, Kumar et al., 2016, 2018, 2019)

are run over  the continental  United States  of America and the Famine Early Warning Systems

Network (FEWS NET) Land Data Assimilation System (FLDAS, McNally et al., 2017) is run e.g.

over Western, Eastern and Southern Africa. Finally, the Carbon Cycle Data Assimilation System

(CCDAS, Kaminski et al., 2002), the Coupled Land Vegetation LDAS (CLVLDAS, Sawada and

Koike, 2014, Sawada et al., 2015), the Data Assimilation System for Land Surface Models using

CLM4.5 proposed by Fox et al., 2018, the SMAP (Soil Moisture Active Passive) level 4 system

(Reichle et al., 2019) as well as LDAS-Monde (Albergel et al., 2017, 2018, 2019) developed by the

research  department  of  Météo-France  are  additional  examples   of  data  assimilation  systems

combining EOs and LSMs . Few studies have, however, included the assimilation of multiple EOs

and considered global applications (Kumar et  al.,  2018, Albergel et  al.,  2019).  A more detailed

description of the various existing LDASs is available in Kumar et al., 2018, Albergel et al., 2019

and references therein.

After several applications at  regional and continental  scales (Albergel et  al.,  2017, 2018, 2019,

Leroux et al., 2018, Tall et al., 2019, Blyverket et al., 2019, Bonan et al., 2020), LDAS-Monde is
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run at  a  global scale forced by the latest  atmospheric reanalysis  from the European Centre for

Medium Range Weather Forecast (ECMWF), ERA5, over 2010-2018 leading to a 9-yr, 0.25° x

0.25°  spatial  resolution  reanalysis  of  the  LSVs  (LDAS_ERA5).  In  this  paper,  stemming  from

previous studies referenced above, it is shown that LDAS-Monde, by integrating jointly Surface

Soil  Moisture (SSM) and Leaf  Area Index (LAI) EOs into the ISBA (Interaction between Soil

Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996) at a

global scale and in offline mode, can be used to detect, monitor and forecast the impact of extreme

events on LSVs. The following items are presented and discussed in this study:

• An evaluation of LDAS-Monde at a global scale is carried out. This assessment involves the

assimilated  observations  to  demonstrate  that  the  system  is  working  as  intended.  But  more

fundamentally,  LDAS-Monde  global  analysis  is  appraised  using  diverse,  independent  and

complementary satellite-derived datasets of evapotranspiration (EVAP)  from the GLEAM project

(Miralles et al., 2011, Martens et al., 2017), Gross Primary Production (GPP) from the FLUXCOM

project (Tramontana et al.,  2016, Jung et al.,  2017), Solar Induced Fluorescence (SIF) from the

GOME-2 (Global  Ozone Monitoring Experiment-2) scanning spectrometer  (Munro et  al.,  2006,

Joiner et al., 2016) and snow cover data from the Interactive Multi-sensor Snow and Ice Mapping

System (or IMS,  https://www.natice.noaa.gov/ims/, last accessed June 2019).  This evaluation is

additionally performed with in situ measurements of evapotranspiration from the FLUXNET 2015

synthesis  data  set  (http://fluxnet.fluxdata.org/,  last  accessed  June  2019),  soil  moisture  from the

International Soil Moisture Network (ISMN, https://ismn.geo.tuwien.ac.at/en/, last accessed June

2019) and river discharge from several networks across the world.

• LDAS-Monde global analysis over 2010-2018 is used to detect regions exposed to extreme

weather  such  as  droughts  and  heatwave  events  in  2018.  This  identification  is  performed  by

computing anomalies  of  LSVs over  the 9-year  period and identifying where strongest  negative

anomalies are located in 2018. For spotted regions, the monitoring and forecast abilities of LDAS-

Monde are further investigatedat higher spatial resolution, thus exploring LDAS-Monde capacities

to predict the evolution of LSVs in the context of droughts. 

The  paper  is  organised  in  five  sections:  section  2  details  the  various  components  constituting

LDAS-Monde (the ISBA LSM, the data assimilation scheme and the EOs assimilated as well as the

different atmospheric forcing datasets used), followed by the experimental and evaluation setup.

Section 3 describes and discusses the impact of the analysis on the representation of the LSVs.

Section 4 details the identification of 2 case studies over regions particularly affected by extreme

events during 2018 and their detailed monitoring at higher spatial resolution combined with land
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surface forecasting activities is also presented. Finally section 5  provides conclusions and prospects

for future work.

 2 Material and methods

The  following subsections  briefly  describe  the  main  components  of  LDAS-Monde:  the  ISBA

LSM, its data assimilation scheme and two other key elements of the setup: atmospheric forcing

and assimilated satellite derived observations. The experimental setup and the evaluation datasets

used in this study are also presented.

 2.1 LDAS-Monde

Embedded  within  the  SURFEX  (SURFace  EXternalisée,  Masson  et  al.,  2013,  version  8.1)

modelling  platform  developed  by  the  research  department  of  Météo-France  (CNRM,  Centre

National de Recherches Météorologiques), LDAS-Monde (Albergel et al., 2017) allows the joint

integration of satellite derived SSM and LAI into the CO2-responsive (Calvet, et al., 1998, 2004,

Gibelin et  al.,  2006),  multilayer diffusion scheme (Boone et  al.,  2000, Decharme et al.,  2011)

version of the ISBA LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996) coupled with

the CTRIP (CNRM Total Runoff Integrating Pathways, Decharme et al., 2019) hydrological model

using a Simplified Extended Kalman Filter (SEKF, Mahfouf et al., 2009).

 2.1.1 ISBA Land Surface Model

 The ISBA LSM aims to model the evolution of LSVs. In the chosen configuration for this paper,

ISBA is able to represent the transfer of water and heat through the soil based on a multilayer

diffusion scheme, as well as plant growth and leaf-scale physiological processes. ISBA models key

vegetation variables like LAI and above ground biomass, the diurnal cycle of water, carbon and

energy fluxes. It computes a soil-vegetation composite using a single-source energy budget. In the

CO2-responsive version of ISBA, ISBA-A-gs, the model can simulate the CO2 net assimilation

and GPP by considering the functional relationship between the photosynthesis rate (A) and the

stomatal  aperture  (gs)  based  on the  biochemical  A-gs  model  proposed by Jacob et  al.,  1996.

Photosynthesis is in control of the evolution of vegetation variables. It makes vegetation growth

possible as a result of an uptake of CO2. Oppositely, a deficit of photosynthesis triggers higher

mortality rates. Ecosystem respiration (RECO) is represented by the CO2 being released by the

soil-plant  system  and  GPP by  the  carbon  uptake  related  to  photosynthesis.  Finally,  the  net

ecosystem exchange (NEE) consists of the difference between GPP and RECO. Each ISBA grid
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cell is composed of up to 12 generic land surface types, bare soil, rocks, and permanent snow and

ice surfaces as well as nine plant functional types (needle leaf trees, evergreen broadleaf trees,

deciduous broadleef trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous

and wetlands).  The ECOCLIMAP-II land cover  database (Faroux et  al.,  2013) provides ISBA

parameters for each patch and each grid cell.

ISBA multilayer  diffusion  scheme’s  default  discretization  is  14  layers  over  12  m  depth.  The

following configuration is used in this study:  thickness (depth) of each layers are (from top to

bottom), 1 cm (0-1 cm), 3 cm (1-4 cm), 6 cm (4-10 cm), 10 cm (10-20 cm), 20 cm (20-40 cm), 20

cm (40-60 cm), 20 cm (60-80 cm), 20 cm (80-100 cm), 50 cm (100-150cm), 50 cm (150-200cm),

100 cm (200-300 cm), 200 cm (300-500 cm), 300 cm (500-800 cm) and 400 cm (800 to 1200 cm),

see also Figure 1 of Decharme et al., 2011. Snow is represented using the ISBA 12-layers explicit

snow scheme (Boone and Etchevers, 2001, Decharme et al., 2016).

 2.1.2 CTRIP river routing system

The ISBA-CTRIP river routing system is able to simulate continental scale hydrological variables

based on a  set  of three prognostic equations.  They correspond to (i)  the groundwater,  (ii)  the

surface stream water and (iii) the seasonal floodplains. It converts the runoff simulated by ISBA

into river discharge. ISBA-CTRIP river-routing network has a spatial resolution of 0.5° x 0.5°

globally and is coupled daily with ISBA through the OASIS3-LCT coupler (Voldoire et al., 2017).

ISBA provides to CTRIP updated fields of runoff, drainage, groundwater and floodplain recharges.

In turn, CTRIP provides ISBA with water table depth, floodplain fraction as well as flood potential

infiltration so that ISBA can simulate capillarity rise,  evaporation and infiltration over flooded

areas. A comprehensive overview of how CTRIP is coupled with ISBA is available in Decharme et

al., (2019).

