
Response  to  Reviewer  1  are  structured  as  follow:  (1)  1.X:  comments  from  Reviewer  1,  (2)
Response to 1.X: author’s response and author’s  changes in manuscript when any.  For sake of
clarity, line and page numbering from the revised version are used.

Reviewer#1

Dear Reviewer#1 many thanks for reviewing the manuscript and for highlighting its relevance and
interest. Your comments and suggestions led to an improved version of the manuscript. Below is a
point by point answer to your specific comments, all your editorial and technical comments were
accounted for in the revised version of the manuscript. 

1.1 [It would have been interesting to see a comparison of analysis vs. open-loop root-zone soil
moisture skill (compared to the International Soil Moisture Network), as this could have a
longer  memory  than  the  surface  zone  soil  moisture,  however,  this  is  not  crucial  for  the
conclusions of this study.]

Response to 1.1

Thank your for your highly relevant comment. Following it and similar comments from the other
Reviewers, it has been decided to revisit the soil moisture evaluation part of the study: 
(1) we have added an evaluation of soil moisture from LDAS-Monde fourth layer of soil (10 to 20
cm) against in situ measurements of soil moisture at 20 cm depth when available (10 networks and
685 stations),
(2) for surface soil moisture (SSM), correlation values (R) were calculated for both absolute and
anomaly time-series in order to remove the strong impact from the SSM seasonal cycle on this
specific metric,
(3) a 95% Confidence Interval (CI) has been added to R values.
(4)  we  have  added  the  number  of  stations  for  which  correlations  differences  are  significant
(significant improvement or degradation from the analysis) as well as a map over North America for
illustration.

It involves several changes in the revised version of the manuscript, they are listed below.

Methodology section, 2.5 Evaluation datasets and metrics

P.11, Lines 358-365: “In situ measurements of surface soil moisture from 19 networks across 14
countries available from the ISMN are also used to evaluate the performance of the soil moisture
analysis. They represent 782 stations with at least 2 years of daily data over 2010-2018. Sensors at 5
cm depth (SSM) are compared with soil moisture from LDAS_ERA5 third layer of soil (4-10 cm),
sensors at 20 cm depth with the fourth layer of soil (10-20 cm, 685 stations from 10 networks).
Beside 11 stations located in 4 countries of Western Africa (Benin, Mali, Sénégal and Niger) and 21
stations in Australia, most stations are located in North America and Europe, see Table S3.”

P.12, Lines 374-377: “For global estimates, Normalized RMSD (NRMSD, Eq.(2)) was used, also.
Finally, for surface soil moisture, R was calculated for both absolute and anomaly time-series in
order to remove the strong impact from the SSM seasonal cycle on this specific metric (see e.g.
Albergel et al., 2018a, 2018b).”

Result section, 3..1.2 Ground-based datasets
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P.17-18, Lines 548-580: “The statistical scores for soil moisture from LDAS_ERA5 open-loop and
analysis (third and fourth layers of soil,  4-10 cm depth,  10-20 cm depth, respectively) over 2010-
2018 when compared with ground measurements from the ISMN (5 cm depth and 20 cm depth) are
presented in Table S2 for each individual network. Averaged statistical metrics (ubRMSD, R,Ranomaly

and bias) are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist.
For the analysis, averaged R (Ranomaly) values along with its 95% Confidence Interval (CI) using in
situ  measurements  at  5  cm  (782  stations  from  19  networks)  are  0.68±0.03  (0.53±0.04)
(0.67±0.03(0.53±0.04)  for  the  open-loop)  with  averaged-network values  going up to  0.88±0.01
(0.58±0.04) for the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than
0.55 except for one network, ARM (10 stations in the USA) presenting an averaged R value of
0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077
m3m-3 for the analysis, 0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.1) has
also been applied to R values, 65% of the pool of stations present a neutral impact from the analysis
(511 stations at NIC ranging between -3 and +3), 12% present a negative impact (91 stations at NIC
< -3) and 23% present a positive impact at (180 stations at NIC > +3). 
The number of stations where R differences between the analysis and the open-loop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis w.r.t. the open-loop for 128 stations (out of 186, i.e. about 69%) and a degradation
for 58 stations (about 31%). Figure 7 illustrates R differences between the analysis and the open-
loop runs. When differences (analysis minus open-loop) are not significant stations are represented
by a small dot. When they are significant, large circles have been used, blue for positive differences
(an  improvement  from the  analsysis)  and  red  for  negative  differences  (a  degradation  from the
analysis).  For  most  of  the  stations  where  a  significant  difference  is  obtained,  it  represent  an
improvement from the analysis. 
Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65±0.03, 0.049  m3m-3 and 0.055  m3m-3, respectively. For the open-loop, they are
0.64±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively.  For soil moisture at that depth, about 60% of
the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3 and
+3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations at
NIC < -3). Although differences between the open-loop run and the analysis are rather small, these
results underline the added value of the analysis with respect to the model run. Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”
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Figure 7: Map of correlations (R) differences (analysis minus open-loop) for stations available over
North America.  Small  dots  represent  stations  where R differences  are not  significant  (i.e.  95%
confidence intervals are overlapping), large circles where differences are significant.
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Figure S6: a) Boxplots representing the distribution of the correlation values on absolute time-
series and anomaly time-series (“Ano”) between the stations with in situ measurements of soil
moisture either  5cm depth or 20 cm depth and soil  moisture from LDAS_ERA5 open-loop and
analysis  over  2010-2018  (third  and  forth  layer  of  soil,  respectively).  Correlation  values  are
presented for surface soil moisture (5 cm depth measurements against third layer of soil),  only.
Distribution  are  centred  on the median values.  b)  Distribution  of  the  Bias  values  between the
stations  with in  situ  measurements  of  soil  moisture either  5cm depth or  20 cm depth  and soil
moisture from LDAS_ERA5 open-loop and analysis over 2010-2018 (third and forth layer of soil,
respectively).c) Same as b) for ubRMSD.

1.2 [L107-117: Is it necessary to include such details about the datasets in the introduction?]

Response to 1.2

We agree that a lot of information is provided in this bullet. However we believe acronyms should
be detailed and appropriate references should be used the first time they appear in the text. 

1.3 [L180: Please specify what you mean by flow dependency between the prognostic variables
and the observations.]

Response to 1.3

This sentence has been rephrased: “Flow dependency between the model control variables and the
observations are generated using finite differences from perturbed simulations” is now (P.6, Lines
192-195): “The flow-dependency (dynamic link) between prognostic variables and the observations
is ensured in the SEKF through the observation operator Jacobians, which propagate information
from the observations to the analysis via finite-difference computations (de Rosnay et al., 2013)”

1.4 [L198-200: Difficult to interpret the difference in LAI error when you use a mix of percent
and m2/m2. Please could you clarify this?]

Response to 1.4

We agree that this sentence could be improved. Setting up the observed and modelled LAI standard
deviation to 20 % of the LAI value is an empirical option coming from previous studies by Jarlan et
al.  (2008) and Rudiger  et  al.  (2010),  which have underlined the need for a  variable  LAI error
definition. Barbu et al. (2011) further explored the impact of LAI model and background errors on
the assimilation results by using diagnostics on model and observation errors (e.g. Desroziers and
Ivanov, 2001) on different setups (see figure 2 of Barbu et al., 2011). They found that for small LAI
values, it is necessary to use a fixed error standard deviation. This value was set to 0.04 m2m-2 for
LAI values lower than 2 m2m-2 and is also used in this study.

The following sentence: “The standard deviation of errors for the observed LAI is assumed to be
20%  and a similar assumption is made for the standard deviation of errors of the modelled LAI
values higher than 2 m2m−2. For modelled LAI values lower than 2 m2m−2, a constant error of 0.4
m2m−2 is assumed (Barbu et al., 2011). More details can be found in Albergel et al, 2017 or Tall et
al., 2019.” as been reformulated and is now (P.7, Lines 220-224): “Based on previous results from
Jarlan et al., 2008, Rüdiger et al., 2010, Barbu et al., 2011, observed and modelled LAI standard
deviation errors  are set to 20 % of the LAI value itself for values higher than 2m2m-2. For LAI
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values lower than 2 m2m-2, a fixed value of 0.04 m2m-2 has been used. More detailed can be found in
Barbu et al., 2011 (section 2.3 on data assimilation scheme and figure 2).”

Reference (not added to the manuscript):
Desroziers, D. and Ivanov, S.: Diagnosis and adaptive tuning of observation-error parameters in a
variational assimilation, Q. J. Roy. Meteorol. Soc., 127, 1433–1452, 2001.

Reference (added to the manuscript):
Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J.-C., and Mougin, E.: Analysis of leaf area
index in the ECMWF land surface model and impact on latent heat on carbon fluxes: Application
to West Africa, J. Geophys. Res., 113,  D24117, doi:10.1029/2007JD009370, 2008. 

Reference (already in the manuscript):

Rüdiger, C.; Albergel, C.; Mahfouf, J.-F.; Calvet, J.-C.; Walker, J.P. Evaluation of Jacobians for leaf
area index data assimilation with an extended Kalman filter. J. Geophys. Res. 2010.

1.5 [L251: Could you please include why you don’t consider assimilating surface soil moisture
observations  from  the  Soil  Moisture  and  Ocean  Salinity  (SMOS)  and/or  from  the  Soil
Moisture Active Passive (SMAP) satellite missions? As these satellites are expected to be more
sensitive to surface soil moisture than the C-band observations from ASCAT.

Response to 1.5

We  find  it  difficult  at  this  stage  to  include  why  a  specific  dataset  has  not  been  used.  The
development  of  LDAS-Monde  at  CNRM  has  been  made  possible  through  different  externally
funded project including the Copernicus Gobal Land Service providing, amongst other datasets, the
ASCAT Soil Wetness Index used in this study. ASCAT is from 2007 onward an operational product
obtained from sensors onboard the METOP satellites and has been used at CNRM for many years.
However, it is true than any satellite surface soil moisture products can be assimilate into LDAS-
Monde. At CNRM, Albergel et al., 2017 have assimilated the ESA CCI (European Space Agency,
Climate  Change  Initiative)  combined  surface  soil  moisture  product  (e.g.  Dorigo  et  al.,  2015),
Parrens et al., 2014 have assimilated SMOS surface soil moisture. Future work will assimilate the
most recent ESA CCI surface soil moisture dataset (v4.5) up to 2018. It includes the SMOS data. 

Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo,
W.,  Faroux,  S.,  Meurey,  C.,  Le  Moigne,  P.,  Decharme,  B.,  Mahfouf,  J.-F.,  and  Calvet,  J.-C.:
Sequential  assimilation  of  satellite-derived  vegetation  and  soil  moisture  products  using
SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev.,
10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017.

Dorigo, W.A., A. Gruber, R.A.M. De Jeu, W. Wagner, T. Stacke, A. Loew, C. Albergel, L. Brocca,
D. Chung, R.M. Parinussa and R. Kidd: Evaluation of the ESA CCI soil moisture product using
ground-based  observations,  Remote  Sensing  of  Environment,
http://dx.doi.org/10.1016/j.rse.2014.07.023, 2015.
Parrens, M., Mahfouf, J.-F., Barbu, A. L., and Calvet, J.-C.: Assimilation of surface soil moisture
into a multilayer soil model: design and evaluation at local scale, Hydrol. Earth Syst. Sci., 18, 673–
689, https://doi.org/10.5194/hess-18-673-2014, 2014.
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1.6 [Furthermore, as I understand ASCAT data are already assimilated in the production of
the ERA5 dataset.  Will  the LDAS-Monde assimilation not lead to a “double” counting or
usage of the ASCAT data and what are the potential consequences for your analyses results?]

Response to 1.6

Thank you for your comment. ASCAT soil moisture is indeed assimilated in the ERA5 LDAS.
However, previous studies showed that its impact is confined to the soil and that it is neutral on the
IFS atmospheric analysis and forecasts (de Rosnay et al 2014, Munoz-Sabater et al 2019). In our
study we use the ERA5 atmospheric analysis as forcing but we do not use any of the ERA5 soil
analysis variables as input of our system. So, we consider the ASCAT SM contribution to the ERA5
atmospheric forcing to be negligible.

Reference (already in the manuscript):
de  Rosnay,  P.;  Balsamo,  G.;  Albergel,  C.;  Muñoz-Sabater,  J.;  Isaksen,  L.  Initialisation  of  land
surface  variables  for  numerical  weather  prediction.  Surv.  Geophys.,  35,  607–621,  doi:
10.1007/s10712-012-9207-x, 2014.
Reference (not added to the revised version of the manuscript):
Muñoz Sabater, J. , Lawrence, H. , Albergel, C. , de Rosnay, P. , Isaksen, L. , Mecklenburg, S. ,‐Sabater, J. , Lawrence, H. , Albergel, C. , de Rosnay, P. , Isaksen, L. , Mecklenburg, S. ,
Kerr, Y. and Drusch, M. (2019), Assimilation of SMOS brightness temperatures in the ECMWF
Integrated  Forecasting  System.  Q  J  R  Meteorol  Soc.  Accepted  Author  Manuscript.
doi:10.1002/qj.3577 

1.7 [L268: Please could you specify the difference between linear rescaling and CDF-matching
(if  any)?  To  my  understanding  linear  rescaling  is  correction  of  the  mean  and  standard
deviation, while CDF-matching corrects the whole CDF (i.e., all moments of the probability
distribution function), hence linear rescaling is not the same as CDF-matching.]

Response to 1.7
We use in this paper a seasonal linear rescaling. Linear rescaling was introduced by Scipal et al.
(2008)  and  has  been  shown  giving  results  that  are  very  similar  to  an  exact  CDF  matching.
Nevertheless, to avoid any confusion, we have rewritten the sentence as follows (P.9-10, Lines 294-
301):  “This  is  done through  a  linear  rescaling  as  proposed by Scipal  et  al.  (2007),  where  the
observations mean and variance are matched to the modelled soil moisture mean and variance from
the second layer of soil (1-4 cm depth). This rescaling gives in practice very similar results to CDF
(cumulative distribution function) matching. The linear rescaling is performed on a seasonal basis
(with a 3-month moving window) as suggested by Draper et  al.,  (2011),  Barbu et  al.,  (2014).”
Further  mentions  of  CDF matching  in  the  manuscript  have  been  replaced  by  “seasonal  linear
rescaling”.

1.8  [L292-294:  Could  you  please  discuss  how  this  short  spinup  period  could  affect  your
results?]

Response to 1.8

Nine  months  can  be  perceived  as  a  short  period  to  spin  up  the  system.  Unfortunately,  HRES
atmospheric forcing is only available from April 2016 and the LDAS-HRES experiment ends in
December 2018. We have considered this 9 months period for the spin up in order to have the
longest possible time series for land surface variables, thus giving more strength to statistics. We
could have considered a longer period for spin up (April 2016 to December 2017) and studied only
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2018. This gives very similar results on surface soil moisture and LAI (not shown). While not being
fully spun-up, results obtained with LDAS-HRES can be considered as representative of the system
response to data assimilation. Note that most initial values of the LDAS-HRES run are taken from
the ECOCLIMAP-II database. For instance, initial LAI is set from a 1999-2005 climatology derived
from MODIS. 

Another possibility to initialise LDAS-HRES could have been to downscale the state of LDAS-
ERA5 run in April 2016 to 0.10°x0.10° spatial resolution. LDAS-ERA5 runs have been set to an
equilibrium spinning up 20 times the first year (2010).

The following sentence:  “The period 2017-2018 is  presented,  HRES is  available  at  this  spatial
resolution from April 2016, only, and the time period from April to December 2016 is used as a
short spinup.” has been modified and is now (P.10, Lines 327-332): “HRES is available at a 0.1° x
0.1° resolution only from April 2016. April to December 2016 is used as a short period for spinup
and results are presented for the period 2017-2018. Although a 9-month spinup period can be seen
as rather short,  evaluating LDAS-HRES on either 2017-2018 or 2018 (using instead a 21-month
spinup) leads to similar results on surface soil moisture and LAI (not shown). While the system is
not  fully  spun-up,  it  can  be  considered  as  representative  of  the  system  response  to  data
assimilation.”

1.9 [L383: Could you please provide more details on how this can explain the differences seen 
between ISBA and GLEAM?]

Response to 1.9

GLEAM is an hydrological model and vegetation is mainly driven by observations. On the contrary,
ISBA also represents plant growth and leaf-scale physiological processes, models key vegetation
variables like LAI and above ground biomass (see section 2.1.1 on ISBA Land Surface Model).
Within GLEAM, each grid cell comprises four different land-cover types: (1) bare soil,  (2) low
vegetation (e.g. grass), (3) tall vegetation (e.g. trees), and (4) openwater (e.g. lakes). Except for the
fraction of open water, these fractions are sourced from the Global Vegetation Continuous Fields
product (MOD44B), based on observations from the Moderate Resolution Image Spectroradiometer
(MODIS). While in ISBA, each grid cell can be composed of up to 12 generic land surface types,
bare soil, rocks, and permanent snow and ice surfaces as well as nine plant functional types (needle
leaf trees, evergreen broadleaf trees, deciduous broadleef trees, C3 crops, C4 crops, C4 irrigated
crops, herbaceous, tropical herbaceous and wetlands). Those types depart from prevalent land cover
products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting
existing classes into new classes that possess a better regional character by virtue of the climatic
environment (latitude, proximity to the sea, topography).

Work is undergoing at CNRM to better understand the differences between terrestrial evaporation
from ISBA and GLEAM. In  particular,  the  different  components  of  terrestrial  evaporation,  i.e.
transpiration, bare soil evaporation and, interception loss are investigated.

Paragraph: “However GLEAM only estimates (root-zone) soil moisture and terrestrial evaporation,
while  ISBA in  LDAS_ERA5  is  a  physically-based  land  surface  model,  accounting  for  more
processes linked to vegetation.”
is now (P.14-15, Lines 458-471):
“However GLEAM is an evaporation model designed to be driven by remote sensing observations
only. GLEAM only estimates (root-zone) soil moisture and terrestrial evaporation while the CO2-
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responsive version of ISBA in LDAS_ERA5 is a physically-based land surface model, accounting
for more processes linked to vegetation (see section 2.1.1). It has to be noted that the auxiliary
dataset used to e.g. represent the different land cover types are different also. Within GLEAM, the
land  cover  types  fractions  are  sourced  from the  Global  Vegetation  Continuous  Fields  product
(MOD44B),  based  on  observations  from  the  Moderate  Resolution  Image  Spectroradiometer
(MODIS).  Four  land  cover  types  are  considered,  bare  soil,  low  vegetation  (e.g.  grass),  tall
vegetation (e.g. trees), and openwater (e.g. lakes). In ISBA the 12 land cover types fraction depart
from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global
Land  Cover).  It  can  potentially  impact  the  distribution  of  the  terrestrial  evaporation  between
GLEAM and ISBA.” 

Further work at CNRM will focus on understanding the differences between ISBA and GLEAM, in
particular investigating the sub-components of terrestrial evaporation.”
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Response  to  Reviewer  2  are  structured  as  follow:  (1)  2.X:  comments  from  Reviewer  2,  (2)
Response to 2.X: author’s response and author’s  changes in manuscript when any.  For sake of
clarity, line and page numbering from the revised version is used.

Reviewer#2

[...] This paper seems to represent a major milestone in the development of LDAS-Monde 
(which is in my view a very important undertaking), and hence I recommend publishing the 
paper after minor revisions.

Dear Reviewer#2 many thanks for reviewing the manuscript and for highlighting its relevance and
interest. Your comments and suggestions led to an improved version of the manuscript. Below is a
point by point answer to your specific comments, all your editorial and technical comments were
accounted for in the revised version of the manuscript. 

2.1 [Line 167: What do you mean by "...is bale to ...“?]

Response to 2.1

Thanks for pointing out this typo, it should read “[…]  is able to [...]” it is now corrected in the
revised version of the manuscript.

