Dear Editor,

In their latest review, the two (original) reviewers insisted that language in the paper

needs to be improved. Our manuscript has now been carefully scrutinised leading to

several changes. We have not added any new materials but rewritten several parts of
5 the manuscript. Please find below a marked-up version of our manuscript

highlighting those changes. Reviewer#1 has also asked to revise the legend of figure

7a (cutting of the colour-bar at -20 and 20) to make it more visible, please find the

new figure below.

Sincerely

10 Clément Albergel, on behalf of the co-author
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Abstract- LDAS-Monde is a global offline Land Data Assimilation System (LDAS) that jointly

assimilates satellite-derived observations of Surface Soil Moisture (SSM) and [eaf Area Index

(LAD into the ISBA (Interaction between Soil Biosphere and Atmosphere) LLand Surface Model

(LSM). This study demonstrates that LDAS-Monde is able to detect. monitor and forecast the

impact of extreme weather on land surface states. Firstly, LDAS-Monde is run globally at 0.25°

spatial resolution over 2010-2018. It is forced by the state-of-the-art ERAS reanalysis
(LDAS_ERAS) from the European Centre for Medium Range Weather Forecast (ECMWF). The

behaviour of the assimilation system is evaluated by comparing the analysis with the assimilated

observations. Then the Land Surface Variables (LSVs) are validated with independent satellite

datasets of evapotranspiration. Gross Primary Production, Sun Induced Fluorescence and snow

cover. Furthermore, in situ measurements of SSM. evapotranspiration and river discharge are

employed for the validation. Secondly, the global analysis is used to (i) detect regions exposed to

extreme weather such as droughts and heatwave events and (ii) address specific monitoring and

forecasting requirements of LSVs for those regions. This is performed by computing anomalies of

the land surface states. They display strong negative values for LAI and SSM in 2018 for two

regions: North Western Europe and the Murray-Darling basin in South Eastern Australia. For those

regions, LDAS-Monde is forced with the ECMWF Integrated Forecasting System (IFS) high

resolution operational analysis (LDAS HRES. 0.10° spatial resolution) over 2017-2018.

Monitoring capacities are studied by comparing open-loop and analysis experiments again against
the assimilated observations. Forecasting abilities are assessed by initializing 4- and 8-day
LDAS HRES forecasts of the LSVs with the LDAS HRES assimilation run compared to open-

loop experiments. The positive impact of initialization from an analysis in forecast mode is
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particularly visible for LAl that evolves at a slower pace than SSM and is more sensitive to initial
conditions than to atmospheric forcing, even at an 8-day lead time. This highlights the impact of
initial conditions on LSV forecasts and the value of jointly analysing soil moisture and vegetation

states.
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1 Introduction

Extreme are likely to increase in
frequency and/or magnitude (IPCC, 2012, Ionita et al.,
2017). Amongst all the natural disasters, droughts are the most detrimental (Bruce, 1994;

Obasi, 1994; Cook et al., 2007; Mishra and Singh, 2010; WMO 2017) a about one-fifth of
damages caused by natural hazards can be attributed to droughts (Wilhite 2000). They cost
society billions of dollars every year (WMO, 2017). It is therefore
tools that can monitor and

drought conditions (Svoboda, 2002; Luo and Wood, 2007; Blyverket et al., 2019) as well as their
impact on land surface variables (LSVs) and society (Di Napoli et al., 2019). A major scientific
challenge in relation to the adaptation to climate change is to observe and simulate how land
biophysical variables respond to those extreme events (IPCC, 2012).
Droughts caused by a lack of precipitation.

classified
according to the part of the hydrological cycle that suffers from a water deficit (IPCC, 2014;
Barella-Ortiz and Quintana-Segui, 2018).

They include
meteorological droughts (lack of precipitation), agricultural droughts (deficit of water in the soil),
hydrological droughts (deficit of streamflow or; water level in rivers) and environmental droughts (a
combination of the previous droughts types). Because of the effect of precipitation deficit- on the
whole hydrological system, all drought types are related (Wilhite, 2000). Complex interactions
between continental surface and atmospheric processes have to be combined with human action in
order to fully understand the wide ranging impacts of droughts on land surface conditions (Van
Loon, 2015). As a consequence, Land Surface Models (LSMs) driven by high-quality gridded
atmospheric variables and coupled to river-routing system. are key tools to address these challenges
(Dirmeyer et al., 2006; Schellekens et al., 2017). Initially developed to provide boundary conditions
to atmospheric models, LSMs can now be used to monitor and forecast land surface conditions
(Balsamo et al., 2015; Balsamo et al., 2018; Schellekens et al., 2017). Additionally, the
representation of LSVs by LSMs can be improved by coupling them with other models of the Earth
system like atmosphere, oceans river routing systems (e.g., de Rosnay et al., 2013, 2014;
Kumar et al., 2018, Balsamo et al., 2018; Rodriguez-Fernandez et al., 2019; Muioz-Sabater et al.,
2019).
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Complementary—to—L-5Ms—are—Earth Observations (EOs)_provide long-term records. which can

complement [L.SMs. Satellite products are particularly relevant -for the monitoring of LSVs. Satellite

EOs related to the terrestrial hydrological, vegetation and energy cycles are now available globally,
at-a-global-seale-at kilometric scales and below-with-tong-termrecords-and (e.g., Lettenmaier et al.,
2015, Balsamo et al., 2018). Combining EOs and LSMs through Land Data Assimilation Systems
(LDASSs) -can leads to enhanced initial land surface conditions (e.g. Reichle et al., 2007; Lahoz and
De Lannoy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a, 2019; Balsamo et al., 2018).;

Subsequently, this can benefit weather forecasts, includingwhieh;in-turntead-to-improved-foreeasts
ot —weather—patterns,—sub-seasonal temperature and precipitation.; [t can also indirectly benefit
agricultural and vegetation productivity, streamflow prediction., warning systems forseasenal
streamtlow; floods and droughts;-as-wel-as and the representation of the carbon cycle (Bamzai and
Shukla, 1999; Schlosser and Dirmeyer, 2001; Bierkens, M. and van Beek, 2009; Koster et al., 2010;
Bauer et al., 2015; Massari et al, 2018; Albergel et al., 2018a, 2019, Rodriguez-Fernandez et al.,

2019; Muinoz-Sabater et al., 2019). Amongst the current land-only LDAS activities several are led
bv NASA-fed (National Aeronautics and Space Administration) projects. Examples of such
activities are the Global Land Data Assimilation System (GLDAS, Rodell et al., 2004)-wwhichts+un
at-a—glebalseale—While, the North American Land Data Assimilation System (NLDAS, Xia et al.,
2012a, b) and the National Climate Assessment-Land Data Assimilation System (NCA-LDAS,
Kumar et al., 2016, 2018, 2019). arerun-over-thecontinental-United-Statesof Ameriea—and-tThe
Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS,
McNally et al., 2017) is run—e-£- over Western, Eastern and Southern Africa. FinaltlsAdditional
examples include the Carbon Cycle Data Assimilation System (CCDAS, Kaminski et al., 2002), the
Coupled Land Vegetation LDAS (CLVLDAS, Sawada and Koike, 2014, Sawada et al., 2015), the
Data Assimilation System for Land Surface Models using CLM4.5 (prepesed-by-Fox et al., 2018);
and the SMAP (Soil Moisture Active Passive) level 4 system (Reichle et al., 2019). as—well
asFinally LDAS-Monde (Albergel et al., 2017, 2018, 2019) developed by the research department

of Météo-France. Details of these studies are provides byA-mere-detatted-deseription-of-the-various
existing EDASsts-avatlable inFewstadies havehoweverinehaded-the-assimtationof multiple £Os

> S i e t S ) ) F Ty . —'Gf datﬂf as‘slliii}ﬁfiﬁﬁ
systems-combining EOsand L-SMs-are-additionalexamples- Kumar et al., (2018); Albergel et al.,
(2019)—and—references—therein_but few applications are global and include -the assimilation of

multiple EOs.

LDAS-Monde consists in an offline (i.e. non coupled with the atmosphere) joint assimilation of

Surface Soil Moisture (SSM) and Leaf Area Index (LAI) EOs into the ISBA (Interaction between
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Soil Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996).
After—several-apphieationsSeveral previous studies using LDAS-Monde have been published at
regional and continental scales (Albergel et al., 2017, 2018, 2019, Leroux et al., 2018, Tall et al.,

2019, Blyverket et al., 2019, Bonan et al., 2020).; In this studv. LDAS-Monde is run at thea global

scale and is forced by the latest atmospheric reanalysis (ERAS5) from the European Centre for
Medium Range Weather Forecast (ECMWF), ERAS -over 2010-2018. The resulting teadingto-a-9-
51-0.25°-6-25> spatial resolution reanalysis of the LSVs is hereafter referred to as LDAS ERAS

Limoffl ot thi : o . es ref Lo e st ]
EDAS-Mende—_In this paper. it is shown that LDAS-Monde can be used to detect, monitor and

forecast the impact of extreme events on LSVs. The following items are presented and discussed:

. An evaluation of LDAS-Monde at a global scale is carried out. This assessment involves the

assimilated observations to demonstrate that the system is working as intended. Btt—more

fundamentallylmportantly, LDAS-Monde is then validatedglobal—analysis—is—appraised using

diverse, independent and complementary satellite-derived datasets of evapotranspiration (EVAP)

from the GLEAM project (Miralles et al., 2011, Martens et al., 2017), Gross Primary Production
(GPP) from the FLUXCOM project (Tramontana et al., 2016, Jung et al., 2017), Solar Induced
Fluorescence (SIF) from the GOME-2 (Global Ozone Monitoring Experiment-2) scanning
spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data from the Interactive
Multi-sensor Snow and Ice Mapping System (e+IMS, https://www.natice.noaa.gov/ims/, last

accessed June 2019). Thisevatuation—isaddittonatty-Additional validations are performed with in
situ  measurements of evapotranspiration from the FLUXNET 2015 synthesis data set

(http://fluxnet.fluxdata.org/, last accessed June 2019), soil moisture from the International Soil

Moisture Network (ISMN, Dorigo et al.. 2011. 2015, https://ismn.geo.tuwien.ac.at/en/, last accessed

June 2019) and river discharge from several networks across the world.