 2.1.3 Data assimilation

The  SEKF used  in  LDAS-Monde  is  a  2-step  sequential  approach  in  which  a  forecast  step  is

followed by an analysis step. The forecast step propagates the initial state of the studied system to

the  next  time  step  with  the  ISBA LSM  and  then,  the  analysis  step  corrects  this  forecast  by

assimilating observations. The flow-dependency (dynamic link) between the prognostic variables

and the observations is ensured in the SEKF through the observation operator and its Jacobians,

which  propagate  information  from  the  observations  to  the  analysis  via  finite-difference

computations  (de  Rosnay  et  al.,  2013).  The  Jacobian  matrix  has  as  many  rows  as  assimilated

observation types (in our case two: SSM and LAI) and as many columns as model control variables

requested (in our case eight, soil moisture from layers 2 to 8, 1-100cm, and LAI). In addition to a
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control run (i.e. the forecast step), computing the Jacobian matrix requires perturbed runs, one for

each control  variable.  The eight control  variables are directly updated using their  sensitivity to

observed variables (i.e. defined by the Jacobian). Other variables are indirectly modified through

biophysical  processes  and feedback  from the  model.  Several  studies  (e.g.  Draper  et  al.,  2009;

Rüdiger et al., 2010) have demonstrated that small perturbations lead to a good approximation of

this linear behaviour, provided that computational round-off error is not significant. Typically, for

those runs, the initial state of the control variable is perturbed by about 0.1% (see Albergel et al.,

2017; Rüdiger et al., 2010). The length of the LDAS-Monde assimilation window is 24 hours . A

mean volumetric standard deviation error is specified proportional to the soil moisture range (the

difference between the volumetric field capacity and the wilting point, calculated as a function of

the soil type, as given by Noilhan et Mahfouf, 1996) and scaled by a factor 0.04 for SSM in its

model equivalent (the second layer of soil between 1 and 4 cm), and 0.02 for deeper layers (soil

layers 3 to 8, 4-100 cm). The observational SSM error follows the same rule scaled by 0.05  and is

consistent with errors typically expected for remotely sensed SSM (e.g., de Jeu et al., 2008, Gruber

et al, 2016). Based on previous results from Jarlan et al., 2008, Rüdiger et al., 2010, Barbu et al.,

2011, observed LAI standard deviation errors are set to 20 % of the LAI value itself. Modelled LAI

standard deviation errors follow the same rule for values higher than 2 m2m-2. For values lower than

2 m2m-2, a fixed value of 0.04 m2m-2 has been used. More detailed can be found in Barbu et al., 2011

(section 2.3 on data assimilation scheme and figure 2).

 2.2 Atmospheric forcing

The lowest model level (about 10 metres  above ground level)  of air  temperature,  wind speed,

specific humidity and pressure, the downwelling fluxes of shortwave, longwave radiations as well

as precipitation (partitioned in solid and liquid phases) are needed to force LDAS-Monde. In this

study, LDAS-Monde is driven by several near-surface meteorological fields from ECMWF: 

• its most recent atmospheric reanalysis (ERA5) to produce LDAS-Monde global analysis

• its high resolution Integrated Forecast System (IFS HRES) to monitor and predict the

evolution of LSVs for regions under severe droughts and heatwaves. 

ERA5 (Hersbach et al., 2018, 2019 submitted) is the fifth generation of global reanalyses produced

by ECWMF.  This  atmospheric  reanalysis  is  a  key  element  of  the  Copernicus  Climate  Change

Service (C3S) and is available from 1979 onward (data is released about 2 months behind real

time). ERA5 has hourly output analysis, 31 km horizontal dimension and 137 levels in the vertical

resolution. Several studies have validated the ERA5 dataset. For example, Urraca et al. (2018) have

compared incoming solar radiation from both ERA5 and the ERA-interim reanalysis (Dee et al.,
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2011) at a global scale and found evidence that ERA5 outperforms ERA-Interim. In another study,

Beck et al. (2019) have highlighted the good performance of ERA5 precipitation with respect to a

set of 26 gridded (sub-daily) precipitation data sources by comparing them to Stage-IV gauge-radar

data over the CONUS domain (CONtinental United States of America). Tall et al. (2019) have used

in situ measurements of precipitation at more than 100 stations spanning all over Burkina-Faso in

Western Africa as well as incoming solar radiation from 4 in situ stations to evaluate the quality of

ERA5 over ERA-Interim with positive outcomes for ERA5 as well. They have also evaluated both

reanalysis datasets through their impact on the representation of LSVs when used to force the ISBA

LSM, again demonstrating a clear advantage for ERA5. Similar work has been done by Albergel et

al. (2018a), over North America, this study found enhanced performances in the representation of

evapotranspiration, snow depth, soil moisture as well as river discharge when the ISBA LSM was

forced by ERA5 compared to ERA-Interim. 

At the time of the study, ERA5 underlying model and data assimilation system (Cycle 41r2) are

very similar to that of the operational weather forecast, HRES, which has production cycles ranging

from 41r2 to 45r1 during the study period (the cycle is 46r1 from June 2019, more information at

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model,  last

accessed July 2019). The main difference between ERA5 and HRES over the considered period is

the  horizontal  resolution,  9  km  in  HRES  and  31  km  in  ERA5.  The  atmospheric  forcing  is

interpolated from the native grids of ERA5 and HRES to regular grids of 0.25° × 0.25° and 0.1° ×

0.1°, respectively, using a bilinear interpolation from the native grid to the regular grid.  ERA5 and

HRES were used in Albergel et al. (2019) to force LDAS-Monde in order to study the impact of the

2018 summer heatwave in Europe. Authors have highlighted that the HRES configuration exhibits

better monitoring skills than the coarser resolution ERA5 configuration.

In forecasting mode,  HRES forecast is also available everyday from 00:00 UTC with a 10-day lead

time, but with changes in the temporal resolution. HRES forecast step frequency is hourly up to

time step 90 (i.e. day 3), 3-hourly from time-step 90 to 144 (i.e. day 6) and 6-hourly from time-step

144 to 240 (i.e. day 10). In this study, for forecast experiments (see section 2.4 for details on the

experimental setup) HRES forecasts with a 10-day lead time are used to drive forecasts of the LSVs

from LDAS_HRES open-loop and analysis configurations in order to evaluate the impact of the

initialisation on the forecast of LSVs. The original 3-hourly time steps are used up to day 6 (time

step 144), the 6-hourly time steps from day 6 to 10 are interpolated to 3-hourly frequency to avoid

discontinuities.

 2.3 Assimilated satellite Earth Observations
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Two types of  satellite-derived variables are assimilated in LDAS-Monde: ASCAT Soil Water Index

(SWI)  and  LAI  GEOV1.  They  are  both  freely  available  through  the  Copernicus  Global  Land

Service (CGLS, https://land.copernicus.eu/global/index.html, last accessed June 2019).  

ASCAT stands  for  Advanced Scatterometer,  this  is  an  active  C-band microwave sensor  that  is

onboard the European MetOp polar orbiting satellites (METOP-A, from 2006, B from 2012 and

also C from 2018). From ASCAT radar backscatter coefficients, it is possible to derive information

on SSM following a change detection approach (Wagner et al., 1999, Bartalis et al., 2007). The

recursive form of an exponential filter (Albergel et al., 2008), is then applied to estimate the SWI

using a timescale parameter, T (varying between 1 day and 100 days) T is a surrogate parameter for

all the processes potentially affecting the temporal dynamics of soil moisture (like, soil hydraulic

properties and thickness of the soil layer, evaporation, run-off and vertical gradient of soil properties

such as texture and density). The obtained SWI then ranges between 0 (dry) and 100 (wet). In this

study, CGLS SWI-001 (i.e. produced with a T-value of 1 day) is used as a proxy for SSM (Kidd et

al., 2013). Grid points with an average altitude exceeding 1500 m above sea level as well as those

with more than 15 % of urban land cover are  rejected as those conditions are known to affect the

retrieval  of  SSM  from  space.  Prior  to  the  assimilation,  SSM  has  to  be  converted  from  the

observation space to the model space. This is done through a linear rescaling as proposed by Scipal

et al. (2007), where the mean and variance of observations are matched to the mean and variance of

the modelled soil moisture from the second layer of soil (1-4 cm depth). This rescaling gives in

practice  very  similar  results  to  CDF  (cumulative  distribution  function)  matching.  The  linear

rescaling is performed on a seasonal basis (with a 3-month moving window) as suggested by Draper

et al.,  (2011), Barbu et al.,  (2014).The LAI GEOV1 observations are based on data from  both

SPOT-VGT (up to 2014) and  PROBA-V (from 2014) satellites. They span from 1999 to present,

have a 1km x 1km spatial resolution and are produced  according to the methodology developed by

Baret et al. (2013). LAI GEOV1 observations have a temporal frequency of 10 days at best (in the

presence of clouds, no observation is available). LAI data are masked in the presence of modelled

snow by the ISBA LSM.