2.2 [Lines 188ff: The procedure described here results in an observational error field mainly 
related to soil properties, while the real retrieval errors are mostly dependent on vegetation 
density. Please discuss implications.]

Response to 2.2

You are right that vegetation has a role in ASCAT SSM observational error. The observational SSM
error we use is consistent with errors typically expected for remotely sensed SSM (e.g., de Jeu et al.,
2008, Gruber et al, 2016). Most of the in-situ measurements sites used in typical evaluation studies
are indeed representative of grassland. Going from  radar backscatter measurements (ASCAT level1
data, σ°) to SSM (ASCAT level2 data) using the change detection approach developed at TUWIEN
implies  a  lot  of assumptions in  particular  on vegetation variability:  only seasonal  variability  is
accounted for (e.g. Wagner et al., 1999, Bartalis et al., 2007). That is why we have an undergoing
work at CNRM trying to directly assimilate σ° (Shamambo et al., 2019). Assimilating σ° also raises
the question of how to specify observation, background, and model error covariance matrices. The
last decade has seen the development of techniques to estimate those matrices. Approaches based on
Desroziers diagnostics (Desroziers et al., 2005) are affordable for land data assimilation systems
from a computational point of view and could provide insightful information on the various sources
of the data assimilation system.

The following paragraph has been added in the discussion and conclusion section (P.24, Lines 788-
796):
“CNRM is also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,
2019), it is supposed to tackle the way vegetation is accounted for in the change detection approach
used to  retrieve SSM with an improved representation of  its  effect.  Assimilating ASCAT radar
backscatter also raises the question of how to specify observation, background, and model error
covariance matrices, so far mainly relying on soil properties (see section 2.1.3 on data assimilation).
The last decade has seen the development of techniques to estimate those matrices. Approaches
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based on Desroziers diagnostics (Desroziers et al., 2005) are affordable for land data assimilation
systems from a computational point of view and could provide insightful information on the various
sources of the data assimilation system”.

References (* denotes new references added to the manuscript):

Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson,
C.: Initial soil moisture retrievals from the METOP-A advanced Scatterometer (ASCAT). Geophys.
Res. Lett., 34, L20401, doi: 10.1029/2007GL031088., 2007.

Desroziers, G.; Berre, L.; Chapnik, B.; Poli, P. Diagnosis of observation, background and analysis-
error statistics in observation space. Q. J. Roy. Meteor. Soc. 2005, 131, 3385–3396.

de Jeu, R.A.; Wagner, W.; Holmes, T.R.H.; Dolman, A.J.; Van De Giesen, N.C.; Friesen, J. Global
soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv.
Geophys., 29, 399–420, 2008. 

Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil
moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf., 45, 200–211, 2016.
Shamambo, D.C.; Bonan, B.; Calvet, J.-C.; Albergel, C.; Hahn, S. Interpretation of ASCAT Radar
Scatterometer Observations Over Land: A Case Study Over Southwestern France.  Remote Sens.
2019, 11, 2842.

Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer
and soil data. Remote Sens. Environ., 70, 191–207, 1999.

2.3 [Line 198: Is “20 %” a relative error?]

Response to 2.3

It is 20% of the LAI itself, this paragraph has been revisited to improve its understanding. Setting
up the observed and modelled LAI standard deviation to 20 % of the LAI value is an empirical
option coming from previous studies by Jarlan et al. (2008) and Rudiger et al. (2010), which have
underlined the need for a variable LAI error definition. Barbu et al. (2011) further explored the
impact of LAI model and background errors on the assimilation results by using diagnostics on
model and observation errors (e.g. Desroziers and Ivanov, 2001) on different setups (see figure 2 of
Barbu et  al.,  2011).  They found that  for small  LAI values,  it  is  necessary to use a  fixed error
standard deviation. This value was set to 0.04 m2m-2 for LAI values lower than 2 m2m-2 and is also
used in this study.

The following sentence: “The standard deviation of errors for the observed LAI is assumed to be
20%  and a similar assumption is made for the standard deviation of errors of the modelled LAI
values higher than 2 m2m−2. For modelled LAI values lower than 2 m2m−2, a constant error of 0.4
m2m−2 is assumed (Barbu et al., 2011). More details can be found in Albergel et al, 2017 or Tall et
al., 2019.” as been reformulated and is now (P.7, Lines 220-224): “Based on previous results from
Jarlan et al., 2008, Rüdiger et al., 2010, Barbu et al., 2011, observed and modelled LAI standard
deviation errors  are set to 20 % of the LAI value itself for values higher than 2m2m-2. For LAI
values lower than 2 m2m-2, a fixed value of 0.04 m2m-2 has been used. More detailed can be found in
Barbu et al., 2011 (section 2.3 on data assimilation scheme and figure 2).”

Reference (not added to the manuscript):
Desroziers, D. and Ivanov, S.: Diagnosis and adaptive tuning of observation-error parameters in a
variational assimilation, Q. J. Roy. Meteorol. Soc., 127, 1433–1452, 2001.
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Reference (added to the manuscript):
Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J.-C., and Mougin, E.: Analysis of leaf area
index in the ECMWF land surface model and impact on latent heat on carbon fluxes: Application
to West Africa, J. Geophys. Res., 113,  D24117, doi:10.1029/2007JD009370, 2008. 

Reference (already in the manuscript):

Rüdiger, C.; Albergel, C.; Mahfouf, J.-F.; Calvet, J.-C.; Walker, J.P. Evaluation of Jacobians for leaf
area index data assimilation with an extended Kalman filter. J. Geophys. Res. 2010.

2.4 [Section 2.2: Note that ASCAT SSM data are already assimilated in ERA5. Please discuss 
implications.]

Response to 2.4

Thank you for your comment. ASCAT soil moisture is indeed assimilated in the ERA5 LDAS.
However, previous studies showed that its impact is confined to the soil and that it is neutral on the
IFS atmospheric analysis and forecasts (de Rosnay et al 2014, Munoz-Sabater et al 2019). In our
study we use the ERA5 atmospheric analysis as forcing but we do not use any of the ERA5 soil
analysis variables as input of our system. So, we consider the ASCAT SM contribution to the ERA5
atmospheric forcing to be negligible.

Reference (already in the manuscript):
de  Rosnay,  P.;  Balsamo,  G.;  Albergel,  C.;  Muñoz-Sabater,  J.;  Isaksen,  L.  Initialisation  of  land
surface  variables  for  numerical  weather  prediction.  Surv.  Geophys.,  35,  607–621,  doi:
10.1007/s10712-012-9207-x, 2014.
Reference (not added to the revised version of the manuscript):
Muñoz Sabater, J. , Lawrence, H. , Albergel, C. , de Rosnay, P. , Isaksen, L. , Mecklenburg, S. ,‐Sabater, J. , Lawrence, H. , Albergel, C. , de Rosnay, P. , Isaksen, L. , Mecklenburg, S. ,
Kerr, Y. and Drusch, M. (2019), Assimilation of SMOS brightness temperatures in the ECMWF
Integrated  Forecasting  System.  Q  J  R  Meteorol  Soc.  Accepted  Author  Manuscript.
doi:10.1002/qj.3577 

2.5 [Line 248: SWI is the Soil Water Index]

Response to 2.5

Thanks, it has been corrected accordingly

2.6 [Section 2.3: Describe also the masking of SSM]

Response to 2.6

Thanks for your comment, the following sentence has been added to section 2.3 (P.9-10, Lines 299-
301): “As in Albergel et al. (2018a, 2018b), pixels whose average altitude exceeds 1500 m above
sea level as well as pixels with urban land cover fractions larger than 15% were discarded as those
conditions may affect the retrieval of soil moisture from space.”

2.7 [Line 493: Only this sub-study focusses on severe conditions, but not “this study” overall.]

Response to 2.7
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We agree with Reviewer#2 and the sentence has been corrected accordingly, it is now: “As this
subsection focuses [...]”
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Response  to  Reviewer  3  are  structured  as  follow:  (1)  3.X:  comments  from  Reviewer  3,  (2)
Response to 3.X: author’s response and author’s  changes in manuscript when any.  For sake of
clarity, line and page numbering from the revised version are used.

Reviewer#3

[...] Overall, the LDAS-Monde system is great, but the paper needs a thorough revision [...]

Dear Reviewer#3 many thanks for reviewing the manuscript and for highlighting its relevance and
interest. Your comments and suggestions led to an improved version of the manuscript. Below is a
point by point answer to your specific comments, all your editorial and technical comments were
accounted for in the revised version of the manuscript. 

3.1 [Are the perturbations chosen to get an optimal data assimilation system? Please discuss]

Response to 3.1

Yes,  several  studies  have  investigated  the  size  of  the  perturbations  within  the  ISBA LSM.  In
particular  Draper  et  al.,  2009,  for  soil  moisture,  Rüdiger  et  al.,  2010,  for  LAI.  The  following
sentence has been added to the revised version of the manuscript (as well as the new reference to
Draper et al., 2009):
Section 2.1.3 on data assimilation
P.7,  Lines  202-204:“Several  studies  (e.g.  Draper  et  al.,  2009;  Rüdiger  et  al.,  2010)  have
demonstrated  that  small  perturbations  lead  to  a  good  approximation  of  this  linear  behaviour,
provided that computational round-off error is not significant.”

References:
Draper, C. S., Mahfouf, J.-F., and Walker, J. P.: An EKF assimilation of AMSR-E soil moisture into
the  ISBA  land  surface  scheme,  J.  Geophys.  Res.,  114,  D20104,
https://doi.org/10.1029/2008JD011650, 2009.
Rüdiger, C., Albergel, C., Mahfouf, J.-F., Calvet, J.-C., and Walker, J. P.: Evaluation of Jacobians
for  Leaf  Area  Index data  assimilation  with  an  extended  Kalman  filter,  J.  Geophys.  Res.,  115,
D09111, https://doi.org/10.1029/2009JD012912, 2010.

3.2 [How are the cross correlations between the errors in the various soil layers defined, and
the error correlations between LAI and soil moisture?]

Response to 3.2

In the SEKF, no covariance is directly prescribed between LAI and soil moisture or soil moisture
between the various soil layers. The sensitivity of model variables to observations is entirely driven
by the Jacobian of the observation operator, which is defined as the product of the model state
evolution from t to t + 24h and the conversion of the model state into the observation equivalent
(see paragraph 2.3.1 and supplementary material of Bonan et al. (2020)). The value of Jacobian has
been heavily studied in previous publications such as Albergel et al. (2017) or Tall et al. (2019).

Within LDAS-Monde, cross correlations between the errors in the various variables (soil moisture
of the different layers and LAI) will be investigated in a near future based on the Ensemble Square
Root Filter (EnSRF) proposed by Bonan et al., 2020.
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References:
Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo,
W.,  Faroux,  S.,  Meurey,  C.,  Le  Moigne,  P.,  Decharme,  B.,  Mahfouf,  J.-F.,  and  Calvet,  J.-C.:
Sequential  assimilation  of  satellite-derived  vegetation  and  soil  moisture  products  using
SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev.,
10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017. 
Bonan, B., Albergel, C., Zheng, Y., Barbu, A. L., Fairbairn, D., Munier, S., and Calvet, J.-C.: An
Ensemble Square Root Filter for the joint assimilation of surface soil moiture and leaf area index
within LDAS-Monde:  application over the Euro-Mediterranean region,  Hydrol.  Earth Syst.  Sci.
Discuss., https://doi.org/10.5194/hess-2019-391, accepted, 2020. 
Tall, M.; Albergel, C.; Bonan, B.; Zheng, Y.; Guichard, F.; Dramé, M.S.; Gaye, A.T.; Sintondji,
L.O.; Hountondji, F.C.C.; Nikiema, P.M.; Calvet, J.-C. Towards a Long-Term Reanalysis of Land
Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to
2018. Remote Sens., 11, 735, 2019

3.3  [ASCAT  has  an  approximate  resolution  of  25  km.  How  are  these  coarse  data
assimilated/downscaled into the 0.1ˆo model simulations?]

Response to 3.3

The assimilated SWI product is  provided by the Copernicus Global Land Service directly on a
global 0.1° regular grid. Informations on how the SWI product is derived from ASCAT data at 25-
km resolutions can be found in the Product User Manual
(https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_SWIV3-
SWI10-SWI-TS_I2.60.pdf).

3.4 [CDF matching ‘ refers to rescaling of the entire CDF, and is not a correct terminology
when only rescaling the mean and variance.]

Response to 3.4

We use in this paper a seasonal linear rescaling. Linear rescaling was introduced by Scipal et al.
(2008)  and  has  been  shown  giving  results  that  are  very  similar  to  an  exact  CDF  matching.
Nevertheless, to avoid any confusion, we have rewritten the sentence as follows (P.9-10, Lines 299-
301): “This is done through a linear rescaling as proposed by Scipal et al. (2007), where the mean
and variance of observations are matched to the mean and variance of the modelled soil moisture
from the second layer of soil (1-4 cm depth). This rescaling gives in practice very similar results to
CDF (cumulative distribution function) matching. The linear rescaling is performed on a seasonal
basis (with a 3-month moving window) as suggested by Draper et al., (2011), Barbu et al., (2014).”
Further  mentions  of  CDF matching  in  the  manuscript  have  been  replaced  by  “seasonal  linear
rescaling”.

3.5 [How exactly are the LAI data ‘interpolated’ from 1 km to 0.25 degree? Do you mean
interpolation to bridge cloudy pixels and then aggregation (upscaling)?]

Response to 3.5

Thanks for this suggestion. As in previous studies (e.g, Barbu et al., 2014, Albergel et al., 2019),
observations are aggregated using an arithmetic average to the model grid points (0.25° or 0.10° in
this study), if at least 50 % of the model grid points are observed (i.e. half the maximum amount). 
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Future work will  focus on looking at  the impact of cloud cover on the LAI upscaling process.
Instead of 50%, a possibility could be to use an arithmetic average to the model grid point if at least
70% of the model grid point are observed. Then during the assimilation/evaluation ERA5 (or HRES
IFS) total cloud cover field (tcc) could be use to mask out grid point if tcc is greater than 30%. This
is already used when evaluating e.g. satellite land surface temperature to model data (e.g. Johannsen
et al., 2019).
 
Reference:
Johannsen, F.; Ermida, S.; Martins, J.P.A.; Trigo, I.F.; Nogueira, M.; Dutra, E. Cold Bias of ERA5
Summertime Daily Maximum Land Surface Temperature over Iberian Peninsula. Remote Sens., 11,
2570, 2019.

3.6 [Is the LAI also ‘converted from the observation space to the model space’ as is done for
soil  moisture? Please describe how? If there is  no such rescaling, then the results may be
trivial, i.e there will be more impact of a non-rescaled LAI assimilation than when doing a
gentle  nudging  with  rescaled  soil  moisture.   However,  since  you  use  a  KF variant,  there
probably is some rescaling for both (otherwise the KF assumptions would be violated).]

Response to 3.5

Soil  moisture  is  a  very  model-specific  variable,  precipitation,  evapotranspiration,  soil  texture,
topography, vegetation, and land use could either enhance or reduce the spatial variability of soil
moisture depending on how it is distributed and combined with other factors (Famiglietti et al.
2008). In particular, differences in soil properties between the model grid points and reality could
imply  important  variations  in  the  mean and variance  of  soil  moisture.  Furthermore,  vegetation
effects  are  not  completely  corrected  when  going  from  the  satellite  measurement  (e.g.  radar
backscatter in the case of ASCAT) to SSM, leading to potential seasonal biases (e.g. Shamambo et
al.,  2019).  That  is  why  we  apply  the  linear  rescaling  to  the  ASCAT SWI.  It  also  acts  as  an
observation operator to go from the observational space (SWI, an index 0 and 1) to the model space
(SSM in m3m-3). 

For  LAI,  biases  between  the  model  and  the  observations  are  linked  to  the  way processes  are
represented in the model as well as uncertainties on the atmospheric forcing (cumulated effect on
modelled LAI). The assimilation sequentially removes bias in the modelled LAI (with respect to the
observed LAI). This technical difference between SSM and LAI assimilation, combined with the
longer memory of LAI compared to SSM contributes to the results presented in this study. See also
response to comment 3.14.

References:
Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson, 2008: Field observations of soil
moisture variability across scales. Water Resour. Res., 44, W01423, doi:10.1029/2006WR005804.
Shamambo, D.C.; Bonan, B.; Calvet, J.-C.; Albergel, C.; Hahn, S. Interpretation of ASCAT Radar
Scatterometer Observations Over Land: A Case Study Over Southwestern France.  Remote Sens.
2019, 11, 2842.

3.6 [How exactly is the ‘climatology’ defined? Is it seasonally varying, how much smooth-
ing is applied, etc?]
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Response to 3.6

The following sentence “This 9-yr global reanalysis was then used to provide a climatology for
estimating anomalies of the land surface conditions.” has been reformulated and is now (P.10, Lines
317-320) “This  9-yr  global  reanalysis  was  then  used  to  provide  a  monthly  climatology  for
estimating anomalies of the land surface conditions. For each month (and variable considered) of
2018 we have removed the monthly mean and scaled by the monthly standard deviation of the
2010-2018 period”

3.7  [The  spinup  period  for  the  0.1ˆo  simulation  seems  unrealistically  short.  How  was  it
initialized? Could you cycle over the short April-December period multiple times?

Response to 3.7

Nine months can be perceived as a too short period to spin up the system. Unfortunately, HRES
atmospheric forcing is only available from April 2016 and the LDAS-HRES experiment ends in
December 2018. We have considered this 9 months period for the spin up in order to have the
longest possible time series for land surface variables, thus giving more strength to statistics. We
could have considered a longer period for spin up (April 2016 to December 2017) and studied only
2018. This gives very similar results on surface soil moisture and LAI (not shown). While not being
fully spun-up, results obtained with LDAS-HRES can be considered as representative of the system
response to data assimilation. Note that most initial values of the LDAS-HRES run are taken from
the ECOCLIMAP-II database. For instance, initial LAI is set from a 1999-2005 climatology derived
from MODIS  

Another possibility to initialise LDAS-HRES could have been to downscale the state of LDAS-
ERA5 run in April 2016 to 0.10°x0.10° spatial resolution. LDAS-ERA5 runs have been set to an
equilibrium spinning up 20 times the first year (2010).

The following sentence:  “The period 2017-2018 is  presented,  HRES is  available  at  this  spatial
resolution from April 2016, only, and the time period from April to December 2016 is used as a
short spinup.” has been modified and is now (P.10, L.327-332): “HRES is available at a 0.1° x 0.1°
resolution only from April 2016. April to December 2016 is used as a short period for spinup and
results are presented for the period 2017-2018. Although a 9-month spinup period can be seen as
rather  short,   evaluating LDAS-HRES on either  2017-2018 or  2018 (using instead a  21-month
spinup) leads to similar results on surface soil moisture and LAI (not shown). While the system is
not  fully  spun-up,  it  can  be  considered  as  representative  of  the  system  response  to  data
assimilation.”

3.8 [Table II: An observation operator is a function, not a variable; also explain what you
mean by control variable (updated variables) for readers who are new to the field.  In fact, the
control  vector enters  the  observation  operator,  which  in  turn selects  a  subset  of  relevant
variables to produce the observation prediction.]

Response to 3.8

Agreed, in Table II “Observations operators” has been replaced by “Model equivalents” and  the
following sentences have been added to the revised version of the manuscript (section 2.1.3 on data
assimilation,  P.6,  Lines  200-202):  “The eight  control  variables  are  directly  updated  using  their
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sensitivity  to  observed  variables  (i.e.  defined  by  the  Jacobians).  Other  variables  are  indirectly
modified through biophysical processes and feedbacks from the model”

3.9 [Why is there no skill evaluation in terms of anomalies? Would be interesting.]

