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Abstract- LDAS-Monde is a global offline Land Data Assimilation System (LDAS) that jointly

assimilates  satellite-derived observations  of  Surface  Soil  Moisture  (SSM) and Leaf  Area  Index

(LAI) into the ISBA (Interaction between Soil Biosphere and Atmosphere) Land Surface Model

(LSM).  This  study demonstrates  that  LDAS-Monde is  able  to  detect,  monitor  and forecast  the

impact of extreme weather on land surface states. Firstly, LDAS-Monde is run globally at 0.25°

spatial  resolution  over  2010-2018.  It  is  forced  by  the  state-of-the-art  ERA5  reanalysis

(LDAS_ERA5) from the European Centre for Medium Range Weather Forecast (ECMWF). The

behaviour of the assimilation system is evaluated by comparing the analysis with the assimilated

observations.  Then  the  Land  Surface  Variables  (LSVs)  are  validated  with  independent  satellite

datasets  of  evapotranspiration,  Gross  Primary  Production,  Sun Induced  Fluorescence  and snow

cover.  Furthermore,  in  situ  measurements  of  SSM,  evapotranspiration  and  river  discharge  are

employed for the validation. Secondly, the global analysis is used to (i) detect regions exposed to

extreme weather such as droughts and heatwave events and (ii) address specific monitoring and

forecasting requirements of LSVs for those regions. This is performed by computing anomalies of

the land surface states. They display strong negative values for LAI and SSM in 2018 for two

regions: North Western Europe and the Murray-Darling basin in South Eastern Australia. For those

regions,  LDAS-Monde  is  forced  with  the  ECMWF  Integrated  Forecasting  System  (IFS)  high

resolution  operational  analysis  (LDAS_HRES,  0.10°  spatial  resolution)  over  2017-2018.

Monitoring capacities are studied by comparing open-loop and analysis experiments again against

the  assimilated  observations.  Forecasting  abilities  are  assessed  by  initializing  4-  and  8-day

LDAS_HRES forecasts of the LSVs with the LDAS_HRES assimilation run compared to open-

loop  experiments. The  positive  impact  of  initialization  from  an  analysis  in  forecast  mode  is
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particularly visible for LAI that evolves at a slower pace than SSM and is more sensitive to initial

conditions than to atmospheric forcing, even at an 8-day lead time. This highlights the impact of

initial conditions on LSV forecasts and the value of jointly analysing soil moisture and vegetation

states. 

This is performed by computing anomalies of the land surface states. They display strong negative

values for LAI and SSM in 2018 for two regions experiencing severe heatwave and/or droughts:

North Western Europe and the Murray-Darling basin in South Eastern Australia.  For those two

regions,  monitoring  and  forecasting  LSVs  under  extreme  conditions  are  examined  by  forcing

LDAS-Monde  with  ECMWF  Integrated  Forecasting  System  (IFS)  high  resolution  operational

analysis (LDAS_HRES, ~0.10° x 0.10° spatial resolution) over 2017-2018. Monitoring capacities

are  studied  by  comparing  open-loop  and  analysis  experiments  again  against  the  assimilated

observations. Forecasting abilities are assessed by initializing 4- and 8-day LDAS_HRES forecasts

of  the  LSVs with  the  LDAS_HRES assimilation  run  compared to  open-loop experiments.  The

impact of initialization in forecast mode is particularly visible for LAI that evolves at a slower pace

than SSM and is more sensitive to initial conditions than to atmospheric forcing, even at an 8-day

lead time. This highlights the importance of initial conditions to forecast LSVs and it confirms that

LDASs should jointly analyse both soil moisture and vegetation states.) over 2010-2018, leading to

a 9-yr, ~0.25° x 0.25° spatial resolution reanalysis of Land Surface Variables (LSVs). The quality of

this global analysis is evaluated using several satellite-based datasets: assimilated SSM and LAI,

but  also  independent  datasets  of  evapotranspiration,  Gross  Primary  Production,  Sun  Induced

Fluorescence and snow cover. In addition, in situ measurements of SSM, evapotranspiration and

river discharge are also employed for the evaluation. This assessment is conducted by comparing

LDAS-Monde analysis with a model simulation (open-loop, no assimilation). Secondly, the global

analysis is used to (i) detect regions exposed to extreme weather such as droughts and heatwave

events and (ii) address specific monitoring and forecasting requirements of LSVs for those regions.

, LDAS_ERA5 hereafterThis study demonstrates that LDAS-Monde, a global and offline Land Data

Assimilation System (LDAS), that integrates satellite Earth Observations into the ISBA (Interaction

between Soil Biosphere and Atmosphere) Land Surface Model (LSM), is able to detect, monitor and

forecast the impact of extreme weather on land surface states. LDAS-Monde jointly assimilates

satellite derived Earth observations of Surface Soil Moisture (SSM) and Leaf Area Index (LAI).

First, LDAS-Monde  is run at a global scale forced by the latest atmospheric reanalysis from the

European Centre for Medium Range Weather Forecast (ECMWF), ERA5 (ECMWF fifth global

reanalysis
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 1 Introduction

Extreme  weather and climate events like heatwaves and droughtsevents are likely to increase in

frequency and/or magnitude as a result of anthropogenic climate change (IPCC, 2012, Ionita et al.,

2017). Amongst all the natural disasters, droughts are arguably the most detrimental (Bruce, 1994;

Obasi,  1994;  Cook et  al.,  2007; Mishra and Singh, 2010;  WMO 2017) asnd about  one-fifth  of

damages caused by natural hazards can be attributed to droughts (Wilhite 2000). They also cost

society billions of dollars every year (WMO, 2017). It is therefore  important for communities to

developof  paramount  importance  to  implement tools  that  can  monitor  and  warn  aboutpredict

drought conditions (Svoboda, 2002; Luo and Wood, 2007; Blyverket et al., 2019) as well as their

impact on land surface variables (LSVs) and society (Di Napoli et al., 2019). A major scientific

challenge in  relation  to  the  adaptation  to  climate  change is  to  observe  and simulate  how land

biophysical variables respond to those extreme events (IPCC, 2012).

Droughts  are generally can be described as a deficit of water  caused by a lack of precipitation.

However, different drought types areThis definition is broad but droughts are generally classified

according to  the  part  of  the  hydrological  cycle  that  suffers  from a  water  deficit  (IPCC, 2014;

Barella-Ortiz and Quintana-Seguí, 2018). Drought types are all related to precipitation deficit and

they have severe impacts in regions with rain-fed crops and no possible irrigation. They include

meteorological droughts (lack of precipitation), agricultural droughts (deficit of water in the soil),

hydrological droughts (deficit of streamflow or, water level in rivers) and environmental droughts (a

combination of the previous droughts types). Because of the effect of precipitation deficit  on the

whole  hydrological  system, all  drought  types  are  related (Wilhite,  2000).  Complex interactions

between continental surface and atmospheric processes have to be combined with human action in

order to fully understand the wide ranging impacts of droughts on land surface conditions (Van

Loon,  2015).  As a  consequence,  Land Surface  Models  (LSMs)  driven  by high-quality  gridded

atmospheric variables and coupled to river-routing system, are key tools to address these challenges

(Dirmeyer et al., 2006; Schellekens et al., 2017). Initially developed to provide boundary conditions

to atmospheric models, LSMs can now be used to monitor and forecast land surface conditions

(Balsamo  et  al.,  2015;  Balsamo  et  al.,  2018;  Schellekens  et  al.,  2017).  Additionally,  the

representation of LSVs by LSMs can be improved by coupling them with other models of the Earth

system like atmosphere,  oceans and, river  routing systems (e.g.,  de Rosnay et  al.,  2013,  2014;

Kumar et al., 2018, Balsamo et al., 2018; Rodríguez-Fernández et al., 2019; Muñoz-Sabater et al.,

2019). 
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Complementary  to  LSMs  are  Earth  Observations  (EOs) provide  long-term records,  which  can

complement LSMs. Satellite products are particularly relevant  for the monitoring of LSVs. Satellite

EOs related to the terrestrial hydrological, vegetation and energy cycles are now available globally,

at a global scale at kilometric scales and below with long-term records and (e.g., Lettenmaier et al.,

2015, Balsamo et al., 2018). Combining EOs and LSMs through Land Data Assimilation Systems

(LDASs)  can leads to enhanced initial land surface conditions (e.g. Reichle et al., 2007; Lahoz and

De Lannoy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a, 2019; Balsamo et al., 2018).,

Subsequently, this can benefit weather forecasts, includingwhich, in turn, lead to improved forecasts

of  weather  patterns,  sub-seasonal temperature  and  precipitation., It  can  also  indirectly  benefit

agricultural  and  vegetation  productivity,  streamflow  prediction,  warning  systems  forseasonal

streamflow, floods and droughts, as well as and the representation of  the carbon cycle (Bamzai and

Shukla, 1999; Schlosser and Dirmeyer, 2001; Bierkens, M. and van Beek, 2009; Koster et al., 2010;

Bauer et al., 2015; Massari et al, 2018; Albergel et al., 2018a, 2019, Rodríguez-Fernández et al.,

2019; Muñoz-Sabater et al., 2019). Amongst the current land-only LDAS activities several are led

by NASA-led (National  Aeronautics  and  Space  Administration)  projects.  Examples  of  such

activities are the Global Land Data Assimilation System (GLDAS, Rodell et al., 2004) which is run

at a global scale. While, the North American Land Data Assimilation System (NLDAS, Xia et al.,

2012a,  b)  and  the  National  Climate  Assessment-Land  Data  Assimilation  System (NCA-LDAS,

Kumar et al., 2016, 2018, 2019). are run over the continental United States of America and tThe

Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS,

McNally et  al.,  2017) is run e.g. over Western,  Eastern and Southern Africa.  Finally,Additional

examples include the Carbon Cycle Data Assimilation System (CCDAS, Kaminski et al., 2002), the

Coupled Land Vegetation LDAS (CLVLDAS, Sawada and Koike, 2014, Sawada et al., 2015), the

Data Assimilation System for Land Surface Models using CLM4.5 (proposed by Fox et al., 2018),

and the  SMAP (Soil  Moisture  Active  Passive)  level  4  system (Reichle  et  al.,  2019). as  well

asFinally LDAS-Monde (Albergel et al., 2017, 2018, 2019) developed by the research department

of Météo-France. Details of these studies are provides byA more detailed description of the various

existing LDASs is available inFew studies have, however, included the assimilation of multiple EOs

and considered global applications (Kumar et al., 2018, Albergel et al., 2019). .  of data assimilation

systems combining EOs and LSMs are additional examples  Kumar et al.,  (2018), Albergel et al.,

(2019) and  references  therein but  few applications  are  global  and  include  .the  assimilation  of

multiple EOs. 

LDAS-Monde consists in an offline (i.e. non coupled with the atmosphere) joint assimilation of

Surface Soil Moisture (SSM) and Leaf Area Index (LAI) EOs into the ISBA (Interaction between
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Soil Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996).