As in previous studies  (e.g, Barbu et al., 2014, Albergel et al., 2019), observations are interpolated

by an arithmetic average to the model grid points (0.25° or 0.10° in this study), if at least 50 % of

the model grid points are observed (i.e. half the maximum amount).  ASCAT SSM and LAI GEOV1

are illustrated by Figure 1.

 2.4 Experimental setup
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LDAS-Monde is first run at a global scale, at 0.25° x 0.25° spatial resolution, forced by ERA5

atmospheric  reanalysis  and assimilating  SSM and LAI  EOs from 2010 to  2018 (LDAS_ERA5

hereafter). LDAS_ERA5 is spun-up by running year 2010 twenty times. LDAS_ERA5 analysis as

well as its model counterpart (open-loop, i.e. no data assimilation) are presented and evaluated in

this study.

This 9-yr global reanalysis is then used to provide a monthly climatology for estimating anomalies

of the land surface conditions. For each month (and variable considered) of 2018 we have removed

the  monthly  mean  and  scaled  by  the  monthly  standard  deviation  of  the  2010-2018  period.

Significant anomalies are used to trigger more detailed monitoring as well as forecasting activities

for a region of interest. 19 regions across the globe known for being potential hot spots for droughts

and heatwaves have been selected. They are listed in  Table I and presented in  Figure  2. Monthly

anomalies of LDAS_ERA5 analysis of SSM and LAI for those 19 regions are assessed for 2018

(with  respect  to  the  2010-2018  period)  and  regions  presenting  significant  level  of  negative

anomalies are selected and further investigated. For those regions, LDAS-Monde has been driven

by HRES atmospheric analysis leading to a 0.1° x 0.1° analysis of the LSVs from April 2016 to

December 2018 (LDAS_HRES herafter). HRES is available at a 0.1° x 0.1° resolution only from

April 2016. April to December 2016 is used as a short period for spin-up and results are presented

for the period 2017-2018. Although a 9-month spin-up period can be seen as rather short, evaluating

LDAS-HRES on either 2017-2018 or 2018 (using instead a 21-month spin-up) leads to similar

results on surface soil moisture and LAI (not shown). While the system is not fully spun-up, it can

be  considered  as  representative  of  the  system  response  to  data  assimilation.  LDAS_HRES

complements the coarser spatial resolution LDAS_ERA5. HRES forecasts with a 10 day lead time

are also used, and initialised by either LDAS_HRES open-loop or analysis (LDAS_Fc hereafter) in

order to assess the impact of the initialisation on the forecast. Forecasts with a four and height day

lead  time  are  presented,  only  (LDAS_fc4  and  LDAS_fc8,  respectively).  A summary  of  the

experimental setup is given in Table II.

 2.5 Evaluation datasets and metrics

This study uses several satellite-derived estimates of EOs as well  as in situ  measurement data.

LDAS_ERA5  analysis  impact  is  assessed  with  respect  to  the  open-loop  model  run  (i.e.  no

assimilation). The two assimilated datasets, CGLS SSM and LAI, are used to verify to which extent

the assimilation system is able to correctly integrate them (i.e. suggesting a healthy behaviour from

the data assimilation system).  Then several spatially  distributed datasets  independent from both

experiments: (namely) evapotranspiration from the GLEAM project (Miralles et al., 2011, Martens
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et al., 2017, version 3b entirely satellite driven), GPP from the FLUXCOM project (Tramontana et

al.,  2016, Jung et  al.,  2017),  SIF from the GOME-2 (Global  Ozone Monitoring Experiment-2)

scanning spectrometer  (Munro et  al.,  2006,  Joiner  et  al.,  2016)  and snow cover  data  from the

Interactive Multi-sensor Snow and Ice Mapping System (or IMS, https://www.natice.noaa.gov/ims/)

are  used in the evaluation process. The IMS snow cover product combines ground observations and

satellite data from microwave and visible sensors (using geostationary and polar orbiting satellites)

to provide snow cover information in all weather conditions. The IMS product is available daily for

the northern hemisphere. 

In situ measurements of surface soil moisture from 19 networks across 14 countries available from

the ISMN are also used to evaluate the performance of the soil moisture analysis. They represent

782 stations with at least 2 years of daily data over 2010-2018. Sensors at 5 cm depth (SSM) are

compared with soil moisture from LDAS_ERA5 third layer of soil (4-10 cm), sensors at 20 cm

depth with the fourth layer of soil (10-20 cm, 685 stations from 10 networks). Beside 11 stations

located  in  4  countries  of  Western  Africa  (Benin,  Mali,  Sénégal  and  Niger)  and  21  stations  in

Australia, most of the station are located in North America and Europe, see Table S3.Evaluation

datasets  are listed in Table III  along with the metrics used.  For satellite datasets  of SWI, LAI,

evapotranspiration  and  GPP,  correlations  (R),  Root  Mean  Square  Differences  (RMSD)  and

Normalized RMSD (NRMSD, Eq.(1)) are used as metrics. . 

NRMSD=
RMSD(Analysis )− RMSD( Model )

RMSD(Model )

×100 Eq.(1)

Regarding  the  SIF  satellite  dataset,  fluorescence  is  not  simulated  directly  in  the  ISBA LSM.

However, photosynthesis activity is simulated through the calculation of the GPP, which is driven

by plant growth and mortality in the model. Modelled GPP values are expressed in g(C)·m−2·day−1,

while SIF is an energy flux emitted by the vegetation (mW·m−2·sr−1·nm−1). Hence, GPP and SIF

cannot  be  directly  compared  as  they  do  not  represent  the  same physical  quantities.  However,

several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found that their

time dynamics investigated, highlighting the potential of SIF products to be used as a validation

support for GPP models. Therefore, correlation between modelled GPP and observed SIF is used as

metrics. About the snow cover dataset, differences between observed and modelled snow cover is

considered for the evaluation.

For in situ datasets of soil  moisture and evapotranspiration, usual correlation,  RMSD, unbiased

RMSD and bias  are  considered  as  metrics.   Moreover,  a  Normalized  Information Contribution

(NIC,  Eq.(2))  measure  is  applied  to  the  correlation  values  to  quantify  the  improvement  or

degradation due to the specific configuration.  
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NICR=
R (Analysis )− R (Model )

1− R (Model )

×100 Eq. (2)

NIC scores are classified according to three categories: (i) negative impact from the analysis with

respect to the open-loop with values smaller than -3 %, (ii) positive impact from the analysis with

respect to the open-loop with values greater than +3 % and (iii) neutral impact from the analysis

with respect to the open-loop with values between -3 % and 3 %.

In addition, for surface soil moisture, correlation is calculated for both absolute (R) and anomaly

(Ranomaly) time-series in order to remove the strong impact from the SSM seasonal cycle on this

specific metric (see e.g. Albergel et al. , 2018a, 2018b).

Finally,  the Nash-Sutcliffe Efficiency score (NSE, Eq.(3), Nash and Sutcliffe, 1970) is used to

evaluate LDAS_ERA5 experiments ability to represent the monthly discharge dynamics.

NSE=1−
∑
mt=1

T

(Qs
mt
−Qo

mt
)

2

∑
mt=1

t

(Qs
mt
−Qs

mt
)

2

 Eq.(3)

where Qs
mt is the monthly river discharge from LDAS_ERA5 (analysis or open-loop) at month mt,

and  Qo
mt is the observed river discharge at month  mt. NSE can vary between −∞ and 1. An exact

match between model predictions and observed data is defined as a value of 1, whereas a value of 0

means that the model predictions have the same accuracy as the mean of the observed data. Finally

negative values represent situations where the observed mean is a better predictor than the model

simulation. NIC presented in Eq.(1) has also been applied to NSE scores to assess the added value

of LDAS_ERA5 analysis over its open-loop counterpart. Stations with NSE values lesser that -2

have been  discarded. A similar threshold has already been used in previous studies evaluating

LDAS-Monde (e.g. Albergel et al., 2017, 2018a). Many processes, most of them linked to water

management such as the presence of dams and reservoirs, irrigation, water uptake in urban areas,

are not yet represented in ISBA possibly leading to a poor representation of river discharges. As

previous evaluations studies have suggested a neutral to positive impact from the assimilation, only,

it has been decided to focus on stations with reasonable NSE values.

 3  Global assessment of LDAS_ERA5

 3.1  Gridded datasets

In  this  sub-ection,  LDAS-Monde  open-loop and  analysis  are  first  compared  to  the  assimilated

observations (SSM and LAI) to demonstrate that the assimilation system is working as intended.