Response to 3.9

Thank your for your highly relevant comment. Following it and similar comments from the other
Reviewers, it has been decided to revisit the soil moisture evaluation part of the study: 
(1) we have added an evaluation of soil moisture from LDAS-Monde fourth layer of soil (10 to 20
cm) against in situ measurements of soil moisture at 20 cm depth when available (10 networks and
685 stations),
(2) for surface soil moisture (SSM), correlation values (R) were calculated for both absolute and
anomaly time-series in order to remove the strong impact from the SSM seasonal cycle on this
specific metric,
(3) a 95% Confidence Interval (CI) has been added to R values.
(4)  we  have  added  the  number  of  stations  for  which  correlations  differences  are  significant
(significant improvement or degradation from the analysis) as well as a map over North America for
illustration.

It involves several changes in the revised version of the manuscript, they are listed below.

Methodology section, 2.5 Evaluation datasets and metrics

P.11, Lines 358-365:“In situ measurements of surface soil moisture from 19 networks across 14
countries available from the ISMN are also used to evaluate the performance of the soil moisture
analysis. They represent 782 stations with at least 2 years of daily data over 2010-2018. Sensors at 5
cm depth (SSM) are compared with soil moisture from LDAS_ERA5 third layer of soil (4-10 cm),
sensors at 20 cm depth with the fourth layer of soil (10-20 cm, 685 stations from 10 networks).
Beside 11 stations located in 4 countries of Western Africa (Benin, Mali, Sénégal and Niger) and 21
stations in Australia, most stations are located in North America and Europe, see Table S3.”

P.12, Lines 374-377: “For global estimates, Normalized RMSD (NRMSD, Eq.(2)) was used, also.
Finally, for surface soil moisture, R was calculated for both absolute and anomaly time-series in
order to remove the strong impact from the SSM seasonal cycle on this specific metric (see e.g.
Albergel et al., 2018a, 2018b).”

Result section, 3..1.2 Ground-based datasets

P.17-18, Lines 548-582: “The statistical scores for soil moisture from LDAS_ERA5 open-loop and
analysis (third and fourth layers of soil,  4-10 cm depth,  10-20 cm depth, respectively) over 2010-
2018 when compared with ground measurements from the ISMN (5 cm depth and 20 cm depth) are
presented in Table S2 for each individual network. Averaged statistical metrics (ubRMSD, R,Ranomaly

and bias) are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist.
For the analysis, averaged R (Ranomaly) values along with its 95% Confidence Interval (CI) using in
situ  measurements  at  5  cm  (782  stations  from  19  networks)  are  0.68±0.03  (0.53±0.04)
(0.67±0.03(0.53±0.04)  for  the  open-loop)  with  averaged-network values  going up to  0.88±0.01
(0.58±0.04) for the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than
0.55 except for one network, ARM (10 stations in the USA) presenting an averaged R value of
0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077
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m3m-3 for the analysis, 0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.1) has
also been applied to R values, 65% of the pool of stations present a neutral impact from the analysis
(511 stations at NIC ranging between -3 and +3), 12% present a negative impact (91 stations at NIC
< -3) and 23% present a positive impact at (180 stations at NIC > +3). 
The number of stations where R differences between the analysis and the open-loop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis w.r.t. the open-loop for 128 stations (out of 186, i.e. about 69%) and a degradation
for 58 stations (about 31%). Figure 7 illustrates R differences between the analysis and the open-
loop runs. When differences (analysis minus open-loop) are not significant stations are represented
by a small dot. When they are significant, large circles have been used, blue for positive differences
(an  improvement  from the  analsysis)  and  red  for  negative  differences  (a  degradation  from the
analysis).  For  most  of  the  stations  where  a  significant  difference  is  obtained,  it  represent  an
improvement from the analysis. 
Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65±0.03, 0.049  m3m-3 and 0.055  m3m-3, respectively. For the open-loop, they are
0.64±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively.  For soil moisture at that depth, about 60% of
the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3 and
+3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations at
NIC < -3). Although differences between the open-loop run and the analysis are rather small, these
results underline the added value of the analysis with respect to the model run. Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”

Figure 7: Map of correlations (R) differences (analysis minus open-loop) for stations available over
North America.  Small  dots  represent  stations  where R differences  are not  significant  (i.e.  95%
confidence intervals are overlapping), large circles where differences are significant.
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Figure S6: a) Boxplots representing the distribution of the correlation values on absolute time-
series and anomaly time-series (“Ano”) between the stations with in situ measurements of soil
moisture either  5cm depth or 20 cm depth and soil  moisture from LDAS_ERA5 open-loop and
analysis  over  2010-2018  (third  and  forth  layer  of  soil,  respectively).  Correlation  values  are
presented for surface soil moisture (5 cm depth measurements against third layer of soil),  only.
Distribution  are  centred  on the median values.  b)  Distribution  of  the  Bias  values  between the
stations  with in  situ  measurements  of  soil  moisture either  5cm depth or  20 cm depth  and soil
moisture from LDAS_ERA5 open-loop and analysis over 2010-2018 (third and forth layer of soil,
respectively).c) Same as b) for ubRMSD.

The following text has been added to the revised version of the manuscript: “Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”

3.10 [Which variable in LDAS-Monde output is related to SIF and how?]

Response to 3.10

In ISBA, the fluorescence is not simulated directly, but the photosynthesis activity is simulated
through the calculation of the GPP, which is driven by plant growth and mortality in the model. Sun
et al. (2017) demonstrated that SIF and GPP were driven by the same environmental and biological
factors and found that SIF observations from OCO-2 and GPP products from FLUXCOM were
highly consistent in time and space. The modelled GPP values are expressed in g(C)·m−2·day−1,
whereas SIF is an energy flux emitted by the vegetation in units of mW·m−2·sr−1·nm−1. Thus, GPP
and  SIF  cannot  be  directly  compared  as  they  do  not  represent  the  same  physical  quantities.
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However, several studies (including Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have
found that their time dynamics and their spatial distributions can be investigated.

The following paragraph has been added to the revised version of the manuscript  (Section 2.5 on
evaluation datasets and metrics, P.13, Lines 400-406): “As for SIF, in ISBA the fluorescence is not
simulated directly, however photosynthesis activity is simulated through the calculation of the GPP,
which is driven by plant growth and mortality in the model. Modelled GPP values are expressed in
g(C)·m−2·day−1, while SIF is an energy flux emitted by the vegetation (mW·m−2·sr−1·nm−1). Hence,
GPP and SIF cannot be directly compared as they do not represent the same physical quantities.
However, several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found
that their time dynamics investigated, highlighting the potential of SIF products to be used as a
validation support for GPP models.”

References:
Leroux, D.J.; Calvet, J.-C.; Munier, S.; Albergel, C. Using Satellite-Derived Vegetation Products to
Evaluate LDAS-Monde over the Euro-Mediterranean Area. Remote Sens. 2018, 10, 1199. 
Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.T.; Verma,
M.; Porcar-Castell, A.; Griffis, T.J.; et al. OCO-2 advances photosynthesis observation from space
via solar-induced chlorophyll fluorescence. Science 2017, 358, 189.
Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.; Zhang,
G.; et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production
of vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169.

3.11  [Overall,  it  is  a  bit  disconcerting  that  trivial  design  results  are  shown  repeatedly.
Assimilate a variable, and sure, the model will get closer the assimilated observations. The
results need to be thoroughly revised (both text and figures) to eliminate the trivial results.
They can be mentioned once, but then the focus needs to be on the independent evaluation.  It
is also not correct to say that results “improve” if they simply get closer to the assimilated
observations (e.g. L. 375, L. 516,...). This holds both for the global assessment and for the case
studies, e.g. all of L. 505-512 is ‘trivial’ and can be removed.]

Response to 3.11

Verifying that the assimilation system works as intended is an important task. This is why several
figures have been included for “sanity check”. We have emphasized in the manuscript that several
presented evaluations are carried out to check if the assimilation system is working properly.

Also, using SSM and LAI as an independent source of information to evaluate the forecast has been
further  discussed  and  added  in  the  revised  version  of  the  manuscript.  While  LAI  remains  an
independent  source  of  information  for  the  forecast  evaluation  (although  constrained  by  the
assimilation),  ASCAT  SWI  has  been  rescaled  to  match  the  model  climatology.  The  seasonal
rescaling impacts both bias and correlation. In an attempt to have a more independent evaluation, an
additional  figure  has  been  put  in  the  revised  version  of  the  manuscript.  It  displays  maps  of
correlations between modelled soil  moisture (1-4 cm) from the four experiments (LDAS-HRES
open-loop, analysis, LDAS_fc4 and LDAS_fc8) and ASCAT SWI (i.e. ASCAT data prior rescaling)
for the WEUR domain. Correlations are applied to both absolute values and to anomalies (to assess
the short term variability of soil moisture).

End of section 3.2.2
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P.22, Lines 703-724: “Similarly to Figures 13(a, b, c, d), panels of Figure 15 illustrate the impact of
the analysis on SSM using correlations., To that end, ASCAT SWI (i.e. no rescaling) has been used.
Figure 14 (top panels) shows map of R values based on absolute values while Figure 14 (bottom
panels) shows R values on anomalies (short term variability) as defined in Albergel et al., 2018a.
Figure 15 (a) and (e) represents R values and anomaly R values for LDAS_HRES, respectively. As
expected R values are higher than anomaly R values. Maps of differences (panels b and f) of Figure
15 suggest that after assimilation, both scores are improved rather equally. While the 4 day and 8-
day forecast still show an improvement from the initial condition on R values (panels c and d of
Figure 15 dominated by positive differences, analysis minus open-loop), maps of anomaly R values
forecast don’t show any negative or positive impact (panels g and h of Figure 15).”

Discussion and conclusion sections
P.23, Lines 749-754: “For SSM, the assimilation is done after a rescaling to the model climatology
(see section 2.3), which removes bias. For LAI, however it is not the case and the assimilation
process  removes bias in  the modelled LAI (w.r.t.  to  the observation).  This  technical  difference
between SSM and LAI assimilation, combined with the longer memory of LAI compared to SSM,
contributes to the results presented in this section”

3.12 [The snow cover results (Fig 7-8) can be removed. It is too trivial that there would be no
impact on snow cover by assimilating soil moisture or LAI. Or else, explain in detail how
either variable would affect the snow cover.]

Response to 3.12
Agreed, both figures have been moved to the supplementary document (Figures S1 and S2) and it
has been further emphasized that there is no snow data assimilation yet. Those results are  presented
to highlight areas of improvements in LDAS-Monde: 
P.15, Lines 487-492: “As expected, the analysis has an almost neutral impact on snow as both SSM
and LAI observations are filtered out from frozen/snow condition and as there is no snow data
assimilation in LDAS_ERA5 (Figure S2 and panels (j), (k) and (l) of Figure S1). This clearly shows
however an area of potential improvement of data assimilation within LDAS-Monde using satellite
data such as the IMS one (as in e.g. de Rosnay et al., 2014).”

21

Figure 15: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates from the Copernicus
Global Land Service (CGLS) over 2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis
(open-loop) and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop) and
LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.
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3.13 [The independent validation (e.g against in situ SSM) shows no substantial improvement
in any of the metrics due to data assimilation.  Have the in situ data been thoroughly filtered
to remove bad points?  Why exactly do the authors see an advantage of LDAS_ERA5 for
these variables relative to the open loop (L. 458)?  There is some added value, but there is also
significant degradation, i.e.  I would say it is an equal game here.]

Response to 3.13

Agreed, last paragraph of section 3.1.2 on ground based dataset has been modified and is now (P.18,
Lines 582-587): “For evapotranspiration, river discharge and surface soil moisture, there is a slight
advantage  for  LDAS_ERA5  analysis  with  respect  to  its  open-loop  counterpart.  Even  if  the
distribution of the averaged statistical metrics can be rather similar for both (particularly true for
surface soil moisture evaluation), there are significant differences for some sites, which shows the
added value of the analysis with respect to the open-loop. Note that for fewer sites, a negative
impact from the analysis can also be observed.”

We have also revisited the soil moisture evaluation part of the manuscript, see response to comment
3.9.

3.14 [L. 535 & L. 545:  ‘more sensitive to’ is perhaps not the correct wording?  Sensitivity
would be quantified by something like the Jacobian. There is simply a larger update in LAI
than  in  SSM by  design,  and  this  propagates  in  time  differently  due  to  the  difference  in
memory for both variables (at this point in the paper, I am actually suspecting that LAI is
assimilated with a bias, see comment above).]

Response to 3.14

Agreed, “more sensitive” has been replaced by “relies more”. We also agree on the larger updates
allowed when assimilating LAI, and it has been stressed out by adding the following paragraph to
the discussions and conclusion stection (see also response to 3.5)

P.23, Lines 749-754: “For SSM, the assimilation is done after a rescaling to the model climatology
(see section 2.3), which removes bias. For LAI, however it is not the case and the assimilation
process removes bias in the modelled LAI (w.r.t. the observation). This technical difference between
SSM  and  LAI  assimilation,  combined  with  the  longer  memory  of  LAI  compared  to  SSM,
contributes to the results presented in this section.”

3.15 [Could you evaluate the impact of LAI and SSM assimilation in terms of runoff for the
high-resolution simulation?]

Response to 3.15
Thank you for this  suggestion,  we have added a figure to  show the impact  of the assimilation
(together with the impact of the initialisation on 4-day and 8-day forecasts) on drainage and runoff
over the WEUR domain.

The following paragraph and figure have been added to the revised version  of  the manuscript
(section  3.2.2  on    Case  studies  for  assessing  LDAS-Monde  high  resolutions  (0.1°  x  0.1°)  
experiments, P.22; Lines 713-724  ):   “Top panels of Figure 16 illustrate the impact of the analysis on
drainage monitoring and forecast over WEUR. Fig. 16 a) represents drainage from LDAS_HRES
open-loop varying between 0 and 1 kg.m-2.day-1, as seen in Fig.16 b) (drainage difference between
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LDAS_HRES analysis and open-loop) the analysis impact is rather small,  about  ±3% and more
pronounced in areas where the analysis has affected LAI more (see panels f), g) and h) of Figure
16). As seen on panels c) and d), there is also an impact from the initialisation in areas were the
analysis was more effectively correcting LAI. Bottom panels of Figure 16 illustrate similar impact
on runoff. As for drainage, this variable is affected by the analysis. Initial conditions have an impact
on its forecast, also. Although we did not present a quality assessment of those two variables, our
findings  on  river  discharge  analysis  impact,  but  also  those  from Albergel  et  al.,  2017,  2018a,
suggest  a  neutral  to  positive  impact,  propagated  from the  analysis  of  SSM  and  LAI  to  river
discharge through variables such as drainage and runoff.”

References:
Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo,
W.,  Faroux,  S.,  Meurey,  C.,  Le  Moigne,  P.,  Decharme,  B.,  Mahfouf,  J.-F.,  and  Calvet,  J.-C.:
Sequential  assimilation  of  satellite-derived  vegetation  and  soil  moisture  products  using
SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev.,
10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017. 

Albergel, C.; Munier, S.; Bocher, A.; Bonan, B.; Zheng, Y.; Draper, C.; Leroux, D.J.; Calvet, J.-C.
LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous
US: An ERA5 Driven Reanalysis of the Land Surface Variables. Remote Sens., 10, 1627, 2018a
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Figure  15:  Top row,  (a)  drainage values  for  LDAS_HRES open-loop over  2017-2018 for  the WEUR domain,  (b)
drainage differences between LDAS_HRES analysis and open-loop. (c), (d), same as (b) between LDAS_fc4 initialised
by the analysis and LDAS_fc4 initialised by the open-loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8
initialised by the open-loop. Bottom row, same as top row for runoff. Units are kg.m-2.day-1
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Response  to  Reviewer  4  are  structured  as  follow:  (1)  4.X:  comments  from  Reviewer  4,  (2)
Response to 4.X: author’s response and author’s  changes in manuscript when any.  For sake of
clarity, line and page numbering from the first submission is used.

[...]I think the paper can be an important contribution and can eventually be suitable for
publication in HESS, but at this point I recommend MAJOR revisions with consideration of
the comments below. […]

Dear Reviewer#4 many thanks for reviewing the manuscript and for highlighting its relevance and
interest. Your comments and suggestions led to an improved version of the manuscript. Below is a
point by point answer to your specific comments, all your editorial and technical comments were
accounted for in the revised version of the manuscript. 

Major
4.1 [1)  Six of  the thirteen figures  that  show results  (i.e.,  not  counting "data & methods"
figures  1  and 2)  are  about  evaluating the  skill  of  the  assimilation estimates  *exclusively*
against the assimilated observations (Figs 3 and 9-13).  Comparisons against the assimilated
observations are also included in Figs 4-6 (along with other variables) and Figs 14-15 (along
with forecast estimates of SSM and LAI). While I agree that it is important to verify that the
assimilation system works as intended, the authors overemphasize the comparison against the
assimilated observations.]

Response to 4.1

We  agree  with  Reviewer  #4,  verifying  that  the  assimilation  system  works  as  intended  is  an
important task. Part of the figures mentioned are indeed dedicated entirely (Fig. 3) or partially (Figs.
4-6) to that validation. The other aforementioned figures play a different role. Fig. 9 allows us to
identify potential hotspots for droughts and heat waves. Figs. 10-11 study the behaviour of LDAS-
ERA5 in the context of droughts for the WEUR (Western Europe) and the MUDA (Murray-Darling)
areas. Figs. 12-15 focus on the capacity of our system to forecast the evolution of land surface
variables depending on how it is initialized. 

Comment 4.6 on using SSM and LAI as an independent  source of information to  evaluate the
forecast has been further discussed and added in the revised version of the manuscript. While LAI
remains  an  independent  source  of  information  (although  constrained  by  the  assimilation  as
explained in Rewiewer#4 4.6), ASCAT SWI has been rescaled to match the model climatology. The
seasonal rescaling impacts both bias and correlation. In an attempt to have a more independent
evaluation an additional figure has been put in the revised version of the manuscript. It presents
maps of correlations, between soil  moisture (1-4 cm) from the four experiments (LDAS-HRES
open-loop, analysis, LDAS_fc4 and LDAS_fc8) and ASCAT SWI (i.e. ASCAT data prior rescaling)
for the WEUR domain. Correlations are applied to both absolute values and to anomalies (to assess
the short term variability of soil moisture).

End of section 3.2.2
P.22, Lines 703-724: “Similarly to Figures 13(a, b, c, d) panels of Figure 15 illustrates the impact of
the analysis on SSM using correlations. This time, ASCAT SWI (i.e. no rescaling) has been used.
Figure 15 (top panels) shows map of R values based on absolute values while Figure 15 (bottom
panels) shows R values on anomalies (short term variability) as defined in Albergel et al. (2018a).
Figure 15 (a) and (e) represents R values and anomaly R values for LDAS_HRES, respectively. As
expected R values are higher than anomaly R values. Maps of differences (panels b and f) of Figure
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15 suggest that after assimilation, both scores are improved rather equally. While the 4 day and 8-
day forecast still show an improvement from the initial condition on R values (panels c and d of
Figure  15  dominated  by  positive  differences,  analysis-open-loop),  maps  of  anomaly  R  values
forecast do not display any negative or positive impact (panels g and h of Figure 15).”

Discussion and conclusion sections
P.23, Lines 749-754: “For SSM, the assimilation is done after a rescaling to the model climatology
(see section 2.3), which removes bias. For LAI, however,  this is not the case and the assimilation
process  removes  bias  in  the  modelled  LAI  (w.r.t.   the  observation).  This  technical  difference
between SSM and LAI assimilation, combined with the longer memory of LAI compared to SSM,
contributes to the results presented in this section”

4.2 [2) The two figures about snow (Figs 7 & 8) could be simplified considerably because there
is no meaningful difference between the assimilation estimates and the open-loop estimates,
which is a rather trivial result (as the authors discuss).]

Response to 4.2

Agreed, both figures have been moved to the supplementary document (Figures S1 and S2) and it
has been further emphasized that there is no snow data assimilation yet. Those results are presented
to highlight areas of improvements in LDAS-Monde: 
P.15, Lines 487-492: “As expected, the analysis has an almost neutral impact on snow as both SSM
and LAI observations are filtered out from frozen/snow condition and as there is no snow data
assimilation in  LDAS_ERA5 (Figure S2 and panels (j),  (k)  and (l)  of Figure S1).  This clearly
shows, however, an area of potential improvement of data assimilation within LDAS-Monde using
satellite data such as the IMS one (as in e.g. de Rosnay et al., 2014).”