. The LDAS-Monde global analysis over 2010-2018 is used to detect droughts regions
exposed-to-extremeweather such-as—dreughts-and heatwave events in 2018. This identification is
performed by computing anomalies of LSVs over the 9-year period and identifying where the
strongest negative anomalies are located in 2018. For spettedthe identified regions, the menitoring
and—toreeast-abilities of LDAS-Monde are—further—investigatedat—higher spatialreselution—thus

A -4 Fobsee—e S SR e R e e e S A e e e s mmssasissyssrgle)
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The paper is organised in five sections: section 2 details the various components constituting
LDAS-Monde (the ISBA LSM, the data assimilation scheme the EOs assimilated as well as the
different atmospheric forcing datasets used), followed by the experimental and evaluation setup.
Section 3 describes and discusses the impact of the analysis on the representation of the LSVs.
Section 4 details the identification of 2 case studies over regions particularly affected by extreme

events during 2018 detailed monitoring

. Finally section 5 —provides

conclusions and prospects for future work.

2 Material and methods

The following subsections briefly describe the main components of LDAS-Monde: the ISBA
LSM, its data assimilation scheme and two other key elements of the setup: atmospheric forcing
and assimilated satellite derived observations. The experimental setup and the evaluation datasets

used in this study are also presented.
2.1 LDAS-Monde

Embedded within the SURFEX (SURFace EXternalisée, Masson et al., 2013, version 8.1)
modelling platform developed by the research department of Météo-France (CNRM, Centre
National de Recherches Météorologiques), LDAS-Monde (Albergel et al., 2017) allows the joint
integration of satellite derived SSM and LAI into the CO,-responsive (Calvet, et al., 1998, 2004,
Gibelin et al., 2006), multilayer diffusion scheme (Boone et al., 2000, Decharme et al., 2011)
version of the ISBA LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996) coupled with
the CTRIP (CNRM Total Runoff Integrating Pathways, Decharme et al., 2019) hydrological model
using a Simplified Extended Kalman Filter (SEKF, Mahfouf et al., 2009).

2.1.1 ISBA Land Surface Model

The ISBA LSM aims to model the evolution of LSVs. In the chosen configuration for this
, ISBA is able to represent the transfer of water and heat through the soil based on a
multilayer diffusion scheme, as well as plant growth and leaf-scale physiological processes. ISBA

models key vegetation variables like LAI and above ground biomass, the diurnal cycle of water,
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carbon and energy fluxes. It computes a soil-vegetation composite using a single-source energy
budget. In the CO2-responsive version of ISBA, ISBA-A-gs, the model can simulate the CO2 net
assimilation and GPP by considering the functional relationship between the photosynthesis rate
(A) and the stomatal aperture (gs) based on the biochemical A-gs model proposed by Jacob et al.,
1996. Photosynthesis control the evolution of vegetation variables. It makes vegetation
growth possible as a result of an uptake of CO2. , a deficit of
photosynthesis triggers higher mortality rates. Ecosystem respiration (RECO)
the CO2 being released by the soil-plant system and GPP by the carbon uptake
photosynthesis. Finally, the net ecosystem exchange (NEE) consists of the difference
between GPP and RECO. Each ISBA grid cell is composed of up to 12 generic land surface types,
bare soil, rocks, permanent snow and ice surfaces as well as nine plant functional
types (needle leaf trees, evergreen broadleaf trees, deciduous broadleef trees, C3 crops, C4 crops,
C4 irrigated crops, herbaceous, tropical herbaceous and wetlands). The ECOCLIMAP-II land
cover database (Faroux et al., 2013) provides parameters for each patch and each grid

cell

ISBA multilayer diffusion scheme’s default discretization is 14 layers over 12 m depth.
The
thickness (depth) of each layer (from top to bottom), 1 cm
(0-1 cm), 3 cm (1-4 cm), 6 cm (4-10 cm), 10 cm (10-20 cm), 20 cm (20-40 cm), 20 cm (40-60 cm),
20 cm (60-80 cm), 20 cm (80-100 cm), 50 cm (100-150cm), 50 cm (150-200cm), 100 cm (200-300
cm), 200 cm (300-500 cm), 300 cm (500-800 ¢cm) and 400 cm (800 to 1200 cm)
. Snow is represented using the ISBA 12-layers explicit snow scheme
(Boone and Etchevers, 2001, Decharme et al., 2016).
2.1.2 CTRIP river routing system
The ISBA-CTRIP river routing system is able to simulate continental scale hydrological variables
based on a set of three prognostic equations. They correspond to (i) the groundwater, (ii) the
surface stream water and (iii) the seasonal floodplains. It converts the runoff simulated by ISBA
into river discharge. ISBA-CTRIP river-routing network has a spatial resolution of 0.5°
globally and is coupled daily with ISBA through the OASIS3-LCT coupler (Voldoire et al., 2017).
ISBA provides to—CTRIP updated fields of runoff, drainage, groundwater and floodplain
recharges. In turn, CTRIP provides ISBA with water table depth, floodplain fraction as well as

flood potential infiltration ISBA can simulate capillarity rise, evaporation
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and infiltration over flooded areas. A comprehensive overview of how CTRIP is coupled with

ISBA is available in Decharme et al.; (2019).

2.1.3 Data assimilation
The SEKF used in LDAS-Monde is a 2-step sequential approach in which a forecast step is
followed by an analysis step. The forecast propagates the initial state
to the next time step with the ISBA LSM and the analysis step corrects this

forecast by assimilating observations. The flow-dependency (dynamic link) between the prognostic
variables and the observations is ensured in the SEKF through the observation operator and its
Jacobians, which propagate information from the observations to the analysis via finite-difference
computations (de Rosnay et al., 2013). The Jacobian matrix has as many rows as assimilated
observation types ( two : SSM and LAI) and as many columns as model
control variables requested (8 in our case , soil moisture from layers 2 to 8 and
LAI). In addition to a control run (i.e. the forecast step), computing the Jacobian matrix requires
perturbed runs, one for each control variable. The eight control variables are directly updated using
their sensitivity to observed variables (i.e. defined by the Jacobian). Other variables are indirectly
modified through biophysical processes and feedback from the model. Several studies (e.g. Draper
et al., 2009; Riidiger et al., 2010) have demonstrated that small perturbations lead to a good
approximation of this linear behaviour, provided that computational round-off error is not
significant. Typically, for those runs, the initial state of the control variable is perturbed by about
0.1% (see Albergel et al., 2017; Riidiger et al., 2010). The length of the LDAS-Monde assimilation
window is 24 hours-. A mean volumetric standard deviation error is specified proportional to
the soil moisture range (the difference between the volumetric field capacity and the wilting point,
calculated as a function of the soil type, as given by Noilhan et Mahfouf, 1996) scaled by a
factor 0.04 for SSM in its model equivalent (the second layer of soil between 1 and 4 cm), and 0.02
for deeper layers (soil layers 3 to 8, 4-100 cm). The observational SSM error follows the same
scaled by 0.05 is consistent with errors typically expected for remotely
sensed SSM (e.g., de Jeu et al., 2008, Gruber et al, 2016). Based on previous results from Jarlan et
al., 2008, Riidiger et al., 2010 Barbu et al., 2011, observed LAI standard deviation errors are
set to 20 % of the LAI value itself.
for values higher than 2 m*m™.
For values lower than 2 m’m?, a fixed of 0.04 m’m™ has been used.
More detail can be found in Barbu et al.,, 2011 (section 2.3

and figure 2).



2.2 Atmospheric forcing

275 \ The lowest model level (about 10 metres —-above ground level) of air temperature, wind speed,
specific humidity and pressure, the downwelling fluxes of shortwave, longwave radiations as well
as precipitation (partitioned in solid and liquid phases) are needed to force LDAS-Monde. In this

‘ study, LDAS-Monde is driven by several near-surface meteorological fields from ECMWF:-
* its most recent atmospheric reanalysis (ERAS) to produce an LDAS-Monde global

280 reanalysis

* its high resolution Integrated Forecast System (IFS HRES) to monitor and predict the
evolution of LSVs for regions under severe droughts and heatwaves.

\ ERAS5 (Hersbach et al., 2018, 20201+9-—=submitted) is the fifth generation of global reanalyses
produced by ECWMEF. This atmospheric reanalysis is a key element of the Copernicus Climate
285 Change Service (C3S) and is available from 1979 onward (data is released about 2 months behind
real time). ERAS produces analyses at an hourly output, athas—heurly—eutput-analysis; 31 km
horizontal dimensionresolution and consisting of 137 levels in the vertical-+esetution. Several

studies have validated the ERAS5 dataset. For example, Urraca et al. (2018) have compared

incoming solar radiation from both ERAS and the ERA-interim reanalysis (Dee et al., 2011) at a
290 global scale and found evidence that ERAS5 outperforms ERA-Interim. In another study, Beck et al.
(2019) have highlighted the good performance of ERAS precipitation with respect to a set of 26
gridded (sub-daily) precipitation data sources by comparing them to Stage-IV gauge-radar data over
the CONUS domain (CONtinental United States of America). Tall et al. (2019) have used in situ
measurements of precipitation at more than 100 stations spanning all over Burkina-Faso in Western
295 | Africa as well as incoming solar radiation from 4 in situ stations. They evaluated the performance to
evaluate—the—quality of ERAS evercompared to ERA-Interim and found improved results with
positive-outeomes-for ERAS as well. Furthermore. they Fhey-have-also-evaluated both reanalysis
datasets for their ability thr - > es ' - S sec-to force the
ISBA LSM, which demonstrate again—demonstrating-a clear advantage for ERAS in terms of the

300 | performance of [SVs. Similar—werk—has—been—done—by—Albergel et al. (2018a) made similar
comparisons of the ISBA [LSM forcing; over North America.; They showed this—study—found

enhanced performances in the representation of evapotranspiration, snow depth, soil moisture &s

welasand river discharge-when-the 1SBA-LSMwasforeed-by for ERAS eomparedrelative to ERA-