Both experiments are also compared to independent sources of information to evaluate the analysis
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impact (GPP, EVAP and SIF). Figure 3 presents mean RMSD values between the observations and

LDAS_ERA5 for the open-loop (Figure  3a), and for the analysis (Figure  3b) for LAI over 2010-

2018. Because LAI observations  are  ingested into the model,  the assimilation reduces  the LAI

RMSD values almost everywhere. It can be noted that rather large LAI RMSD values (> 1.5 m2m-2)

can  remain  in  some areas  after  the  assimilation,  especially  in  densely  forested  areas.  Figure  4

illustrates latitudinal plots of LAI, SSM, GPP and EVAP for LDAS_ERA5 before assimilation (the

open-loop)  and after  assimilation (the analysis)  along with observations.  The number of  points

considered per latitudinal stripes of 0.25° is represented, also. From Figure 4a it is possible to see

the positive impact the analysis has on LAI compared to the open-loop, with the former being closer

to the observations. Improvements from the analysis occurs from nearly 80°North to about 55°

South,  areas  around  the  equator  are  particularly  improved.  This  demonstrates  that  the  data

assimilation system is working as intended. A smaller impact than for LAI is obtained for SSM,

GPP and  EVAP,  hardly  visible  at  this  scale.  The  mean  latitudinal  results  show  a  consistent

difference in terms of GPP and EVAP between LDAS_ERA5 and the observational products. These

differences are systematic with higher values in tropical regions. Figure  5 represents latitudinal

plots of score differences (correlations and normalized RMSD) for LAI, SSM, GPP, EVAP and SIF.

For SIF only differences in correlation are represented as it is used to evaluate GPP variability as in

Leroux et  al.,  2018. Score differences are computed as follow, analysis  minus open-loop using

monthly averages over 2010-2018 for LAI and SSM, 2010-2013 for GPP, 2010-2016 for EVAP and

2010-2015 for SIF. For each panel of Figure 5, the vertical dashed line represents the 0-value.  For

plots of correlation differences, positive values indicate an improvement from the analysis with

respect  to  the  open-loop simulation.  Similarly,  for  plots  of  RMSD differences,  negative  values

indicate an improvement from the analysis with respect to the open-loop simulation. LAI and SSM

being  assimilated  variables,  the  analysis  leads  to  a  clear  improvement  in  both  correlation  and

RMSD.  Such  improvement  is  expected  and  reflects  the  healthy  behaviour  of  the  assimilation

system. Both variables are improved at almost all latitudes with the exception around 45°S for LAI

correlation values (very few land points). For SSM a noticeable improvement in both correlation

and RMSD is found around 20°N corresponding mainly to an improvement in the Sahara desert

(not shown). Being linked to LAI, GPP is also improved across almost all latitudes (to a lesser

extend than LAI) with a particularly positive impact below 20°N. As seen on Figure  5 d) and i),

there  is  little  impact  on  variable  EVAP which  can  be  considered  negligible.  It  highlights  the

difficulty of land surface data assimilation to impact model fluxes by modifying model states. 

Panels of Figure 6 illustrate histograms of score differences (correlation and RMSD, analysis minus

open-loop)  for  LAI,  SSM, GPP,  EVAP and SIF.  The Number  of  available  data  as  well  as  the
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percentage  of  positive  and  negative  values  are  reported.  For  correlations  (RMSD)  differences,

positive  (negative)  values  indicate  an  improvement  from  the  analysis  over  the  open-loop.

Regarding LAI, the analysis  improves 96.9% of the grid points for correlations and 99.9% for

NRMSD. As for SSM, correlation values are improved for 92.8% of the grid points (92.4% for RMSD).

When using independent datasets such as GPP and SIF, one may also notice an improvement from

the analysis, correlation (NRMSD) are better for 81.1% (74.1%) and 79.7% (for SIF NRMSD is not

applicable) of the grid points. Results using the GLEAM dataset for evapotranspiration are more

contrasted with 63.6% (48.9%) of the grid points showing an improvement from the analysis. I It is

worth  mentioning  that  24.9% (39.6%)  of  the  grid  point  shows  a  decrease  in  skill.  However,

GLEAM is  an  evaporation  model  designed to  be  driven  by remote  sensing  observations  only.

GLEAM  only  estimates  (root-zone)  soil  moisture  and  terrestrial  evaporation  while  the  CO2-

responsive version of ISBA in LDAS_ERA5 is a physically-based land surface model, accounting

for more processes linked to vegetation (see section 2.1.1). It has to be noted that the auxiliary

dataset used to e.g. represent the different land cover types are different also. Within GLEAM, the

land  cover  types  fractions  are  sourced  from the  Global  Vegetation  Continuous  Fields  product

(MOD44B),  based  on  observations  from  the  Moderate  Resolution  Image  Spectroradiometer

(MODIS).  Four  land  cover  types  are  considered,  bare  soil,  low  vegetation  (e.g.  grass),  tall

vegetation (e.g. trees), and openwater (e.g. lakes). In ISBA the 12 land cover types fraction depart

from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global

Land  Cover).  It  can  potentially  impact  the  distribution  of  the  terrestrial  evaporation  between

GLEAM and ISBA. Further work at CNRM will focus on understanding the differences between

ISBA and GLEAM, in particular investigating the sub-components of terrestrial evaporation.

Finally,  Figure S1 and Figure S2 illustrate snow cover evaluation. LDAS_ERA5 snow cover is

evaluated  against  the  IMS snow cover  (as  e.g.  in  Orsolini  et  al.,  2019).  Figure  S1 shows the

averaged northern hemisphere snow cover fraction for the 2010-2018 period. It is complemented by

all panels of Figure S2 showing (i) maps of IMS snow cover (top row) for 3 seasons, September-

October-November  (SON),  December-January-February  (DJF)  and  March-April-May  (MAM),

respectively, (ii) maps of snow cover from LDAS_ERA5 open-loop (second row), (iii) maps of

snow  cover  differences  between  the  open-loop  and  IMS  data  and  (iv)  maps  of  snow  cover

differences between the analysis and the open-loop. LDAS_ERA5 open-loop compares very well

with the IMS snow-cover data in the accumulation season from September to February (Figure S2

and panels d) to i) of Figure S1), only with an overestimation over the Tibetan Plateau. The issue

over Tibet from ERA5 is not new, and consistent with previous studies like Orsolini et al., 2019. An

early melt in spring compared to observations is noted in LDAS_ERA5 and could be related with

14

425

430

435

440

445

450

455



the snow cover parametrization in ISBA. As expected, the analysis has an almost neutral impact on

snow as both SSM and LAI observations are filtered out from frozen/snow condition and as there is

no snow data assimilation yet in LDAS_ERA5 (Figure S2 and panels (j), (k) and (l) of Figure S1).

This clearly shows, however an area of potential improvement of data assimilation within LDAS-

Monde using satellite data such as the IMS one (as in e.g. de Rosnay et al., 2014).

 3.2 Ground-based datasets

LDAS_ERA5 analysis and open-loop are also evaluated using independent in situ measurements of

evapotranspiration,  river  discharge  and  surface  soil  moisture  across  the  world.  Daily  in  situ

measurements  of  evapotranspiration  from  the  FLUXNET-2015  synthesis  data  set

(http://fluxnet.fluxdata.org/, last accessed June 2019) are first used in this study. The LDAS_ERA5

ability to represent evapotranspiration is evaluated using correlation (R), RMSD and ubRMSD as

well as bias (LDAS_ERA5 minus observations) using the 85 selected FLUXNET-2015 stations.

Median R, RMSD, ubRMSD and bias for LDAS_ERA5 analysis (open-loop) are 0.73 (0.72), 28.74

(29.60) W.m-2, 27.37 (26.92) W.m-2 and 4.64 (4.40) wm-2, respectively. If these numbers depict a

small  advantage  of  the  analysis  over  the  open-loop  configuration,  it  is  worth  mentioning  that

differences are rather small and likely to fall within the uncertainty of the in situ measurement.

Figure  7(a) represents the added value of the analysis based on NICR (Eq.(2)), large blue circles

represent a positive impact from the analysis (20 stations) with a NICR greater than +3 (i.e. R values

are better when the analysis is used than when the model is used) while large red circles represent a

degradation from the analysis  (5 stations)  with a NICR smaller  than -3.  Stations with a rather

neutral impact (60 stations)  with a NICR between [-3 ; +3] are reported using small dots. Note that

at the scale of Figure 7(a), some stations are overlapping. Figure 7(a) is complemented by panels

(b),  (c),  (d)  and  (e)  that  are  scatter-plots  of  R,  ubRMSD,  absolute  bias  and  RMSD  between

LDAS_ERA5 analysis (x-axis), open-loop (y-axis) for the 85 stations from the Fluxnet2015, 56

stations (out of 85) have better R values considering the analysis. They are 41 for ubRMSD, 47 for

RMSD and 44 for absolute bias. The set of 20 stations from Figure 7(a) where the analysis has a

positive impact at NICR greater than +3 are reported in green on Figure 7(b).