4.3 [3) There are no graphics in the main text (only in the supplement) about the validation of
the  results  against  *independent*  in  situ  measurements  (section  3.1.2).  This  independent
validation should be reflected more prominently in the main paper.]

Response to 4.3
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Figure 14: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates from the Copernicus
Global Land Service (CGLS) over 2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis
(open-loop) and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop) and
LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.
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Most of the in situ evaluation datasets involved in this study are available over North America and
(western)  Europe  and  two  regional-scale  studies  assessing  LDAS-Monde  analysis  impact  have
already  been  published  (Albergel  et  al.,  2017  over  Europe,  Albergel  et  al.,  2018a  over  North
America). To avoid redundancy with these previous studies, we preferred not to put too much of
those results in the main part of the study. However to better reflect the findings of this evaluation,
last paragraph of section 3.1.2 on ground based dataset has been modified and is now (P.18, L.583-
587): “For evapotranspiration, river discharge and surface soil moisture it can be stated that there is
a slight advantage from LDAS_ERA5 analysis with respect to its open-loop counterpart. Even if the
distribution of the averaged statistical metrics can be rather similar for both (particularly true for
surface soil moisture evaluation), there are regional significant differences for some sites, which
shows the added value of the analysis with respect to the open-loop. Note that for fewer sites, a
negative impact from the analysis can also be observed.” 

Also, the whole evaluation against in situ measurements has been revisited and now includes such a
figure, see response to comment 4.4.

4.4  [4)  The  claim  about  "improvement"  of  the  assimilation  estimates  vs.  the  open-loop
estimates from the independent validation against in situ soil moisture estimates in section
3.1.2 ( line 460) is on shaky footing. For none of the networks listed in Table S3 is there a∼line 460) is on shaky footing. For none of the networks listed in Table S3 is there a
difference of more then 0.02 in the R values between the assimilation and the open loop.  In
some  cases,  the  0.02  difference  is  negative  (ie.,  degradation).  For  most  networks  the  R
difference is 0 or 0.01, that is, there really isn’t a meaningful change. Here, and also for at
least the other in-situ based results, it is imperative that the authors provide some estimates of
whether the differences are meaningful (e.g., by including statistical confidence intervals), and
then honestly discuss the results. The claim in line 460 about significant improvements at
some sites may be true, but given the network-average neutral results there must then also be
sites with a significant degradation, which is not mentioned in the paper.]

Response to 4.4

Thank your for your highly relevant comment. Following it and similar comments from the other
Reviewers, it has been decided to revisit the soil moisture evaluation part of the study: 
(1) we have added an evaluation of soil moisture from LDAS-Monde fourth layer of soil (10 to 20
cm) against in situ measurements of soil moisture at 20 cm depth when available (10 networks and
685 stations),
(2) for surface soil moisture (SSM), correlation values (R) were calculated for both absolute and
anomaly time-series in order to remove the strong impact from the SSM seasonal cycle on this
specific metric,
(3) a 95% Confidence Interval (CI) has been added to R values.
(4)  we  have  added  the  number  of  stations  for  which  correlations  differences  are  significant
(significant improvement or degradation from the analysis) as well as a map over North America for
illustration.

It involves several changes in the revised version of the manuscript, they are listed below.

Methodology section, 2.5 Evaluation datasets and metrics

P.11, Lines 358-365: “In situ measurements of surface soil moisture from 19 networks across 14
countries available from the ISMN are also used to evaluate the performance of the soil moisture
analysis. They represent 782 stations with at least 2 years of daily data over 2010-2018. Sensors at 5
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cm depth (SSM) are compared with soil moisture from LDAS_ERA5 third layer of soil (4-10 cm),
sensors at 20 cm depth with the fourth layer of soil (10-20 cm, 685 stations from 10 networks).
Beside 11 stations located in 4 countries of Western Africa (Benin, Mali, Sénégal and Niger) and 21
stations in Australia, most stations are located in North America and Europe, see Table S3.”

P.12, Lines 374-377: “For global estimates, Normalized RMSD (NRMSD, Eq.(2)) was used, also.
Finally, for surface soil moisture, R was calculated for both absolute and anomaly time-series in
order to remove the strong impact from the SSM seasonal cycle on this specific metric (see e.g.
Albergel  et al., 2018a, 2018b).”

Result section, 3..1.2 Ground-based datasets

P.17-18, Lines 548-582: “The statistical scores for soil moisture from LDAS_ERA5 open-loop and
analysis (third and fourth layers of soil,  4-10 cm depth,  10-20 cm depth, respectively) over 2010-
2018 when compared with ground measurements from the ISMN (5 cm depth and 20 cm depth) are
presented in Table S2 for each individual network. Averaged statistical metrics (ubRMSD, R,Ranomaly

and bias) are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist.
For the analysis, averaged R (Ranomaly) values along with its 95% Confidence Interval (CI) using in
situ  measurements  at  5  cm  (782  stations  from  19  networks)  are  0.68±0.03  (0.53±0.04)
(0.67±0.03(0.53±0.04)  for  the  open-loop)  with  averaged-network values  going up to  0.88±0.01
(0.58±0.04) for the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than
0.55 except for one network, ARM (10 stations in the USA) presenting an averaged R value of
0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077
m3m-3 for the analysis, 0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.1) has
also been applied to R values, 65% of the pool of stations present a neutral impact from the analysis
(511 stations at NIC ranging between -3 and +3), 12% present a negative impact (91 stations at NIC
< -3) and 23% present a positive impact at (180 stations at NIC > +3). 
The number of stations where R differences between the analysis and the open-loop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis w.r.t. the open-loop for 128 stations (out of 186, i.e. about 69%) and a degradation
for 58 stations (about 31%). Figure 7 illustrates R differences between the analysis and the open-
loop runs. When differences (analysis minus open-loop) are not significant stations are represented
by a small dot. When they are significant, large circles have been used, blue for positive differences
(an  improvement  from the  analsysis)  and  red  for  negative  differences  (a  degradation  from the
analysis).  For  most  of  the  stations  where  a  significant  difference  is  obtained,  it  represent  an
improvement from the analysis. 
Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65±0.03, 0.049  m3m-3 and 0.055  m3m-3, respectively. For the open-loop, they are
0.64±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively.  For soil moisture at that depth, about 60% of
the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3 and
+3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations at
NIC < -3). Although differences between the open-loop run and the analysis are rather small, these
results underline the added value of the analysis with respect to the model run. Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”
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Figure 7: Map of correlations (R) differences (analysis minus open-loop) for stations available over
North America.  Small  dots  represent  stations  where R differences  are not  significant  (i.e.  95%
confidence intervals are overlapping), large circles where differences are significant.

Figure S6: a) Boxplots representing the distribution of the correlation values on absolute time-
series and anomaly time-series (“Ano”) between the stations with in situ measurements of soil
moisture either  5cm depth or 20 cm depth and soil  moisture from LDAS_ERA5 open-loop and
analysis  over  2010-2018  (third  and  forth  layer  of  soil,  respectively).  Correlation  values  are
presented for surface soil moisture (5 cm depth measurements against third layer of soil),  only.
Distribution  are  centred  on the median values.  b)  Distribution  of  the  Bias  values  between the
stations  with in  situ  measurements  of  soil  moisture either  5cm depth or  20 cm depth  and soil
moisture from LDAS_ERA5 open-loop and analysis over 2010-2018 (third and forth layer of soil,
respectively).c) Same as b) for ubRMSD.

The following text has been added to the revised version of the manuscript: “Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”

4.5 [5) The editing of the paper is rather careless. There are many small mistakes, and the
organization of the text is lacking.]

The 4 Reviewers have provided many editorial comments, corrected several mistakes. Thanks to
their work we have an improved version of the manuscript. 
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4.5a [a) The Introduction lacks a clear statement of the paper’s objectives. The text in Lines
107-121 simply states what will be presented (with lots of references and details). It’s hard to
tell what the objectives might be.]

Response to 4.5a

Agreed.  In order to make the paper’s objectives clearer, the following paragraph in the introduction
has been revisited:
 
“In  this  study,  stemming  from  previous  works  referenced  above,  this  global,  offline,  joint
integration  of  Surface  Soil  Moisture  (SSM)  and  Leaf  Area  Index  (LAI)  EOs  into  the  ISBA
(Interaction between Soil Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan
and Mahfouf, 1996) are presented: [...]”
is now (P.4, Lines 108-114):
“In this study, stemming from previous works referenced above, it is shown that LDAS-Monde
global, offline, joint integration of Surface Soil Moisture (SSM) and Leaf Area Index (LAI) EOs
into the ISBA (Interaction between Soil Biosphere and Atmosphere) LSM (Noilhan and Planton,
1989,  Noilhan and Mahfouf,  1996)  can be used to  detect,  monitor  and forecast  the  impact  on
extreme events on LSVs. Are presented in this study: [...]”

4.5b [b) There are several instances in the Results section of text that belongs in the Methods
section,  incl:  Lines 384-387 -  IMS snow cover product description Lines 405-409 -Fluxnet
description Lines 440-447 - ISMN description]

Response to 4.5b

Agreed. When appropriate, those instances were moved to the section dedicated to methodology
(description of IMS data; ISMN and FLUXNET-2015 networks, river discharge).

Response to 4.5c [c) Section 3.2.2 is a *single* paragraph that stretches over nearly two pages.
Really? There are several other paragraphs of excessive length.]

Response to 4.5c

Section 3.2.2 has now been reshuffled with one paragraph per group of 2 figures.

d) Graphics:

4.5d_f1 [Figure 1a:  Use different color for zero values and no-data value.  (currently, both are
white, making it unclear whether there are data in, e.g., the western US, or whether those are
screened, perhaps because of topography.]

Response to 4.5d_f1

Agreed, see new figure below.
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4.5d_f2 [Figure 3: The label of the colorbar should read "RMSD of LAI [m2 m-2]", not just
"LAI [m2 m-2]"] 

Response to 4.5f_f2
Agreed, see new figure below

4.5d_f5  [Figure  5:   Units  are  missing  for RMSD panels.   (This  is  particularly  important
because this information is needed to judge whether the differences are in fact meaningful.)]

Response to 4.5d_f5
Thank you for this suggestion, for RMSD panels it has been decided to use normalized RMSD (%
of improvement and/or degradation) so one can really see the impact on each evaluated variable, it
also echoes Reviewer 4’s comment 4.7 on analysis  impact on GPP. Using similar x-axis limits
provides a better information at a glance. For instance it minimizes the previous visual impact of the
analysis on GPP, and as such addressing your comment 4.7. Also panels of new Figure 5 separate
the assimilated and independent variables, see new figure below.

Also,  in  section  3.1.1  on  gridded  dataset:the  following  sentence  “For  SSM  a  noticeable
improvement in both correlation and RMSD is found around 20°N corresponding mainly to an
improvement in the Sahara desert (not shown). GPP is also improved across almost all latitude with
a  particularly  positive  impact  below  20°N  which  is  also  true  for  EVAP.  This  variable  is  less
impacted by the analysis and some parts of the world show a decrease in e.g. RMSD values.”  is
now (P.14, Lines 436-441):
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“For  SSM  a  noticeable  improvement  in  both  correlation  and  RMSD  is  found  around  20°N
corresponding mainly to an improvement in the Sahara desert (not shown). Being linked to LAI,
GPP is also improved across almost all latitudes (to a lesser extend  than LAI) with a particularly
positive impact below 20°N. As seen on Figure 5 d) and i), there is little impact on variable EVAP
which can be considered negligible. It highlights the difficulty  of land surface data assimilation to
impact model fluxes by modifying model states.”

4.5d_f6 [Figure 6:  Three panels only have a single tick & tick label on the y-axis.  At least two
are required to interpret the axis scale.]

Response to 4.5d_f6

Agreed, it has been added in the revised version of the manuscript.

4.5d_f7 [Figure 7: The color choices should be made consistent with Fig 4.]

Response to 4.5d_f7

Agreed, Figure 7 is now in the supplementary.

4.5d_f9 [Figure 9: I could not find out what the thin cyan lines depict.]

Response to 4.5d_f9
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The following sentence has been added to the caption of the considered figure’s caption: “Solid red
line, dashed red line and solid green line represent regions MUDA, WEUR and EAFR. Solid cyan
lines represent all other boxes (see Table 1 and Figure 2).”

4.5d_f10+11 [Figures 10+11: add "LAI" to plot title of c) and d); add "SSM" to plot title of g)
and h)]

Response to 4.5d_f10+11

Agreed, it has been added in the revised version of the manuscript.

4.5d_fS2 [Figure S2: NSE should vary from -infinity to 1.  The colorbar is from -20 to 20, and
darker blue values would clearly be greater than 1. Either the colorbar is wrong or the values
show something other than NSE.]

Response to 4.5d_fS2

Thanks for spotting this issue resulting from a wrong call in a python script, it has been corrected in
the revised version of the manuscript.

4.5d_ts3 [Table S3: The column headings on the 2nd page of the table still include French
words.]

Response to 4.5d_ts3

Corrected, thanks for spotting this issue.

4.6 [6) In section 3.2.2, the authors no longer make it clear that the verification is against the
assimilated datasets. While verification of forecast data against the assimilated dataset can be
viewed  as  independent  validation  because  the  verification  data  have  not  (yet)  been
assimilated,   there is  an important distinction here between SSM and LAI. For SSM, the
assimilation is done after rescaling (cdf-matching), which removes bias. For LAI, however, the
assimilation uses the raw LAI observations (I think). That is,  the assimilation removes bias in
the modeled LAI (w.r.t. the observed LAI). This technical difference between SSM and LAI
assimilation, combined with the longer memory of LAI compared to SSM, should contribute
to the results in section 3.1.2. Put differently, the LAI results of section 3.1.2 are not likely to
hold if an independent LAI dataset had been used for validation that is itself biased against
the assimilated LAI observations. (Different LAI datasets may not be as biased against each
other  as  typical  satellite  SSM  datasets,  but  there  are  considerable  biases  between  LAI
products.)]

Response to 4.6

Verifying that the assimilation system works as intended is an important task. This is why several
figures have been included for “sanity check”. We have emphasized in the manuscript that several
presented evaluations are carried out to check if the assimilation system is working properly.

Also, using SSM and LAI as an independent source of information to evaluate the forecast has been
further  discussed  and  added  in  the  revised  version  of  the  manuscript.  While  LAI  remains  an
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independent  source  of  information  for  the  forecast  evaluation  (although  constrained  by  the
assimilation),  ASCAT  SWI  has  been  rescaled  to  match  the  model  climatology.  The  seasonal
rescaling impacts both bias and correlation. In an attempt to have a more independent evaluation, an
additional  figure  has  been  put  in  the  revised  version  of  the  manuscript.  It  displays  maps  of
correlations between modelled soil  moisture (1-4 cm) from the four experiments (LDAS-HRES
open-loop, analysis, LDAS_fc4 and LDAS_fc8) and ASCAT SWI (i.e. ASCAT data prior rescaling)
for the WEUR domain. Correlations are applied to both absolute values and to anomalies (to assess
the short term variability of soil moisture).

End of section 3.2.2
P.22, Lines 703-724: “Similarly to Figures 13(a, b, c, d), panels of Figure 15 illustrate the impact of
the analysis on SSM using correlations., To that end, ASCAT SWI (i.e. no rescaling) has been used.
Figure 14 (top panels) shows map of R values based on absolute values while Figure 14 (bottom
panels) shows R values on anomalies (short term variability) as defined in Albergel et al., 2018a.
Figure 15 (a) and (e) represents R values and anomaly R values for LDAS_HRES, respectively. As
expected R values are higher than anomaly R values. Maps of differences (panels b and f) of Figure
15 suggest that after assimilation, both scores are improved rather equally. While the 4 day and 8-
day forecast still show an improvement from the initial condition on R values (panels c and d of
Figure 15 dominated by positive differences, analysis minus open-loop), maps of anomaly R values
forecast don’t show any negative or positive impact (panels g and h of Figure 15).”

Discussion and conclusion sections
P.23, Lines 749-754: “For SSM, the assimilation is done after a rescaling to the model climatology
(see section 2.3), which removes bias. For LAI, however it is not the case and the assimilation
process  removes bias in  the modelled LAI (w.r.t.  to  the observation).  This  technical  difference
between SSM and LAI assimilation, combined with the longer memory of LAI compared to SSM,
contributes to the results presented in this section”

4.7 [7) Figure 3c suggests that the change in GPP is negligible, at least in the zonal mean sense
although Figure 4f suggests that GPP does change in terms of RMSD. Given the considerable
change in the (zonal mean) LAI (Fig 3a), I would have expected a lot more change in the mean
GPP. I suspect that the disconnect between the LAI and GPP changes is rooted in how these
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Global Land Service (CGLS) over 2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis
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variables are connected in ISBA and how exactly the assimilation system goes about updating
LAI. This rather counter-intuitive result requires clarification in the paper.]

Response to 4.7

We believe that Figure 5 was rather confusing and that the new Figure proposed (see Response
4.5d_f5,  also)  permits  to  clarify  this  point.  In  section  2.1.1  on  ISBA land  surface  model,  the
following sentence is now “In the CO2-responsive versions of ISBA, photosynthesis is in control of
the evolution of vegetation variables.” is now (P.5, Lines 157-160) “In the CO2-responsive versions
of ISBA, ISBA-A-gs, the model can simulate the CO2 net assimilation and GPP by considering the
functional relationship between the photosynthesis rate (A) and the stomatal aperture (gs) based on
the biochemical A-gs model proposed by Jacob et al. (1996). Photosynthesis is in control of the
evolution of vegetation variables.”
References:
Jacobs, C.M.J.; van den Hurk, B.J.J.M.; de Bruin, H.A.R. Stomatal behaviour and photosynthetic
rate of unstressed grapevines in semi-arid conditions. Agric. For. Meteorol. 80, 111–134, 1996.

4.8 [8) Fig 5h:  The changes in EVAP are with +/- 0.02 (mm/d???).  If my guess about the units
is correct, this would amount to only a few mm per year, which is well within the uncertainty
of  in situ measurements.  That is,  the EVAP changes are not  likely  to be meaningful  in a
practical sense. This should be discussed more explicitly.]

Response to 4.8

Agreed, the new figure 5 also helps to clarify that the impact on variable EVAP is rather negligible.
See also Responses to 4.5d_f5, 4.13

Minor
4.9 [9) Line 167: typo "bale" –> "able"]

Response to 4.9
Typo corrected in the revised version of the manuscript, thanks.

4.10  [10)  Line  209:  "fifth  generation  of  European  reanalyses  produced  by  ECMWF"  I
recommend phrasing this differently to avoid the misunderstanding that the reanalyses are
just  for  the  European  domain.  E.g.,:  "fifth  generation  of  global  reanalyses  produced  by
ECWMF"]

Response to 4.10
Rephrased in the revised version of the manuscript, thanks.

4.11 [11) Lines 293-295:  How did you address the heterogeneity within the 0.25-deg grid cells
during spin-up? It is not obvious that the short spin-up period from April 2016 suffices for
properly spinning up grid cells with strong heterogeneity at the sub-0.25-degree scale.]

Response to 4.11

The  global  LDAS-ERA5  runs  were  spun-up  by  running  20  times  the  first  year  (2010).  For
LDAS_HRES,  nine  months  can  be  perceived  as  a  too  short  period  to  spin  up  the  system.
Unfortunately, HRES atmospheric forcing is only available from April 2016 and the LDAS-HRES
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experiment ends in December 2018. We have considered this 9 months period for the spin up in
order to have the longest possible time series for land surface variables, thus giving more strength to
statistics. We could have considered a longer period for spin up (April 2016 to December 2017) and
studied only 2018. This gives very similar results on surface soil moisture and LAI (not shown).
While  not  being  fully  spun-up,  results  obtained  with  LDAS-HRES  can  be  considered  as
representative of  the  system response to  data  assimilation.  Note that  most  initial  values  of  the
LDAS-HRES run are taken from the ECOCLIMAP-II database. For instance, initial LAI is set from
a 1999-2005 MODIS climatology. 