Interim.
305 | At the time of the-studywritting, the ERAS underlyingmodel and data assimilation system (Cycle
4112 of the ECMWE IES) are very similar to that of the operational weather forecast, HRES, which

10 10
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has production cycles ranging from 41r2 to 45r1 during the study period (
more information at
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model, last
accessed July 2019). The main difference between ERAS and HRES over the considered period is
the horizontal resolution, 9 km in HRES and 31 km in ERAS. The atmospheric forcing
is interpolated from the native grids of ERAS5 and HRES to regular grids 0.25° and 0.1°
, respectively, using a bilinear interpolation from the native grid to the regular grid. -ERAS
and HRES were used in Albergel et al. (2019) to force LDAS-Monde in order to study the impact of
the 2018 summer heatwave in Europe. Authors have highlighted that the HRES configuration

exhibits better monitoring skills than the coarser resolution ERAS

configuration.
In forecasting mode, HRES forecast is also available from 00:00 UTC with a 10-
day lead time . HRES forecast step frequency is

hourly up to time step 90 (i.e. day 3), 3-hourly from time-step 90 to 144 (i.e. day 6) and 6-hourly
from time-step 144 to 240 (i.e. day 10). In th forecast experiments (see
section 2.4 for details on the experimental setup) HRES forecasts with a 10-day lead time are used
to forecasts of the LSVs from LDAS HRES open-loop and
analysis configurations to evaluate the impact of the initialisation on the
forecast of LSVs. The original 3-hourly time steps are used up to day 6 (time step 144) he 6-

hourly time steps from day 6 to 10 are interpolated to 3-hourly frequency to avoid discontinuities.

2.3 Assimilated satellite Earth Observations

Two types of -satellite-derived variables are assimilated in LDAS-Monde: ASCAT Soil Water Index
(SWI) and LAI GEOVI. They are both freely available through the Copernicus Global Land
Service (CGLS, https://land.copernicus.eu/global/index.html, last accessed June 2019).

ASCAT stands for Advanced Scatterometer, is an active C-band microwave sensor that is
onboard the European MetOp polar orbiting satellites (METOP-A, from 2006, B from 2012 and
also C from 2019%). From ASCAT radar backscatter coefficients, it is possible to derive information
on SSM following a change detection approach (Wagner et al., 1999, Bartalis et al., 2007). The
recursive form of an exponential filter (Albergel et al., 2008); is then applied to estimate the SWI

using a timescale parameter, T (varying between 1 day and 100 days). T is a surrogate parameter for

all the processes potentially affecting the temporal dynamics of soil moisture soil
hydraulic properties , evaporation, run-off and
vertical gradient of soil properties . The obtained SWI then ranges

11
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between 0 (dry) and 100 (wet). In this study, CGLS SWI-001 (+-e—produced with a T-value of 1 day)
is used as a proxy for SSM (Kidd et al., 2013). Grid points with an average altitude exceeding 1500
m above sea level as well as those with more than 15 % of urban land cover are- rejected as those
conditions are known to the retrieval of SSM from space. Prior to the assimilation,
SSM has to be converted from the observation space to the model space. This is done through a
linear rescaling as proposed by Scipal et al. (2007), where the mean and variance of observations
are matched to the mean and variance of the modelled soil moisture from the second layer of soil
(1-4 cm depth). rescaling gives similar results to CDF
(cumulative distribution function) matching. The linear rescaling is performed on a seasonal basis
(with a 3-month moving window) as suggested by Draper et al., (2011) Barbu et al., (2014).
The LAI GEOV1 observations are based on data from -both SPOT-VGT (up to 2014) and -PROBA-
V (from 2014) satellites. They span from 1999 to present, have a1 km spatial resolution and
are produced —according to the methodology developed by Baret et al. (2013). LAI GEOV1
observations have a temporal frequency of 10 days at best

. LAI data are masked in the
presence of modelled snow by the ISBA LSM.
As in previous studies -(e.g, Barbu et al., 2014, Albergel et al., 2019), observations are interpolated
by an arithmetic average to the model grid points (0.25 ° or 0.10 ° in this study), if at least 50 % of
the model grid points are observed (i.e. half the maximum amount). -~ASCAT SSM and LAI GEOV1
are illustrated by Figure 1.

24 Experimental setup
LDAS-Monde is first run ,at0.25° spatial resolution, forced by
ERAS atmospheric reanalysis assimilat SSM and LAI EOs from 2010 to 2018
(LDAS ERAS ). LDAS ERAS is spun-up by running year 2010 twenty times.
LDAS ERAS analysis its model counterpart (open-loop, i.e. no data assimilation) are

presented and evaluated in this study.
This 9-yr global reanalysis is then used to provide a monthly climatology for estimating anomalies
of the land surface conditions. For each month (and variable considered) of 2018 we have removed

the monthly mean and scaled by the monthly standard deviation of the 2010-2018 period.

Significant anomalies are used to trigger more detailed monitoring forecasting
activities for a region of interest. 19 regions across the globe

known for being potential hot spots for droughts and heatwaves . They are
listed in Table I and presented in Figure 2. Monthly anomalies of SSM

12
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and LAI in the LDAS ERAS analysis are calculated for 2018

(with respect to the 2010-2018 period) over these 19 regions. In turn. regions presenting

significantand-regions—presentingsignitieant level of negative anomalies are selected and further
investigated. For those regions, a new LDAS-Monde has-beenexperiment was driven by the HRES

atmospheric analysis leading to a 0.1°=-0-1° analysis of the LSVs from April 2016 to December
2018 (LDAS HRES-herafter). Not that HRES 1s only available at a 0.1°—=6-1= spatial resolution
oty from April 2016. April to December 2016 is used as a short period for spin-up and results are
presented for the period 2017-2018. Although a 9-month spin-up period ean—be—seen—asis rather
short, evaluating LDAS_-HRES overen either 2017-2018 or 2018 (using instead a 21-month spin-
up) leads to similar results on surface soil moisture and LAI (not shown). While the system is not
fully spun-up, it-ean-be-considered-as—representative-of it is long enough to capture the system
response to data assimilation. LDAS HRES complements the coarser spatial resolution
LDAS ERAS.

HRES forecasts with a 10 day lead time are initialized either from are-alse-used;and-initialised by
etther-LDAS HRES analysis or open-loop eranalbysisexperiments (LDAS Fc hereafter) in order to

assess the impact of the initialisation on the forecast. Fereeaststor simplicity. only forecasts -with a

four and keight day lead time are presented—e#nly (LDAS fc4 and LDAS fc8, respectively). A

summary of the experimental setup is given in Table II.

2.5 Evaluation datasets and metrics

BothFhis—study—uses—several satellite-derived estimates of EOs as—wel-as—in—sttu—measurement

dataand in situ measurements are used as reference datasets in this study. The L.LDAS ERAS5

analysis impaetperformance is assessed with respect to the open-loop model run (i.e. no
assimilation). The two assimilated datasets, CGLS SSM and LAI, are firstly used to verify that the

data assimilation is behaving as expected. to—which—extent—the—assimiation—system—is—able—to

Then several

framebyindependent datasets are used for the validation. namely evapotranspiration from the

GLEAM project (Miralles et al., 2011, Martens et al., 2017, version 3b entirely satellite driven),
GPP from the FLUXCOM project (Tramontana et al., 2016, Jung et al., 2017), SIF from the
GOME-2 (Global Ozone Monitoring Experiment-2) scanning spectrometer (Munro et al., 20006,

Joiner et al., 2016) and snow cover data from the Interactive Multi-sensor Snow and Ice Mapping

System (e+-IMS, https://www.natice.noaa.gov/ims/)used—in-the-evaluationprocess—are—. The IMS

snow cover product combines ground observations and satellite data from microwave and visible
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sensors (using geostationary and polar orbiting satellites) to provide snow cover information in all
weather conditions. The IMS product is available daily for the northern hemisphere.
Soil moisture is validated using in fn-situ measurements of surface-soil moisture from the ISMN. a

pool of station which consists of 19 networks across 14 countries (see Table S3).19-networks-aeross

analysis— In total, Theyrepresent-782 stations are represented with at least 2 years of daily data over

2010-2018. In situ measurementsensorss at 5 cm depth (SSM) are compared w#ithwith soil moisture
from the-BDAS—ERAS-third layer of soil (4-10 cm) in LDAS ERAS.; In situ measurementssensors
at 20 cm depth are compared to LDAS ERAS soil moisture wwith-from the fourth layer of soil (10-

20 cm, 685 stations from 10 networks). Besides 11 stations located in 4 countries of Western Africa
(Benin, Mali, Sénégal and Niger) and 21 stations in Australia, most of the station are located in
North America and Europe: (see Table S3).

Evaluation datasets are listed in Table III along with the metrics used for the evaluation. For satellite

datasets of SWI, LAI, evapotranspiration and GPP, eerrelationsthe metrics consist of the correlation
coefficient (R), Root Mean Square Differences (RMSD) and Normalized RMSD (Nrwmsp, Eq.(1))-

— RMSD[Analysis} ~ RMSD

N =
RMSD RMSD [Model |

[Model x 100 Eq(l)

Regarding the SIF satellite dataset, fluorescence is not simulated directly in the ISBA LSM.
However, photosynthesis activity is simulated through the calculation of the GPP, which is driven
by plant growth and mortality in the model. Modelled GPP values are expressed in g(C)-m2-day ™,
while SIF is an energy flux emitted by the vegetation (mW-m s 'nm™"). Hence, GPP and SIF
cannot be directly compared as they do not represent the same physical quantities. However,
several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found a high
correspondence in both time and space between those two variablesthat—their—time—dynamtes

investigated, highlighting the potential of SIF products to be-tised-as-a—validationsupporttor-GPP
modelssupport the validation of modelled GPP. Therefore, the correlation between modelled GPP

and observed SIF is used as an evaluation metrics. ConcerningAbeut the snow cover dataset,

differences between observed and modelled snow cover is considered for the evaluation.
For in situ datasets of soil moisture and evapotranspiration, usualthe standard metrics are

considered, namely the correlation_coefficient, RMSD, unbiased RMSD and bias-are-considered-as

metries, -Moreover, a Normalized Information Contribution (NIC, Eq.(2)) measure is applied to the

correlation values to quantify the improvement or degradation due to the specific configuration.—
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R, =Ry ..
NICR: ‘Analy_sm‘ {Model | x 100 Eq (2)
1 RYModel}

NIC scores are classified according to three categories: (i) negative impact from the analysis with
respect to the open-loop with values smaller than -3 %, (i1) positive impact from the analysis with
respect to the open-loop with values greater than +3 % and (ii1) neutral impact from the analysis
with respect to the open-loop with values between -3 % and 3 %.
In addition, for surface soil moisture, correlation is calculated for both absolute (R) and anomaly
(Ranomaty) time-series in order to remove the strong impact from the SSM seasonal cycle
(see e.g. Albergel et al.-, 2018a, 2018b).

he Nash-Sutcliffe Efficiency score (NSE, Nash and Sutcliffe, 1970 ) is

used to evaluate LDAS ERAS experiments ability to represent the monthly discharge dynamics.