After  several  applicationsSeveral  previous  studies  using  LDAS-Monde  have  been  published at

regional and continental scales (Albergel et al., 2017, 2018, 2019, Leroux et al., 2018, Tall et al.,

2019, Blyverket et al., 2019, Bonan et al., 2020)., In this study, LDAS-Monde is run at thea global

scale  and is  forced by the latest  atmospheric  reanalysis  (ERA5)  from the European Centre  for

Medium Range Weather Forecast (ECMWF), ERA5, over 2010-2018. The resulting leading to a 9-

yr, 0.25° x 0.25° spatial resolution reanalysis of the LSVs is hereafter referred to as LDAS_ERA5

(LDAS_ERA5).  can be used to detect, monitor and forecast the impact of extreme events on LSVs.

The following items are presented and discussed in this study:by integrating jointly Surface Soil

Moisture (SSM) and Leaf Area Index (LAI) EOs into the ISBA (Interaction between Soil Biosphere

and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996) at a global scale

and in offline mode,In this paper, stemming from previous studies referenced above, it is shown that

LDAS-Monde,   In this paper, it is shown that LDAS-Monde can be used to detect, monitor and

forecast the impact of extreme events on LSVs. The following items are presented and discussed:

• An evaluation of LDAS-Monde at a global scale is carried out. This assessment involves the

assimilated  observations  to  demonstrate  that  the  system  is  working  as  intended.  But  more

fundamentallyImportantly,  LDAS-Monde  is  then  validatedglobal  analysis  is  appraised using

diverse,  independent and complementary satellite-derived datasets of evapotranspiration (EVAP)

from the GLEAM project (Miralles et al., 2011, Martens et al., 2017), Gross Primary Production

(GPP) from the FLUXCOM project (Tramontana et al.,  2016, Jung et al.,  2017), Solar Induced

Fluorescence  (SIF)  from  the  GOME-2  (Global  Ozone  Monitoring  Experiment-2)  scanning

spectrometer (Munro et al.,  2006, Joiner et al.,  2016) and snow cover data from the Interactive

Multi-sensor  Snow  and  Ice  Mapping  System  (or  IMS,  https://www.natice.noaa.gov/ims/,  last

accessed June 2019).  This evaluation is additionally Additional validations are performed with in

situ  measurements  of  evapotranspiration  from  the  FLUXNET  2015  synthesis  data  set

(http://fluxnet.fluxdata.org/,  last  accessed  June  2019),  soil  moisture  from the  International  Soil

Moisture Network (ISMN, Dorigo et al., 2011, 2015, https://ismn.geo.tuwien.ac.at/en/, last accessed

June 2019) and river discharge from several networks across the world.

• The  LDAS-Monde  global  analysis  over  2010-2018  is  used  to  detect  droughts  regions

exposed to extreme weather such as droughts  and heatwave events in 2018. This identification is

performed by computing anomalies  of  LSVs over  the  9-year  period  and identifying where the

strongest negative anomalies are located in 2018. For spottedthe identified regions, the monitoring

and  forecast  abilities  of  LDAS-Monde  are  further  investigatedat  higher  spatial  resolution,  thus

exploring LDAS-Monde capacities to predict the evolution of LSVs in the context of droughtsto
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forecast such events in near-real-time is investigated by forcing it with high resolution forecasts

from ECMWF. 

The  paper  is  organised  in  five  sections:  section  2  details  the  various  components  constituting

LDAS-Monde (the ISBA LSM, the data assimilation scheme, and the EOs assimilated as well as the

different atmospheric forcing datasets used), followed by the experimental and evaluation setup.

Section 3 describes and discusses the impact of the analysis on the representation of the LSVs.

Section 4 details the identification of 2 case studies over regions particularly affected by extreme

heatwave events  during  2018.  Furthermore  the and  their  detailed  monitoring and  land  surface

forecasts  of  these  events  are  presented  at  higher  spatial  resolution at  higher  spatial  resolution

combined with land surface forecasting activities  is  also presented.  Finally  section 5   provides

conclusions and prospects for future work.

 2 Material and methods

The following  subsections  briefly  describe  the  main  components  of  LDAS-Monde:  the  ISBA

LSM, its data assimilation scheme and two other key elements of the setup: atmospheric forcing

and assimilated satellite derived observations. The experimental setup and the evaluation datasets

used in this study are also presented.

 2.1 LDAS-Monde

Embedded  within  the  SURFEX  (SURFace  EXternalisée,  Masson  et  al.,  2013,  version  8.1)

modelling  platform  developed  by  the  research  department  of  Météo-France  (CNRM,  Centre

National de Recherches Météorologiques), LDAS-Monde (Albergel et al., 2017) allows the joint

integration of satellite derived SSM and LAI into the CO2-responsive (Calvet, et al., 1998, 2004,

Gibelin et  al.,  2006), multilayer diffusion scheme (Boone et  al.,  2000, Decharme et al.,  2011)

version of the ISBA LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996) coupled with

the CTRIP (CNRM Total Runoff Integrating Pathways, Decharme et al., 2019) hydrological model

using a Simplified Extended Kalman Filter (SEKF, Mahfouf et al., 2009).

 2.1.1 ISBA Land Surface Model

 The ISBA LSM aims  to  model  the  evolution  of  LSVs.  In  the  chosen configuration  for  this

paperstudy, ISBA is able to represent the transfer of water and heat through the soil based on a

multilayer diffusion scheme, as well as plant growth and leaf-scale physiological processes. ISBA

models key vegetation variables like LAI and above ground biomass, the diurnal cycle of water,
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carbon and energy fluxes. It computes a soil-vegetation composite using a single-source energy

budget. In the CO2-responsive version of ISBA, ISBA-A-gs, the model can simulate the CO2 net

assimilation and GPP by considering the functional relationship between the photosynthesis rate

(A) and the stomatal aperture (gs) based on the biochemical A-gs model proposed by Jacob et al.,

1996. Photosynthesis  is in  controls of  the evolution of vegetation variables. It makes vegetation

growth  possible  as  a  result  of  an  uptake  of  CO2.  OppositelyContrastingly,  a  deficit  of

photosynthesis  triggers  higher  mortality  rates.  Ecosystem  respiration  (RECO)  represents  is

represented by the CO2 being released by the soil-plant system and GPP by the carbon uptake

viarelated to photosynthesis. Finally, the net ecosystem exchange (NEE) consists of the difference

between GPP and RECO. Each ISBA grid cell is composed of up to 12 generic land surface types,

namely  bare soil,  rocks,  and  permanent snow and ice surfaces as well as nine plant functional

types (needle leaf trees, evergreen broadleaf trees, deciduous broadleef trees, C3 crops, C4 crops,

C4 irrigated  crops,  herbaceous,  tropical  herbaceous  and  wetlands).  The  ECOCLIMAP-II  land

cover database (Faroux et al., 2013) provides ISBAthese parameters for each patch and each grid

cell of the ISBA model.

The ISBA multilayer diffusion scheme’s default discretization is 14 layers over 12 m depth.  This

study follows Decharme et al., (2011), which is illustrated in Figure 1 of their paper. The  following

configuration is used in this study: thickness (depth) of each layers areis (from top to bottom), 1 cm

(0-1 cm), 3 cm (1-4 cm), 6 cm (4-10 cm), 10 cm (10-20 cm), 20 cm (20-40 cm), 20 cm (40-60 cm),

20 cm (60-80 cm), 20 cm (80-100 cm), 50 cm (100-150cm), 50 cm (150-200cm), 100 cm (200-300

cm), 200 cm (300-500 cm), 300 cm (500-800 cm) and 400 cm (800 to 1200 cm), see also Figure 1

of Decharme et  al.,  2011. Snow is represented using the ISBA 12-layers explicit  snow scheme

(Boone and Etchevers, 2001, Decharme et al., 2016).

 2.1.2 CTRIP river routing system

The ISBA-CTRIP river routing system is able to simulate continental scale hydrological variables

based on a set  of three prognostic  equations.  They correspond to (i)  the groundwater,  (ii)  the

surface stream water and (iii) the seasonal floodplains. It converts the runoff simulated by ISBA

into river discharge. ISBA-CTRIP river-routing network has a spatial resolution of 0.5° x 0.5°

globally and is coupled daily with ISBA through the OASIS3-LCT coupler (Voldoire et al., 2017).

ISBA provides  to  CTRIP  with  updated fields  of  runoff,  drainage,  groundwater  and floodplain

recharges. In turn, CTRIP provides ISBA with water table depth, floodplain fraction as well as

flood potential infiltration. Subsequently, so that  ISBA can simulate capillarity rise, evaporation
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and infiltration over flooded areas.  A comprehensive overview of how CTRIP is coupled with

ISBA is available in Decharme et al., (2019).

 2.1.3 Data assimilation

The SEKF used in LDAS-Monde is a 2-step sequential approach in which a prior forecast step is

followed by an analysis  step.  The  prior  forecast step propagates  the initial  state of the studied

system to the next time step with the ISBA LSM and  then,  the analysis step  then  corrects  this

forecast by assimilating observations. The flow-dependency (dynamic link) between the prognostic

variables and the observations is ensured in the SEKF through the observation operator and its

Jacobians, which propagate information from the observations to the analysis via finite-difference

computations  (de  Rosnay et  al.,  2013).  The  Jacobian  matrix  has  as  many  rows  as  assimilated

observation types (in our case  two in our case: SSM and LAI) and as many columns as model

control variables requested (8  in our case eight, soil moisture from layers 2 to 8, 1-100cm, and

LAI). In addition to a control run (i.e. the forecast step), computing the Jacobian matrix requires

perturbed runs, one for each control variable. The eight control variables are directly updated using

their sensitivity to observed variables (i.e. defined by the Jacobian). Other variables are indirectly

modified through biophysical processes and feedback from the model. Several studies (e.g. Draper

et  al.,  2009;  Rüdiger  et  al.,  2010)  have  demonstrated  that  small  perturbations  lead  to  a  good

approximation  of  this  linear  behaviour,  provided  that  computational  round-off  error  is  not

significant. Typically, for those runs, the initial state of the control variable is perturbed by about

0.1% (see Albergel et al., 2017; Rüdiger et al., 2010). The length of the LDAS-Monde assimilation

window is 24 hours . A mean volumetric standard deviation error is specified that is proportional to

the soil moisture range (the difference between the volumetric field capacity and the wilting point,

calculated as a function of the soil type, as given by Noilhan et Mahfouf, 1996). andIt is scaled by a

factor 0.04 for SSM in its model equivalent (the second layer of soil between 1 and 4 cm), and 0.02

for deeper layers (soil layers 3 to 8, 4-100 cm). The observational SSM error follows the same

ruleapproach and is scaled by 0.05, andwhich is consistent with errors typically expected for remotely

sensed SSM (e.g., de Jeu et al., 2008, Gruber et al, 2016). Based on previous results from Jarlan et

al., 2008, Rüdiger et al., 2010 and, Barbu et al., 2011, observed LAI standard deviation errors are

set to 20 % of the LAI value itself. Modelled LAI standard deviation errors follow the same ruleThe

LAI prior forecast errors are set equivalent to the observation errors for values higher than 2 m2m-2.

For values lower than 2 m2m-2, a fixed standard deviation error value of 0.04 m2m-2 has been used.