Another possibility to initialise LDAS-HRES could have been to downscale the state of LDAS-
ERA5 run in April 2016 to 0.10°x0.10° spatial resolution. LDAS-ERA5 runs have been set to an
equilibrium spinning up 20 times the first year (2010).

The following sentence:  “The period 2017-2018 is  presented,  HRES is  available  at  this  spatial
resolution from April 2016, only, and the time period from April to December 2016 is used as a
short spinup.” has been modified and is now (P.10, Lines 327-332): “HRES is available at a 0.1° x
0.1° resolution only from April 2016. April to December 2016 is used as a short period for spinup
and results are presented for the period 2017-2018. Although a 9-month spinup period can be seen
as rather short,  evaluating LDAS-HRES on either 2017-2018 or 2018 (using instead a 21-month
spinup) leads to similar results on surface soil moisture and LAI (not shown). While the system is
not  fully  spun-up,  it  can  be  considered  as  representative  of  the  system  response  to  data
assimilation.”

4.12 [12) Line 379: Do you mean a decrease in RMSD or a decrease in skill?]

Response to 4.12
This sentence has been revised and “[...] shows a degradation”  is now “[...] shows a decrease in
skill”

13) Line 412: If I’m reading this correctly RMSD decreases while both bias and ubRMSD
increase.  This is quite counter-intuitive and requires a rather odd distribution of the metrics
across the sites or networks included in the average. In any case, since bias and ubRMSD get
worse, I do not think that the statement about "a small advantage of the analysis over the
open-loop" is justified.

Response to 4.13
Agreed, the considered sentence has been reformulated and is now: “If these numbers depict a small
advantage of the analysis over the open-loop configuration, it is worth mentioning that differences
are rather small and likely to fall within the uncertainty of the in situ measurements.”

14) Line 429: "NSE values below -2 were discarded" requires a justification,  otherwise it
reads like cherry-picking.

Response to 4.14
Agreed, this threshold has also been used for previous studies at CNRM as we did not want to look
at river discharges we do not represent well. The pool of stations we have used are monitoring all
types of rivers and streams including those where human impacts (dams and reservoirs, irrigation,
water uptake, not represented in ISBA yet) is affecting the natural flow of rivers. As we expect the
impact of the analysis on river discharge to be small (based on previous work), we did not find
necessary to include stations we badly represent in ISBA, possibly for known reasons. Futur work
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will  focus  on  preparing  a  more  robust  in  situ  pool  of  station,  separating  e.g.  managed  and
unmanaged rivers and stream.

The following paragraph has been added to the methodology section (P.12-13, Lines 394-399):
“Stations with NSE values lesser that -2 were discarded. A similar threshold has already been used
in previous studies evaluating LDAS-Monde (e.g. Albergel et al., 2017, 2018a). Many processes,
most of them linked to water management such as the presence of dams and reservoirs, irrigation,
water uptake in urban areas, are not yet represented in ISBA leading to a poor representation of
river discharges. As previous evaluations studies have suggested a neutral to positive impact from
the assimilation, only, it has been decided to focus on stations with reasonable NSE values.”

4.15 [15) Line 535: "the analysis is of better quality" Given the numbers, I see at best "slightly
better quality"]

Response to 4.15
Emphasized in the revised version of the manuscript, “Note however that for the MUDA area, a 4-d
forecast of surface soil moisture initialised by the analysis is of better quality than a 4-d forecast
initialised by the open-loop”  is now (P.21, Lines 664-666): “Note, however, that, for the MUDA
area, there is a small positive impact of the initialisation on the 4-d and 8-d forecast of surface soil
moisture (blue areas on Figure 13 c) and d)).”

4.16 [4.16 [16) Line 592:  "surface (0-1 cm)" In section 3.2.2 the discussion was about the "(1-
4cm)" layer. Which is it?]

Response to 4.16

Thanks, it should read 1-4cm, it is now corrected in the revised version of the manuscript
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Abstract-This study demonstrates that LDAS-Monde, a global and offline Land Data Assimilation

System (LDAS), that integrates satellite Earth  Oobservations into the ISBA (Interaction between

Soil Biosphere and Atmosphere) Land Surface Model (LSM), is able to detect, monitor and forecast

the impact of extreme weather on land surface states. LDAS-Monde jointly assimilates satellite

derived Earth observations of surface soil moisture (SSM) and Leaf Area Index (LAI). It is run at

global scale forced by ERA5 (LDAS_ERA5), the latest atmospheric reanalysis from the European

Centre for Medium Range Weather Forecast (ECMWF), ERA5 (ECMWF fifth global Re Analysis,

LDAS_ERA5  hereafter) over  2010-2018  leading  to  a  9-yr,  ~0.25°  x  0.25°  spatial  resolution

reanalysis of Land Surface Variables (LSVs). This reanalysis is then used to compute anomalies of

land surface states, in order to (i) detect regions exposed to extreme weather such as droughts and

heatwave events and (ii)  address specific  monitoring and forecasting requirements of LSVs for

those regions. In this study, LDAS_ERA5 analysis is first successfully evaluated worldwide using

several satellite-based datasets (SSM, LAI, eEvapotranspiration, Gross Primary Production and Sun

Induced  Fluorescence), as  well  as  in  situ  measurements  (SSM,  evapotranspiration  and  river

discharge). The added value of assimilating the soil moisture and LAI is demonstrated with respect

to  a  model  simulation  (open-loop, with  no  assimilation).  Since  the  global LDAS_ERA5  has

relatively coarse resolution, two higher spatial resolution experiments over two areas particularly

affected by heatwaves and/or droughts in 2018 were run: North Western Europe and the Murray-

Darling basin in South Eastern Australia. These experiments were forced with ECMWF Integrated

Forecasting  System  (IFS)  high  resolution  operational  analysis  (LDAS_HRES,  ~0.10°  x  0.10°

spatial resolution) over 2017-2018, and both open-loop and analysis experiments compared once

again. Since the IFS is a forecast system, it also allows LDAS-Monde to be used in forecast mode,

37

1425

1430

1435

1440

1445

1450

1455

mailto:clement.albergel@meteo.fr


and we demonstrate the added value of initializing 4- and 8-day LDAS-HRES forecasts of the

LSVs, from the LDAS-HRES assimilation run, compared to the open-loop experiments. This is

particularly true for LAI that evolves on longer time space than SSM and is more sensitive to initial

conditions  than  to  atmospheric  forcing,  even at  an  8-day lead  time. This  confirms  that  slowly

evolving land initial conditions are paramount for forecasting LSVs and that LDAS-systems should

jointly  analyse  both  soil  moisture  and  vegetation  states.  Finally  evaluation  of  the  modelled

snowpack  is  presented  and  the  perspectives  for  snow  data  assimilation  in  LDAS-Monde  are

discussed.

 1 Introduction

Extreme weather and climate events like heatwaves and droughts are likely to increase in frequency

and/or magnitude (IPCC, 2012, Ionita et al., 2017). Amongst all the natural disasters, droughts are

the most detrimental (Bruce, 1994; Obasi, 1994; Cook et al., 2007; Mishra and Singh, 2010; WMO

2017) and about  one-fifth  of  damages caused by natural  hazards  can be  attributed to  droughts

(Wilhite 2000). They also cost society billions of dollars every year (WMO 2017). It is therefore of

paramount  importance to  implement  tools  that  can monitor  and warn about  drought  conditions

(Svoboda, 2002;  Luo and Wood, 2007; Blyverket et  al.,  2019) as well  as their  impact on land

surface  variables  (LSVs)  and society  (Di  Napoli  et  al.,  2019).  A major  scientific  challenge  in

relation  to  the  adaptation  to  climate  change  is  to  observe  and  simulate  how land  biophysical

variables respond to those extreme events (IPCC, 2012).

Droughts can be described as a deficit of water caused by a lack of precipitation.  The concept of

drought  is  broad and they  are  generallyHowever  its  concept  is  broader  and they  are  generally

classified according to which part of the hydrological cycle suffers from a water deficit (IPCC,

2014; Barella-Ortiz and Quintana-Seguí, 2018). Drought types are all related to precipitation deficit

and they have severe impacts in regions with rain-fed crops and no irrigationmost severe in areas of

rain-fed  crops  agriculture  with  no  irrigation.  They  include  meteorological  droughts  (lack  of

precipitation), agricultural droughts (deficit of water in the soil), hydrological droughts (deficit of

streamflow,  water  level  in  rivers)  and  environmental  droughts  (a  combination  of  the  previous

droughts  types).  Because  of  the  effect  of  precipitation  deficit  propagating  through  the  whole

hydrological system, it can be stated that  all  drought types are related (Wilhite, 2000). Complex

interactions  between  continental  surface  and  atmospheric  processes  have  to  be  combined  with

human action in order to  representfully understand the wide ranging impacts of droughts on land

surface conditions (Van Loon, 2015). As a consequence, Land Surface Models (LSMs) driven by

high-quality gridded atmospheric variables and coupled to river-routing system are key tools to
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address these challenges (Dirmeyer et al., 2006; Schellekens et al., 2017). Initially developed to

provide boundary conditions to atmospheric models, the role of LSMs has evolved and they can

now be used to monitor and forecast land surface conditions (Balsamo et al., 2015; Balsamo et al.,

2018; Schellekens et al., 2017). Additionally, the representation of LSVs by LSMs can be improved

through  the  integration  of  Earth  Observations  (EOs)  (e.g.  Reichle  et  al.,  2007;  Lahoz  and  de

Lannoy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a, 2019; Balsamo et al., 2018) as well

as by coupling them with other models of the Earth system like atmosphere, oceans, river routing

systems (e.g., de Rosnay et al., 2013, 2014; Kumar et al., 2018, Balsamo et al., 2018; Rodríguez-

Fernández et al., 2019; Muñoz-Sabater et al., 2019). Satellite products are particularly relevant for

such application. Satellite EOs related to the terrestrial hydrological, vegetation and energy cycles

are now unrestrictedly  available at a global scale with high spatial resolution (at kilometric scale

and  below)  and  with  long-term records  (e.g.,  Lettenmaier  et  al.,  2015,  Balsamo et  al.,  2018).

Combining  EOs  and  LSMs through  Land  Data  Assimilation  Systems  (LDASs)  could  leads to

enhanced initial  land  surface  conditions  which,  in  turn,  lead  to  improved forecasts  of  weather

patterns,  sub-seasonal  temperature  and  precipitation,  agricultural  and  vegetation  productivity,

seasonal streamflow, floods and droughts, as well as the carbon cycle (Bamzai and Shukla, 1999;

Schlosser and Dirmeyer, 2001; Bierkens, M. and van Beek, 2009; Koster et al., 2010; Bauer et al.,

2015; Massari et al, 2018; Albergel et al., 2018a, 2019, Rodríguez-Fernández et al., 2019; Muñoz-

Sabater et al.,  2019). Amongst the current  land-only  LDAS activities  are  several  are  NASA-led

(National  Aeronautics  and  Space  Administration)  projects.  Examples  of  such  activities  are  the

Global Land Data Assimilation System (GLDAS, Rodell et al., 2004) which is run at a global scale.

While theAmongst them are the Global Land Data Assimilation System (GLDAS, Rodell et al.,

2004) run at global scale. The North American Land Data Assimilation System (NLDAS, Xia et al.,

2012a,  b)  and  the  National  Climate  Assessment-Land  Data  Assimilation  System (NCA-LDAS,

Kumar et al.,  2016, 2018, 2019) are run over the continental United States of America and the

Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS,

McNally et al., 2017) is run e.g. over Western, Eastern and Southern Africa. Finally, the Carbon

Cycle Data Assimilation System (CCDAS, Kaminski et al., 2002), the Coupled Land Vegetation

LDAS (CLVLDAS, Sawada and Koike, 2014, Sawada et al., 2015), the Data Assimilation System

for Land Surface Models using CLM4.5 proposed by Fox et al., 2018, the SMAP (Soil Moisture

Active Passive) level 4 system (Reichle et al., 2019) as well as LDAS-Monde (Albergel et al., 2017,

2018, 2019) developed by the research department of Météo-France are additional initiatives of

combining EOs and LSMs through data assimilation. Few studies have, however, have included the

assimilation of multiple EOs and considered global applications (Kumar et al., 2018, Albergel et al.,
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2019). A more detailed description of the various existing LDASs is available in Kumar et al., 2018,

Albergel et al., 2019 and references therein.

After several applications at  regional and continental  scales (Albergel et  al.,  2017, 2018, 2019,

Leroux et al., 2018, Tall et al., 2019, Blyverket et al., 2019, Bonan et al., 2019), LDAS-Monde was

run  at  global  scale  forced  by  the  latest  atmospheric  reanalysis  from the  European  Centre  for

Medium Range Weather Forecast (ECMWF), ERA5, over 2010-2018 leading to a 9-yr, 0.25° x

0.25°  spatial  resolution  reanalysis  of  the  LSVs  (LDAS_ERA5).  In  this  study,  stemming  from

previous works referenced above, it is shown that thisLDAS-Monde global, offline, joint integration

of Surface Soil Moisture (SSM) and Leaf Area Index (LAI) EOs into the ISBA (Interaction between

Soil Biosphere and Atmosphere) LSM (Noilhan and Planton, 1989, Noilhan and Mahfouf, 1996)

can be used to detect, monitor and forecast the impact of extreme events on LSVs.  aAre presented

in this study:

• An  evaluation  at  global  scale  using  diverse  and  complementary  datasets  such  as

evapotranspiration  from the GLEAM project (Miralles et al.,  2011, Martens et al.,  2017), Gross

Primary  Production  (GPP) from the  FLUXCOM project  (Tramontana  et  al.,  2016,  Jung et  al.,

2017),  Solar  Induced  Fluorescence  (SIF)  from  the  GOME-2  (Global  Ozone  Monitoring

Experiment-2) scanning spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data

from  the  Interactive  Multi-sensor  Snow  and  Ice  Mapping  System  (or  IMS,

https://www.natice.noaa.gov/ims/,  last  accessed June  2019).  It  is  also  validated  using  reference

observations  including  in  situ  evapotranspiration  from the  FLUXNET 2015  synthesis  data  set

(http://fluxnet.fluxdata.org/,  last  accessed June  2019),  soil  moisture  from the  International  Soil

Moisture Network (ISMN, https://ismn.geo.tuwien.ac.at/en/,  last  accessed June 2019) as well  as

river discharge from several networks across the world.

• An estimation of the mean LSVs climate over 2010-2018, used as reference for computing

anomalies of the land surface conditions to (i) detect regions severely exposed to extreme weather

such  as  drought  and  heatwave  events  in  2018  and  (ii)  trigger  more  detailed  monitoring  and

forecasting activities of the LSVs for those regions at higher spatial resolution. 

The paper  is  organised in four sections  as it  follows: section 2 details  the various components

constituting LDAS-Monde: the ISBA LSM, the data assimilation scheme and the EOs assimilated

as  well  as  the  different  atmospheric  forcing  datasets  used,  followed  by  the  experimental  and

evaluation setup. Section 3 describes and discusses the impact of the analysis on the representation

of the LSVs. The selection of 2 case studies over regions particularly affected by extreme events

during 2018 and their detailed monitoring at higher spatial resolution combined with land surface
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forecasting activities is also presented. Finally section 4 provides conclusions and prospects for

future work.

 2 Material and methods

The following  subsections  briefly  describe  the  main  components  of  LDAS-Monde:  the  ISBA

LSM, its data assimilation scheme and two other key elements of the setup: atmospheric forcing

and assimilated satellite derived observations. The experimental setup and the evaluation datasets

used in this study are also presented.

 2.1 LDAS-Monde

 2.1.1 ISBA Land Surface Model

Embedded  within  the  SURFEX  (SURFace  EXternalisée,  Masson  et  al.,  2013,  version  8.1)

modelling  platform  developed  by  the  research  department  of  Météo-France  (CNRM,  Centre

National de Recherches Météorologiques), LDAS-Monde (Albergel et al., 2017) allows the joint

integration of satellite derived SSM and LAI into the CO2-responsive (Calvet, et al., 1998, 2004,

Gibelin  et  al.,  2006),  multilayer  diffusion  scheme (Boone et  al.,  2000,  Decharme et  al.,  2011)

version  of  the  ISBA LSM (Noilhan  and  Planton,  1989,  Noilhan  and  Mahfouf,  1996)  using  a

simplified version of an Extended Kalman Filter (SEKF, e.g. Mahfouf et al., 2009, Barbu et al.,

2011, Fairbairn et al.,  2017). It can be coupled to the ISBA-CTRIP hydrological model (ISBA-

CTRIP for ISBA-CNRM, Total Runoff Integrating Pathways) as detailed in Decharme et al., (2019).

In such a configuration, ISBA is able to represent the transfer of water and heat through the soil

based  on  a  multilayer  diffusion  scheme,  as  well  as  plant  growth  and  leaf-scale  physiological

processes. ISBA models key vegetation variables like LAI and above ground biomass, the diurnal

cycle of water, carbon and energy fluxes. It computes a soil-vegetation composite using a single-

source energy budget. In the CO2-responsive versions of ISBA, ISBA-A-gs, the model can simulate

the  CO2 net  assimilation  and  GPP  by  considering  the  functional  relationship  between  the

photosynthesis  rate  (A)  and  the  stomatal  aperture  (gs)  based  on  the  biochemical  A-gs  model

proposed by Jacob et  al.,  1996.  In the CO2-responsive versions of ISBA, pPhotosynthesis  is in

control of the evolution of vegetation variables. It makes vegetation growth possible as a result of

an uptake of CO2. Oppositely, a deficit of photosynthesis triggers higher mortality rates. Ecosystem

respiration (RECO) is represented by the CO2 being released by the soil-plant system and GPP by

the carbon uptake related to photosynthesis. Finally, the net ecosystem exchange (NEE) consists of

the difference between GPP and RECO. Each ISBA grid cell can be composed of up to 12 generic

land surface types, bare soil,  rocks, and permanent snow and ice surfaces as well as nine plant
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functional types (needle leaf trees, evergreen broadleaf trees, deciduous broadleef trees, C3 crops,

C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous and wetlands). The ECOCLIMAP-II

land cover database (Faroux et al., 2013) provides ISBA parameters for all of them.

ISBA multilayer  diffusion  scheme’s  default  discretization  is  14  layers  over  12  m  depth.  The

following configuration is used in this study:  thickness (depth) of each layers are (from top to

downbottom), 1 cm (0-1 cm), 3 cm (1-4 cm), 6 cm (4-10 cm), 10 cm (10-20 cm), 20 cm (20-40 cm),

20 cm (40-60 cm),  20 cm (60-80 cm),  20 cm (80-100 cm),  50 cm (100-150cm),  50 cm (150-

200cm), 100 cm (200-300 cm), 200 cm (300-500 cm), 300 cm (500-800 cm) and 400 cm (800 to

1200 cm), see also Figure 1 of Decharme et al., 2011. Snow is represented using the ISBA 12-layers

explicit snow scheme (Boone and Etchevers, 2001, Decharme et al., 2016).

 2.1.2 CTRIP river routing system

The ISBA-TRIP river routing system is bable to simulate continental scale hydrological variables

based on a set  of three prognostic  equations.  They correspond to (i)  the groundwater,  (ii)  the

surface stream water and (iii) the seasonal floodplains. It converts the runoff simulated by ISBA

into river discharge. ISBA-CTRIP river-routing network has a spatial resolution of 0.5° x 0.5°

globally and is coupled daily with ISBA through the OASIS3-LCT coupler (Voldoire et al., 2017).

ISBA provides to CTRIP updated fields of runoff, drainage, groundwater and floodplain recharges.