NSE=1—2=1 — Eq.(3)

where Q" is the monthly river discharge from LDAS ERAS5 (analysis or open-loop) at month mz,

and Q" is the observed river discharge at month mz. NSE can vary between —oo and 1. An exact

match between model predictions and observed data is defined as a value of 1, whereas a value of 0
means that the model predictions have the same accuracy as the mean of the observed data. Finally
negative values represent situations where the observed mean is a better predictor than the model
simulation. NIC presented in Eq.(1) has also been applied to NSE scores to assess the added value
of LDAS ERAS analysis over its open-loop counterpart. Stations with NSE values lesser that -2
have been -discarded. A similar threshold has already been used in previous studies evaluating
LDAS-Monde (e.g. Albergel et al.,, 2017, 2018a). Many
water management
dams and reservoirs, irrigation, water uptake in urban areas
to a poor representation of river discharges
. As previous studies

it has been decided to on stations with

reasonable NSE values.
3 Global assessment of LDAS ERAS

3.1 Gridded datasets

15



470

475

480

485

490

495

In this sub-section, LDAS-Monde open-loop and analysis

the assimilated observations (SSM and LAI) to demonstrate that the assimilation
system is working as intended. Both experiments are also compared independent sources of
information to evaluate the analysis impact (GPP, EVAP and SIF).
Figure 3 presents mean RMSD values between the observations and LDAS ERAS for the
open-loop (Figure 3a), and for the analysis (Figure 3b) over 2010-2018. Because LAI
observations are ingested into the model, the assimilation reduces the LAI RMSD values almost
everywhere. It be noted that rather large LAI RMSD values (> 1.5 m*m™) can remain in
some areas after the assimilation, especially in densely forested areas.
Figure 4 illustrates latitudinal plots of LAI, SSM, GPP and EVAP for LDAS ERAS before
assimilation (the open-loop) and after assimilation (the analysis) along with observations. The
number of points considered per 0.25° is represented . From
Figure 4a it is possible to see the positive impact the analysis has on LAI compared to the open-
loop, with the former being closer to the observations. Improvements the analysis

nearly 80°North to about 55° South areas around the equator

are . This demonstrates that the data
assimilation system is working as intended. A smaller impact is obtained for SSM,
GPP and EVAP , hardly visible at this scale. The mean latitudinal results

show a consistent difference in terms of GPP and EVAP between LDAS ERAS5 and the
observational products. These differences are systematic with higher values in tropical regions.
Figure 5 represents latitudinal plots of score differences (correlations and ) for
LAI, SSM, GPP, EVAP and SIF. For SIF

is used to evaluate GPP

variability as in Leroux et al., 2018. Score differences are computed

over 2010-2018 for LAI and SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-
2015 for SIF. For each panel of Figure 5, the vertical dashed line represents the 0-value. -For plots
of correlation differences, positive values indicate an improvement the analysis with respect
to the open-loop simulation. Similarly, for plots of RMSD differences, negative values indicate an
improvement the analysis with respect to the open-loop simulation. LAI and
SSM assimilated variables, the analysis leads to a clear improvement in both correlation
and RMSD. Such an improvement is expected and reflects the healthy behaviour of the assimilation
system. Both variables are improved at almost all latitudes with the exception around 45°S for LAI

correlation values (very few land points). For SSM a noticeable improvement in both correlation
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and RMSD is found around 20°N. which corresponds eerresponding-mainly to an improvement in

the Sahara desert (not shown). Being linked to LAI, GPP is also improved across almost all
latitudes (to a lesser extentd than LAI) with a particularly positive impact below 20°N. As seen on
Figure 5 d) and 1), there is Httleimpact-on—vartable EVARPa negligible impact of the assimilation on
EVAP —hieh—ean—be—considered—mnegheible: It highlights the difficulty of land surface data

assimilation to impact model fluxes by modifying model states.

The Ppanels of Figure 6 illustrate histograms of score differences (correlation and RMSD, analysis
minus open-loop) for LAI, SSM, GPP, EVAP and SIF. The number of available data as-weh-asand
the percentage of positive and negative values are reported. For correlations (RMSD) differences,
positive (negative) values indicate an improvement fremin the analysis everrclative to the open-
loop. -Regarding LAI, the analysis improves 96.9% of the grid points for correlations and 99.9% for
Nrusp. As for SSM, correlation values are improved for 92.8% of the grid points (92.4% for Rusp).

g s GPP and SIF;-one-may-alsonoticean

mprovement-from-the-analysts;_datasets also demonstrate improvements in the analysis relative to
the open loop. Indeed, the GPP -correlation (RMSDMNusp) isare better for 81.1% (74.1%) of the

The independent

oridpoints and the SIF correlation is enhanced for 79.7% amd-79.7% ¢forSIE-NRMSD-

Results using the GLEAM dataset for evapotranspiration are more contrastinged with 63.6%
(48.9%) of the grid points showing an improvement from the analysis. 1-It is worth mentioning that
24.9% (39.6%) of the grid point shows a decrease in skill. However, GLEAM is an evaporation
model designed to be driven by remote sensing observations only. GLEAM only estimates (root-
zone) soil moisture and terrestrial evaporation while the CO2-responsive version of ISBA in
LDAS ERAS is a physically-based land surface model, accounting for more processes linked to
vegetation (see section 2.1.1). It has—teshould be noted that the auxiliary datasets used to e-g-
represent the different land cover types are-differentalsoalso differ. Within GLEAM, the land cover
types fractions—are sourced from the Global Vegetation Continuous Fields product (MOD44B),
based on observations from the Moderate Resolution Image Spectroradiometer (MODIS). Four land
cover types are considered, namely bare soil, low vegetation (e.g. grass), tall vegetation (e.g. trees),

and openwater (e.g. lakes). In ISBA. the fraction of the 12 land cover types fraction—departover

some areas departs from prevalent land cover products such as CLC2000 (Corine Land Cover) and

GLC2000 (Global Land Cover). It earncould potentially impact the distribution of the terrestrial
evaporation between GLEAM and ISBA. Further work at CNRM will focus on understanding the
differences between ISBA and GLEAM, in particular investigating the sub-components of

terrestrial evaporation.
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Finally, Figure S1 and Figure S2 illustrate snow cover evaluation. LDAS ERAS snow cover is

evaluated against the IMS snow cover . Figure S1 shows the

-

averaged northern hemisphere snow cover fraction for the 2010-2018 period. It is complemented by

atb-panels—of-Figure S2 which showings (i) maps of IMS snow cover (top row) for 3 seasons;

MAM—respeetively, (11) equivalent maps of snow cover from LDAS ERAS open-loop (second

row), (iii) maps of snow cover differences between the open-loop and IMS data and (iv) maps of
snow cover differences between the analysis and the open-loop. LDAS_ERAS open-loop compares
very well with the IMS snow-cover data in the accumulation season from September to February
(Figure S2 and panels d) to i) of Figure S1), except foresty—with an overestimation over the Tibetan
Plateau. The issue over Tibet from ERAS5 is not new; and is consistent with previeus—stuadiestike
Orsolini et al., (2019). An early melt in spring eompared—to—observations—isnotedis visible in

LDAS_ERAS compared to observations and could be related +it:to the snow cover parametrization

in ISBA. As expected, the analysis has an almost neutral impact on snow as both SSM and LAI

observations are filtered out fremduring frozen/snow-covered conditions and esndition-and-as-there

is no snow data assimilation yet in LDAS_ERAS (Figure S2 and panels (j), (k) and (1) of Figure
S1). CHhis—<learly-shews—hewever an area of potential improvement sf—data—assimilation—within

LDAS-Monde is to incorporate snow data assimilation using satellite data such as the-IMS-ore (as

in e.g. de Rosnay et al., 2014).

3.2 Ground-based datasets

LDAS ERAS analysis and open-loop are also evaluated using independent in situ measurements of
evapotranspiration, river discharge and surface soil moisture across the world. Daily in situ
measurements of evapotranspiration from the FLUXNET-2015 synthesis data set
(http://fluxnet.fluxdata.org/, last accessed June 2019) are first used in this study. The LDAS ERAS
ability —to—represent—evapetranspirationevapotranspiration performance is evaluated using the
correlation coefficient (R), RMSD.—and ubRMSD as—well-asand the bias (LDAS ERAS minus
observations) using the 85 selected FLUXNET-2015 stations. The mMedian R, RMSD, ubRMSD
and bias for LDAS ERAS analysis (open-loop) are 0.73 (0.72), 28.74 (29.60) W.m?, 27.37 (26.92)
W.m? and 4.64 (4.40) wm?, respectively. H-these—numbersAlthough these values depict a small

advantage of the analysis over the open-loop cenfiguration, it is worth mentioning that these
differences are rather small and likely to fall within the uncertainty of the in situ measurements.