More  details  about  this  approached can  be  found  in  Barbu  et  al.,  2011  (section  2.3 on  data

assimilation scheme and figure 2).
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 2.2 Atmospheric forcing

The lowest model level (about 10 metres   above ground level)  of air  temperature,  wind speed,

specific humidity and pressure, the downwelling fluxes of shortwave, longwave radiations as well

as precipitation (partitioned in solid and liquid phases) are needed to force LDAS-Monde. In this

study, LDAS-Monde is driven by several near-surface meteorological fields from ECMWF: 

• its  most  recent  atmospheric  reanalysis  (ERA5)  to  produce  an  LDAS-Monde  global

reanalysis

• its high resolution Integrated Forecast System (IFS HRES) to monitor and predict the

evolution of LSVs for regions under severe droughts and heatwaves. 

ERA5  (Hersbach  et  al.,  2018,  202019  submitted)  is  the  fifth  generation  of  global  reanalyses

produced by ECWMF. This atmospheric reanalysis  is a key element of the Copernicus Climate

Change Service (C3S) and is available from 1979 onward (data is released about 2 months behind

real  time).  ERA5  produces  analyses  at  an  hourly  output,  athas  hourly  output  analysis, 31  km

horizontal  dimensionresolution and  consisting  of 137  levels  in  the  vertical resolution.  Several

studies  have  validated  the  ERA5  dataset.  For  example,  Urraca  et  al.  (2018)  have  compared

incoming solar radiation from both ERA5 and the ERA-interim reanalysis (Dee et al., 2011) at a

global scale and found evidence that ERA5 outperforms ERA-Interim. In another study, Beck et al.

(2019) have highlighted the good performance of ERA5 precipitation with respect to a set of 26

gridded (sub-daily) precipitation data sources by comparing them to Stage-IV gauge-radar data over

the CONUS domain (CONtinental United States of America). Tall et al. (2019) have used in situ

measurements of precipitation at more than 100 stations spanning all over Burkina-Faso in Western

Africa as well as incoming solar radiation from 4 in situ stations. They evaluated the performance to

evaluate  the  quality of  ERA5  overcompared  to ERA-Interim  and  found  improved  results  with

positive outcomes for ERA5 as well.  Furthermore, they They have also  evaluated both reanalysis

datasets for their ability through their impact on the representation of LSVs when used to force the

ISBA LSM,  which demonstrate  again demonstrating  a clear advantage for ERA5 in terms of the

performance  of  LSVs.  Similar  work  has  been  done  by  Albergel  et  al.  (2018a) made  similar

comparisons  of  the  ISBA LSM  forcing, over  North  America., They  showed  this  study  found

enhanced performances in the representation of evapotranspiration, snow depth, soil moisture  as

well asand river discharge when the ISBA LSM was forced by for ERA5 comparedrelative to ERA-

Interim. 

At the time of the studywritting, the ERA5 underlying model and data assimilation system (Cycle

41r2 of the ECMWF IFS) are very similar to that of the operational weather forecast, HRES, which
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has production cycles ranging from 41r2 to 45r1 during the study period (the cycle is 46r1 from

June  2019,  more  information  at

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model,  last

accessed July 2019). The main difference between ERA5 and HRES over the considered period is

the horizontal resolution, consisting of 9 km in HRES and 31 km in ERA5. The atmospheric forcing

is interpolated from the native grids of ERA5 and HRES to regular grids ofat 0.25° × 0.25° and 0.1°

× 0.1°, respectively, using a bilinear interpolation from the native grid to the regular grid.   ERA5

and HRES were used in Albergel et al. (2019) to force LDAS-Monde in order to study the impact of

the  2018  summer  heatwave  in  Europe.  Authors  have  highlighted  that  the  HRES configuration

(LDAS_HRES  hereafter) exhibits  better  monitoring  skills  than  the  coarser  resolution  ERA5

configuration.

In forecasting mode,  the HRES forecast is also available everydaydaily from 00:00 UTC with a 10-

day lead time., but with changes in the temporal resolution.  The HRES forecast step frequency is

hourly up to time step 90 (i.e. day 3), 3-hourly from time-step 90 to 144 (i.e. day 6) and 6-hourly

from time-step 144 to 240 (i.e. day 10). In theis study, for forecast experiments in this study (see

section 2.4 for details on the experimental setup) HRES forecasts with a 10-day lead time are used

to  driveforce the LSM  forecasts of the LSVs. By comparing from LDAS_HRES open-loop and

analysis configurations it  is possible in order  to evaluate the impact of the initialisation on the

forecast of LSVs. The original 3-hourly time steps are used up to day 6 (time step 144)., tThe 6-

hourly time steps from day 6 to 10 are interpolated to 3-hourly frequency to avoid discontinuities.

 2.3 Assimilated satellite Earth Observations

Two types of  satellite-derived variables are assimilated in LDAS-Monde: ASCAT Soil Water Index

(SWI)  and  LAI  GEOV1.  They  are  both  freely  available  through  the  Copernicus  Global  Land

Service (CGLS, https://land.copernicus.eu/global/index.html, last accessed June 2019).  

ASCAT stands for Advanced Scatterometer, whichthis is an active C-band microwave sensor that is

onboard the European MetOp polar orbiting satellites (METOP-A, from 2006, B from 2012 and

also C from 20198). From ASCAT radar backscatter coefficients, it is possible to derive information

on SSM following a change detection approach (Wagner et al., 1999, Bartalis et al., 2007). The

recursive form of an exponential filter (Albergel et al., 2008), is then applied to estimate the SWI

using a timescale parameter, T (varying between 1 day and 100 days). T is a surrogate parameter for

all the processes potentially affecting the temporal dynamics of soil moisture  (like,including soil

hydraulic properties  and thickness of the soil layer, soil layer thickness, evaporation, run-off and

vertical  gradient of soil  properties such as texture and density).  The obtained SWI then ranges

11

310

315

320

325

330

335

https://land.copernicus.eu/global/index.html


between 0 (dry) and 100 (wet). In this study, CGLS SWI-001 (i.e. produced with a T-value of 1 day)

is used as a proxy for SSM (Kidd et al., 2013). Grid points with an average altitude exceeding 1500

m above sea level as well as those with more than 15 % of urban land cover are  rejected as those

conditions are known to  inhibitaffect the retrieval of SSM from space. Prior to the assimilation,

SSM has to be converted from the observation space to the model space. This is done through a

linear rescaling as proposed by Scipal et al. (2007), where the mean and variance of observations

are matched to the mean and variance of the modelled soil moisture from the second layer of soil

(1-4  cm  depth).  ThisIn  practice,  the rescaling  gives  in  practice  very  similar  results  to  CDF

(cumulative distribution function) matching. The linear rescaling is performed on a seasonal basis

(with a 3-month moving window) as suggested by Draper et al., (2011) and, Barbu et al., (2014). 

The LAI GEOV1 observations are based on data from  both SPOT-VGT (up to 2014) and  PROBA-

V (from 2014) satellites. They span from 1999 to present, have a 1 km x 1km spatial resolution and

are  produced   according  to  the  methodology  developed  by  Baret  et  al.  (2013).  LAI  GEOV1

observations have a temporal frequency of 10 days at best (in the presence of clouds, no observation

is available)and no observations are available during cloudy conditions. LAI data are masked in the

presence of modelled snow by the ISBA LSM.

As in previous studies  (e.g, Barbu et al., 2014, Albergel et al., 2019), observations are interpolated

by an arithmetic average to the model grid points (0.25 ° or 0.10 ° in this study), if at least 50 % of

the model grid points are observed (i.e. half the maximum amount).  ASCAT SSM and LAI GEOV1

are illustrated by Figure 1.

 2.4 Experimental setup

LDAS-Monde is first run globallyat a global scale, at 0.25 ° x 0.25° spatial resolution, forced by the

ERA5 atmospheric reanalysis. andIt assimilatinges both  SSM and LAI EOs from 2010 to 2018

(LDAS_ERA5  hereafter). LDAS_ERA5 is spun-up by running  the  year 2010 twenty times.  The

LDAS_ERA5 analysis as well asand its model counterpart (open-loop, i.e. no data assimilation) are

presented and evaluated in this study.

This 9-yr global reanalysis is then used to provide a monthly climatology for estimating anomalies

of the land surface conditions. For each month (and variable considered) of 2018 we have removed

the  monthly  mean  and  scaled  by  the  monthly  standard  deviation  of  the  2010-2018  period.

Significant  anomalies  are  used  to  trigger  more  detailed  monitoring  as  well  asand forecasting

activities for a region of interest. A total of 19 regions across the globe have been selected, which

are known for being potential hot spots for droughts and heatwaves have been selected. They are

listed in  Table I and presented in  Figure  2. Monthly anomalies of  LDAS_ERA5 analysis of  SSM
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and LAI  in the LDAS_ERA5 analysis are calculated  for those 19 regions are assessed  for 2018

(with  respect  to  the  2010-2018  period)  over  these  19  regions.  In  turn,  regions  presenting

significantand regions presenting significant level of negative anomalies are selected and further

investigated. For those regions, a new LDAS-Monde has beenexperiment was driven by the HRES

atmospheric analysis leading to a 0.1° x 0.1° analysis of the LSVs from April 2016 to December

2018 (LDAS_HRES herafter).  Not that  HRES is  only  available at a 0.1° x 0.1° spatial  resolution

only from April 2016. April to December 2016 is used as a short period for spin-up and results are

presented for the period 2017-2018. Although a 9-month spin-up period  can be seen asis rather

short, evaluating LDAS_-HRES overon either 2017-2018 or 2018 (using instead a 21-month spin-

up) leads to similar results on surface soil moisture and LAI (not shown). While the system is not

fully spun-up,  it can be considered as representative of it is long enough to capture the system

response  to  data  assimilation.  LDAS_HRES  complements  the  coarser  spatial  resolution

LDAS_ERA5. 

HRES forecasts with a 10 day lead time are initialized either from are also used, and initialised by

either LDAS_HRES analysis or open-loop or analysisexperiments (LDAS_Fc hereafter) in order to

assess the impact of the initialisation on the forecast. ForecastsFor simplicity, only forecasts  with a

four and  height  day lead time are presented,  only (LDAS_fc4 and LDAS_fc8, respectively).  A

summary of the experimental setup is given in Table II.

 2.5 Evaluation datasets and metrics

BothThis  study uses  several satellite-derived estimates  of  EOs  as  well  as  in  situ  measurement

dataand  in  situ  measurements  are  used  as  reference  datasets  in  this  study.  The  LDAS_ERA5

analysis  impactperformance is  assessed  with  respect  to  the  open-loop  model  run  (i.e.  no

assimilation). The two assimilated datasets, CGLS SSM and LAI, are firstly used to verify that the

data  assimilation  is  behaving  as  expected.  to  which  extent  the  assimilation  system  is  able  to

correctly integrate them (i.e. suggesting a healthy behaviour from the data assimilation system).

Then  several  spatially  distributed  datasets  independent  from  both  experiments:

(namely)independent  datasets  are  used  for  the  validation,  namely evapotranspiration  from  the

GLEAM project (Miralles et al., 2011, Martens et al., 2017, version 3b entirely satellite driven),

GPP from the  FLUXCOM project  (Tramontana  et  al.,  2016,  Jung  et  al.,  2017),  SIF  from the

GOME-2 (Global Ozone Monitoring Experiment-2) scanning spectrometer (Munro et  al.,  2006,

Joiner et al., 2016) and snow cover data from the Interactive Multi-sensor Snow and Ice Mapping

System (or  IMS, https://www.natice.noaa.gov/ims/)used in the evaluation process  are  . The IMS

snow cover product combines ground observations and satellite data from microwave and visible
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sensors (using geostationary and polar orbiting satellites) to provide snow cover information in all

weather conditions. The IMS product is available daily for the northern hemisphere. 