Results on river discharge are illustrated by Figure 8 (panels a and b). Figure 8(a) represents NSE

scores for the subset of 982 stations selected.  Most  of them are located in North America and

Europe while a few are available in South America and Africa. Figure  8(a) is complemented by

Figure 8(b)that represents the NIC score applied to NSE score and emphasizes the added value of

LDAS_ERA5 analysis over the open-loop. 74% of this subset of stations presents a rather neutral

impact from the analysis ( with a NIC ranging between -3% and +3%) while 26% (254 stations)

presents a significant impact (with a NIC above +3% or below -3%) . When the analysis impacts the
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representation of river discharge, this impact tends to be positive with 74% (189 stations) having a

NIC score greater than 3% while only 26% (65 stations) presents NIC score smaller than -3%.

The statistical scores for soil moisture from LDAS_ERA5 open-loop and analysis (third and fourth

layers of soil, 4-10 cm depth, 10-20 cm depth, respectively) over 2010-2018 when compared with

ground measurements from the ISMN (5 cm depth and 20 cm depth, respectively) are presented in

Table S3 for each individual network. Averaged statistical metrics (ubRMSD, R, Ranomaly and bias)

are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist. For the

analysis,  averaged R (Ranomaly)  values along with its  95% Confidence Interval (CI) using in situ

measurements  at  5  cm (782  stations  from 19  networks)  are  0.68±0.03  (0.53±0.04)  (0.67±0.03

(0.53±0.04) for the open-loop) with averaged-network values going up to 0.88±0.01 (0.58±0.04) for

the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than 0.55 except for

one network, ARM (10 stations in the USA) presenting an averaged R value of 0.29±0.05. Averaged

ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077 m3m-3 for the analysis,

0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.2 ) has also been applied to R

values, 65% of the pool of stations present a neutral impact from the analysis (511 stations at NIC

ranging between -3 and +3), 12% present a negative impact (91 stations at NIC < -3) and 23%

present a positive impact at (180 stations at NIC > +3). 

The number of stations where R differences between the analysis and the open-loop are significant

(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement

from the analysis w.r.t. the open-loop for 128 stations (out of 186, i.e. about 69%) and a degradation

for 58 stations (about 31%). Figure 9 illustrates R differences between the analysis and the open-

loop runs over CONUS where most of the stations are located (552 out of 782). When differences

(analysis minus openloop) are not significant stations are represented by a small dot (425 stations

out of 552, about 77%). When they are significant (127 stations out of 552, about 23%), large

circles have been used, blue for positive differences (an improvement from the analysis, 99 stations

out  of  127,  about  78%) and red  for  negative  differences  (a  degradation  from the  analysis,  28

stations, about 22%). For most of the stations where a significant difference is obtained, it represent

an improvement from the analysis. 

Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10

networks) are 0.65±0.03, 0.049 m3m-3 and 0.055 m3m-3, respectively. For the open-loop, they are

0.64±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively. For soil moisture at that depth, about 60% of

the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3 and

+3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations at

NIC < -3). Although differences between the open-loop run and the analysis are rather small, these
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results underline the added value of the analysis with respect to the model run. Figure S3 represents

the  distribution  of  the  scores  values  for  LDAS_ERA5  open-loop  and  analysis  using  boxplots

centred on the median value. They look very similar and from Figure S3, it is difficult to see either

improvement or degradation from the analysis.

For evapotranspiration,  river discharge and surface soil  moisture there is  a slight advantage for

LDAS_ERA5 analysis  with respect to its open-loop counterpart.  Even if the distribution of the

averaged statistical metrics can be rather similar for both (particularly true for surface soil moisture

evaluation), there are significant regional differences for some sites, which shows the added value

of the analysis with respect to the open-loop.

4. Monitoring and forecasts for areas under severe/extreme conditions

4.1 Selection of two regional case studies 

For each individual region presented in Table I and Figure 2, monthly anomalies (scaled by the

standard deviation) of analysed SSM (second layer of soil, 1-4cm) and LAI for 2018 are  assessed

with respect to the 2010-2018 period. The anomalies (see Figure  10) highlight three regions, two

presenting strong negative anomalies for both SSM and LAI for almost all 2018 ( North  Western

Europe,  WEUR,  and  the  Murray-Darling  basin,  MUDA,  in  South  Eastern  Australia)  and  one

presenting  strong positive  anomalies  of  SSM and  LAI  in  Eastern  Africa  (EAFR).  WEUR and

MUDA regions  were  affected  by  a  severe  heatwave  and  a  drought  in  2018  impacting  LSVs

analysed  by  LDAS_ERA5. According  to  Figure  10,  monthly  anomalies  of  SSM  and  LAI  for

MUDA are  negative  through  the  whole  2018  with  7  and  6  months  presenting  LAI  and  SSM

anomalies below -1 standard deviation (stdev), respectively. WEUR has negative SSM anomalies

from May to December 2018 with values going below -2 stdev. LAI was severely impacted as well

with July to October 2018 presenting negative anomalies below -2 stdev. For WEUR, 5 months

present LAI and SSM anomalies below -1 stdev. EAFR experiences 3 and 7 months with positive

anomalies for SSM and LAI in 2018 above 1 stdev (8 and 7 months consecutively present positive

anomalies for SSM and LAI respectively).

According to the National Oceanic and Atmospheric Administration (NOAA), Europe experienced

its  warmest  summer  since  continental  records  began  in  1910  at  +2.16°C above  mean  (Global

Climate  Report,  https://www.ncdc.noaa.gov/sotc/global/  last  accessed  April  2019).  In  Europe,

temperature for the whole summer 2018 was above climatology. The summer 2018 heatwave in

Europe has already reported in the scientific literature (e.g. Magnusson et al., 2018, Albergel et al.,

2019, Blyverket et al., 2019). 

17

530

535

540

545

550

555



In its 70th Special Climate Statement, the Australian Bureau of Meteorology (BoM) has reported a

very hot and dry summer 2018 in eastern Australia  (BoM, 2019).  Like much of  Australia,  the

Murray Darling basin has experienced a remarkably dry and hot weather during 2018. The annual

maximum temperature for the Murray Darling basin as a whole was more than two degrees above

average during 2018. The northern Murray–Darling Basin in particular was severely affected with

inflows  to  all  catchments  persistently  well  below  average  (http://www.bom.gov.au/state-of-the-

climate/, last visited: April 2019). Finally, the East Africa Seasonal Monitor based on the Famine

Early  Warning  System  Network  (FEWS)  confirms  above-average  rainfall  amounts  as  well  as

significantly  greener  than  normal  vegetation  conditions  (e.g.,

https://reliefweb.int/report/somalia/east-africa-seasonal-monitor-july-27-2018,  last  visited:  April

2019). As this study focuses on monitoring and forecasting the impact of severe droughts conditions

on LSVs, WEUR and MUDA are selected for further investigation. 

4.2 Case studies presentation: LDAS-Monde medium resolution (0.25° x 0.25°) experiments

Figure  11 illustrates  seasonal  cycles  of  observed  LAI  (Figure  11a)  and  SWI  (Figure  11e),

LDAS_ERA5 analysis  and open-loop  LAI  (Figure  11b)  and  SSM (Figure  11f)  for  the  WEUR

domain. 2018 is compared to an average of the period 2010-2017. From Figure 11a, one may see

the heatwave impact with a sharp drop in observed LAI values from June to November 2018 (solid

green line). Such low LAI values have never been observed over the eight previous years (dashed

green  line  for  the  2010-2017  averaged  along  with  the  2010-2017  minimum  and  maximum

observations in shaded green). A similar behaviour is also visible in the ASCAT SWI dataset in

Figure  11e  with  the  lowest  values  ever  reached  in  this  2010-2018  period.  Over  WEUR,

LDAS_ERA5 open-loop overestimates LAI in the second part of the year as already highlighted by

several  studies  (e.g.  Albergel  et  al.,  2017,  2019).  LDAS_ERA5 analysis  has  a positive impact,

reducing LAI values, as seen on Figure 11b (LAI open-loop in blue, analysis in red) Panels c), d) g)

and h) of Figure  11) depict a similar situation for the MUDA area, almost every month of 2018

presents  the  lowest  values  for  both  SSM and  LAI.  For  both  MUDA and  WEUR,  the  smaller

differences for LAI and SSM between LDAS_ERA5 analysis and open-loop in 2018 compared to

2010-2017 also suggest that both extreme events were well captured in the atmospheric forcing

used to drive LDAS_ERA5.