Figure 7(a) represents the added value of the analysis based on NICr (Eq.(2)), the large blue circles
represent a positive impact from the analysis (20 stations) with a NICy greater than +3 (i.e. R values

are better when the analysis is used than when the model is used) while large red circles represent a
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degradation from the analysis (5 stations) —with a NICr smaller than -3. Stations with a rather
neutral impact (60 stations) -havewith a NICr between [-3 ; +3] and are reported using small dots.
Note that at the scale of Figure 7(a), some stations are overlapping. Figure 7(a) is complemented by
panels —(b), (¢), (d) and (e) that-arewhich show scatter-plots of R, ubRMSD, absolute bias and
RMSD between LDAS ERAS analysis (x-axis) and the; open-loop (y-axis) for the 85 stations from
the Fluxnet2015.; Out of the 85 stations considered. 5656-stations{eut-ot55) have better R values

eonsideringin the analysis—TFhey—are—4t+—for—ubRMSD;—47fercompared to the open loop. The
respective numbers of improved stations for ubRMSD., RMSD and 44-fer-abselate-biasthe absolute

bias equate to 41.47 and 44 respectively. The set of 20 stations from Figure 7(a) where the analysis

has a positive impact on the NIC, at-NEC,-(greater than +3) are reported in green on Figure 7(b).

Results on river discharge are illustrated by Figure 8 (panels a and b). Figure 8(a) represents NSE
scores for the subset of 982 stations selected. Most of them are located in North America and
Europe while a few are available in South America and Africa. Figure 8(a) is complemented by
Figure 8(b) which shows thatrepresents-the NIC score applied to the NSE score. andit emphasizes
the added value of the LDAS ERAS analysis over the open-loop. From this subset of station74% e+

this—subset-ofstations—presents a rather neutral impact from the analysis (-with a NIC ranging
between -3% and +3%) while 26% (254 stations) presents a significant impact (with a NIC above
+3% or below -3%)-. When the analysis significantly impacts the representation of river discharge,
this impact tends to be positive. Indeed.—with 74% of this subset of stations (189 stations) havinge a

NIC score greater than 3% while only 26% (65 stations) presertsshow NIC score smaller than -3%.

ho ati1qtinn Ao A A PP o A1 ) A LR A anonJdann—and-anag FQt h 1 o
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4 The statistical scores for soil moisture from LDAS ERAS open-loop and analysis are

presented for the third and fourth layers of soil, corresponding to 4-10 cm depth and 10-20 cm depth

respectively. The soil moisture at layers 3 and 4 is compared with ground measurements over 2010-

2018 from the ISMN at depths of 5 cm and 20 cm respectively. The results are displayved in Table

S3 for each individual network. Averaged statistical scores (ubRMSD. R, Ranomaly and bias) are

similar for both LDAS ERAS5 analysis and open-loop even if local differences exist. For the

analysis, averaged R (Ranomaly) values for the third layer, along with their 95% Confidence
Intervals (CI) (782 stations from 19 networks). are 0.684+0.03 (0.534+0.04). For the open loop. the

averaged R (Ranomaly) values are 0.67+0.03 (0.53+0.04). Averaged-network values are highest for

the SOILSCAPE network with values of 0.88+0.01 (0.58+0.04) for the analysis (49 stations in the

USA). For all networks, the average R values are higher than 0.55, with the exception of ARM (10
stations in the USA). which presents an averaged R value of 0.29+0.05. Averaged ubRMSD and

bias (LDAS_ERAS5 minus in situ) are 0.060 m’m™~ and 0.077 m’m” for the analysis respectively.

The open loop has a similar performance, with a ubRMSD and bias of 0.060 m*m™ and 0.076 m’m

respectively. NIC (Eqg.2) has also been applied to R values. In total., 65% of stations present a

neutral impact of the analysis compared to the open loop (511 stations at NIC ranging between -3

and +3). 12% present a negative impact (91 stations at NIC < -3) and 23% present a positive impact

(180 stations at NIC > +3).

The number of stations where R differences between the analysis and the open-loop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis with respect tow+ the open-loop for 128 stations (ott-ot—+s6—+e—about 69%)

and a degradation for 58 stations (about 31%). Figure 9 illustrates R differences between the
analysis and the open-loop runs over CONUS where most of the stations are located (552 out of
782). When differences (analysis minus openloop) are not significant stations are represented by a
small dot (425 stations out of 552-about-77%). When they are significant (127 stations out of 552
about23%), large circles have been used, bhie—torwith blue corresponding to positive differences

(sn—improvement—{rom—the—analysis;—99 stations out of 127—=abeut—78%) and red for negative
differences (28 stations out of 127a-degradation—fromthe—analysis; 28stattons,—abeut22%). For

most of the stations where a significant difference is obtained, it represents an improvement from

the analysis.
Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65+0.03, 0.049 m’m™~ and 0.055 m’m~, respectively. For the open-loop, they are
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0.64+0.03, 0.048 m’m™ and 0.056 m’m”~, respectively. Forsoilmeistureat-that-depthln terms of the
NIC, about 60% of the stations presentdemonstrate a neutral impact fremof the analysis compared

with the open loop, while 28% show (41+0—statiens—atNIC—ranging-betwveen—3—and—+3),28%a
positive impact-{+&9-stationsat-NE—>—+3) and 12% a negative impact—(&6-stationsat-NHE—<—3).

Although differences between the open-loop run and the analysis are rather small, these results

underline the added value of the analysis with respect to the model run. Figure S3 represents the

distribution of the scores values for LDAS ERAS open-loop and analysis using boxplots centred on

the median value. [Theylook—very—similar—and—tromTigure—53—it is difficult to see either
mprovement-or-degradation-from-the-analysisany important differences between them.

For evapotranspiration, river discharge and surface soil moisture there is a slight advantage for_the
LDAS ERAS analysis with respect to its open-loop counterpart. Even if the distribution—ot—the
averaged statistical metrics arcean—be rather similar for bOth—(-}?ﬂi—t—t@ﬂ-l—ﬂH—y—t—tu-@—fOi—S—tﬂ-f&ee—Sﬁﬁ
moisture—evaluation), there are significant regi >
added-vatue-of the-anatysts-with-respeet-to-the-open-toopdifferences at the regional scale.

4. Monitoring and forecasts for areas under severe/extreme conditions

4.1 Selection of two regional case studies

For each individual region presented in Table I and Figure 2, monthly anomalies (scaled by the
standard deviation) of analysed SSM (second layer of soil, 1-4cm) and LAI for 2018 are- assessed
with respect to the 2010-2018 averageperiod. The anomalies (see Figure 10) highlight three regions,
two of which presentirig strong negative anomalies for both SSM and LAI for almost all 26+&+of
2018. These are ~North ~-Western Europe; (WEUR), and the Murray-Darling basin; (MUDA), in
South Eastern Australiaj. and-—ene—presentingContrastingly, one region presents strong positive
anomalies of SSM and LAI in Eastern Africa (EAFR). WEUR and MUDA regions were affected by
a severe heatwave and a drought in 2018—impacting. which impacted the LSVs analysed by
LDAS ERAS. According to Figure 10, monthly anomalies of SSM and LAI for MUDA are
negative through the—whele-2018 with 7 and-(6) months presenting LAI and-(SSM) anomalies

below -1 standard deviation (stdev), respectively. WEUR has negative SSM anomalies from May to
December 2018 with values dippingeeing below -2 stdev. LAI was severely impacted as well with
July to October 2018 presenting negative anomalies below -2 stdev. For WEUR, 5 months
presentshow LAI and SSM anomalies below -1 stdev. On the other hand, EAFR experienced 3 (7)
EAFR-expertenees3-and-7months with positive anomalies for SSM and LAI in 2018 above 1 stdev
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According to the National Oceanic and Atmospheric Administration (NOAA), Europe experienced
its warmest summer since continental records began in 1910 at +2.16°C above mean (Global

Climate Report, https://www.ncdc.noaa.gov/sotc/global/ last accessed April 2019). In Europe,

. The summer 2018 heatwave in Europe has
already reported in the scientific literature (e.g. Magnusson et al., 2018, Albergel et al., 2019,
Blyverket et al., 2019).
In its 70™ Special Climate Statement, the Australian Bureau of Meteorology (BoM) reported a
very hot and dry summer 2018 in eastern Australia (BoM, 2019). Like much of Australia, the
Murray Darling basin experienced a-remarkably dry and hot weather during 2018. The
annual maximum temperature for the Murray Darling basin as a whole was more than two degrees
above average during 2018. The northern Murray—Darling Basin in particular was severely affected
with  inflows to all catchments  persistently well below
(http://www.bom.gov.au/state-of-the-climate/, last visited: April 2019). Finally, the East Africa
Seasonal Monitor based on the Famine Early Warning System Network (FEWS) confirms above-
average rainfall amounts significantly greener than normal vegetation conditions (e.g.,
https://reliefweb.int/report/somalia/east-africa-seasonal-monitor-july-27-2018, last visited: April
2019). As this study focuses on monitoring and forecasting the impact of severe droughts conditions

on LSVs, the WEUR and MUDA are selected for further investigation.

4.2  Case studies : LDAS-Monde medium resolution (0.25° ) experiments
Figure 11 illustrates seasonal cycles of observed LAI (Figure 11a) and SWI (Figure 11le),
LDAS_ERAS analysis and open-loop LAI (Figure 11b) and SSM (Figure 11f) for the WEUR
domain. is compared to 2010-2017 . From
Figure 11a, one may see the heatwave impact with a sharp drop in observed LAI values from June
to November 2018 (solid green line). Such low LAI values have never been observed over the eight
previous years (
in shaded green). A similar behaviour is
also visible in the ASCAT SWI dataset in Figure 11e with the lowest values
2010-2018 period. Over WEUR, LDAS_ERADS open-loop overestimates LAI
in the second part of the year, as already highlighted by several studies (e.g. Albergel et al., 2017,
2019). LDAS_ERAS analysis has a positive impact LALI values, as seen
Figure 11b Panels c), d) g) and h) of Figure 11)

depict a similar situation for the MUDA area, almost every month of 2018 presents the lowest
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700 values for both SSM and LAI. For both MUDA and WEUR, the smaller differences for LAI and
SSM between LDAS_ERAS analysis and open-loop in 2018 ecompared—to—2040-2617—also
suggestindicates that both extreme events were well captured in the atmospheric forcing used to
drive LDAS_ERAS.