Soil moisture is validated using in In situ measurements of surface soil moisture from the ISMN, a

pool of station which consists of 19 networks across 14 countries (see Table S3). 19 networks across

14 countries available from the ISMN are also used to evaluate the performance of the soil moisture

analysis.  In total, They represent 782 stations are represented with at least 2 years of daily data over

2010-2018. In situ measurementsensorsS at 5 cm depth (SSM) are compared withwith soil moisture

from theLDAS_ERA5 third layer of soil (4-10 cm) in LDAS_ERA5., In situ measurementssensors

at 20 cm depth are compared to LDAS_ERA5 soil moisture with from the fourth layer of soil (10-

20 cm, 685 stations from 10 networks). Besides 11 stations located in 4 countries of Western Africa

(Benin, Mali, Sénégal and Niger) and 21 stations in Australia, most of the station are located in

North America and Europe, (see Table S3).

Evaluation datasets are listed in Table III along with the metrics used for the evaluation. For satellite

datasets of SWI, LAI, evapotranspiration and GPP, correlationsthe metrics consist of the correlation

coefficient (R), Root Mean Square Differences (RMSD) and Normalized RMSD (NRMSD, Eq.(1)).

are used as metrics. 

NRMSD=
RMSD(Analysis )− RMSD( Model )

RMSD(Model )

×100 Eq.(1)

Regarding  the  SIF  satellite  dataset,  fluorescence  is  not  simulated  directly  in  the  ISBA LSM.

However, photosynthesis activity is simulated through the calculation of the GPP, which is driven

by plant growth and mortality in the model. Modelled GPP values are expressed in g(C)·m−2·day−1,

while SIF is an energy flux emitted by the vegetation (mW·m−2·sr−1·nm−1). Hence, GPP and SIF

cannot  be  directly  compared  as  they  do not  represent  the  same physical  quantities.  However,

several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found a high

correspondence  in  both  time  and  space  between  those  two  variablesthat  their  time  dynamics

investigated, highlighting the potential of SIF products to be used as a validation support for GPP

modelssupport the validation of modelled GPP. Therefore, the correlation between modelled GPP

and observed SIF is  used  as  an  evaluation  metrics.  ConcerningAbout the  snow cover  dataset,

differences between observed and modelled snow cover is considered for the evaluation.

For  in  situ  datasets  of  soil  moisture  and  evapotranspiration, usualthe  standard  metrics  are

considered, namely the correlation coefficient, RMSD, unbiased RMSD and bias are considered as

metrics.  Moreover, a Normalized Information Contribution (NIC, Eq.(2)) measure is applied to the

correlation values to quantify the improvement or degradation due to the specific configuration.  
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NICR=
R (Analysis )− R (Model )

1− R (Model )

×100 Eq. (2)

NIC scores are classified according to three categories: (i) negative impact from the analysis with

respect to the open-loop with values smaller than -3 %, (ii) positive impact from the analysis with

respect to the open-loop with values greater than +3 % and (iii) neutral impact from the analysis

with respect to the open-loop with values between -3 % and 3 %.

In addition, for surface soil moisture, the correlation is calculated for both absolute (R) and anomaly

(Ranomaly) time-series in order to remove the strong impact from the SSM seasonal cycle on this

specific metric (see e.g. Albergel et al. , 2018a, 2018b).

TFinally,  the Nash-Sutcliffe Efficiency score (NSE,  Eq.(3), Nash and Sutcliffe, 1970, Eq.(3)) is

used to evaluate LDAS_ERA5 experiments ability to represent the monthly discharge dynamics.

NSE=1−
∑
mt=1

T

(Qs
mt
−Qo

mt
)

2

∑
mt=1

t

(Qs
mt
−Qs

mt
)

2

 Eq.(3)

where Qs
mt is the monthly river discharge from LDAS_ERA5 (analysis or open-loop) at month mt,

and  Qo
mt is the observed river discharge at month  mt. NSE can vary between −∞ and 1. An exact

match between model predictions and observed data is defined as a value of 1, whereas a value of 0

means that the model predictions have the same accuracy as the mean of the observed data. Finally

negative values represent situations where the observed mean is a better predictor than the model

simulation. NIC presented in Eq.(1) has also been applied to NSE scores to assess the added value

of LDAS_ERA5 analysis over its open-loop counterpart. Stations with NSE values lesser that -2

have been   discarded. A similar threshold has already been used in previous studies evaluating

LDAS-Monde  (e.g.  Albergel  et  al.,  2017,  2018a).  Many  processes,  most  of  them  linked

toanthropogenic processes are not yet represented in ISBA, including water management  such as

the presence offrom dams and reservoirs, irrigation, water uptake in urban areas., This could lead

are not yet represented in ISBA possibly leading to a poor representation of river discharges in those

regions. As with previous evaluations studies have suggested a neutral to positive impact from the

assimilation, only,  it  has been decided to  exclude these areas by focusingfocus on stations with

reasonable NSE values.

 3  Global assessment of LDAS_ERA5

 3.1  Gridded datasets
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In  this  sub-section,  the  LDAS-Monde  open-loop  and analysis  are  first  compared  to are  firstly

compared against the assimilated observations (SSM and LAI) to demonstrate that the assimilation

system is working as intended. Both experiments are also compared withto independent sources of

information to evaluate the analysis impact (GPP, EVAP and SIF). 

Figure  3 presents mean  LAI  RMSD values between the observations and LDAS_ERA5 for the

open-loop (Figure  3a),  and for the analysis  (Figure  3b) for LAI over  2010-2018. Because LAI

observations are ingested into the model, the assimilation reduces the LAI RMSD values almost

everywhere. It shouldcan be noted that rather large LAI RMSD values (> 1.5 m2m-2) can remain in

some areas after the assimilation, especially in densely forested areas. 

Figure  4 illustrates  latitudinal  plots  of  LAI,  SSM,  GPP and  EVAP for  LDAS_ERA5  before

assimilation  (the  open-loop)  and  after  assimilation  (the  analysis)  along  with  observations.  The

number of points considered per of   latitudinal stripes0.25°  stripe  is  also  represented, also. From

Figure 4a it is possible to see the positive impact the analysis has on LAI compared to the open-

loop,  with  the  former  being  closer  to  the  observations.  Improvements  fromin the  analysis

fromsoccurfit are visible between nearly 80°North to about 55° South and, areas around the equator

are impacted the most from the assimilationparticularly improved. This demonstrates that the data

assimilation system is working as intended. A smaller impact  than for LAI  is obtained for SSM,

GPP and EVAP relative to LAI,  which is  hardly visible at this scale. The mean latitudinal results

show  a  consistent  difference  in  terms  of  GPP  and  EVAP  between  LDAS_ERA5  and  the

observational products. These differences are systematic with higher values in tropical regions. 

Figure  5 represents latitudinal plots of score differences (correlations and  normalized  NRMSD) for

LAI, SSM, GPP, EVAP and SIF. For SIF only differences in correlation are represented as , it only

makes  sense  to  show  the  correlation  differences,  since this  metricit is  used  to  evaluate  GPP

variability as in Leroux et al., 2018. Score differences are computed as follow, analysis minus open-

loop using monthly averages by subtracting the open loop from the analysis. Monthly averages are

calculated over 2010-2018 for LAI and SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-

2015 for SIF. For each panel of Figure 5, the vertical dashed line represents the 0-value.  For plots

of correlation differences, positive values indicate an improvement fromin the analysis with respect

to the open-loop simulation. Similarly, for plots of RMSD differences, negative values indicate an

improvement  infrom the analysis with respect to the open-loop simulation.  Given that  LAI and

SSM beingare assimilated variables, the analysis leads to a clear improvement in both correlation

and RMSD. Such an improvement is expected and reflects the healthy behaviour of the assimilation

system. Both variables are improved at almost all latitudes with the exception around 45°S for LAI

correlation values (very few land points). For SSM a noticeable improvement in both correlation
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and RMSD is found around 20°N, which corresponds corresponding mainly to an improvement in

the  Sahara  desert  (not  shown).  Being  linked  to  LAI,  GPP is  also  improved  across  almost  all

latitudes (to a lesser extentd than LAI) with a particularly positive impact below 20°N. As seen on

Figure 5 d) and i), there is little impact on variable EVAPa negligible impact of the assimilation on

EVAP. hich can  be  considered  negligible. It  highlights  the  difficulty  of  land  surface  data

assimilation to impact model fluxes by modifying model states. 

The Ppanels of Figure 6 illustrate histograms of score differences (correlation and RMSD, analysis

minus open-loop) for LAI, SSM, GPP, EVAP and SIF. The nNumber of available data as well asand

the percentage of positive and negative values are reported. For correlations (RMSD) differences,

positive (negative) values indicate an improvement  fromin the analysis  overrelative to the open-

loop.  Regarding LAI, the analysis improves 96.9% of the grid points for correlations and 99.9% for

NRMSD. As for SSM, correlation values are improved for 92.8% of the grid points (92.4% for RMSD).

The independentWhen using independent datasets such as GPP and SIF, one may also notice an

improvement from the analysis, datasets also demonstrate improvements in the analysis relative to

the open loop. Indeed, the GPP  correlation (RMSDNRMSD)  isare better for 81.1% (74.1%)  of the

gridpoints and the SIF correlation is enhanced for 79.7%and 79.7% (for  SIF  NRMSD is  not  applicable)  of  the grid points.

Results  using  the  GLEAM  dataset  for  evapotranspiration  are  more  contrastinged with  63.6%

(48.9%) of the grid points showing an improvement from the analysis. I It is worth mentioning that

24.9% (39.6%) of the grid point shows a decrease in skill. However, GLEAM is an evaporation

model designed to be driven by remote sensing observations only. GLEAM only estimates (root-

zone)  soil  moisture  and  terrestrial  evaporation  while  the  CO2-responsive  version  of  ISBA in

LDAS_ERA5 is a physically-based land surface model, accounting for more processes linked to

vegetation  (see  section  2.1.1).  It  has  toshould be  noted  that  the  auxiliary  datasets used  to  e.g.

represent the different land cover types are different alsoalso differ. Within GLEAM, the land cover

types  fractions  are  sourced from the  Global  Vegetation  Continuous  Fields  product  (MOD44B),

based on observations from the Moderate Resolution Image Spectroradiometer (MODIS). Four land

cover types are considered, namely bare soil, low vegetation (e.g. grass), tall vegetation (e.g. trees),

and openwater (e.g. lakes). In ISBA, the fraction of the 12 land cover types  fraction departover

some areas departs from prevalent land cover products such as CLC2000 (Corine Land Cover) and

GLC2000 (Global Land Cover). It  cancould potentially impact the distribution of the terrestrial

evaporation between GLEAM and ISBA. Further work at CNRM will focus on understanding the

differences  between  ISBA  and  GLEAM,  in  particular  investigating  the  sub-components  of

terrestrial evaporation.
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Finally, Figure S1 and Figure S2 illustrate snow cover evaluation.  LDAS_ERA5 snow cover is

evaluated  against  the  IMS snow cover (as  e.g.  in  Orsolini  et  al.,  2019).  Figure  S1 shows the

averaged northern hemisphere snow cover fraction for the 2010-2018 period. It is complemented by

all  panels of  Figure S2  which  showings (i)  maps of IMS snow cover  (top row) for 3 seasons,

September-October-November  (SON),  December-January-February  (DJF)  and  March-April-May

(MAM), respectively, (ii)  equivalent  maps of snow cover from LDAS_ERA5 open-loop (second

row), (iii) maps of snow cover differences between the open-loop and IMS data and (iv) maps of

snow cover differences between the analysis and the open-loop. LDAS_ERA5 open-loop compares

very well with the IMS snow-cover data in the accumulation season from September to February

(Figure S2 and panels d) to i) of Figure S1), except foronly with an overestimation over the Tibetan

Plateau. The issue over Tibet from ERA5 is not new, and is  consistent with  previous studies like

Orsolini  et  al.,  (2019).  An early  melt  in  spring  compared  to  observations  is  notedis  visible in

LDAS_ERA5 compared to observations and could be related withto the snow cover parametrization

in ISBA. As expected, the analysis has an almost neutral impact on snow as both SSM and LAI

observations are filtered out fromduring frozen/snow-covered conditions and condition and as there

is no snow data assimilation yet in LDAS_ERA5 (Figure S2 and panels (j), (k) and (l) of Figure

S1).  CThis clearly shows, however an area of potential improvement  of data assimilation within

LDAS-Monde is to incorporate snow data assimilation using satellite data such as the IMS one (as

in e.g. de Rosnay et al., 2014).