4.3 Case studies for assessing LDAS-Monde high resolutions (0.1° x 0.1°) analysis and forecast

experiments

For these two specific  areas  (WEUR and MUDA), LDAS-Monde is  also run forced by HRES

(LDAS_HRES) at 0.1° x 0.1° spatial resolution over April 2016 to December 2018. Additionally to
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LDAS_HRES analysis, forecast experiments with a lead time of 4-days and 8-days, initialised by

either LDAS_HRES analysis or open-loop are presented for 2017-2018 (for SSM and LAI) in order

to assess the impact of the initial conditions on the forecast of the LSVs. In this subsection, this new

set of six experiments is verified against the assimilated observations. Verification of the forecast

experiments can be viewed as an independent validation as those observations are not assimilated

yet. It is worth mentioning that there is a difference between the use of SSM and LAI observations

to  evaluate  the  forecast.  For  SSM,  the  assimilation  is  done  after  a  rescaling  to  the  model

climatology (see section 2.3), which removes bias. For LAI, however this is not the case and the

assimilation process unbiases the modelled LAI (w.r.t. the observation). This difference, together

with the longer memory of LAI (compared SSM), contributes to the results presented in this sub-

section. Statistical scores for LDAS_HRES open-loop and analysis are presented, also, to serve as a

benchmark of the forecast experiments.

Upper panels of Figure  12 (for WEUR) and Figure  13 (for MUDA), illustrate seasonal RMSD

(Figure 12a, 13a) and correlation (Figure 12b, 13b) values between SSM from the second layer of

soil (1–4 cm) from LDAS-Monde forced by HRES (LDAS_HRES, open-loop and analysis) and

ASCAT SSM estimates over 2017-2018. Scores between SSM from the second layer of soil  of

LDAS_HRES 4-day forecast (LDAS_fc4, initialised by either the open-loop or analysis) and 8-day

forecast (LDAS_fc8, initialised by either the open-loop or analysis) and ASCAT SSM estimates are

reported, also. From the upper panels of those figures one may notice a small improvement from the

analysis (solid red line) over the open-loop simulation (solid blue line), slightly decreasing RMSD

values and increasing correlations values. However no improvement (nor degradation) is visible

from  the  4-d  and  8-d  forecasts  experiments  initialised  by  LDAS_HRES  analysis  over  those

initialised by LDAS_HRES open-loop, they display very similar scores. LDAS_HRES SSM is of

better quality than LDAS_fc4 and LDAS_fc8. Note however that for the MUDA area, there is a

small  positive  impact  of  the  initialisation  on the  4-d  and 8-d  forecast  of  surface  soil  moisture

(Figure  13a, b). Those results suggest that this fast evolving model variable (SSM between 1 cm

and 4 cm depth) relies more on the atmospheric forcing than on the initial conditions (at least within

the  forecast  range  presented  in  this  study)  and  it  can  be  assumed  that  the  4-day  and  8-day

atmospherical forecast from HRES is of lower quality that the first 24-h analysis. Results for LAI

are  different  from  SSM (lower  panels  of  Figure  12 and  Figure  13).  Firstly,  there  is  a  large

improvement from the analysis (solid red line) over the open-loop (solid blue line), particularly in

the LAI decaying phase (Boreal and Austral autumns mainly). Secondly, LDAS_HRES open-loop

(solid blue line), LDAS_fc4 (dotdashed blue line) and LDAS_fc8 (dashed blue line) initialised by

LDAS_HRES open-loop present very similar skills, so do LDAS_fc4 and LDAS_fc8 initialised by
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LDAS_HRES analysis (dotdashed and dashed red lines, respectively). They also outperform  skills

of  LDAS_HRES open-loop,  LDAS_fc4 and LDAS_fc8 initialised  by  LDAS_HRES open-loop.

This suggests that LAI relies more on its initial conditions than  on the atmospheric forcing (at least

within the forecast range presented in this study) and that forecasting LAI is also a matter of initial

conditions. This statement is valid for these two contrasted areas, WEUR and MUDA.

These results are corroborated by Figures 14 (for WEUR) and 15 (for MUDA), top rows illustrate

SSM and bottom rows LAI. Figures  14(a) and  15(a) show RMSD values between LDAS_HRES

open-loop SSM (1-4 cm) and ASCAT SSM over 2017-2018 for the WEUR and MUDA domains,

respectively. Due to the seasonal linear rescaling applied to ASCAT estimates, RMSD values are

rather small. For the WEUR (MUDA) domain they range from 0 to 0.048 m3m-3 (0 to 0.040 m3m-3).

Figures  14(b)  and  15(b)  represent  maps  of  RMSD differences  between  LDAS_HRES analysis

(open-loop) and ASCAT SSM estimates over 2017-2018 for the WEUR and MUDA domains, as

well.  Both  maps are  dominated  by  negative  values  (in  blue)  indicating  that  RMSD values  are

smaller (better) when using LDAS_HRES analysis than when using LDAS_HRES open-loop. It is

also worth-mentioning than no positive differences (i.e. a degradation from the analysis) are present

in those maps. For the MUDA domain, they are improved by about 15%. Figures 14(c), (d) 15(c),

(d)  are  also  maps  of  RMSD  differences,  they  consider  forecast  experiments  (LDAS_fc4,

LDAS_fc8). It appears that for both domains, the impact from the initialisation is rather small with

few coloured areas, strengthening previous results suggesting that, forcing quality is more important

than initial conditions to forecast SSM variable. Results are different for LAI, RMSD values for

LDAS_HRES open-loop are ranging between 0 and 1.6 m2m-2 over WEUR, 0 and 1 m2m-2 over

MUDA (Figures 14(e) and 15(e)). RMSD values are improved by up to 37 % over WEUR and up to

60% over MUDA by the analysis (Figures 14(f) and 15(f)). Improvement from the analysis over the

open-loop experiment is consistent through all the WEUR domain while the improvement over the

MUDA domain is restrained to the south eastern part  (the north western part has low RMSD values

as the open-loop). 

Similarly to Figures 14(a, b, c, d) panels of Figure 16 illustrates the impact of the analysis on SSM

using correlations. This time, ASCAT SWI (i.e. no rescaling) has been used. Figure 16 (top panels)

shows map of R values based on absolute values while Figure 16 (bottom panels) shows R values

on anomalies (short term variability) as defined in Albergel et al.,  2018a. Figure  16 (a) and (e)

represents R values and anomaly R values for LDAS_HRES, respectively. As expected R values are

higher than anomaly R values. Maps of differences (panels b and f) of Figure 16 suggest that after

assimilation, both scores are improved rather equally. While the 4 day and 8-day forecast still show

an improvement from the initial condition on R values (panels c and d of Figure 16 dominated by
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positive differences, analysis minus open-loop), maps of anomaly R values forecast do not display

any negative or positive impact (panels g and h of Figure 16).

Finally, top panels of Figure  17 illustrate the impact of the analysis on drainage monitoring and

forecast over WEUR. Fig. 17 a) represents drainage from LDAS_HRES open-loop varying between

0 and 1 kg.m-2.day-1.   Fig.17 b) shows the  drainage difference between LDAS_HRES analysis and

openloop. The analysis impact on drainage is rather small,  about ±3% and more pronounced in

areas where the analysis has affected LAI more (see panels f), g) and h) of Figure 14). As seen on

panels c) and d), there is also an impact from the initialisation in areas were the analysis was more

effectively correcting LAI. Bottom panels of Figure 17 illustrate a similar impact on runoff. As for

drainage, this variable is affected by the analysis. Initial conditions have an impact on its forecast,

also. Although we did not present a quality assessment of those two variables, our findings on river

discharge analysis impact, but also those from Albergel et al., 2017, 2018a, suggest a neutral to

positive impact, propagated from the analysis of SSM and LAI to river discharge through variables

such as drainage and runoff.