\ 4.3 Case studies: fer-assessing-LDAS-Monde high resolutions (0.1°=6-1°) analysis and forecast

705  experiments

For the two selectedthese—two—speeitic areas (WEUR and MUDA), LDAS-Monde is also i

fereedrun_over April 2016 to December 2018 with the atmospheric forcing from—by HRES

(LDAS_HRES) at 0.1° 012 spatial resolution-everApri20+t6-+tsDecember 2618, Additionally

daily forecast experiments are performed and the results presented for LAI and SSM for lead-times

710 | of toEDASHRES analysis,terecast-experiments—with-atead-time-oft-4-days and 8-days.; These

forecasts are initialised by either LDAS_HRES analysis or open-loop over are-presented—+tor 2017-

2018-For-SSM-and-A1) in order to assess the impact of the initial conditions-en-theforecastetthe

5V, In this subsection, this new set of six experiments is verified against the assimilated

observations. Verification of the fereeast—experimentsforecasts with these observations can be

715 viewed as an independent validation as those observations are not assimilated yet. It is worth
mentioning that there is a difference between the use of SSM and LAI observations to evaluate the

forecast. For SSM, the assimilation is done after a rescaling of the observations to the model

climatology (see section 2.3), which removes bias. However. fFor LAl;-hewever this is not the case

and the assimilation process removes the bias in wnbiases-the modelled LAI with respect to the
720 | observationsfw-rt—the—observation). This difference, together with the longer memory of LAI

(compared to SSM), contributes to the results presented in this sub-section. Statistical scores for

LDAS_HRES open-loop and analysis are also presented;-atso, towhich serve as a benchmark foret
the forecast experiments.

Upper-panels—oft-Figure 12 (for WEUR) and Figure 13 (for MUDA) upper panels; illustrate the
725 | seasonal RMSD (Figure 12a, 13a) and correlation (Figure 12b, 13b)-valies between SSM-from-the
seeond-ayer-ef-sot-Hd—4-em)fromEDAS-Mondeforeed- by HRESLDAS_HRES_SSM from the
second layer of soil (1-4 cm);-oper-teop-ant-analysis) and ASCAT SSM estimates over 2017-2018.
Scores between-SSM-from-the second-layerotseiletare also reported for the LDAS_HRES 4-day
terecast (LDAS_fcd)—initialised—by—either the—opentoop—er—analysis) and 8-day forecasts
730 | (LDAS_fc8,—initialised—by—either—the—open-ltoop—er—analysis)and-ASCAT-SSM—estimates—are

reported;-alse. From the upper panels of those figures one may notice a small improvement from the

analysis (solid red line) over the open-loop simulation (solid blue line), with slightly

deereastngreduced RMSD values and increasiriged correlations values. However. no improvement
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(nor degradation) is visible from the 4-d and 8-d forecasts experiments initialised by LDAS_HRES
analysis over those initialised by LDAS_HRES open-loop;—they—display—very—stmilarseores. As
expected, LDAS_HRES SSM is ef-better—qualitycloser to the observations compared with-than
LDAS fc4 and LDAS_fc8. Netehoweverthatforthelt is worth pointing out that for the MUDA

area; there is a small positive impact of the initialisation on the 4-d and 8-d forecast of surface soil

moisture (Figure 13a, b). Thesse results suggest that theis fast evolving SSM model variable {S5SM
between—temand-4-em-depth)yreliesmere-ontheis more sensitive to the atmospheric forcing than

toen the initial conditions (at least within the forecast range presented in this study).-ane-it-can-be

first24-h-analysis: Results for LAI are different from -SSM (lower panels of Figure 12 and Figure

13). Firstly, there is a large improvement from the analysis (solid red line) over the open-loop (solid

blue line), particularly induring the LAI decaying phase (Boreal and Austral autumns mainly).
Secondly, the LDAS_HRES open-loop (solid blue line) and the forecasts initialized by the open
loop; (LDAS_fc4—{dotdashed—blue—tine) and LDAS_fc8(dashed—blue—tine) —initialised—by
EDAS—HRES—oepen-toop_perform similarly—present—very—simitar—skills;. se—de_Furthermore, the
LDAS_fc4 and LDAS_fc8 forecasts are quite consistent when initialised by the LDAS_HRES
analysis-(detdashed-and-dashedredlines;respeetively). They-alse-outperform—skills-eflmportantly,
the LDAS HRES analysis and forecasts outperform the LDAS_HRES open-loop _initial conditions
and forecasts; FDASfe4-andEDASte8initialised-by EDAS—HRES-openr-teop. This suggests that

LAI relies-more-on-itsforecasts are more sensitive to initial conditions than -e#to the atmospheric

forcing (atdeast-within the fereeastrange presentedin—this—stady)4-8 day range for both-and-that

areas; WEUR and MUDA regions.

These results are corroborated by Figures 14 (for WEUR) and 15 (for MUDA), tep—tows
tHustratefor both SSM (top) and bettem—+ews-LAI (bottom). Figures 14(a) and 15(a) show RMSD
values between LDAS_HRES open-loop SSM (1-4 cm) and ASCAT SSM over 2017-2018 for the
WEUR and MUDA domains, respectively. Due to the seasonal linear rescaling applied to ASCAT
estimates, the RMSD values are rather small. For the WEUR (MUDA) domain they range from 0 to
0.048 m’m> (0 to 0.040 m®m™). Figures 14(b) and 15(b) represent maps of RMSD differences
between LDAS_HRES analysis (open-loop) and ASCAT SSM estimates over 2017-2018 for the
WEUR and MUDA domains;—#s—wet. Both maps are dominated by negative values (in blue)

indicating that RMSD values are consistently smaller-{5etter) when using LDAS_HRES analysis

than when using LDAS_HRES open-loop.tis-alse—werth-mentioning thannopesitive differences
(e—a-degradationfrom-the-analysis)are presentin-those-maps: For the MUDA domain, they-—are
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tmprevedthe RMSD values are reduced by about 15%. Figures 14(cj, d) and 15(c}, {d) are—alse
show maps of RMSD differences;they—<eensider for forecast experiments (LDAS_fc4, LDAS_fc8).
It appears that ferover both domains, the impact from the initialisation is rather small. This supports
previous results indicating that the—with—few—eoletred—areas;,—strengthening—previous—resuits
suggesting-that; forcing quality is more important than the initial conditions te—fereeastfor the SSM
vartabteforecats. However, the results for LAI support the opposite conclusionResutts-are-aitferent
for-AL,. The RMSD values for LDAS_HRES open-loop are—rangingrange betweenfrom 0 andto
1.6 m’m™ over WEUR _and; 0 andto 1 m’m? over MUDA (Figures 14(e) and 15(e)). The RMSD
values are imprevedreduced by up to 37 % over WEUR and up to 60% over MUDA by the analysis
(Figures 14(f) and 15(f)). fmprevementThe enhancement from the data assimilationanalysis—ever
the-epen-toop-experiment is consistent through aHout the WEUR domain while the improvement
over the MUDA domain is restrained—toconcentrated in the south eastern part -(the north western
part hastew-RMSD-values-as-the-open-toopis largely unchanged).

Similarly to Figures 14(a, b, ¢, d), -parelset-Figure 16 illustrates the impact of the analysis on SSM
in terms of the correlation coefficientusing-eerrelations. This-timeBut this time, ASCAT SWI (i.e.

no rescaling) has been used for the validation. Figure 16 (top panels) shows maps of R values based

on the absolute values while Figure 16 (bottom panels) shows R values based on the anomalyies

time series (capturing short term variability) as defined in Albergel et al., 2018a. Figure 16 (a) and

(e) represents R values and anomaly R values for LDAS_HRES, respectively. As expected R values
are higher than anomaly R values. Maps of differences (panels b and f) of Figure 16 suggest that
after assimilation, both scores are improved ratheralmost equally. While the 4-—day and 8-day
forecasts still show ar-improvements from the using initial conditions from the analysis over the

open loop on R values (panels ¢ and d of Figure 16-deminated-by—positivedifferences—analysis
mints-epen-toop), maps of anomaly R values foreeast do not display any negative or positive

impact (panels g and h of Figure 16).

Finally, the top panels of Figure 17 illustrate the impact of the analysis on drainage monitoring and
forecasts over WEUR. Fig. 17 a) represents drainage from the LDAS_HRES open-loop varyingwith
values ranging between 0 and 1 kg.m?.day™" Fig.17 b) shows the —drainage difference between
LDAS_HRES analysis and open-loop. The analysis impact on drainage is rather small; (absttwithin
+3%) and more pronounced in areas where the analysis has largely affected LAI more-(see panels
f), g} and h) of Figure 14). As seen in Figure 17 enpanels—(c) and (d), there-is-also—an—impact
fromthe forecasts are also sensitive to the initialisation in areas wwere-the-analysis—was-moerewhere
the analysis effectively correcteding LAI. The bBottom panels of Figure 17 illustrate a similar

impact on runoff. Asfer-drainage;this-vartableis-affeeted by-theanalysistnitial-eonditionshavean
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impacton-itsfterecastalso: Although we did not validate drainage and runoff in this study, presenta
quality-assessment-of-those-twe-variables;previous eur-findings suggest a neutral to positive impact
of the analysis on river discharge through modifications to drainage and runoff analysis-impaet;but

also-those-from-(Albergel et al., 2017, 2018a);-stggesta-nettral-to-positive-impact, propagated-from

o - o I - - )
v = v S

5. Discussion and conclusion
This study has demonstrated that—combininga-LSM —satelhitethe potential of LDAS-Monde for

assimilating EOs into a LSM and-atmospherieforeine—thronesh EPDAS-Mondehas—a—ereat potentis

to representpredict the impact of extreme—weather—(theatwaves and droughts) on land surface
conditions. LDAS-Monde is now ready for tse—in-various applications sueh—asincluding (i) land

surface reanalyses of tand-Essential Climate Variables (ECVs), (ii) monitoring of water resources,.
such as the impact of droughts andon vegetation, and-(ii1) the detection of severe-condittonsextreme
land surface conditions: and (iv) the effective evertand-and-initialisation of LSVs foreeastfor land

surface forecasting. LDAS-Mondett has been applied in this study to past events of 2018 with
respect to a shert-period-of-timerelatively short climatology (2010-2018).-as-a-demonstrator-but-will

be-extended-to-atonger-time-pertod—_It is planned that it will be applied to much longer periods for
future reanalysis applications. The operational application of LDAS-Monde eperational-use-in-near-

real--time has-the-eapacitytoserve-asancould potentially improve emergency monitoring systems
for the—LSVs. Using high gquality atmospheric reanalyseis like ERAS to force LDAS-Monde

guarantees a high level of consistency beeause-ofits+frozensince the configuration is frozen in time