 3.2 Ground-based datasets

LDAS_ERA5 analysis and open-loop are also evaluated using independent in situ measurements of

evapotranspiration,  river  discharge  and  surface  soil  moisture  across  the  world.  Daily  in  situ

measurements  of  evapotranspiration  from  the  FLUXNET-2015  synthesis  data  set

(http://fluxnet.fluxdata.org/, last accessed June 2019) are first used in this study. The LDAS_ERA5

ability  to  represent  evapotranspirationevapotranspiration  performance is  evaluated  using  the

correlation  coefficient  (R),  RMSD, and ubRMSD  as  well  asand the  bias  (LDAS_ERA5 minus

observations) using the 85 selected FLUXNET-2015 stations.  The mMedian R, RMSD, ubRMSD

and bias for LDAS_ERA5 analysis (open-loop) are 0.73 (0.72), 28.74 (29.60) W.m-2, 27.37 (26.92)

W.m-2 and 4.64 (4.40) wm-2, respectively.  If these numbersAlthough these values depict a small

advantage  of  the  analysis  over  the  open-loop  configuration,  it  is  worth  mentioning  that  these

differences are rather small and likely to fall within the uncertainty of the in situ measurements.

Figure 7(a) represents the added value of the analysis based on NICR (Eq.(2)), the large blue circles

represent a positive impact from the analysis (20 stations) with a NICR greater than +3 (i.e. R values

are better when the analysis is used than when the model is used) while large red circles represent a
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degradation from the analysis  (5 stations)   with a NICR smaller  than -3.  Stations with a rather

neutral impact (60 stations)  havewith a NICR between [-3 ; +3] and are reported using small dots.

Note that at the scale of Figure 7(a), some stations are overlapping. Figure 7(a) is complemented by

panels   (b), (c),  (d) and (e)  that arewhich show scatter-plots of R, ubRMSD, absolute bias and

RMSD between LDAS_ERA5 analysis (x-axis) and the, open-loop (y-axis) for the 85 stations from

the Fluxnet2015., Out of the 85 stations considered, 5656 stations (out of 85) have better R values

consideringin the  analysis.  They  are  41  for  ubRMSD,  47  forcompared  to  the  open  loop.  The

respective numbers of improved stations for ubRMSD, RMSD and 44 for absolute biasthe absolute

bias equate to 41,47 and 44 respectively. The set of 20 stations from Figure 7(a) where the analysis

has a positive impact on the NICR at NICR (greater than +3) are reported in green on Figure 7(b).

Results on river discharge are illustrated by Figure 8 (panels a and b). Figure 8(a) represents NSE

scores for the subset  of 982 stations selected.  Most of them are located in North America and

Europe while a few are available in South America and Africa. Figure  8(a) is complemented by

Figure 8(b) which shows that represents the NIC score applied to the NSE score. andit emphasizes

the added value of the LDAS_ERA5 analysis over the open-loop. From this subset of station74% of

this  subset of stations  presents a  rather  neutral  impact  from the analysis  ( with a NIC ranging

between -3% and +3%) while 26% (254 stations) presents a significant impact (with a NIC above

+3% or below -3%) . When the analysis significantly impacts the representation of river discharge,

this impact tends to be positive. Indeed, with 74% of this subset of stations (189 stations) havinge a

NIC score greater than 3% while only 26% (65 stations) presentsshow NIC score smaller than -3%.

The statistical scores for soil moisture from LDAS_ERA5 open-loop and analysis (third and fourth

layers of soil, 4-10 cm depth, 10-20 cm depth, respectively) over 2010-2018 when compared with

ground measurements from the ISMN (5 cm depth and 20 cm depth, respectively) are presented in

Table S3 for each individual network. Averaged statistical metrics (ubRMSD, R, Ranomaly and bias)

are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist. For the

analysis, averaged R (Ranomaly) values along with its  95% Confidence Interval (CI) using in situ

measurements  at  5  cm (782  stations  from 19  networks)  are  0.68±0.03  (0.53±0.04)  (0.67±0.03

(0.53±0.04) for the open-loop) with averaged-network values going up to 0.88±0.01 (0.58±0.04) for

the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than 0.55 except for

one network, ARM (10 stations in the USA) presenting an averaged R value of 0.29±0.05. Averaged

ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077 m3m-3 for the analysis,

0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.2 ) has also been applied to R

values, 65% of the pool of stations present a neutral impact from the analysis (511 stations at NIC
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ranging between -3 and +3), 12% present a negative impact (91 stations at NIC < -3) and 23%

present a positive impact at (180 stations at NIC > +3). 

 4 The  statistical  scores  for  soil  moisture  from  LDAS_ERA5  open-loop  and  analysis  are

presented for the third and fourth layers of soil, corresponding to 4-10 cm depth and 10-20 cm depth

respectively. The soil moisture at layers 3 and 4 is compared with ground measurements over 2010-

2018 from the ISMN at depths of 5 cm and 20 cm respectively. The results are displayed in Table

S3 for each individual network. Averaged statistical scores (ubRMSD, R, Ranomaly and bias) are

similar  for  both  LDAS_ERA5 analysis  and  open-loop  even  if  local  differences  exist.  For  the

analysis,  averaged  R  (Ranomaly)  values  for  the  third  layer,  along  with  their  95% Confidence

Intervals (CI) (782 stations from 19 networks), are 0.68±0.03 (0.53±0.04). For the open loop, the

averaged R (Ranomaly) values are 0.67±0.03 (0.53±0.04). Averaged-network values are highest for

the SOILSCAPE network with values of 0.88±0.01 (0.58±0.04) for the analysis (49 stations in the

USA). For all networks, the average R values are higher than 0.55, with the exception of ARM (10

stations in the USA), which presents an averaged R value of 0.29±0.05. Averaged ubRMSD and

bias (LDAS_ERA5 minus in situ) are 0.060 m3  m-3   and 0.077 m3  m-3   for the analysis respectively.

The open loop has a similar performance, with a ubRMSD and bias of 0.060 m3  m-3   and 0.076 m3  m-3  

respectively.  NIC (Eq.2) has also been applied to R values.  In total,  65% of stations  present a

neutral impact of the analysis compared to the open loop (511 stations at NIC ranging between -3

and +3), 12% present a negative impact (91 stations at NIC < -3) and 23% present a positive impact

(180 stations at NIC > +3).

The number of stations where R differences between the analysis and the open-loop are significant

(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement

from the analysis  with respect tow.r.t. the open-loop for 128 stations (out of 186, i.e.  about 69%)

and  a  degradation  for  58  stations  (about  31%).  Figure  9 illustrates  R  differences  between  the

analysis and the open-loop runs over CONUS where most of the stations are located (552 out of

782). When differences (analysis minus openloop) are not significant stations are represented by a

small dot (425 stations out of 552, about 77%). When they are significant (127 stations out of 552,

about 23%), large circles have been used,  blue forwith blue corresponding to positive differences

(an  improvement  from the  analysis,  99  stations  out  of  127,  about  78%)  and  red  for  negative

differences (28 stations out of 127a degradation from the analysis, 28 stations, about 22%). For

most of the stations where a significant difference is obtained, it represents an improvement from

the analysis. 

Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10

networks) are 0.65±0.03, 0.049 m3m-3 and 0.055 m3m-3, respectively. For the open-loop, they are
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0.64±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively. For soil moisture at that depthIn terms of the

NIC, about 60% of the stations presentdemonstrate a neutral impact fromof the analysis compared

with the open loop, while 28% show  (410 stations at  NIC ranging between -3 and +3), 28%  a

positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations at NIC < -3).

Although differences between the open-loop run and the analysis are rather small,  these results

underline the added value of the analysis with respect to the model run. Figure S3 represents the

distribution of the scores values for LDAS_ERA5 open-loop and analysis using boxplots centred on

the  median  value.  IThey  look  very  similar  and  from  Figure  S3,  it  is  difficult  to  see  either

improvement or degradation from the analysisany important differences between them.

For evapotranspiration, river discharge and surface soil moisture there is a slight advantage for the

LDAS_ERA5 analysis with respect to its  open-loop counterpart.  Even if  the  distribution of the

averaged  statistical  metrics  arecan  be rather  similar  for  both (particularly  true  for  surface  soil

moisture evaluation),  there are  significant  regional  differences for some sites,  which shows the

added value of the analysis with respect to the open-loopdifferences at the regional scale.

4. Monitoring and forecasts for areas under severe/extreme conditions

4.1 Selection of two regional case studies 

For each individual region presented in Table I and Figure 2, monthly anomalies (scaled by the

standard deviation) of analysed SSM (second layer of soil, 1-4cm) and LAI for 2018 are  assessed

with respect to the 2010-2018 averageperiod. The anomalies (see Figure 10) highlight three regions,

two of which presenting strong negative anomalies for both SSM and LAI for almost all 2018 (of

2018. These are   North   Western Europe, (WEUR), and the Murray-Darling basin, (MUDA), in

South  Eastern  Australia). and  one  presentingContrastingly,  one  region  presents strong  positive

anomalies of SSM and LAI in Eastern Africa (EAFR). WEUR and MUDA regions were affected by

a  severe  heatwave  and  a  drought  in  2018 impacting,  which  impacted  the LSVs  analysed  by

LDAS_ERA5. According  to  Figure  10,  monthly  anomalies  of  SSM  and  LAI  for  MUDA are

negative through  the whole  2018 with 7  and  (6) months  presenting LAI  and  (SSM) anomalies

below -1 standard deviation (stdev), respectively. WEUR has negative SSM anomalies from May to

December 2018 with values dippinggoing below -2 stdev. LAI was severely impacted as well with

July  to  October  2018  presenting  negative  anomalies  below  -2  stdev.  For  WEUR,  5  months

presentshow LAI and SSM anomalies below -1 stdev. On the other hand, EAFR experienced 3 (7)

EAFR experiences 3 and 7 months with positive anomalies for SSM and LAI in 2018 above 1 stdev

(8 and 7 months consecutively present positive anomalies for SSM and LAI respectively).
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According to the National Oceanic and Atmospheric Administration (NOAA), Europe experienced

its  warmest  summer  since  continental  records  began  in  1910  at  +2.16°C above  mean  (Global

Climate  Report,  https://www.ncdc.noaa.gov/sotc/global/  last  accessed  April  2019).  In  Europe,

temperatures over all the summer months in 2018 were above the climatological meantemperature

for the whole summer 2018 was above climatology. The summer 2018 heatwave in Europe has

already reported  in  the  scientific  literature  (e.g.  Magnusson et  al.,  2018,  Albergel  et  al.,  2019,

Blyverket et al., 2019). 