In turn, CTRIP provides ISBA with water table depth, floodplain fraction as well as flood potential

infiltration so that ISBA can simulate capillarity rise, evaporation and infiltration over flooded

areas. A comprehensive overview of ISBA-CTRIP is available in Decharme et al., (2019).

 2.1.3 Data assimilation

The  SEKF  used  in  LDAS-Monde  is  a  2-step  sequential  approach  in  which  a  forecast  step  is

followed by an analysis step. The forecast step propagates the initial state of the model (being a

short  term forecast  from the  ISBA LSM) and  then,  the  analysis  step  corrects  this  forecast  by

assimilating  observations.  Flow  dependency  between  the  model  control  variables  and  the

observations are generated using finite differences from perturbed simulationsThe flow-dependency

(dynamic  link)  between  the  prognostic  variables  and the  observations  is  ensured  in  the  SEKF

through the observation operator Jacobians, which propagate information from the observations to

the analysis via finite-difference computations (de Rosnay et al., 2013). The analysis involves the

computation of a Jacobian matrix having as many rows as assimilated observation types (here two:

SSM and LAI) and as many columns as model control variables requested (here eight soil layer: soil

moisture from the second to the eight layers of soil,  1-100cm, and LAI).  In  Aadditionally to a

control run, computing the Jacobian matrix requires perturbed runs, one for each control variable.

The eight control variables are directly updated using their sensitivity to observed variables (i.e.
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defined by the Jacobians). Other variables are indirectly modified through biophysical processes

and feedbacks from the model . Several studies (e.g. Draper et al., 2009; Rüdiger et al., 2010) have

demonstrated  that  small  perturbations  lead  to  a  good  approximation  of  this  linear  behaviour,

provided that  computational round-off error is not significant. Typically, for those runs, the initial

state of the control variable is perturbed by about 0.1% (see Albergel et al., 2017; Rüdiger et al.,

2010).  The  length  of  the  LDAS-Monde  assimilation  window  is  24-hours.  A mean  volumetric

standard deviation error is specified proportional to the soil moisture range (the difference between

the volumetric field capacity and the wilting point, calculated as a function of the soil type, as given

by Noilhan et Mahfouf, 1996) and scaled by a factor 0.04 for SSM in its model equivalent (the

second layer of soil between 1 and 4 cm), scaled with and 0.02 for deeper layers (layers of soil layer

3  to  8,  4-100cm).  The  observational  SSM  error  follows  the  same  rule  scaled  by  0.05  and  is

consistent with errors typically expected for remotely sensed SSM (e.g., de Jeu et al., 2008, Gruber

et  al,  2016).  Soil  moisture  errors  for  both  the  model  and the  observations  are  assumed  to  be

proportional to the soil moisture range (being defined as the difference between the volumetric field

capacity and the wilting point, calculated as a function of the soil type, as given by Noilhan et

Mahfouf, 1996). The standard deviation of errors for the observed LAI is assumed to be 20%  and a

similar assumption is made for the standard deviation of errors of the modelled LAI values higher

than 2 m2m−2.  For  modelled LAI values  lower than 2 m2m−2,  a  constant  error  of  0.4 m2m−2 is

assumed (Barbu et  al.,  2011).  More details  can be found in Albergel  et  al,  2017 or Tall  et  al.,

2019.Based on previous results from Jarlan et al., 2008, Rüdiger et al., 2010, Barbu et al., 2011,

observed and modelled LAI standard deviation errors are set to 20 % of the LAI value itself for

values higher than 2m2m-2. For LAI values lower than 2 m2m-2, a fixed value of 0.04 m2m-2 has

been used.  More detailed can be found in Barbu et  al.,  2011 (section 2.3 on data  assimilation

scheme and figure 2).

 2.2 Atmospheric forcing

The lowest  model  level  (about  10-meters  above ground level)  of  air  temperature,  wind speed,

specific humidity and pressure and the downwelling fluxes of shortwave, and longwave radiations

as well as precipitations (partitioned in solid and liquid phases) are needed to force LDAS-Monde.

In this study, LDAS-Monde is driven by several near-surface meteorological fields from ECMWF,

its most recent atmospheric reanalysis (ERA5), as well asor its high resolution operational weather

analysis and forecasts (HRES). ERA5 (Hersbach et al., 2018, 2019 submitted) is the fifth generation

of European reanalyses produced by the ECMWFfifth generation of global reanalyses produced by

ECWMF. This atmospheric reanalysis is a key element of the Copernicus Climate Change Service
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(C3S, EU-funded) and is available from 1979 onward (data is released about 2 months behind real

time). ERA5 has hourly output analysis, 31 km horizontal dimension and 137 levels in the vertical

dimensionresolution. Several studies have validated the ERA5 datasets, for exampleAlthough being

quite new, ERA5 quality has already been evaluated in the scientific literature. Urraca et al. (2018)

have compared incoming solar radiation from both ERA5 and the former ERA-interim reanalysis

(Dee et al., 2011) at a global scale and found evidence that ERA5 outperforms ERA-Interim. In

another study, Beck et al. (2019) have highlighted the good performance of ERA5 precipitation with

respect to a set of 26 gridded (sub-daily) precipitation data sources by comparing them to Stage-IV

gauge-radar  data  over  the CONUS domain (CONtinental  United States of America).  Tall  et  al.

(2019) have used in situ measurements of precipitation at more than 100 stations spanning all over

Burkina-Faso  in  western  Africa  as  well  as  incoming  solar  radiation  from 4  in  situ  stations  to

evaluate the quality of ERA5 over ERA-Interim  also  with positive outcomes for ERA5 as well.

They have also evaluated both reanalysis datasets through their impact on the representation of

LSVs when used to force the ISBA LSM, again demonstrating a clear advantage for ERA5. Similar

work has been done by Albergel et al. (2018a), over North America, theythis study found enhanced

performances  in  the  representation  of  evaporation,  snow depth,  soil  moisture  as  well  as  river

discharge when the ISBA -LSM was forced by ERA5 compared to ERA-Interim. At the time of the

study, ERA5 underlying model and data assimilation system (Cycle 41r2) are very similar to that of

the operational weather forecast, HRES, which has production cycles ranging from 41r2 to 45r1

during  the  study  period(it  is  46r1  from  June  2019, more  information  at

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model,  last

accessed July 2019). The main difference between ERA5 and HRES over the considered period is

the  horizontal  resolution,  9  km  in  HRES and  31  km in  ERA5.  The  aAtmospheric  forcing  is

interpolated from the native grids of ERA5 and HRES to regular grids of 0.25° × 0.25° and 0.1° ×

0.1°, respectively, using a bilinear interpolation from the native reanalysis grid to the regular grid.

The  four  neighbouring  cellss in  the  source  grid  fitting  latitude  and  longitude  were  linearly

interpolated. ERA5 and HRES were used in Albergel et al. (2019) to force LDAS-Monde in order to

study the impact of the 2018 summer heatwave in Europe. Authors have highlighted that the HRES

configuration exhibits better monitoring skills than the coarser resolution ERA5 configuration.

From the forecast initialized at 00:00 UTC, HRES is also available with a 10-day lead time, but

with changes in the temporal resolution. HRES forecast step frequency is hourly up to time step 90

(i.e. day 3), 3-hourly from time-step 90 to 144 (i.e. day 6) and 6-hourly from time-step 144 to 240

(i.e. day 10). In this study, for forecast experiments (see section 2.4 for details on the experimental

setup) HRES forecasts with a 10-day lead time are used to initialize forecasts of the LSVs from
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LDAS_HRES  open-loop  and  analysis  configurations  in  order  to  evaluate  the  impact  of  the

initialisation on the forecast of LSVs. The original 3-hourly time steps are used up to day 6 (time

step 144), the 6-hourly time steps from day 6 to 10 are interpolated to 3-hourly frequency to avoid

discontinuities.

 2.3 Assimilated satellite Earth Observations

Two types of satellite derived variables are assimilated in LDAS-Monde, ASCAT Soil Wetnessater

Index (SWI) and LAI GEOV1. They are both freely available through the Copernicus Global Land

Service (CGLS,  https://land.copernicus.eu/global/index.html,  last  accessed June 2019).  They are

illustrated by Figure 1. 

ASCAT stands for Advanced Scatterometer, it is an active C-band microwave sensor that is onboard

the European MetOp polar orbiting satellites (METOP-A, from 2006, B from 2012 and also C from

2018). From ASCAT radar backscatter coefficients, it  is possible to derive information on SSM

following a change detection approach (Wagner et al., 1999, Bartalis et al., 2007). The recursive

form of an exponential filter (Albergel et al., 2008), is then applied  to estimate the Soil Wetness

Index (SWI) using a timescale parameter, T (varying between 1 day and 100 days) and ranging

between 0 (dry) and 100 (wet). T is a surrogate parameter for all the processes potentially affecting

the temporal dynamics of soil moisture (like, soil hydraulic properties and thickness of the soil

layer, evaporation, run-off and vertical gradient of soil properties such as texture and density). In

this study, CGLS SWI-001 (i.e. produced with a T-value of 1 day) is used as a proxy of SSM (Kidd

et al., 2013). Grid points with an average altitude exceeding 1500 m above sea level as well as those

with more than 15 % of urban land cover were rejected as those conditions are known to affect the

retrieval of SSM. Prior to their assimilation, SSM has to be converted from the observation space to

the model space. This is done through a linear rescaling as proposed by Scipal et al. (2007), where

the observations mean and variance are matched to the modelled soil moisture mean and variance

from the second layer of soil (1-4 cm depth).  This rescaling known as Cumulative Distribution

Function (CDF) matching is run at seasonal scale using a 3-month moving window as suggested by

Draper et al., (2011), Barbu et al., (2014)This is done through a linear rescaling as proposed by

Scipal et al. (2007), where the mean and variance of observations are matched to the mean and

variance of the modelled soil moisture from the second layer of soil (1-4 cm depth). This rescaling

gives in practice very similar results to CDF (cumulative distribution function) matching. The linear

rescaling is performed on a seasonal basis (with a 3-month moving window) as suggested by Draper

et  al.,  (2011),  Barbu et  al.,  (2014).. As in Albergel  et  al.,  2018a,  2018b,  pixels whose average
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altitude exceeds 1500 m above sea level as well as pixels with urban land cover fractions larger than

15% were discarded as those conditions may affect the retrieval of soil moisture from space.

The LAI GEOV1 observations are based on data from from both SPOT-VGT and then PROBA-V

satellites. They span from 1999 to present, have a 1km x 1km spatial resolution and are produced

daily according to the methodology developed by Baret et al. (2013). As in previous studies  (e.g,

Barbu et al., 2014, Albergel et al., 2019), observations are interpolated by an arithmetic average to

the model grid points (0.25° or 0.10° in this study), if at least 50 % of the model grid points are

observed (i.e. half the maximum amount). LAI GEOV1 observations have a temporal frequency of

10 days at best (in the presence of clouds, no observation are available). LAI data are masked in the

presence of snow from the open-loop experiment.

 2.4 Experimental setup

LDAS-Monde is first run at a global scale, at 0.25° x 0.25° spatial resolution, forced by ERA5

atmospheric  reanalysis  and assimilating  SSM and LAI EOs from 2010 to  2018 (LDAS_ERA5

hereafter). LDAS-ERA5 was spun-up by running year 2010 twenty times. LDAS_ERA5 analysis as

well as its model counterpart (open-loop, i.e. no data assimilation) are presented and evaluated in

this study.

This 9-yr global reanalysis was then used to provide a climatology for estimating anomalies of the

land surface conditions. This 9-yr global reanalysis was then used to provide a monthly climatology

for estimating anomalies of the land surface conditions. For each month (and variable considered)

of 2018 we have removed the monthly mean and scaled by the monthly standard deviation of the

2010-2018 period. Significant anomalies were used to trigger more detailed monitoring as well as

forecasting activities for a region of interest. 19 regions across the globe known for being potential

hot spots for droughts and heat waves were selected. They are listed in  Table I and presented in

Figure  2. Monthly anomalies of LDAS_ERA5 analysis of SSM and LAI for those 19 regions are

assessed for 2018 (with respect to the 2010-2018 period) and regions presenting significant level of

anomalies were selected and further investigated. For  those  regionthem, LDAS-Monde has been

driven by HRES atmospheric analysis leading to a 0.1° x 0.1° reanalysis of the LSVs from April

2016 to December 2018 (LDAS_HRES herafter). HRES is available at a 0.1° x 0.1° resolution only

from April  2016.  April  to  December 2016 is  used as  a  short  period for  spinup and results  are

presented for the period 2017-2018. Although a 9-month spinup period can be seen as rather short,

evaluating LDAS-HRES on either 2017-2018 or 2018 (using instead a 21-month spinup) leads to

similar results on surface soil moisture and LAI (not shown). While the system is not fully spun-up,

it can be considered as representative of the system response to data assimilation.The period 2017-
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2018 is presented, HRES is available at this spatial resolution from April 2016, only, and the time

period from April to December 2016 is used as a short spinup. LDAS_HRES complements the

coarser spatial resolution LDAS_ERA5. HRES forecasts with a 10 day lead time are also used, and

initialised by either LDAS_HRES open-loop or analysis (LDAS_Fc hereafter) in order to assess the

impact of the initialisation on the forecast. A summary of the experimental setup is given in Table

II.

 2.5 Evaluation datasets and metrics

This  study uses several  satellite-derived estimates of EOs as well  as in  situ measurement  data.

LDAS_ERA5  analysis  impact  is  assessed  with  respect  to  the  open-loop  model  run  (i.e.  no

assimilation). The two assimilated datasets, CGLS SSM and LAI, were used to verify to which

extent the assimilation system was able to produce analyses closercorrectly integrate to  them (i.e.

suggesting  a  healthy  behaviour  from  the  data  assimilation  system).  Then  several  independent

spatially distributed datasets independent from both experiments: (namely) evapotranspiration from

the GLEAM project (Miralles et al., 2011, Martens et al., 2017, version 3b entirely satellite driven),

Gross Primary Production (GPP) from the FLUXCOM project (Tramontana et al., 2016, Jung et al.,

2017), Sun Induced Fluorescence (SIF) from the GOME-2 (Global Ozone Monitoring Experiment-

2) scanning spectrometer (Munro et al., 2006, Joiner et al., 2016) and snow cover data from the

Interactive Multi-sensor Snow and Ice Mapping System (or IMS, https://www.natice.noaa.gov/ims/)

were used in the evaluation process.  The IMS snow cover product combines ground observations

and  satellite  data  from microwave  and  visible  sensors  (using  geostationary  and  polar  orbiting

satellites)  to  provide  snow  cover  information  in  all  weather  conditions.  The  IMS  product  is

available daily for the northern hemisphere. 

 along  with  several  river  discharge  observations  (see  Table  S1)  and  evapotranspiration  from

FLUXNET-2015  synthesis  data  set  (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/,  last

access: June 2019).  also,Ground based measurements of soil moisture from the International Soil

Moisture Network (ISMN, Dorigo et al., 2011, 2015) were used,In situ measurements of surface

soil  moisture from 19 networks across  14 countries available  from the ISMN are also used to

evaluate the performance of the soil moisture analysis. They represent 782 stations with at least 2

years of daily data over 2010-2018. Sensors at 5 cm depth (SSM) are compared with soil moisture

from LDAS_ERA5 third layer of soil (4-10 cm), sensors a 20 cm with the forth layer of soil (10-20

cm, 685 stations from 10 networks). Beside 11 stations located in 4 countries of Western Africa

(Benin, Mali, Sénégal and Niger) and 21 stations in Australia, most of the station are located in

North America and Europe, see Table S3.

47

1760

1765

1770

1775

1780

1785



Most of these ground stations for all types of in situ observations are located in Europe and North

America  and  they  were  alreadyhave  been used  in  previous  studies  (e.g.  Albergel  et  al.,  2017,

2018a,b, Leroux et al., 20189) to assess the LDAS-Monde quality. Therefore, the  LDAS-Monde

evaluation using ground measurements is discussed in the result section while figures are reported

as supplementary materials of this study. Evaluation datasets are listed in Table III along with the

metrics used (correlation, Root Mean Square Differences -RMSD- and unbiased RMSD -ubRMSD-

and bias). For in situ datasets, a Normalized Information Contribution (NIC, Eq.(1)) measure is

applied to the correlation values to quantify the improvement or degradation due to the specific

configuration. For global estimates, Normalized RMSD (NRMSD, Eq.(2)) was used, also. Finally, for

surface  soil  moisture,  R was  calculated  for  both  absolute  and  anomaly  time-series  in  order  to

remove the strong impact from the SSM seasonal cycle on this specific metric (see e.g. Albergel eta

l., 2018a, 2018b).

NICR=
R (Analysis ) − R (Model )

1− R (Model )

×100 Eq.(1)

NRMSD=
RMSD(Analysis )− RMSD( Model )

RMSD(Model )

×100                                                                              Eq.(2)

NIC scores were classified according to three categories: (i) negative impact from the analysis with

respect to the open-loop with values smaller than -3 %, (ii) positive impact from the analysis with

respect to the open-loop with values greater than +3 % and (iii) neutral impact from the analysis

with respect to the open-loop with values between -3 % and 3 %.

The Nash-Sutcliffe Efficiency score (NSE, Eq.(32), Nash and Sutcliffe, 1970) is used to evaluate

LDAS_ERA5 experiments ability to represent the monthly discharge dynamics.

NSE=1−
∑
mt=1

T

(Qs
mt
−Qo

mt
)

2

∑
mt=1

t

(Qs
mt
−Qs

mt
)

2

 Eq.(32)

where Qs
mt is the monthly river discharge from LDAS_ERA5 (analysis or open-loop) at month mt,

and  Qo
mt is the observed river discharge at month  mt. NSE can vary between −∞ and 1. An exact

match between model predictions and observed data is defined as a value of 1, whereas a value of 0

means that the model predictions have the same accuracy as the mean of the observed data. Finally

negative values represent when the observed mean is a better predictor than the model simulation.

NIC  presented  in  Eq.(1)  has  also  been  applied  to  NSE  scores  to  assess  the  added  value  of

LDAS_ERA5 analysis over its open-loop counterpart. Stations with NSE values lesser that -2 were

discarded. Similar threshold has already been used in previous studies evaluating LDAS-Monde
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(e.g. Albergel et al., 2017, 2018a). Many processes, most of them linked to water management such

as  the  presence  of  dams  and  reservoirs,  irrigation,  water  uptake  in  urban  areas,  are  not  yet

represented in ISBA leading to a poor representation of river discharges. As previous evaluations

studies have suggested a neutral to positive impact from the assimilation, only, it has been decided

to focus on stations with reasonable NSE values.

As for SIF, in ISBA the fluorescence is not simulated directly, however photosynthesis activity is

simulated through the calculation of the GPP, which is driven by plant growth and mortality in the

model. Modelled GPP values are expressed in g(C)·m−2  ·day−1  , while SIF is an energy flux emitted

by the vegetation (mW·m−2  ·sr−1  ·nm−1  ). Hence, GPP and SIF cannot be directly compared as they do

not represent the same physical quantities. However, several studies (e.g, Zhang et al., 2016, Sun et

al., 2017, Leroux et al., 2018) have found that their time dynamics investigated, highlighting the

potential of SIF products to be used as a validation support for GPP models.