(no changes in spatial and vertical resolutions, data assimilation andor parametrizations). The ERAS
coarse spatial resolution of ERAS5 makes it affordable to run long time periods terr-and large--scale
LDAS-Monde experiments. With ERAS5 available from 1979 and now covering near real-time
needs with its ERAST version (https://climate.copernicus.eu/climate-reanalysis), an LDAS ERAS
configuration would be able to provide a long term climatology as well as and-near--real--time
eoarseresotution (0255625 chmatologyasrefereneetor-anomaliesy detections of the land

surface conditions_at coarse resolution (0.25°). Significant anomalies could then be used to trigger

more focused “on-demand” simulations for regions experiencing extreme conditions. fn—that

easelor these simulations. LDAS-Monde could be run at higher resolution by forcing the LSM with

fereed—by—e-g-an_enhanced resolution forecast in order to provide more information, such as the
ECMWEF operational high resolution product (0.10°=6-16%). The capability of such an approach

was illustrated in our study for—in—meniterine—and—foreeast(up—to—10-d—ahead)—modes,—as

presented-here-for two regions in North Western Europe and South Eastern Australia. In term of the
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RMSD, our results showed a very small impact of initial conditions on the forecasts of SSM. This
was expected due to the short termredueed memory of tepthe-surface soil surfacelayer{-4-—emy,
which is dominated by meteorologiealvariabilitythe antecedent meteorological forcing. However,

the LAI initialisation had significant impact on the LAI forecast skill. This was also expected due to

the long-term memory of vegetation evolution. For SSM, the assimilation is deneperformed after a

rescaling of the observations to the model climatology (see section 2.3), which removesbiasensures

that the model and observations are unbiased with respect to each other. FerHowever, LAl-however

thistsnotthe-ease-and is not bias-corrected, which allows the assimilation process to removes bias

in the modelled LAI (with respect tow=+ the observation). This technical difference between SSM
and LAI assimilation, combined with the longer memory of LAI compared to SSM, contributes to
the results presented in this study. Despite the expected behaviour of these two LSVs in forecasting,
our results show that the LDAS-Monde system is capable of propagating the initial LAI conditions,
which is relevant net—enly—for LSV medium-range forecasting butand wwith—potential—tor

tongerpotentially for longer lead-times. such as seasonal forecasts. The strong impact of LAI

initialisation on the forecast does not seem to propagate to the surface soil moisture and further
studies are necessary to test the impact of initial conditions te-additienaton other variables from
LDAS-Monde (including soil moisture in deeper layers and evapotranspiration). Another possibility

would be to force LDAS-Monde using the 51-member ECMWF ensemble forecasts.; aAlthough the

ensemble system has coarser spatial-resolution (~0.20°=-6-26°) than the deterministic forecast.; it

accounts for effers—a—15-dayforeeast-and-a—S+member-ensembleforcing uncertainty in the LSVs;

s through the ensemble spread and extends to

a 15-day lead time. The maximum range of the soil and vegetation forecasts could even be

extendedreaeh-up to six months if usine-seasonal atmospheric forecasts were used as forcing.

LDAS-Monde has some limitations, where has—wel—identified—areas—of-developments—that ean

furtherfuture developments are needed to improve the representation of LSVs. For instance, it does

not consider snow data assimilation yet. and-—lt has been shown in this study that if the snow
accumulation seems to be represented correctly in the system, the onset of #suftersfromatooearly

snow-melt is too ecarly in the in-spring—time. To overcome this issue, two possibilities will be

explored. Firstly.—using a recently developed ISBA parametrisation, MEB fer—(Multiple Energy
Budget). wwhieh-1s known to lead to a better representation of the snowpack (Boone et al., 2017);.
i This could be particularly useful in the densely forested areas of the Northern Hemisphere where
large differences between LDAS-Monde and the IMS snow cover were found in spring (Figure
S2(i), Aaron Boone CNRM, personal communication June 2019)—and—{i—adapting. Another

enhancement of LDAS-Monde will be to adapt the current data assimilation scheme—of+-BAS-
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Mende to permit the assimilation the IMS snow cover data. which is implemented at NWP centres

such as fas—deneeeg—at-ECMWF; (de Rosnay et al., 2014). The current SEKF data assimilation

scheme is also being revisited. Even though it has provided good results, one of its limitations is the

computational cost of the a-Jacobian matrix. which needs one model run for each control variable;.

As the number of control variables is expected to increase, reguiringthis approach would require
significant computational resources—with—inereased—number—of —control—variables., That—is
why Therefore. more flexible eEnsemble based data assimilation approaches Hikehave recently been
implemented in LDAS-Monde. such as the Ensemble Square Root Filter (EnSRF. j-haverecently
been—mplemented (Fairbain et al., 2015, Bonan et al., 2020). Bonan et al., 2020 have evaluated

performances from the EnSRF and the SEKF over the Euro-Mediterranean area. Both data

assimilation schemes have a similar behaviour for LAI while for SSM, the EnSRF estimates tend to
be closer to observations than those from the SEKF. They have also conducted an independent
evaluation of both assimilation approaches using satellite estimates of evapotranspiration and GPP

as—wel-as—measures—ofriver—disehargestogether with river discharge observations from gauging

stations. They have found that the EnSRF givesieads—+o a systematic (moderate) improvement for
evapotranspiration and GPP and a highly positive impact on river discharges, while the SEKF lead
to more contrasting performance. As for applications in hydrology, the 0.5°=0-5 spatial resolution
TRIP river network is currently being improved to 1/12°=+42° globally.

CNRM is also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,
2019);+tissupposed-to-tackle. This has the potential to improve the way vegetation is accounted for

in the change detection approach used to retrieve SSM with an improved representation of its effect.

Assimilating ASCAT radar backscatter also raises the question of how to properly specify SSM
observation, background, and model error covariance matrices, so—far—mainly—relying—on—sot

propertieswhich are currently based on soil properties (see section 2.1.3 on data assimilation). The

last decade has seen the development of techniques to estimate those matrices. Approaches based on
Desroziers diagnostics (Desroziers et al., 2005) are computationally affordable for land data
assimilation systems-from-a-computational-point-of-view and could provide insightful information
on the various sources of the data assimilation system.

FurthermoreAdse, theaddedwvaluea comparison of LDAS-Monde eompared-to-alreadywith existing
datasets from other centres needs to be hasto-beevaluatedconsidered. and<eCurrent work at Météo-

France ishas began to compare investigating-its quality against state of the art reanalyses such as
those from NASA at botheither the global scale (GLDAS, Rodell et al., 2004, MERRA-2—The

i ' teati i , Reichle et al., 2017,
Draper et al., 2018) orand regional scale (NCALDAS over the continental USA, FLDAS over
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Africa). Finally, first

(Applications de la  Recherche a  1'Opérationnel a  Méso-Echelle,

https://www.umr-cnrm.fr/spip.php?article120, last accessed July 2019) of Météo-France

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open
source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at
http: //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL
licence; http://www.cecill.info/licences/Licence CeCILL-C_V1-en.txt). It is updated at a relatively
low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is
not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the
procedure to get a SVN account and to access real-time modifications of the code (see the
instructions at the first link). The developments presented in this study stemmed on SURFEX
version 8.1. LDAS-Monde technical documentation and contact point are freely available at: https://

opensource.umr-cnrm.fr/projects/openldasmonde/files

Data availability: upon request by contacting the corresponding author.
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Tables

1280 Table I: Continental hot spots for droughts and heatwaves and number of monthly anomalies SSM
and LAI below -1 standard deviation (stdev), above 1 stdev in 2018 with respect to the 2010-2018

period.
Number of monthly | Number of monthly
Region name | abbreviation| LON-W | LON-E | LAT-S | LAT-N | , OoM anomalies LAT anomalies
below -1 (above 1) | below -1 (above 1)

stdev stdev
Western-Europe WEUR -1 15 48 55 5(1) 5(0)
Megfesrtf;ean WMED -10 15 35 45 0(7) 44)
Eastern Europe EEUR 15 30 45 55 2(1) 0(2)
Balkans BALK 15 30 40 45 3(3) 1(4)
Western Russia WRUS 30 60 55 67 0(1) 1(3)
Lower Volga LVOL 30 60 45 55 2(1) 2(1)
India INDI 73 85 12 27 3(0) 2(1)
Soug‘}‘l’ivﬁztem SWCH 100 110 20 32 0(2) 0(6)
Northern China NRCH 110 120 30 40 0(3) 0(4)
Murray-Darling MUDA 140 150 -37 -26 6(0) 7(0)
California CALF -125 -115 30 42 2(0) 5(0)
Southern Plains SPLN -110 -90 25 37 0(3) 0(4)
Midwest MIDW -105 -85 37 50 1(2) 1(3)
Eastern North ENRT -85 -70 37 50 0(3) 0(7)
Nordeste NDST -44 -36 -20 -2 0(3) 1(2)
Pampas PAMP -64 -58 -36 -23 2(2) 2(0)
Sahel SAHL -18 25 13 19 2(0) 1(2)
East Africa EAFR 38 51 -4 12 2(3) 1(7)
Southern Africa SAFR 14 26 -35 -26 2(0) 2(1)
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Table II: Set up of the experiments performed in this study. LDAS ERAS5 and LDAS HRES have an analysis (assimilation of surface soil moisture,
SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation), LDAS fc4 and LDAS fc8 are model runs initialized by either

LDAS HRES open-loop or analysis. N/A stands for not applicable.