5. Discussion and conclusion

This study has demonstrated that combining a LSM, satellite EOs and atmospheric forcing through

LDAS-Monde has a great potential  to represent the impact of  extreme weather (heatwaves and

droughts) on land surface conditions. LDAS-Monde is now ready for use in various applications

such  as  (i)  reanalyses  of  land  Essential  Climate  Variables  (ECVs),  (ii)  monitoring  of  water

resources,  drought  and  vegetation,  and  (iii)  detection  of  severe  conditions  over  land  and

initialisation of LSVs forecast. It has been applied in this study to past events of 2018 with respect

to a short  period of time (2010-2018) as a demonstrator but will  be extended to a longer time

period. LDAS-Monde operational use in near real time has the capacity to serve as an emergency

monitoring system for the LSVs. Using atmospheric reanalysis like ERA5 to force LDAS-Monde

guarantees a high level of consistency because of its frozen configuration (no changes in spatial and

vertical resolutions, data assimilation and parametrizations). The ERA5 coarse spatial resolution

makes  it  affordable  to  run  long  term and  large  scale  LDAS-Monde  experiments.  With  ERA5

available  from  1979  and  now  covering  near  real-time  needs  with  its  ERA5T  version

(https://climate.copernicus.eu/climate-reanalysis), an LDAS_ERA5 configuration would be able to

provide a long term and near real time coarse resolution (0.25° x 0.25°) climatology as reference for

anomalies of the land surface conditions. Significant anomalies could then be used to trigger more

focused “on-demand” simulations for regions experiencing extreme conditions. In that case LDAS-

Monde could be run forced by e.g. ECMWF operational high resolution product (0.10° x 0.10°) in
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monitoring and forecast (up to 10-d ahead) modes, as was presented here for two regions in North

Western Europe and South Eastern Australia. In term of RMSD, our results showed a very small

impact of initial conditions on the forecasts of SSM. This was expected due to the reduced memory

of the top soil surface (1-4 cm), which is dominated by meteorological variability. However, the

LAI initialisation had significant impact on the LAI forecast skill. This was also expected due to the

memory of vegetation evolution. For SSM, the assimilation is done after a rescaling to the model

climatology (see section 2.3), which removes bias. For LAI, however this is not the case and the

assimilation  process  removes  bias  in  the  modelled  LAI  (w.r.t.  the  observation).  This  technical

difference between SSM and LAI assimilation, combined with the longer memory of LAI compared

to SSM, contributes to the results presented in this study. Despite the expected behaviour of these

two LSVs in forecasting, our results show that LDAS-Monde system is capable of propagating the

initial  LAI conditions,  which  is  relevant  not  only for  LSV medium-range forecasting  but  with

potential for longer lead-times. The strong impact of LAI initialisation on the forecast does not

seem to propagate to surface soil moisture and further studies are necessary to test the impact of

initial  conditions  to  additional  variables  from LDAS-Monde (including soil  moisture  in  deeper

layers and evapotranspiration). Another possibility would be to force LDAS-Monde using ECMWF

ensemble forecasts, although the ensemble system has coarser spatial-resolution (~0.20° x 0.20°), it

offers a 15-day forecast and a 51 member ensemble, which can introduce forcing uncertainty into

the LSVs. The maximum range of  the soil  and vegetation forecast  could even reach up to  six

months if using seasonal atmospheric forecasts as forcing.

LDAS-Monde has well identified areas of developments that can further improve the representation

of LSVs. For instance, it does not consider snow data assimilation yet and it has been shown in this

study that if the snow accumulation seems to be represented correctly in the system, it suffers from

a too early snow-melt in spring time. To overcome this issue, two possibilities will be explored.

Firstly using a recently developed ISBA parametrisation, MEB for Multiple Energy Budget which is

known to lead to a better representation of the snowpack (Boone et al., 2017), in particular in the

densely forested areas of the Northern Hemisphere where large differences between LDAS-Monde

and  the  IMS  snow  cover  were  found  in  spring  (Figure  S2(i),  Aaron  Boone  CNRM,  personal

communication June 2019) and (ii) adapting the current data assimilation scheme of LDAS-Monde

to permit assimilation the IMS snow cover data (as done e.g. at ECMWF, de Rosnay et al., 2014).

The current SEKF data assimilation scheme is also being revisited. Even though it has provided

good results, one of its limitations is the computation of a Jacobian matrix which needs one model

run for each control variable, requiring significant computational resources with increased number

of  control  variables.  That  is  why more  flexible  Ensemble based approaches  like  the  Ensemble
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Square Root Filter (EnSRF) have recently been implemented (Fairbain et al., 2015, Bonan et al.,

2020).  Bonan et al., 2020 have evaluated performances from the EnSRF and the SEKF over the

Euro-Mediterranean area. Both data assimilation schemes have a similar behaviour for LAI while

for SSM, EnSRF estimates tend to be closer to observations than those from the SEKF. They have

also conducted an independent evaluation of both assimilation approaches using satellite estimates

of evapotranspiration and GPP as well as measures of river discharges from gauging stations. They

have found that the EnSRF leads to a systematic (moderate) improvement for evapotranspiration

and GPP and a highly positive impact on river discharges, while the SEKF lead to more contrasting

performance. As for applications in hydrology, the 0.5° x 0.5° spatial resolution TRIP river network

is currently being improved to 1/12° x 1/12° globally. 

CNRM is also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,

2019), it is supposed to tackle the way vegetation is accounted for in the change detection approach

used to  retrieve SSM with an improved representation of its  effect.  Assimilating ASCAT radar

backscatter also raises the question of how to specify observation, background, and model error

covariance matrices, so far mainly relying on soil properties (see section 2.1.3 on data assimilation).

The last decade has seen the development of techniques to estimate those matrices. Approaches

based on Desroziers diagnostics (Desroziers et al., 2005) are affordable for land data assimilation

systems from a computational point of view and could provide insightful information on the various

sources of the data assimilation system.

Also, the added value of LDAS-Monde compared to already existing datasets has to be evaluated

and current work at Météo-France is investigating its quality against state of the art reanalyses such

as those from NASA at either global scale (GLDAS, Rodell et al., 2004, MERRA-2, The Modern-

Era Retrospective Analysis for Research and Applications, Version 2, Reichle et al., 2017, Draper et

al., 2018) or regional scale (NCALDAS over the continental USA, FLDAS over Africa). Finally,

first  attempts  to  go  to  higher  spatial  resolution  over  smaller  areas  like  the  AROME  domain

(Applications de la Recherche à l'Opérationnel à Méso-Echelle, https://www.umr-cnrm.fr/spip.php?

article120, last accessed July 2019) of Météo-France (centred over France) at kilometre scale and

assimilating kilometric and sub-kilometric scale satellite retrieval of SSM and LAI (from CGLS)

are very promising.

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open

source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at

http:  //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL

licence;  http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively
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low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is

not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the

procedure  to  get  a  SVN  account  and  to  access  real-time  modifications  of  the  code  (see  the

instructions  at  the  first  link).  The developments  presented  in  this  study stemmed on SURFEX

version 8.1. LDAS-Monde technical documentation and contact point are freely available at: https://

opensource.umr-cnrm.fr/projects/openldasmonde/files

Data availability: upon request by contacting the corresponding author.
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Tables

Table I: Continental hot spots for droughts and heatwaves  and number of monthly anomalies SSM
and LAI below -1 standard deviation (stdev), above 1 stdev in 2018 with respect to the 2010-2018
period.

Region name abbreviation LON-W LON-E LAT-S LAT-N

Number of monthly
SSM anomalies

below -1 (above 1)
stdev 

Number of monthly
LAI anomalies

below -1 (above 1)
stdev 

Western-Europe WEUR -1 15 48 55 5(1) 5(0)

Western
Mediterranean

WMED -10 15 35 45 0(7) 4(4)

Eastern Europe EEUR 15 30 45 55 2(1) 0(2)

Balkans BALK 15 30 40 45 3(3) 1(4)

Western Russia WRUS 30 60 55 67 0(1) 1(3)

Lower Volga LVOL 30 60 45 55 2(1) 2(1)

India INDI 73 85 12 27 3(0) 2(1)

Southwestern
China

SWCH 100 110 20 32 0(2) 0(6)

Northern China NRCH 110 120 30 40 0(3) 0(4)

Murray-Darling MUDA 140 150 -37 -26 6(0) 7(0)

California CALF -125 -115 30 42 2(0) 5(0)

Southern Plains SPLN -110 -90 25 37 0(3) 0(4)

Midwest MIDW -105 -85 37 50 1(2) 1(3)

Eastern North ENRT -85 -70 37 50 0(3) 0(7)

Nordeste NDST -44 -36 -20 -2 0(3) 1(2)

Pampas PAMP -64 -58 -36 -23 2(2) 2(0)

Sahel SAHL -18 25 13 19 2(0) 1(2)

East Africa EAFR 38 51 -4 12 2(3) 1(7)

Southern Africa SAFR 14 26 -35 -26 2(0) 2(1)
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Table II: Set up of the experiments performed  in this study. LDAS_ERA5 and LDAS_HRES have an analysis (assimilation of surface soil moisture,
SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation), LDAS_fc4 and LDAS_fc8 are model runs initialized by either
LDAS_HRES open-loop or analysis. N/A stands for not applicable.

Experiments 
(time period)

Model version
Atmospheric

forcing
Domain 

& spatial resolution
DA method

Assimilated
observations

Model
equivalents

Control
variables

LDAS_ERA5
(2010 to 2018)

ISBA
Multi-layer soil

model
CO2-responsive

version
(Interactive
vegetation)

ERA5
Global, ~0.25 °x

0.25°
SEKF

SSM 
(ASCAT)

LAI
(GEOV1)

Second layer of
soil (1-4cm)

LAI

Layers of soil 2
to 8 (1-100cm)

LAI

LDAS_HRES
(04/2016 to

12/2018)

IFS-HRES

North Western
Europe (WEUR) and

Murray-Darling
River basin (MUDA)
(see spatial extend in

Table I)
~0.10° x 0.10°

LDAS_fc4
(2017 to 2018)

N/A N/A N/A N/A
LDAS_fc8

(2017 to 2018)
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Table III: Evaluation datasets and associated metrics used in this study.