 3 Results

 3.1 Global assessment of LDAS_ERA5

 3.1.1 Gridded datasets

Figure  3 presents mean  RMSD values between the observations and LDAS_ERA5 for the open-

loop  (Figure  3a),  and  for  the  analysis  (Figure  3b) for  LAI  over  2010-2018.  Because  LAI

observations are ingested into the model, the assimilation reduces the LAI RMSD values almost

everywhere. It can be noted that rather large LAI RMSD values (> 1.5 m2m-2) can remain in some

areas after the assimilation, especially in densely forested areas. Figure 4 illustrates latitudinal plots

of LAI, SSM, GPP and evapotranspiration for LDAS_ERA5 before assimilation (the open-loop)

and after assimilation (the analysis) along with observations. The number of points considered per

latitudinal stripes of 0.25° is represented, also.  From Figure  4a  it is possible to  appreciatesee the

positive impact of the analysis compared to the open- loop, with the former being closer to the

observations. Improvement from the analysis occurs from nearly 80°North to about 55° South, areas

around the equator are particularly improved. A smaller impact than for LAI is obtained for SSM,

GPP and  EVAP,  hardly  visible  at  this  scale.  The  mean  latitudinal  results  show  a  consistent

difference in terms of GPP and Evapotranspiraton between the LDAS_ERA5 and the observational

products.  These  differences  are  systematic  with  higher  values  in  tropical  regions.  Figure  5

represents latitudinal plots of score differences (correlations and normalized RMSD) for LAI, SSM,

GPP,  EVAP and  SIF  (Figure  5i,  correlation  only).  Score  differences  are  computed  as  follow,

analysis minus open-loop using monthly averagesd over 2010-2018 for LAI and SSM, 2010-2013
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for GPP, 2010-2016 for EVAP and 2010-2015 for SIF. For SIF only differences in correlation are

represented as it is used to evaluate GPP variability as in Leroux et al., 2018. For each  panel of

Figure  5,  the  vertical  dashed  line  represents  the  0-value.  Therefore,  for  plots  of  correlation

differences, positive values indicate an improvement from the analysis with respect to the open-loop

simulation. Similarly, for plots of RMSD differences negative values indicate an improvement from

the analysis with respect to the open-loop simulation. LAI and SSM being assimilated variables, the

analysis  leads  to  a  clear  improvement  in  both  correlation  and  RMSD.  Such  improvement  is

expected and reflects the healthy behaviour of the assimilation system. Both variables are improved

at almost all latitudes with the exception around 45°S for LAI correlation values (very few land

points).  For SSM a noticeable improvement in both correlation and RMSD is found around 20°N

corresponding mainly to an improvement in the Sahara desert (not shown). Being linked to LAI,

GPP is also improved across almost all latitudes (to a lesser extend than LAI) with a particularly

positive impact below 20°N. As seen on Figure 5 d) and i), there is little impact on variable EVAP

which can be considered negligible. It highlights the difficulty of land surface data assimilation to

impact  model  fluxes  by  modifying  model  states.For  SSM  a  noticeable  improvement  in  both

correlation  and RMSD is  found around  20°N corresponding  mainly  to  an  improvement  in  the

Sahara  desert  (not  shown).  GPP is  also improved across  almost  all  latitude with  a  particularly

positive impact below 20°N which is also true for EVAP. This variable is less impacted by the

analysis and some parts of the world show a decrease in e.g. RMSD values. Panels of Figure  6

illustrate histograms of score differences (correlation and RMSD, analysis minus open-loop) for

LAI, SSM, GPP, EVAP and SIF. The Number of available data as well as the percentage of positive

and negative values are reported. For correlations (NRMSD) differences, positive (negative) values

indicate an improvement from the analysis over the open-loop. It complements Figure 5. Regarding

LAI the analysis improves 96.9% of the grid points for correlations and 99.9% for  NRMSD. As for

SSM, correlation values are improved for 92.8% of the grid points, it is 92.4% for RMSD. When

using independent datasets such as GPP and SIF, one may also notice an improvement from the

analysis,  correlation (NRMSD)  are better  for 81.1% (74.1%), 79.7% (SIF NRMSD N/A) of the grid

points. Results using the GLEAM dataset for evapotranspiration are more contrasted with 63.6%

(48.9%) of the grid points showing an improvement from the analysis and it is worth mentioning

that 24.9% (39.6%) of the grid point shows a degradationdecrease in skill. However GLEAM only

estimates (root-zone) soil moisture and terrestrial evaporation, while ISBA in LDAS_ERA5 is a

physically-based land surface model, accounting for more processes linked to vegetationHowever

GLEAM is  an  evaporation  model  designed  to  be  driven by remote  sensing  observations  only.

GLEAM  only  estimates  (root-zone)  soil  moisture  and  terrestrial  evaporation  while  the  CO2-
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responsive version of ISBA in LDAS_ERA5 is a physically-based land surface model, accounting

for more processes linked to vegetation (see section 2.1.1). It has to be noted that the auxiliary

dataset used to e.g. represent the different land cover types are different also. Within GLEAM, the

land  cover  types  fractions  are  sourced  from the  Global  Vegetation  Continuous  Fields  product

(MOD44B),  based  on  observations  from  the  Moderate  Resolution  Image  Spectroradiometer

(MODIS).  Four  land  cover  types  are  considered,  bare  soil,  low  vegetation  (e.g.  grass),  tall

vegetation (e.g. trees), and openwater (e.g. lakes). In ISBA the 12 land cover types fraction depart

from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global

Land  Cover).  It  can  potentially  impact  the  distribution  of  the  terrestrial  evaporation  between

GLEAM and ISBA. Further work at CNRM will focus on understanding the differences between

ISBA and GLEAM, in particular investigating the sub-components of terrestrial evaporation..

Finally, Figure  S1 and Figure  S2 illustrate snow cover evaluation. LDAS_ERA5 snow cover was

evaluated against the IMS snow cover (as e.g. in Orsolini et al., 2019). The IMS snow cover product

combines  ground  observations  and  satellite  data  from  microwave  and  visible  sensors  (using

geostationary  and  polar  orbiting  satellites)  to  provide  snow  cover  information  in  all  weather

conditions. The IMS product is available daily for the northern hemisphere. Figure  S1 shows the

averaged  northern  hemisphere  snow  cover  fraction  for  the  2010-2018  period. and  isIt is

complemented by all panels of Figure  S2 showing (i) maps of IMS snow cover (top row) for 3

seasons,  September-October-November  (SON),  December-January-February  (DJF)  and  March-

April-May (MAM), respectively, (ii) maps of snow cover from LDAS_ERA5 open-loop (second

row), (iii) maps of snow cover differences between the open-loop and IMS data and (iv) maps of

snow cover differences between the analysis and the open-loop. LDAS_ERA5 open-loop compares

very well with the IMS snow-cover data in the accumulation season from September to February

(Figure S2 and panels d) to I) of Figure S1), only with an overestimation over the Tibetan Plateau.

The latter issue over  Tibet  fromin ERA5 is  not  new, and consistent  with previous  studies  like

Orsolini et al., 2019. An early melt in sSpring compared to observations is noted in LDAS_ERA5

and could be related with the snow cover parametrization in ISBA. As expected, the analysis has an

almost neutral impact on snow as both SSM and LAI observations are filtered out from frozen/snow

condition and as there is no snow data assimilation in LDAS_ERA5 (Figure S2 and panels (j), (k)

and  (l)  of  Figure  S1).  This  clearly  shows, however  an  area  of  potential  improvement  of  data

assimilation within LDAS-Monde using satellite data such as the IMS one (as in e.g. de Rosnay et

al., 2014).

 3.1.2 Ground-based datasets
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LDAS_ERA5  analysis  and  open-loop  are  also  evaluated  using  in  situ  measurements  of

evapotranspiration,  river  discharge  and  surface  soil  moisture  across  the  world.  Daily  in  situ

measurements  of  evapotranspiration  from  the  FluxnetFLUXNET-2015  synthesis  data  set

(http://fluxnet.fluxdata.org/, last accessed June 2019) are first used in this study. Stations with at

least two years of data (after 2010) are retained leading to a pool of 85 stations available for this

evaluation  (note  that  none  of  these  stations  include  2015),  they  are  listed  in  Table  S2. The

LDAS_ERA5 ability to represent evapotranspiration is evaluated using correlation (R), RMSD and

ubRMSD as well as bias (LDAS_ERA5 minus observations) using the 85 selected FLUXNET-2015

stations.  Median R, RMSD, ubRMSD and bias for LDAS_ERA5 analysis  (open-loop) are  0.73

(0.72), 28.74 (29.60) Ww.m-2, 27.37 (26.92) wW.m-2 and 4.64 (4.40) wm-2, respectively.  If tThese

numbers  depict  a small  advantage of the analysis  over  the open-loop configuration,  it  is  worth

mentioning that differences are rather small  and likely to fall within the uncertainty of the in situ

measurement.

Figure S31(a) represents the added value of the analysis based on NICR (Eq.(1)), large blue circles

represent a positive impact from the analysis (20 stations) at NICR greater that +3 (i.e. R values are

better when the analysis is used than when the model is used) while large red circles represent a

degradation from the analysis (5 stations) at NICR smaller than -3. Stations with a rather neutral

impact (60 stations) at NICR between [-3 ; +3] are not reported for sake of clarity. Figure S31 (b),

(c), (d) and (e) are scatter-plots of R, ubRMSD, absolute bias and RMSD between LDAS_ERA5

open-loop and the 85 stations from the Fluxnet2015 (y-axis) against LDAS_ERA5 analysis and the

same pool of stations (x-axis). 56 stations (out of 85) have better R values considering the analysis.

They are 41 for ubRMSD, 47 for RMSD and 44 for absolute bias.

Over 2010-2017, river discharge from LDAS_ERA5 analysis and open-loop runs were compared to

daily streamflow data from 7 large networks across the world (see Table S1). As in Albergel et al.,

2018a, data were selected for sub-basins with rather large drainage areas (10,000 km2 or greater)

due to the low resolution of CTRIP (0.5 x 0.5°) and with observation time series of 4 years or more.

Results on river discharge are illustrated by Figures S42 and S53. Figure S42 represents NSE scores

and as NSE values below -2 were discarded, it leads to a subset of 982 stations available. Most of

them are located in North America and Europe while a few are available in South America and

Africa. Figure S42 is complemented by Figure S53. Panel a) of Figure S53 represents the NIC

scores applied to NSE scores and emphasizes the added value of LDAS_ERA5 analysis over the

open-loop. 74% of this subset of stations presents a rather neutral impact from the analysis (at NIC

ranging between -3 and +3) while 26% (254 stations) presents an impact greater or smaller than 3%.

When the analysis impacts the representation of river discharge, this impact tends to be positive
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with 74% (189 stations) having a NIC score greater than 3% while only 26% (65 stations) presents

NIC score smaller than -3%. Theseis results are supported by panels (b) and (c) of Figure S53, also

(density of NSE scores for LDAS_ERA5 analysis and open-loop, scatter-plot of NSE scores for

LDAS_ERA5 analysis and open-loop, respectively).

 at global scale ((a) panel) and with a zoom over the continental USA ((b) panel).4 Figure Sby 0.67

(it is 0.66 for the open-loop) with averaged-network values going up to 0.88 (SOILSCAPE network,

49 stations in the USA) and always higher than 0.55 except for one network, ARM (10 stations in

the USA) presenting an averaged R value of 0.29.  Averaged ubRMSD and bias (LDAS_ERA5

minus in situ) are 0.058 m3m-3 and 0.079 m3m-3 for the analysis, 0.059 m3m-3 and 0.078 m3m-3 for the

open-loop, respectively. Results for each network are summarized in Table S2. NIC (Eq.1) has also

been applied to R values, 64% of the pool of stations present a neutral impact from the analysis (at

NIC ranging between -3 and +3), 12% present a negative impact (at NIC < -3) and 24% present a

positive impact at (NIC>+3). NIC scores are also presented is pool of stations, averaged statistical

metrics (ubRMSD, R and bias) are similar for both LDAS_ERA5 analysis and open-loop even if

local differences exist.  For the analysis,  averaged R values  is Using thIn situ  measurements of

surface soil moisture from 20 networks across 14 countries available from the ISMN are also used

to evaluate the performance of SSM analysis. They represent more than 900 stations with at least 2

years of daily data over 2010-2018. Sensors at 5 cm depth are compared with soil moisture from

LDAS_ERA5 third layer of soil (4-10 cm). Beside 11 stations located in 4 countries of Western

Africa (Benin, Mali, Sénégal and Niger) and 19 stations in Australia, most of the station are located

in  North  America  and  Europe,  see  Table  S3.The  statistical  scores  for  soil  moisture  from

LDAS_ERA5 open-loop and analysis (third and fourth layers of soil,  4-10 cm depth,  10-20 cm

depth, respectively) over 2010-2018 when compared with ground measurements from the ISMN (5

cm depth  and  20 cm depth)  are  presented  in  Table  S2 for  each  individual  network.  Averaged

statistical metrics (ubRMSD, R, Ranomaly and bias) are similar for both LDAS_ERA5 analysis and

open-loop even if local differences exist. For the analysis, averaged R (Ranomaly) values along with its

95% Confidence Interval (CI) using in situ measurements at 5 cm (782 stations from 19 networks)

are 0.68±0.03 (0.53±0.04) (0.67±0.03(0.53±0.04) for the open-loop) with averaged-network values

going up to 0.88±0.01 (0.58±0.04) for the analysis (SOILSCAPE network, 49 stations in the USA)

and always higher than 0.55 except for one network, ARM (10 stations in the USA) presenting an

averaged R value of 0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060

m3  m-3   and  0.077  m3  m-3   for  the  analysis,  0.060  m3  m-3   and  0.076  m3  m-3   for  the  open-loop,

respectively. NIC (Eq.1) has also been applied to R values, 65% of the pool of stations present a

neutral impact from the analysis (511 stations at NIC ranging between -3 and +3), 12% present a
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negative impact (91 stations at NIC < -3) and 23% present a positive impact at (180 stations at NIC

> +3). 

The number of stations where R differences between the analysis and the open-loop are significant

(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement

from the analysis w.r.t. the open-loop for 128 stations (out of 186, i.e. about 69%) and a degradation

for 58 stations (about 31%). Figure 7 illustrates R differences between the analysis and the open-

loop runs. When differences (analysis minus open-loop) are not significant stations are represented

by a small dot. When they are significant, large circles have been used, blue for positive differences

(an  improvement  from the  analsysis)  and  red  for  negative  differences  (a  degradation  from the

analysis).  For  most  of  the  stations  where  a  significant  difference  is  obtained,  it  represent  an

improvement from the analysis. 

Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10

networks) are 0.65±0.03, 0.049 m3  m-3   and 0.055 m3  m-3  , respectively. For the open-loop, they are

0.64±0.03, 0.048 m3  m-3   and 0.056 m3  m-3  , respectively.  For soil moisture at that depth, about 60% of

the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3 and

+3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations at

NIC < -3). Although differences between the open-loop run and the analysis are rather small, these

results underline the added value of the analysis with respect to the model run. Figure S6 represents

the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots

centred on the median value. They look very similar and from Figure S6, it is difficult to see either

improvement or degradation from the analysis.

For evapotranspiration, river discharge and surface soil moisture  it can be stated that  there is an

slight  advantage forrom LDAS_ERA5 analysis with respect to its open-loop counterpart. Even if

the distribution of the averaged statistical metrics can be rather similar for both (particularly true for

surface soil moisture evaluation), there are significant  regional  differences for some sites, which

shows the added value of the analysis with respect to the open-loop.

 3.2 Monitoring and forecasts for areas under severe/extreme conditions

For each individual region presented in  Table I and Figure  22, monthly anomalies (scaled by the

standard deviation) of analysed SSM (second layer of soil, 1-4cm) and LAI for 2018 were assessed

with respect to the 2010-2018 period. The anomalies (see Figure  8) highlight three regions, two

presenting strong negative anomalies for both SSM and LAI for almost all 2018 (north western

Europe,  WEUR,  and  the  Murray-Darling  basin,  MUDA,  in  south  eastern  Australia)  and  one

presenting  strong  positive  anomalies  of  SSM and LAI  in  Eastern  Africa  (EAFR).  WEUR and
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MUDA regions  were  affected  by  a  severe  heatwave  and  a  drought  in  2018  impacting  LSVs

analysed by LDAS_ERA5. According to Figure 8, monthly anomalies of SSM and LAI for MUDA

are negative through  all the yearthe whole 2018 with 7 and 6 months presenting LAI and SSM

anomalies below -1 standard deviation (stdev), respectively. WEUR has negative SSM anomalies

from May to December 2018 with values going below -2 stdev. LAI was severely impacted as well

with July to October 2018 presenting negative anomalies below -2 stdev. For WEUR, 5 months

present LAI and SSM anomalies below -1 stdev. EAFR has experiencesd 3 and 7 months with

positive anomalies for SSM and LAI in 2018 above 1 stdev (8 and 7 months consecutively present

positive anomalies for SSM and LAI respectively).

According to the National Oceanic and Atmospheric Administration (NOAA), Europe experienced

its warmest summer since continental records began in 1910 at +2.16°C (Global Climate Report,

https://www.ncdc.noaa.gov/sotc/global/ last accessed April 2019). In Europe, temperature for the

whole summer 2018 was above climatology. The summer 2018 heatwave in Europe wasis already

reported in the scientific literature (e.g. Magnusson et al., 2018, Albergel et al., 2019, Blyverket et

al., 2019). In its 70th Special Climate Statement, the Australian Bureau of Meteorology (BoM) has

reported a very hot and dry summer 2018 in eastern Australia (BoM, 2019). Like much of Australia,

the  Murray  Darling  bBasin  has  experienced  a  remarkably  dry  and  hot  weather  during  2018

(http://www.bom.gov.au/state-of-the-climate/,  last  visited:  April  2019).  The  annual  maximum

temperature for the Murray Darling bBasin as a whole was more than two degrees above average

during 2018. The northern Murray–Darling Basin in particular was severely affected with inflows to

all  catchments persistently well  below average (http://www.bom.gov.au/state-of-the-climate/,  last

visited: April 2019). Finally, the East Africa Seasonal Monitor based on the Famine Early Warning

System Network (FEWS) confirms above-average rainfall amounts as well as significantly greener

than  normal  vegetation  conditions  (e.g.,  https://reliefweb.int/report/somalia/east-africa-seasonal-

monitor-july-27-2018, last visited: April 2019). As this study focuses on monitoring and forecasting

the impact of severe conditions on LSVs, WEUR and MUDA are selected for further investigation. 

 3.2.1 Case  studies  for  assessing  LDAS-Monde  medium  resolutions  (0.25°  x  0.25°)

experiments

Figure 9 illustrates seasonal cycles of observed LAI (Figure 9a) and SWI (Figure 9e), LDAS_ERA5

analysis and open-loop LAI (Figure 9b) and SWI (Figure 9f) for the WEUR domain. The last year

(2018) is compared to an average of the previous years (2010-2017). From Figure 9a one may see

the heatwave impact with a sharp drop in observed LAI values from June to November 2018 (solid

green line). Such low LAI values have never been observed  over the eight previous years (dashed

green  line  for  the  2010-2017  averaged  along  with  the  2010-2017  minimum  and  maximum
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observations in shaded green). A similar behaviour is also visible in the ASCAT SWI dataset in

Figure  9e  with  the  lowest  values  ever  reached  in  this  2010-2018  period.  Over  WEUR,

LDAS_ERA5 open-loop overestimates LAI in the second part of the year as already highlighted by

several  studies (e.g.  Albergel  et  al.,  2017, 2019).  LDAS_ERA5 analysis  has a  positive impact,

reducing LAI values, as seen on Figure 9b (LAI open-loop in blue, analysis in red) and on Figure 9c

representing  RMSD  seasonal  cycles.  LDAS_ERA5  analysis  also  leads  to  an  improvement  in

correlations for LAI (see Figure 9d). Similar conclusions can be drawn for SSM (Figure 9e to h).

Note that for data assimilation and statistical scores, ASCAT SWI estimates were converted into the

model space, in m3m-3, as detailed in section 2.3. Finally looking at the MUDA area (panels of

Figure  10)  one  may  appreciate  similar  positive  impact  from  the  analysis  over  the  open-loop

simulation is obtained. Almost all month of 2018 presents the lowest anomaly values for both SSM

and LAI. For both MUDA and WEUR the smaller differences between LDAS_ERA5 analysis and

open-loop in 2018 than in 2010-2017 (Figure 9 b and f, Figure 10 b and f) also suggest that both

extreme events were well captured in the atmospheric forcing used to drive LDAS_ERA5 while the

statistical scores presented in Figure 9 c, d, g, h as well as in Figure 10 c, d, g, h also suggest an

improvement from the analysis over the open-loop simulation.