In its 70th Special Climate Statement, the Australian Bureau of Meteorology (BoM) has reported a

very hot  and dry summer 2018 in eastern Australia  (BoM, 2019).  Like much of Australia,  the

Murray Darling basin  alsohas experienced  a  remarkably dry and hot weather during 2018. The

annual maximum temperature for the Murray Darling basin as a whole was more than two degrees

above average during 2018. The northern Murray–Darling Basin in particular was severely affected

with  inflows  to  all  rivers  catchments  persistently  well  below  averagenormal

(http://www.bom.gov.au/state-of-the-climate/,  last  visited:  April  2019).  Finally,  the  East  African

Seasonal Monitor based on the Famine Early Warning System Network (FEWS) confirms above-

average rainfall amounts andas well as significantly greener than normal vegetation conditions (e.g.,

https://reliefweb.int/report/somalia/east-africa-seasonal-monitor-july-27-2018,  last  visited:  April

2019). As this study focuses on monitoring and forecasting the impact of severe droughts conditions

on LSVs, the WEUR and MUDA regions are selected for further investigation. 

4.2 Case studies presentation: LDAS-Monde medium resolution (0.25° x 0.25°) experiments

Figure  11 illustrates  seasonal  cycles  of  observed  LAI  (Figure  11a)  and  SWI  (Figure  11e),

LDAS_ERA5 analysis  and open-loop LAI  (Figure  11b)  and SSM (Figure  11f)  for  the  WEUR

domain.  The 2018 period2018 is compared to  an average of the period 2010-2017 average. From

Figure 11a, one may see the heatwave impact with a sharp drop in observed LAI values from June

to November 2018 (solid green line). Such low LAI values have never been observed over the eight

previous years (dashed green line for the 2010-2017 averaged along with the 2010-2017 minimum

and maximum observationsit is below the minimum value in shaded green). A similar behaviour is

also visible in the ASCAT SWI dataset in Figure 11e with the lowest values recorded in 2018 ever

reached in thisfor the 2010-2018 period. Over WEUR, LDAS_ERA5 open-loop overestimates LAI

in the second part of the year, as already highlighted by several studies (e.g. Albergel et al., 2017,

2019). The LDAS_ERA5 analysis has a positive impact and reduces, reducing LAI values, as seen

onin Figure  11b (LAI open-loop in blue, analysis in red),. Panels c), d) g) and h) of Figure  11)

depict a similar situation for the MUDA area, almost every month of 2018 presents the lowest
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values for both SSM and LAI. For both MUDA and WEUR, the smaller differences for LAI and

SSM  between  LDAS_ERA5  analysis  and  open-loop  in  2018  compared  to  2010-2017  also

suggestindicates that both extreme events were well captured in the atmospheric forcing used to

drive LDAS_ERA5.

4.3 Case studies: for assessing LDAS-Monde high resolutions (0.1° x 0.1°) analysis and forecast

experiments

For  the  two  selectedthese  two  specific areas  (WEUR and  MUDA),  LDAS-Monde  is  also  run

forcedrun  over  April  2016  to  December  2018  with  the  atmospheric  forcing  from by HRES

(LDAS_HRES) at 0.1°  x 0.1° spatial resolution over April 2016 to December 2018. Additionally

daily forecast experiments are performed and the results presented for LAI and SSM for lead-times

of  to LDAS_HRES analysis, forecast experiments with a lead time of  4-days and 8-days., These

forecasts are initialised by either LDAS_HRES analysis or open-loop over are presented for 2017-

2018 (for SSM and LAI) in order to assess the impact of the initial conditions on the forecast of the

LSVs.  In  this  subsection,  this  new  set  of  six  experiments  is  verified  against  the  assimilated

observations.  Verification  of  the  forecast  experimentsforecasts  with  these  observations can  be

viewed  as  an  independent  validation  as  those  observations  are  not  assimilated  yet.  It  is  worth

mentioning that there is a difference between the use of SSM and LAI observations to evaluate the

forecast.  For  SSM, the  assimilation  is  done after  a  rescaling  of  the  observations  to  the  model

climatology (see section 2.3), which removes bias. However, fFor LAI, however this is not the case

and the assimilation process  removes the bias  in  unbiases  the modelled LAI  with respect to the

observations(w.r.t.  the  observation).  This  difference,  together  with  the  longer  memory  of  LAI

(compared  to  SSM), contributes to the results presented in this sub-section. Statistical scores for

LDAS_HRES open-loop and analysis are also presented, also, towhich serve as a benchmark forof

the forecast experiments.

Upper panels of  Figure  12 (for WEUR) and Figure  13 (for MUDA) upper panels, illustrate  the

seasonal RMSD (Figure 12a, 13a) and correlation (Figure 12b, 13b) values between SSM from the

second layer of soil (1–4 cm) from LDAS-Monde forced by HRES (LDAS_HRES SSM from the

second layer of soil (1–4 cm), open-loop and analysis) and ASCAT SSM estimates over 2017-2018.

Scores between SSM from the second layer of soil ofare also reported for the LDAS_HRES 4-day

forecast (LDAS_fc4),  initialised  by  either  the  open-loop  or  analysis) and  8-day  forecasts

(LDAS_fc8,  initialised  by  either  the  open-loop  or  analysis) and  ASCAT  SSM  estimates  are

reported, also. From the upper panels of those figures one may notice a small improvement from the

analysis  (solid  red  line)  over  the  open-loop  simulation  (solid  blue  line),  with  slightly

decreasingreduced RMSD values and increasinged correlations values. However, no improvement
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(nor degradation) is visible from the 4-d and 8-d forecasts experiments initialised by LDAS_HRES

analysis over those initialised by LDAS_HRES open-loop, they display very similar scores.  As

expected,  LDAS_HRES SSM is  of better  qualitycloser to the observations compared with than

LDAS_fc4 and LDAS_fc8.  Note however that for theIt is worth pointing out that for the MUDA

area, there is a small positive impact of the initialisation on the 4-d and 8-d forecast of surface soil

moisture (Figure 13a, b). Theose results suggest that theis fast evolving SSM model variable (SSM

between 1 cm and 4 cm depth) relies more on theis more sensitive to the atmospheric forcing than

toon the initial conditions (at least within the forecast range presented in this study). and it can be

assumed that the 4-day and 8-day atmospherical forecast from HRES is of lower quality that the

first 24-h analysis. Results for LAI are different from  SSM (lower panels of Figure 12 and Figure

13). Firstly, there is a large improvement from the analysis (solid red line) over the open-loop (solid

blue  line),  particularly  induring the  LAI  decaying phase  (Boreal  and Austral  autumns mainly).

Secondly,  the  LDAS_HRES open-loop (solid blue line) and the forecasts initialized by the open

loop, (LDAS_fc4 (dotdashed  blue  line) and  LDAS_fc8 (dashed  blue  line)  initialised  by

LDAS_HRES open-loop perform similarly present  very  similar  skills,. so  do Furthermore,  the

LDAS_fc4 and LDAS_fc8  forecasts  are  quite  consistent  when  initialised  by  the  LDAS_HRES

analysis (dotdashed and dashed red lines, respectively). They also outperform  skills ofImportantly,

the LDAS_HRES analysis and forecasts outperform the LDAS_HRES open-loop initial conditions

and forecasts, LDAS_fc4 and LDAS_fc8 initialised by LDAS_HRES open-loop. This suggests that

LAI relies more on itsforecasts are more sensitive to initial conditions than  onto the atmospheric

forcing  (at least  within the  forecast range presented in this study)4-8 day range for both and that

forecasting LAI is also a matter of initial conditions. This statement is valid for these two contrasted

areas, WEUR and MUDA regions.

These  results  are  corroborated  by  Figures  14 (for  WEUR)  and  15 (for  MUDA),  top  rows

illustratefor both SSM (top) and bottom rows LAI (bottom). Figures 14(a) and 15(a) show RMSD

values between LDAS_HRES open-loop SSM (1-4 cm) and ASCAT SSM over 2017-2018 for the

WEUR and MUDA domains, respectively. Due to the seasonal linear rescaling applied to ASCAT

estimates, the RMSD values are rather small. For the WEUR (MUDA) domain they range from 0 to

0.048 m3m-3 (0 to 0.040 m3m-3).  Figures  14(b) and  15(b)  represent  maps of RMSD differences

between LDAS_HRES analysis (open-loop) and ASCAT SSM estimates over 2017-2018 for the

WEUR and  MUDA domains,  as  well.  Both  maps  are  dominated  by  negative  values  (in  blue)

indicating that RMSD values are  consistently  smaller (better) when using LDAS_HRES analysis

than when using LDAS_HRES open-loop. It is also worth-mentioning than no positive differences

(i.e. a degradation from the analysis) are present in those maps. For the MUDA domain,  they are
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improvedthe RMSD values are reduced by about 15%. Figures  14(c),  (d)  and  15(c), (d)  are also

show maps of RMSD differences, they consider for forecast experiments (LDAS_fc4, LDAS_fc8).

It appears that forover both domains, the impact from the initialisation is rather small. This supports

previous  results  indicating  that  the with  few  coloured  areas,  strengthening  previous  results

suggesting that, forcing quality is more important than the initial conditions to forecastfor the SSM

variableforecats. However, the results for LAI support the opposite conclusionResults are different

for LAI,. The  RMSD values for LDAS_HRES open-loop  are rangingrange betweenfrom 0  andto

1.6 m2m-2 over WEUR and, 0  andto 1 m2m-2 over MUDA (Figures  14(e) and  15(e)).  The  RMSD

values are improvedreduced by up to 37 % over WEUR and up to 60% over MUDA by the analysis

(Figures  14(f) and  15(f)).  ImprovementThe enhancement from the  data assimilationanalysis over

the open-loop experiment is consistent through  allout the WEUR domain while the improvement

over the MUDA domain is  restrained toconcentrated in the south eastern part   (the north western

part has low RMSD values as the open-loopis largely unchanged). 