Datasets used for the
evaluation 

Source Metrics associated
Independent source of

evaluation

In situ measurements
of soil moisture 

(ISMN Dorigo et al.,
2011, 2015)

https://
ismn.geo.tuwien.ac.at/

en/

R for both absolute and
anomaly time-series, 
unbiased RMSD and
bias, NIC on R values

Yes

In situ measurements
of river discharge

See Table S1

Nash Efficiency (NSE),
Normalized
Information

Contribution (NIC)
based on NSE, 

Yes

In situ measurements
of evapotranspiration
 (FLUXNET-2015)

http://
fluxnet.fluxdata.org/

data/fluxnet2015-
dataset/

R, unbiased RMSD,
Bias, NIC on R values 

Yes

Satellite derived
surface soil wetness

index (ASCAT, Wagner
et al., 1999, Bartalis et

al., 2007) 

http://
land.copernicus.eu/

global/
R,  RMSD and NRMSD

No 
(assimilated dataset)

Satellite derived Leaf
Area Index (GEOV1,

Baret et al., 2013)

http://
land.copernicus.eu/

global/
R,  RMSD and NRMSD

No
(assimilated dataset)

Satellite-driven model
estimates of land

evapotranspiration
(GLEAM, Martens et

al., 2017) 

http://www.gleam.eu R, RMSD and NRMSD Yes

Upscaled estimates of
Gross Primary

Production (GPP, Jung
et al., 2017)

https://www.bgc-
jenna.mpg.de/geodb/
projects/Home.php

R,  RMSD and NRMSD Yes

Solar Induced
Fluorescence (SIF)

from GOME-2
(Munro et al., 2006,
Joiner et al., 2016)

See references R Yes

Interactive Multi-
sensor Snow and Ice
Mapping System (or

IMS) snow cover 

https://
www.natice.noaa.gov/

ims/
Differences Yes
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Figures
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Figure 1: (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for
pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea
level, (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness
Index (SWI) to the model climatology, grey areas on (a) represent filtered out data (see Section
2.3).

Figure  2:  Selection  of  19  regions  across   the  globe  known for  being  potential  hot  spots  for
droughts and heatwaves. The regions are defined in Table I. 
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Figure  3: RMSD values between observed Leaf Area Index (LAI) and LDAS_ERA5 (a) before
assimilation and (b) after assimilation of surface soil moisture (SSM) and LAI.
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Figure  4: Latitudinal plots of (a) Leaf Area Index (LAI), (b) Surface Soil Moisture (SSM), (c)
Gross Primary Production (GPP) and (d) Evapotranspiration (EVAP) for LDAS_ERA5 before
assimilation (Model, blue solid line) and after assimilation (Analysis, red solid line) as well as
observations (black solid line). Cyan dashed line represents the number of points considered per
latitudinal stripes of 0.25°.
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Figure 5: Latitudinal plots of score differences (analysis minus open-loop) for correlations (a-
e) and normalized RMSD (f-i) for LAI (a,f),  SSM (b,g), GPP (c,h), EVAP (d,i) and SIF (e,
correlations only). Scores are computed based on monthly average over 2010-2018 for LAI and
SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. Dashed lines represent
the zero lines (equal scores for open-loop and analysis).
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Figure 6: Histograms of score differences (correlation and RMSD, analysis minus open-loop) for
a),b) LAI, c),d) SSM, e),f) GPP, g),h) EVAP and i) SIF. For SIF only differences in correlation are
represented. Number of available data (in blue) as well as the percentage of positive and negative
values (in red) are reported. Note that for sake of clarity, the y-axis is logarithmic. 
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Figure  7:(a) Map of Normalized Information Contribution (NIC, Eq. 2 ) applied on correlation
values between evapotranspiration from LDAS_ERA5 analysis (open-loop) and observations from
the FLUXNET 2015 synthesis data set. NIC scores are classified into 2 categories (i)  negative
impact from the analysis with respect to the model with values smaller than -3 % (red circles, 5
stations), (ii) positive impact from the analysis with respect to the model with values greater than
+3 % (blue circles, 20 stations). Stations presenting a neutral impact with values between -3 %
and +3 % (60 stations)  are reported as small  dots.  Note that at  this  scale  some stations are
overlapping. (b), (c), (d) and (e) scatter-plots of R, ubRMSD, absolute bias and RMSD between
LDAS_ERA5 open-loop and the 85 stations from the FLUXNET 2015 (y-axis) and LDAS_ERA5
analysis and the same pool of stations (x-axis). The set of 20 stations for which the analysis has a
positive impact in R values at NICR greater than +3 are reported on a) in green.
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Figure  8:(a) Global map of Nash-Sutcliff Efficiency score (NSE) between river discharge from
LDAS_ERA5 open-loop and in situ measurements from the networks presented in Table S1 over
2010-2016. (b) Normalized Information Contribution scores (NIC, Eq.2) based on NSE scores on
river discharge. Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral
impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an
improvement from LDAS_ERA5 analysis over LDAS_ERA5 open-loop while values smaller than -
3% (large red circles) suggest a degradation. Only stations where more than 4-year of data are
available and with a drainage area greater than 10000km2 are considered. Stations with NSE
values smaller than -2 are discarded, also, leading to a subset of 982 stations available.
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Figure 10: 2018 monthly anomalies scaled by standard deviation of analysed (a)SSM and (b)LAI,
with respect to 2010-2018, for the 19 regions presented in Table 1 and Figure 2. Solid red line,
dashed red line and solid green line represent regions MUDA, WEUR and EAFR. Solid cyan line
represent all other boxes (see Table 1 and Figure 2).

Figure 9: Map of correlations (R) differences (analysis minus open-loop) for stations measuring
soil moisture at 5 cm depth and being available over North America. Small dots represent stations
where R differences  are  not  significant  (i.e.  95% confidence  intervals  are overlapping),  large
circles where differences are significant.
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Figure 11: Upper panels represent seasonal cycles of a) observed GEOV1 LAI from CGLS, b) LAI
from  the  open-loop (in  blue)  and  the  analysis  (in  red)  for  the  WEUR area  (see  Table  I  for
geographical extent). c) and d) panels are similar to a) and b) for the MUDA area . Lower panels
represents seasonal cycles of e) ASCAT SWI from CGLS, f) SSM from the open-loop (in blue) and
the analysis (in red) for the WEUR area. Panels g) and h) are similar to e) and f) for the MUDA
area.  For  each  panels  dashed  line  represents  the  averaged  over  2010-2017  along  with  the
minimum and maximum values, the solid lines are for the year 2018.
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Figure  12: Upper panel, seasonal  (a) RMSD and (b) correlation values between soil moisture
from the second layer of soil (1–4 cm) from the model forced by HRES (LDAS_HRES, open-loop
in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017-2018 over the
WEUR  area.  Scores  between  SSM  from  the  second  layer  of  soil  of  LDAS_HRES,  4-day
(dashed/dotted  blue  –  when  initialised  by  the  open-loop-  and  red  –  when  initialised  by  the
analysis- lines) and 8-day (dashed blue and red lines) forecasts and ASCAT SSM estimates are
also reported. Lower panel (c) and (d) , same as upper panel between modeled/analyzed Leaf Area
index (LAI)  and GEOV1 LAI estimates .
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Figure  13: Same as Figure  12 for the Murray-Darling river (MUDA) area in  South  Eastern
Australia.
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Figure 14: Top row, (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates
over  2017-2018 for  the  WEUR domain,  (b)  RMSD differences  between LDAS_HRES analysis
(open-loop) and ASCAT SSM. (c), (d) and (e) Same as (b) between LDAS_fc4 initialised by the
analysis  (open-loop)  and LDAS_fc8.  Bottom row,  same as  top row for  LAI from the different
experiments and LAI GEOV1.
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Figure 15: Same as Figure 14 or the Murray-Darling river (MUDA) area in  South  Eastern 
Australia.
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Figure  17:  Top row,  (a)  drainage values  for  LDAS_HRES open-loop over  2017-2018 for  the
WEUR domain, (b) drainage differences between LDAS_HRES analysis and open-loop. (c), (d),
same as (b) between LDAS_fc4 initialised by the analysis and LDAS_fc4 initialised by the open-
loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8 initialised by the open-loop.
Bottom row, same as top row for runoff. Units are kg.m-2.day-1

Figure 16: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over
2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis (open-loop)
and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop)
and LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.