Experiments . Atmospheric Domain Assimilated Model Control
. . Model version . . . DA method . . .
(time period) forcing & spatial resolution observations equivalents variables
LDAS_ERA5 Global, ~0.25 °x SSM .
(2010 to 2018) ERAS 0.25° (ASCAT) Secqnd layer of | Layers of soil 2
ISBA SEKF soil (1-4cm) to 8 (1-100cm)
LI())Z\gaEERES Multi-layer soil North Western LAI
( to model Europe (WEUR) and (GEOV1) LAI LAI
12/2018) COz-responswe Murray-Darling
LDAS fc4 version IFS-HRES | River basin (MUDA)
(2017 to 2018) (Interactive (see spatial extend in
LDAS fc8 Vegetatl()n) Table I) N/A N/A N/A N/A
(2017 to 2018) ~0.10°x 0.10°
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Table III: Evaluation datasets and associated metrics used in this study.

Datasets used for the

Independent source of

. Source Metrics associated .
evaluation evaluation
In situ measurements R for both absolute and
of soil moisture https:// anomaly time-series, Yes
(ISMN Dorigo et al., | ismn.geo.tuwien.ac.at/ | unbiased RMSD and
2011, 2015) en/ bias, NIC on R values
Nash Efficiency (NSE),
Normalized
In situ measurements See Table S1 Information Yes
of river discharge Contribution (NIC)
based on NSE,
In situ measurements http://
of evapotranspiration fluxnet.fluxdata.org/ R, unbiased RMSD, Yes
(FLUXNET-2015) data/fluxnet2015- Bias, NIC on R values
dataset/
Satellite derived
surface soil wetness http:// No
index (ASCAT, Wagner| land.copernicus.eu/ R, RMSD and Ngrumsp (assimilated dataset)
et al., 1999, Bartalis et global/
al., 2007)
Satellite derived Leaf http:// No
Area Index (GEOVI1, land.copernicus.eu/ R, RMSD and Ngwmsp (assimilated dataset)
Baret et al., 2013) global/

Satellite-driven model
estimates of land

evapotranspiration http://www.gleam.eu | R, RMSD and Ngrumsp Yes
(GLEAM, Martens et
al., 2017)
Up SCC}i)es(l ;S:ilr?ll:tes of https://www.bgc-
. Y jenna.mpg.de/geodb/ | R, RMSD and Ngrumsp Yes
Production (GPP, Jung roiects/Home.nh
etal, 2017) pro] PAp
Solar Induced
Fluorescence (SIF)
from GOME-2 See references R Yes
(Munro et al., 2006,
Joiner et al., 2016)
Interactive Multi- https://
sensor Snow and Ice ) .
. WWww.natice.noaa.gov/ Differences Yes
Mapping System (or ims/

IMS) snow cover
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Figures

Figure 1: (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for
pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea
level, (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness
Index (SWI) to the model climatology, grey areas on (a) represent filtered out data (see Section
2.3).

Figure 2: Selection of 19 regions across the globe known for being potential hot spots for
droughts and heatwaves. The regions are defined in Table I.

1300

42



RMSD: Model vs. Obs RMSD: Analysis vs. Obs

0.96
RMSD of LAl (m’m?)

Figure 3: RMSD values between observed Leaf Area Index (LAI) and LDAS_ERA5 (a) before
assimilation and (b) after assimilation of surface soil moisture (SSM) and LAL
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Figure 4: Latitudinal plots of (a) Leaf Area Index (LAI), (b) Surface Soil Moisture (SSM), (c)
Gross Primary Production (GPP) and (d) Evapotranspiration (EVAP) for LDAS_ERA5 before
assimilation (Model, blue solid line) and after assimilation (Analysis, red solid line) as well as
observations (black solid line). Cyan dashed line represents the number of points considered per

latitudinal stripes of 0.25°.
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Correlation differences (analysis minus open-loop)
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Figure 5: Latitudinal plots of score differences (analysis minus open-loop) for correlations (a-
e) and normalized RMSD (f-i) for LAI (a,f), SSM (b,g), GPP (c,h), EVAP (d,i) and SIF (e,
correlations only). Scores are computed based on monthly average over 2010-2018 for LAI and
SSM, 2010-2013 for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. Dashed lines represent

the zero lines (equal scores for open-loop and analysis).
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Correlation (Analysis minus open-loop) RMSD (Analysis minus open-loop)

<0: 99.9%
>0: 0.0%

>0: 81.1%
<0: 18.2%

GPP

EVAP

| 1

0.60

>0: 79.7%
<0: 20.0%

SIF

Figure 6: Histograms of score differences (correlation and RMSD, analysis minus open-loop) for
a),b) LAI, c),d) SSM, e),f) GPP, g),h) EVAP and i) SIF. For SIF only differences in correlation are
represented. Number of available data (in blue) as well as the percentage of positive and negative
values (in red) are reported. Note that for sake of clarity, the y-axis is logarithmic.
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Normalized Information Contribution (NIC) based on R values, LDAS_Monde EKF-OL
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Figure 7:(a) Map of Normalized Information Contribution (NIC, Eq. 2 ) applied on correlation
values between evapotranspiration from LDAS_ERAS analysis (open-loop) and observations from
the FLUXNET 2015 synthesis data set. NIC scores are classified into 2 categories (i) negative
impact from the analysis with respect to the model with values smaller than -3 % (red circles, 5
stations), (ii) positive impact from the analysis with respect to the model with values greater than
+3 % (blue circles, 20 stations). Stations presenting a neutral impact with values between -3 %
and +3 % (60 stations) are reported as small dots. Note that at this scale some stations are
overlapping. (b), (c), (d) and (e) scatter-plots of R, ubRMSD, absolute bias and RMSD between
LDAS_ERAS open-loop and the 85 stations from the FLUXNET 2015 (y-axis) and LDAS_ERA5
analysis and the same pool of stations (x-axis). The set of 20 stations for which the analysis has a
positive impact in R values at NIC greater than +3 are reported on a) in green.
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NSE scores for open-loop - 982 stations
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Figure 8:(a) Global map of Nash-Sutcliff Efficiency score (NSE) between river discharge from
LDAS_ERAS open-loop and in situ measurements from the networks presented in Table S1 over
2010-2016. (b) Normalized Information Contribution scores (NIC, Eq.2) based on NSE scores on
river discharge. Small dots represent stations for which NIC are between [-3%, +3%] (i.e. neutral
impact from LDAS_ERA5 analysis), NIC values greater than +3% (blue large circles) suggest an
improvement from LDAS_ERAS5 analysis over LDAS_ERAS5 open-loop while values smaller than -
3% (large red circles) suggest a degradation. Only stations where more than 4-year of data are
available and with a drainage area greater than 10000km’ are considered. Stations with NSE
values smaller than -2 are discarded, also, leading to a subset of 982 stations available.
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Figure 9: Map of correlations (R) differences (analysis minus open-loop) for stations measuring
soil moisture at 5 cm depth and being available over North America. Small dots represent stations

where R differences are not significant (i.e. 95% confidence intervals are overlapping), large
circles where differences are significant.
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Figure 10: 2018 monthly anomalies scaled by standard deviation of analysed (a)SSM and (b)LAI,
with respect to 2010-2018, for the 19 regions presented in Table 1 and Figure 2. Solid red line,
dashed red line and solid green line represent regions MUDA, WEUR and EAFR. Solid cyan line
represent all other boxes (see Table 1 and Figure 2).
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Figure 11: Upper panels represent seasonal cycles of a) observed GEOV1 LAI from CGLS, b) LAI
from the open-loop (in blue) and the analysis (in red) for the WEUR area (see Table I for
geographical extent). c) and d) panels are similar to a) and b) for the MUDA area . Lower panels
represents seasonal cycles of e) ASCAT SWI from CGLS, f) SSM from the open-loop (in blue) and
the analysis (in red) for the WEUR area. Panels g) and h) are similar to e) and f) for the MUDA
area. For each panels dashed line represents the averaged over 2010-2017 along with the
minimum and maximum values, the solid lines are for the year 2018.
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Figure 12: Upper panel, seasonal (a) RMSD and (b) correlation values between soil moisture
from the second layer of soil (1-4 cm) from the model forced by HRES (LDAS_HRES, open-loop
in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017-2018 over the
WEUR area. Scores between SSM from the second layer of soil of LDAS_HRES, 4-day
(dashed/dotted blue — when initialised by the open-loop- and red — when initialised by the
«analysis- lines) and 8-day (dashed blue and red lines) forecasts and ASCAT SSM estimates are
‘also reported. Lower panel (c) and (d) , same as upper panel between modeled/analyzed Leaf Area
index (LAI) and GEOV1 LAI estimates .
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Figure 13: Same as Figure 12 for the Murray-Darling river (MUDA) area in South Eastern
Australia.
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RMSD: LDAS_HRES OL vs. ASCAT SSM RMSD differences:
a) b) LDAS_HRES AN-OL
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Figure 14: Top row, (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates
over 2017-2018 for the WEUR domain, (b) RMSD differences between LDAS_HRES analysis
(open-loop) and ASCAT SSM. (c), (d) and (e) Same as (b) between LDAS_fc4 initialised by the
analysis (open-loop) and LDAS_fc8. Bottom row, same as top row for LAI from the different
experiments and LAI GEOV1.
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RMSD: LDAS_HRES OL vs. ASCAT SSM RMSD differences:
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Figure 15: Same as Figure 14 or the Murray-Darling river (MUDA) area in South Eastern
Australia.
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R : LDAS_HRES OL vs. ASCAT SWI R differences:
a) b) LDAS_HRES AN-OL ) LDAS_fc4 AN-OL d) LDAS_fc8 AN-OL
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Figure 16: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over
2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis (open-loop)
and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop)
and LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.
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Figure 17: Top row, (a) drainage values for LDAS_HRES open-loop over 2017-2018 for the
WEUR domain, (b) drainage differences between LDAS_HRES analysis and open-loop. (c), (d),
same as (b) between LDAS_fc4 initialised by the analysis and LDAS_fc4 initialised by the open-
loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8 initialised by the open-loop.
Bottom row, same as top row for runoff. Units are kg.m>.day™
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