Similarly to Figures 14(a, b, c, d),  panels of Figure 16 illustrates the impact of the analysis on SSM

in terms of the correlation coefficientusing correlations.  This timeBut this time, ASCAT SWI (i.e.

no rescaling) has been used for the validation. Figure 16 (top panels) shows maps of R values based

on the  absolute values while Figure  16 (bottom panels) shows R values  based on the  anomalyies

time series (capturing short term variability) as defined in Albergel et al., 2018a. Figure 16 (a) and

(e) represents R values and anomaly R values for LDAS_HRES, respectively. As expected R values

are higher than anomaly R values. Maps of differences (panels b and f) of Figure 16 suggest that

after  assimilation,  both  scores  are  improved  ratheralmost equally.  While  the  4- day  and 8-day

forecasts still show an  improvements from the  using initial conditions from the  analysis over the

open loop on R values (panels c and d of Figure  16 dominated by positive differences, analysis

minus  open-loop),  maps  of  anomaly  R values  forecast do not  display any negative  or  positive

impact (panels g and h of Figure 16).

Finally, the top panels of Figure 17 illustrate the impact of the analysis on drainage monitoring and

forecasts over WEUR. Fig. 17 a) represents drainage from the LDAS_HRES open-loop varyingwith

values ranging between 0 and 1 kg.m-2.day-1.   Fig.17 b) shows the   drainage difference between

LDAS_HRES analysis and open-loop. The analysis impact on drainage is rather small, (aboutwithin

±3%) and more pronounced in areas where the analysis has largely affected LAI more (see panels

f), g) and h) of Figure  14). As seen  in Figure  17 on panels  (c) and  (d),  there is also an impact

fromthe forecasts are also sensitive to the initialisation in areas  were the analysis was morewhere

the analysis effectively correcteding LAI.  The bBottom panels  of  Figure  17 illustrate  a similar

impact on runoff. As for drainage, this variable is affected by the analysis. Initial conditions have an
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impact on its forecast, also. Although we did not validate drainage and runoff in this study, present a

quality assessment of those two variables,previous our findings suggest a neutral to positive impact

of the analysis on river discharge through modifications to drainage and runoff analysis impact, but

also those from (Albergel et al., 2017, 2018a), suggest a neutral to positive impact, propagated from

the analysis of SSM and LAI to river discharge through variables such as drainage and runoff.

5. Discussion and conclusion

This  study has demonstrated  that  combining  a  LSM, satellitethe potential  of  LDAS-Monde for

assimilating EOs into a LSM and atmospheric forcing through LDAS-Monde has a great potential

to  representpredict the  impact  of  extreme weather  (heatwaves  and  droughts) on  land  surface

conditions. LDAS-Monde is now ready for  use in  various applications  such asincluding (i)  land

surface reanalyses of land Essential Climate Variables (ECVs), (ii) monitoring of water resources,,

such as the impact of droughts andon vegetation, and (iii) the detection of severe conditionsextreme

land surface conditions; and (iv) the effective over land and initialisation of LSVs forecastfor land

surface forecasting.  LDAS-MondeIt has been applied in  this  study to past  events of 2018 with

respect to a short period of timerelatively short climatology (2010-2018). as a demonstrator but will

be extended to a longer time period.  It is planned that it will be applied to much longer periods for

future reanalysis applications. The operational application of LDAS-Monde operational use in near-

real- time has the capacity to serve as ancould potentially improve emergency monitoring systems

for  the  LSVs.  Using  high  quality  atmospheric  reanalyseis  like  ERA5  to  force  LDAS-Monde

guarantees a high level of consistency because of its frozensince the configuration is frozen in time

(no changes in spatial and vertical resolutions, data assimilation andor parametrizations). The ERA5

coarse spatial resolution of ERA5 makes it affordable to run long time periods term and large- scale

LDAS-Monde  experiments.  With  ERA5 available  from 1979  and  now covering  near  real-time

needs with its ERA5T version (https://climate.copernicus.eu/climate-reanalysis), an LDAS_ERA5

configuration would be able to provide a long term  climatology as well as  and  near- real- time

coarse resolution (0.25° x 0.25°) climatology as reference for  anomaliesy detections  of the land

surface conditions at coarse resolution (0.25°). Significant anomalies could then be used to trigger

more  focused  “on-demand”  simulations  for  regions  experiencing  extreme  conditions.  In  that

caseFor these simulations, LDAS-Monde could be run at higher resolution by forcing the LSM with

forced by e.g.an enhanced resolution forecast in order to provide more information, such as the

ECMWF operational high resolution product (0.10° x 0.10°)). The capability of such an approach

was  illustrated  in  our  study for in  monitoring  and  forecast (up  to  10-d  ahead)  modes,  as  was

presented here for two regions in North Western Europe and South Eastern Australia. In term of the
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RMSD, our results showed a very small impact of initial conditions on the forecasts of SSM. This

was expected due to the  short termreduced memory of  topthe  surface soil  surfacelayer (1-4 cm),

which is dominated by meteorological variabilitythe antecedent meteorological forcing. However,

the LAI initialisation had significant impact on the LAI forecast skill. This was also expected due to

the long-term memory of vegetation evolution. For SSM, the assimilation is doneperformed after a

rescaling of the observations to the model climatology (see section 2.3), which removes biasensures

that the model and observations are unbiased with respect to each other. ForHowever, LAI, however

this is not the case and is not bias-corrected, which allows the assimilation process to removes bias

in the modelled LAI (with respect tow.r.t. the observation). This technical difference between SSM

and LAI assimilation, combined with the longer memory of LAI compared to SSM, contributes to

the results presented in this study. Despite the expected behaviour of these two LSVs in forecasting,

our results show that the LDAS-Monde system is capable of propagating the initial LAI conditions,

which  is  relevant  not  only  for  LSV  medium-range  forecasting  butand with  potential  for

longerpotentially  for  longer lead-times,  such  as  seasonal  forecasts.  The  strong  impact  of  LAI

initialisation on the forecast does not seem to propagate to  the  surface soil moisture and further

studies are necessary to test the impact of initial conditions  to additionalon  other variables from

LDAS-Monde (including soil moisture in deeper layers and evapotranspiration). Another possibility

would be to force LDAS-Monde using the 51-member ECMWF ensemble forecasts., aAlthough the

ensemble system has coarser spatial-resolution (~0.20° x 0.20°) than the deterministic forecast,, it

accounts for offers a 15-day forecast and a 51 member ensembleforcing uncertainty in the LSVs,

which can introduce forcing uncertainty into the LSVs through the ensemble spread and extends to

a  15-day  lead  time.  The  maximum  range  of  the  soil  and  vegetation  forecasts could  even  be

extendedreach up to six months if using seasonal atmospheric forecasts were used as forcing.

LDAS-Monde  has  some limitations,  where  has  well  identified  areas  of  developments  that can

furtherfuture developments are needed to improve the representation of LSVs. For instance, it does

not  consider snow data assimilation yet. and iIt  has been shown in this  study that if  the snow

accumulation seems to be represented correctly in the system, the onset of it suffers from a too early

snow-melt  is  too early  in  the  in  spring time.  To overcome this  issue,  two possibilities  will  be

explored.  Firstly, using a  recently developed ISBA parametrisation,  MEB  for  (Multiple  Energy

Budget), which is known to lead to a better representation of the snowpack (Boone et al., 2017),.

inThis could be particularly useful in the densely forested areas of the Northern Hemisphere where

large differences between LDAS-Monde and the IMS snow cover were found in spring (Figure

S2(i),  Aaron  Boone  CNRM,  personal  communication  June  2019) and  (ii)  adapting.  Another

enhancement of LDAS-Monde will  be to adapt the current data assimilation scheme of LDAS-
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Monde to permit the assimilation the IMS snow cover data, which is implemented at NWP centres

such as   (as done e.g. at  ECMWF, (de Rosnay et al., 2014). The current SEKF data assimilation

scheme is also being revisited. Even though it has provided good results, one of its limitations is the

computational cost of the a Jacobian matrix, which needs one model run for each control variable,.

As the number of control variables is expected to increase, requiringthis approach would require

significant  computational  resources with  increased  number  of  control  variables.  That  is

whyTherefore, more flexible eEnsemble based data assimilation approaches likehave recently been

implemented in LDAS-Monde, such as the Ensemble Square Root Filter (EnSRF, ) have recently

been implemented (Fairbain et al., 2015, Bonan et al., 2020).  Bonan et al., 2020 have evaluated

performances  from  the  EnSRF  and  the  SEKF  over  the  Euro-Mediterranean  area.  Both  data

assimilation schemes have a similar behaviour for LAI while for SSM, the EnSRF estimates tend to

be closer to observations than those from the SEKF. They have also conducted an independent

evaluation of both assimilation approaches using satellite estimates of evapotranspiration and GPP

as well  as measures of river dischargestogether with river discharge observations from gauging

stations. They have found that the EnSRF givesleads to a systematic (moderate) improvement for

evapotranspiration and GPP and a highly positive impact on river discharges, while the SEKF lead

to more contrasting performance. As for applications in hydrology, the 0.5° x 0.5° spatial resolution

TRIP river network is currently being improved to 1/12° x 1/12° globally. 

CNRM is also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,

2019), it is supposed to tackle. This has the potential to improve the way vegetation is accounted for

in the change detection approach used to retrieve SSM with an improved representation of its effect.

Assimilating ASCAT radar backscatter also raises the question of how to  properly  specify SSM

observation,  background,  and  model  error  covariance  matrices,  so  far  mainly  relying  on  soil

propertieswhich are currently based on soil properties (see section 2.1.3 on data assimilation). The

last decade has seen the development of techniques to estimate those matrices. Approaches based on

Desroziers  diagnostics  (Desroziers  et  al.,  2005)  are  computationally  affordable  for  land  data

assimilation systems from a computational point of view and could provide insightful information

on the various sources of the data assimilation system.

FurthermoreAlso, the added valuea comparison of LDAS-Monde compared to alreadywith existing

datasets from other centres needs to be has to be evaluatedconsidered. and cCurrent work at Météo-

France  ishas began to compare investigating  its quality against state of the art reanalyses such as

those from NASA at  botheither the  global scale (GLDAS, Rodell  et  al.,  2004, MERRA-2, The

Modern-Era Retrospective Analysis for Research and Applications, Version 2, Reichle et al., 2017,

Draper  et  al.,  2018)  orand regional  scale  (NCALDAS over  the  continental  USA, FLDAS over
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Africa).  Finally,  first  attemptswork  has  begun to  run  LDAS-Monde  at to  go  to  higher  spatial

resolution over smaller areas like the AROME domainkilometric and sub-kilometric scale spatial

resolutions. Promising results have been obtained by assimilating SSM and LAI over the AROME

domain (Applications  de  la  Recherche  à  l'Opérationnel  à  Méso-Echelle,

https://www.umr-cnrm.fr/spip.php?  article120  ,  last  accessed July 2019)  of  Météo-France (centred

over  France)  at  kilometre  scale  and  assimilating  kilometric  and  sub-kilometric  scale  satellite

retrieval of SSM and LAI (from CGLS) are very promising.

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open

source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at

http: //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL

licence;  http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively

low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is

not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the

procedure  to  get  a  SVN  account  and  to  access  real-time  modifications  of  the  code  (see  the

instructions  at  the  first  link).  The developments  presented  in  this  study stemmed on SURFEX

version 8.1. LDAS-Monde technical documentation and contact point are freely available at: https://

opensource.umr-cnrm.fr/projects/openldasmonde/files

Data availability: upon request by contacting the corresponding author.
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Tables

Table I: Continental hot spots for droughts and heatwaves  and number of monthly anomalies SSM
and LAI below -1 standard deviation (stdev), above 1 stdev in 2018 with respect to the 2010-2018
period.

Region name abbreviation LON-W LON-E LAT-S LAT-N

Number of monthly
SSM anomalies

below -1 (above 1)
stdev 

Number of monthly
LAI anomalies

below -1 (above 1)
stdev 

Western-Europe WEUR -1 15 48 55 5(1) 5(0)

Western
Mediterranean

WMED -10 15 35 45 0(7) 4(4)

Eastern Europe EEUR 15 30 45 55 2(1) 0(2)

Balkans BALK 15 30 40 45 3(3) 1(4)

Western Russia WRUS 30 60 55 67 0(1) 1(3)

Lower Volga LVOL 30 60 45 55 2(1) 2(1)

India INDI 73 85 12 27 3(0) 2(1)

Southwestern
China

SWCH 100 110 20 32 0(2) 0(6)

Northern China NRCH 110 120 30 40 0(3) 0(4)

Murray-Darling MUDA 140 150 -37 -26 6(0) 7(0)

California CALF -125 -115 30 42 2(0) 5(0)

Southern Plains SPLN -110 -90 25 37 0(3) 0(4)

Midwest MIDW -105 -85 37 50 1(2) 1(3)

Eastern North ENRT -85 -70 37 50 0(3) 0(7)

Nordeste NDST -44 -36 -20 -2 0(3) 1(2)

Pampas PAMP -64 -58 -36 -23 2(2) 2(0)

Sahel SAHL -18 25 13 19 2(0) 1(2)

East Africa EAFR 38 51 -4 12 2(3) 1(7)

Southern Africa SAFR 14 26 -35 -26 2(0) 2(1)

39

1280

1285



Table II: Set up of the experiments performed  in this study. LDAS_ERA5 and LDAS_HRES have an analysis (assimilation of surface soil moisture,
SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation), LDAS_fc4 and LDAS_fc8 are model runs initialized by either
LDAS_HRES open-loop or analysis. N/A stands for not applicable.

Experiments 
(time period)

Model version
Atmospheric

forcing
Domain 

& spatial resolution
DA method

Assimilated
observations

Model
equivalents

Control
variables

LDAS_ERA5
(2010 to 2018)

ISBA
Multi-layer soil

model
CO2-responsive

version
(Interactive
vegetation)

ERA5
Global, ~0.25 °x

0.25°
SEKF

SSM 
(ASCAT)

LAI
(GEOV1)

Second layer of
soil (1-4cm)

LAI

Layers of soil 2
to 8 (1-100cm)

LAI

LDAS_HRES
(04/2016 to

12/2018)

IFS-HRES

North Western
Europe (WEUR) and

Murray-Darling
River basin (MUDA)
(see spatial extend in

Table I)
~0.10° x 0.10°

LDAS_fc4
(2017 to 2018)

N/A N/A N/A N/A
LDAS_fc8

(2017 to 2018)



Table III: Evaluation datasets and associated metrics used in this study.

Datasets used for the
evaluation 

Source Metrics associated
Independent source of

evaluation

In situ measurements
of soil moisture 

(ISMN Dorigo et al.,
2011, 2015)

https://
ismn.geo.tuwien.ac.at/

en/

R for both absolute and
anomaly time-series, 
unbiased RMSD and
bias, NIC on R values

Yes

In situ measurements
of river discharge

See Table S1

Nash Efficiency (NSE),
Normalized
Information

Contribution (NIC)
based on NSE, 

Yes

In situ measurements
of evapotranspiration
 (FLUXNET-2015)

http://
fluxnet.fluxdata.org/

data/fluxnet2015-
dataset/

R, unbiased RMSD,
Bias, NIC on R values 

Yes

Satellite derived
surface soil wetness

index (ASCAT, Wagner
et al., 1999, Bartalis et

al., 2007) 

http://
land.copernicus.eu/

global/
R,  RMSD and NRMSD

No 
(assimilated dataset)

Satellite derived Leaf
Area Index (GEOV1,

Baret et al., 2013)

http://
land.copernicus.eu/

global/
R,  RMSD and NRMSD

No
(assimilated dataset)

Satellite-driven model
estimates of land

evapotranspiration
(GLEAM, Martens et

al., 2017) 

http://www.gleam.eu R, RMSD and NRMSD Yes

Upscaled estimates of
Gross Primary

Production (GPP, Jung
et al., 2017)

https://www.bgc-
jenna.mpg.de/geodb/
projects/Home.php

R,  RMSD and NRMSD Yes

Solar Induced
Fluorescence (SIF)

from GOME-2
(Munro et al., 2006,
Joiner et al., 2016)

See references R Yes

Interactive Multi-
sensor Snow and Ice
Mapping System (or

IMS) snow cover 

https://
www.natice.noaa.gov/

ims/
Differences Yes
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Figures
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Figure 1: (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for
pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea
level, (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness
Index (SWI) to the model climatology, grey areas on (a) represent filtered out data (see Section
2.3).

Figure  2:  Selection  of  19  regions  across   the  globe  known for  being  potential  hot  spots  for
droughts and heatwaves. The regions are defined in Table I. 
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Figure  3: RMSD values between observed Leaf Area Index (LAI) and LDAS_ERA5 (a) before
assimilation and (b) after assimilation of surface soil moisture (SSM) and LAI.
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Figure  4: Latitudinal plots of (a) Leaf Area Index (LAI), (b) Surface Soil Moisture (SSM), (c)
Gross Primary Production (GPP) and (d) Evapotranspiration (EVAP) for LDAS_ERA5 before
assimilation (Model, blue solid line) and after assimilation (Analysis, red solid line) as well as
observations (black solid line). Cyan dashed line represents the number of points considered per
latitudinal stripes of 0.25°.
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Figure 5: Latitudinal plots of score differences (analysis minus open-loop) for correlations (a-
e) and normalized RMSD (f-i) for LAI (a,f),  SSM (b,g), GPP (c,h), EVAP (d,i) and SIF (e,
correlations only). Scores are computed based on monthly average over 2010-2018 for LAI and
SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. Dashed lines represent
the zero lines (equal scores for open-loop and analysis).
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Figure 6: Histograms of score differences (correlation and RMSD, analysis minus open-loop) for
a),b) LAI, c),d) SSM, e),f) GPP, g),h) EVAP and i) SIF. For SIF only differences in correlation are
represented. Number of available data (in blue) as well as the percentage of positive and negative
values (in red) are reported. Note that for sake of clarity, the y-axis is logarithmic. 
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Figure  7:(a) Map of Normalized Information Contribution (NIC, Eq. 2 ) applied on correlation
values between evapotranspiration from LDAS_ERA5 analysis (open-loop) and observations from
the FLUXNET 2015 synthesis data set. NIC scores are classified into 2 categories (i)  negative
impact from the analysis with respect to the model with values smaller than -3 % (red circles, 5
stations), (ii) positive impact from the analysis with respect to the model with values greater than
+3 % (blue circles, 20 stations). Stations presenting a neutral impact with values between -3 %
and +3 % (60 stations) are reported as small  dots.  Note that  at  this  scale some stations are
overlapping. (b), (c), (d) and (e) scatter-plots of R, ubRMSD, absolute bias and RMSD between
LDAS_ERA5 open-loop and the 85 stations from the FLUXNET 2015 (y-axis) and LDAS_ERA5
analysis and the same pool of stations (x-axis). The set of 20 stations for which the analysis has a
positive impact in R values at NICR greater than +3 are reported on a) in green.
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Figure  8:(a) Global map of Nash-Sutcliff Efficiency score (NSE) between river discharge from
LDAS_ERA5 open-loop and in situ measurements from the networks presented in Table S1 over
2010-2016. (b) Normalized Information Contribution scores (NIC, Eq.2) based on NSE scores on
river discharge. Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral
impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an
improvement from LDAS_ERA5 analysis over LDAS_ERA5 open-loop while values smaller than -
3% (large red circles) suggest a degradation. Only stations where more than 4-year of data are
available and with a drainage area greater than 10000km2 are considered. Stations with NSE
values smaller than -2 are discarded, also, leading to a subset of 982 stations available.



49

Figure 10: 2018 monthly anomalies scaled by standard deviation of analysed (a)SSM and (b)LAI,
with respect to 2010-2018, for the 19 regions presented in Table 1 and Figure  2. Solid red line,
dashed red line and solid green line represent regions MUDA, WEUR and EAFR. Solid cyan line
represent all other boxes (see Table 1 and Figure 2).

Figure 9: Map of correlations (R) differences (analysis minus open-loop) for stations measuring
soil moisture at 5 cm depth and being available over North America. Small dots represent stations
where  R differences  are not  significant  (i.e.  95% confidence intervals  are  overlapping),  large
circles where differences are significant.
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Figure 11: Upper panels represent seasonal cycles of a) observed GEOV1 LAI from CGLS, b) LAI
from the  open-loop (in  blue)  and  the  analysis  (in  red)  for  the  WEUR area  (see  Table  I  for
geographical extent). c) and d) panels are similar to a) and b) for the MUDA area . Lower panels
represents seasonal cycles of e) ASCAT SWI from CGLS, f) SSM from the open-loop (in blue) and
the analysis (in red) for the WEUR area. Panels g) and h) are similar to e) and f) for the MUDA
area.  For  each  panels  dashed  line  represents  the  averaged  over  2010-2017  along  with  the
minimum and maximum values, the solid lines are for the year 2018.
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Figure  12: Upper panel, seasonal  (a) RMSD and (b) correlation values between soil moisture
from the second layer of soil (1–4 cm) from the model forced by HRES (LDAS_HRES, open-loop
in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017-2018 over the
WEUR  area.  Scores  between  SSM  from  the  second  layer  of  soil  of  LDAS_HRES,  4-day
(dashed/dotted  blue  –  when  initialised  by  the  open-loop-  and  red  –  when  initialised  by  the
analysis- lines) and 8-day (dashed blue and red lines) forecasts and ASCAT SSM estimates are
also reported. Lower panel (c) and (d) , same as upper panel between modeled/analyzed Leaf Area
index (LAI)  and GEOV1 LAI estimates .
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Figure  13: Same as Figure  12 for the Murray-Darling river (MUDA) area in  South  Eastern
Australia.
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Figure 14: Top row, (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates
over  2017-2018 for  the WEUR domain,  (b)  RMSD differences  between LDAS_HRES analysis
(open-loop) and ASCAT SSM. (c), (d) and (e) Same as (b) between LDAS_fc4 initialised by the
analysis  (open-loop)  and LDAS_fc8.  Bottom row,  same as  top  row for  LAI from the  different
experiments and LAI GEOV1.
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Figure 15: Same as Figure 14 or the Murray-Darling river (MUDA) area in  South  Eastern 
Australia.
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Figure  17:  Top row,  (a)  drainage values  for  LDAS_HRES open-loop over  2017-2018 for  the
WEUR domain, (b) drainage differences between LDAS_HRES analysis and open-loop. (c), (d),
same as (b) between LDAS_fc4 initialised by the analysis and LDAS_fc4 initialised by the open-
loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8 initialised by the open-loop.
Bottom row, same as top row for runoff. Units are kg.m-2.day-1

Figure 16: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over
2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis (open-loop)
and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop)
and LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.