 3.2.2 Case studies for assessing LDAS-Monde high resolutions (0.1° x 0.1°) experiments

For these two specific areas, LDAS-Monde was also run forced by HRES (LDAS_HRES) at 0.1° x

0.1° spatial resolution over April 2016 to December 2018. Additionally to LDAS_HRES analysis,

forecast experiments with a  lead time of 4-days and 8-days,  initialised by either  LDAS_HRES

analysis or open-loop are presented for 2017-2018 (for SSM and LAI) in order to assess the impact

of the initial conditions on the forecast of LSVs. 

Upper  panels  of  Figure  11 and  Figure  12,  illustrate  seasonal  RMSD  (Figure  11a,  12a)  and

correlation (Figure  11b,  12b) values between SSM from the second layer of soil (1–4 cm) from

LDAS-Monde  forced  by  HRES  (LDAS_HRES,  open-loop  and  analysis)  and  ASCAT  SSM

estimates over 2017-2018. Scores between SSM from the second layer of soil of LDAS_HRES 4-

day  forecast  (LDAS_fc4,  initialised  by  either  the  open-loop  or  analysis)  and  8-day  forecast

(LDAS_fc8,  initialised  by  either  the  open-loop  or  analysis)  and  ASCAT  SSM  estimates  are

reported, also. From the upper panels of those figures one may notice a small improvement from the

analysis (solid red line) over the open-loop simulation (solid blue line), slightly decreasing RMSD

values and increasing correlations values. However no improvement (nor degradation) is visible

from  the  4-d  and  8-d  forecasts  experiments  initialised  by  LDAS_HRES  analysis  over  those

initialised by LDAS_HRES open-loop, they  display very similar scores. LDAS_HRES SSM is of

better quality than LDAS_fc4 and LDAS_fc8. Note however that for the MUDA area, a 4-d forecast

56

2055

2060

2065

2070

2075

2080

2085



of surface soil moisture initialised by the analysis is of better quality than a 4-d forecast initialised

by the open-loopNote however that for the MUDA area, there is a small positive impact of the

initialisation on the 4-d and 8-d forecast of surface soil moisture (blue areas on Figure 13 c) and

d)).. Those results suggest that this fast evolving model variable (SSM between 1 cm and 4 cm

depth) is more sensitive to relies more on the atmospheric forcing than to initial conditions (at least

within the forecast range presented in this study) and it can be assumed that the 4-day and 8-day

atmospherical  forecast  from HRES is  of  poorerlower quality  that  itsthe first  day24-h analysis.

Results for LAI are different than for SSM (lower panels of Figure 11 and Figure 12). Firstly, there

is  a  large improvement  from the analysis  (solid  red line)  over  the open-loop (solid  blue line),

particularly  in  the  LAI  decaying  phase  (Boreal  and  Austral  autumns  mainly).  Secondly,

LDAS_HRES open-loop (solid blue line), LDAS_fc4 (dotdashed blue line) and LDAS_fc8 (dashed

blue line) initialised by LDAS_HRES open-loop present very similar skills, so do LDAS_fc4 and

LDAS_fc8 initialised by LDAS_HRES analysis (dotdashed and dashed red lines,  respectively).

They outperform however skills of LDAS_HRES open-loop, LDAS_fc4 and LDAS_fc8 initialised

by LDAS_HRES open-loop. This suggests that LAI  is more sensitive torelies more on its initial

conditions than to the atmospheric forcing (at least within the forecast range presented in this study)

and that forecasting  LAI is also a matter of initial conditions. This is true for these two contrasted

areas, WEUR and MUDA. 

These results are corroborated by Figures 13 (for WEUR) and 14 (for MUDA), top rows illustrate

SSM and bottom rows LAI. Figures 13(a) and 14(a)   show RMSD values between LDAS_HRES

open-loop SSM (1-4 cm) and ASCAT SSM over 2017-2018 for the WEUR and MUDA domains,

respectively.  Due  to  the  CDF matchingseasonal  linear  rescaling applied  to  ASCAT estimates,

RMSD values are rather small. For the WEUR (MUDA) domain they range from 0 to 0.048 m3m-3

(0  to  0.040  m3m-3).  Figures  13(b)  and  14(b)  represent  maps  of  RMSD  differences  between

LDAS_HRES analysis (open-loop) and ASCAT SSM estimates over 2017-2018 for the WEUR and

MUDA domains, as well. Both maps are dominated by negative values (in blue) indicating that

RMSD  values  are  smaller  (better)  when  using  LDAS_HRES  analysis  than  when  using

LDAS_HRES open-loop. It is also worth-mentioning than no positive differences (i.e. a degradation

from the analysis) are present in those maps. RMSD differences for the WEUR domain range from -

0.004 m3m-3 to 0.004 m3m-3 meaning that the analysis is improving them by about 8 %. For the

MUDA domain, they are improved by about 15%. Figures  13(c), (d)  14(c),(d) are also maps of

RMSD differences, they consider forecast experiments (LDAS_fc4, LDAS_fc8). It appears that for

both  domains,  the  impact  from  the  initialisation  is  rather  small  with  few  coloured  areas,

strengthening previous results suggesting that to forecast SSM variable,  forcing quality is more
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important than initial conditions. It is different for LAI, RMSD values for LDAS_HRES open-loop

are ranging between 0 and 1.6 m2m-2 over WEUR, 0 and 1 m2m-2 over MUDA (Figures 13(e) and

14(e)). RMSD values are improved by up to 37 % over WEUR and up to 60% over MUDA by the

analysis (Figures 13(f) and 14(f)). Improvement from the analysis over the open-loop experiment is

consistent through all the WEUR domain while it is mainly the south eastern part of the MUDA

domain that is improved (the north western part has low RMSD values as the open-loop). 

Similarly to Figures 13(a, b, c, d) panels of Figure 15 illustrates the impact of the analysis on SSM

using correlations. This time, ASCAT SWI (i.e. no rescaling) has been used. Figure 15 (top panels)

shows map of R values based on absolute values while Figure 15 (bottom panels) shows R values

on anomalies (short term variability) as defined in Albergel et al.,  2018a. Figure  15 (a) and (e)

represents R values and anomaly R values for LDAS_HRES, respectively. As expected R values are

higher than anomaly R values. Maps of differences (panels b and f) of Figure 15 suggest that after

assimilation, both scores are improved rather equally. While the 4 day and 8-day forecast still show

an improvement from the initial condition on R values (panels c and d of Figure 15 dominated by

positive differences, analysis minus open-loop), maps of anomaly R values forecast do not display

any negative or positive impact (panels g and h of Figure 15).

Top panels of Figure  16 illustrate the impact of the analysis on drainage monitoring and forecast

over WEUR. Fig. 16 a) represents drainage from LDAS_HRES open-loop varying between 0 and 1

kg.m-2.day-1, as seen in Fig.16 b) (drainage difference between LDAS_HRES analysis and open-

loop) analysis impact is rather small, about ±3% and more pronounced in areas where the analysis

has affected LAI more (see panels f), g) and h) of Figure 13). As seen on panels c) and d), there is

also an impact from the initialisation in areas were the analysis was more effectively correcting

LAI. Bottom panels of Figure 16 illustrate similar impact on runoff. As for drainage, this variable is

affected by the analysis. Initial conditions have an impact on its forecast, also. Althoughwe did not

present a quality assessment of those two variables, our findings on river discharge analysis impact,

but also those from Albergel et al., 2017, 2018a, suggest a neutral to positive impact, propagated

from the analysis of SSM and LAI to river discharge through variables such as drainage and runoff.

 4 Discussion and conclusion

This study has demonstrated that combining a LSM, satellite EOs and atmospheric forcing through

LDAS-Monde has a great potential  to represent the impact of  extreme weather (heatwaves and

droughts) on land surface conditions. LDAS-Monde is now ready for use in various applications

such  as  (i)  reanalyses  of  land  Essential  Climate  Variables  (ECVs),  (ii)  monitoring  of  water

resources,  drought  and  vegetation,  and  (iii)  detection  of  severe  conditions  over  land  and
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initialisation of LSVs forecast. It has been applied in this study to past events of 2018 with respect

to a short period of time (2010-2018) as a demonstrator but will be extended to longer time period.

LDAS-Monde  operational  use  in  near  real  time  has  the  capacity  to  serve  as  an  emergency

monitoring  system for  the  LSVs.  Using  atmospheric  reanalysis  like  ERA5  tofor force  LDAS-

Monde guarantees a high level of consistency because of its fixedfrozzen configuration (no changes

in  spatial  and  vertical  resolutions,  data  assimilation  and  parameterizations).  The  ERA5 coarse

spatial resolution makes it affordable to run long term and, large scale LDAS-Monde experiments.

With ERA5 available  now back tofrom 1979 and  now  covering near real-time needs with  itsthe

ERA5T version (https://climate.copernicus.eu/climate-reanalysis),  an LDAS_ERA5 configuration

would  be  able  to  provide  a  long  term and, near  real  time  coarse  resolution  (0.25°  x  0.25°)

climatology as reference for anomalies of the land surface conditions. Significant anomalies could

then be used to trigger  more focussed “on-demand” simulations  for  regions experiencing extreme

conditionsweather. In that case LDAS-Monde could be run forced by e.g. ECMWF operational high

resolution product (0.10° x 0.10°)  in  monitoring and  forecast (up to 10-d ahead) modes, as was

presented here for two regions in North Western Europe and South Eastern Australia.  In term of

RMSD, oOur results showed a very small impact of initial conditions on the forecasts of SSM. This

was expected due to the reduced memory of the top soil surface (0-1-4 cm), which is dominated by

meteorological  variability.  However,  the  LAI  initialisation  had  significant  impact  on the  LAI

forecast skill. This was also expected due to the memory of vegetation evolution.  For SSM, the

assimilation is done after a rescaling to the model climatology (see section 2.3), which removes

bias.  For  LAI,  however  this  is  not  the  case  and the  assimilation  process  removes  bias  in  the

modelled LAI (w.r.t. the observation). This technical difference between SSM and LAI assimilation,

combined with the longer memory of LAI compared to SSM, contributes to the results presented in

this section. Despite the expected behaviour of these two LSVs in forecasting, our results show that

LDAS-Monde system is capable  of propagating the initial LAI conditions, which is relevant not

only for LSV medium-range forecasting but with potential for longer lead-times. The strong impact

of LAI initialisation on the forecast does not seem to propagate to surface soil moisture and further

studies are necessary to test the impact of initial conditions to more variables from LDAS-Monde

(including soil moisture in deeper layers and, evapotranspiration). Another possibility would be to

force LDAS-Monde using ECMWF ensemble forecasts, although the ensemble system has coarser

spatial-resolution (~0.20° x 0.20°), it offers a 15-day forecast and a 51 member ensemble, which

can introduce forcing uncertainty into the LSVs. The maximum range of the soil and vegetation

forecast could even reach up to six months if using seasonal atmospheric forecasts as forcing.
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LDAS-Monde has well identified areas of developments that can further improve the representation

of LSVs. For instance, it does not consider snow data assimilation yet and it has been shown in this

study than if the snow accumulation seems to be represented correctly in the system, it suffers from

a toon early snow-melt in spring. To overcome this issue, two possibilities will be explored. Firstly

using  a  recently  developed  ISBA parametrisation,  MEB for  Multiple  Energy  Budget  which  is

known to lead to a better representation of the snowpack (Boone et al., 2017), in particular in the

densely forested areas of the Northern Hemisphere where large differences between LDAS-Monde

and  the  IMS snow  cover  were  found  in  spring  (Figure  S2(i),  Aaron  Boone  CNRM,  personal

communication June 2019) and (ii) adapting the current data assimilation scheme of LDAS-Monde

to permit assimilation the IMS snow cover data (as done e.g. at ECMWF, de Rosnay et al., 2014).

The cCurrent SEKF data assimilation scheme is also being revisited. Even though it has provided

good results,  one of its  limitations is  the computation of a Jacobian matrix which requires one

model run for each control variable, requiring significant computational resources with increased

number  of  control  variables.  That  is  why  more  flexible  Ensemble  based  approaches  like  the

Ensemble  Square  Root  Filter  (EnSRF)  have  recently  been  implemented  (Fairbain  et  al.,  2015,

Bonan et al., 202019). Bonan et al., 202019 have evaluated performances from the EnSRF and the

SEKF over the Euro-Mediterranean area. Both data assimilation schemes have a similar behaviour

for LAI while for SSM, EnSRF estimates tend to be closer to observations than those from the

SEKF. They have also conducted an independent evaluation of both assimilation approaches using

satellite  estimates  of evapotranspiration and GPP as well  as  measures  of river  discharges  from

gauging stations. They have found that the EnSRF leads to a systematic (moderate) improvement

for evapotranspiration and GPP and a highly positive impact on river discharges, while the SEKF

lead to more contrasting performance.  As for applications in  hydrology, the 0.5° x 0.5° spatial

resolution TRIP river network is currently being improved to 1/12° x 1/12° globally. 

CNRM is also investigating the direct assimilation of ASCAT radar backscatter (Shamambo et al.,

2019), it is supposed to tackle the way vegetation is accounted for in the change detection approach

used to  retrieve SSM with an improved representation of  its  effect.  Assimilating ASCAT radar

backscatter also raises the question of how to specify observation, background, and model error

covariance matrices, so far mainly relying on soil properties (see section 2.1.3 on data assimilation).

The last decade has seen the development of techniques to estimate those matrices. Approaches

based on Desroziers diagnostics (Desroziers et al., 2005) are affordable for land data assimilation

systems from a computational point of view and could provide insightful information on the various

sources of the data assimilation system

60

2190

2195

2200

2205

2210

2215

60



Also, the added value of LDAS-Monde compared to already existing datasets has to be evaluated

and current work at Météo-France is investigating its quality against state of the art reanalyses such

as those from NASA at either global scale (GLDAS, Rodell et al., 2004, MERRA-2, The Modern-

Era Retrospective Analysis for Research and Applications, Version 2, Reichle et al., 2017, Draper et

al., 2018) or regional scale (NCALDAS over the continental USA, FLDAS over Africa). Finally,

first  attempts  to  go  to  higher  spatial  resolution  over  smaller  areas  like  the  AROME  domain

(Applications de la Recherche à l'Opérationnel à Méso-Echelle, https://www.umr-cnrm.fr/spip.php?

article120, last accessed July 2019) of Météo-France (centred over France) at kilometre scale and

assimilating kilometric and sub-kilometric scale satellite retrieval of SSM and LAI (from CGLS)

are very promising.

Code availability. LDAS-Monde is a part of the ISBA land surface model and is available as open

source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at

http: //www.umr-cnrm.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL

licence;  http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively

low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is

not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the

procedure  to  get  a  SVN  account  and  to  access  real-time  modifications  of  the  code  (see  the

instructions  at  the  first  link).  The developments  presented  in  this  study stemmed on SURFEX

version 8.1. LDAS-Monde technical documentation and contact point are freely available at: https://

opensource.umr-cnrm.fr/projects/openldasmonde/files

Data availability: upon request by contacting the corresponding author.
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Tables

Table I: Continental hot spots for droughts and heat waves and number of monthly anomalies SSM
and LAI below -1 standard deviation (stdev), above 1 stdev in 2018 with respect to the 2010-2018
period.

Region name abbreviation LON-W LON-E LAT-S LAT-N

Number of monthly
SSM anomalies

below -1 (above 1)
stdev 

Number of monthly
LAI anomalies

below -1 (above 1)
stdev 

Western-Europe WEUR -1 15 48 55 5(1) 5(0)

Western
Mediterranean

WMED -10 15 35 45 0(7) 4(4)

Eastern Europe EEUR 15 30 45 55 2(1) 0(2)

Balkans BALK 15 30 40 45 3(3) 1(4)

Western Russia WRUS 30 60 55 67 0(1) 1(3)

Lower Volga LVOL 30 60 45 55 2(1) 2(1)

India INDI 73 85 12 27 3(0) 2(1)

Southwestern
China

SWCH 100 110 20 32 0(2) 0(6)

Northern China NRCH 110 120 30 40 0(3) 0(4)

Murray-Darling MUDA 140 150 -37 -26 6(0) 7(0)

California CALF -125 -115 30 42 2(0) 5(0)

Southern Plains SPLN -110 -90 25 37 0(3) 0(4)

Midwest MIDW -105 -85 37 50 1(2) 1(3)

Eastern North ENRT -85 -70 37 50 0(3) 0(7)

Nordeste NDST -44 -36 -20 -2 0(3) 1(2)

Pampas PAMP -64 -58 -36 -23 2(2) 2(0)

Sahel SAHL -18 25 13 19 2(0) 1(2)

East Africa EAFR 38 51 -4 12 2(3) 1(7)

Southern Africa SAFR 14 26 -35 -26 2(0) 2(1)
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Table II: Set up of the experiment used in this study. LDAS_ERA5 and LDAS_HRES have an analysis (assimilation of surface soil moisture, SSM, and
leaf  area  index,  LAI)  and  a  model  equivalent  (open-loop,  no  assimilation),  LDAS_fc4  and  LDAS_fc8  are  model  runs  initialized  by  either
LDAS_HRES open-loop or analysis. N/A stands for not applicable.

Experiments 
(time period)

Model version
Atmospheric

forcing
Domain 

& spatial resolution
DA method

Assimilated
observations

Observations
operatorsModel

equivalents

Control
variables

LDAS_ERA5
(2010 to 2018)

ISBA
Multi-layer soil

model
CO2-responsive

version
(Interactive
vegetation)

ERA5
Global, ~0.25 °x

0.25°
SEKF

SSM 
(ASCAT)

LAI
(GEOV1)

Second layer of
soil (1-4cm)

LAI

Layers of soil 2
to 8 (1-100cm)

LAI

LDAS_HRES
(04/2016 to

12/2018)

IFS-HRES

North Western
Europe (WEUR) and

Murray-Darling
River basin (MUDA)
(see spatial extend in

Table I)
~0.10° x 0.10°

LDAS_fc4
(2017 to 2018)

N/A N/A N/A N/A
LDAS_fc8

(2017 to 2018)



Table III: Evaluation datasets and associated metrics used in this study.

Datasets used for the
evaluation 

Source Metrics associated

In situ measurements of soil
moisture 

(ISMN Dorigo et al., 2011,
2015)

https://ismn.geo.tuwien.ac.at/
en/

R for both absolute and
anomaly time-series, 

unbiased RMSD and bias

In situ measurements of river
discharge

See Table S1

Nash Efficiency (NSE),
Normalized Information

Contribution (NIC) based on
NSE, 

In situ measurements of
evapotranspiration
 (FLUXNET-2015)

http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/

R, unbiased RMSD, Bias, NIC
on R values 

Satellite derived surface soil
wetness index (ASCAT, Wagner

et al., 1999, Bartalis et al.,
2007) 

http://land.copernicus.eu/
global/

R and RMSD

Satellite derived Leaf Area
Index (GEOV1, Baret et al.,

2013)

http://land.copernicus.eu/
global/

R and RMSD

Satellite-driven model estimates
of land evapotranspiration

(GLEAM, Martens et al., 2017)
http://www.gleam.eu R and RMSD

Upscaled estimates of Gross
Primary Production (GPP, Jung

et al., 2017)

https://www.bgc-jenna.mpg.de/
geodb/projects/Home.php

R and RMSD

Solar Induced Fluorescence
(SIF) from GOME-2 (Munro

et al., 2006, Joiner et al., 2016)
See references R

Interactive Multi-sensor Snow
and Ice Mapping System (or

IMS) snow cover 

https://www.natice.noaa.gov/
ims/

Differences
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Figures
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Figure 1: (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for
pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea
level, (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness
Index (SWI) to  the  model climatology,  grey areas on (a) represent filtered out data (see Section
2.3).

Figure  2:  Selection  of  19  regions  across   the  globe  known for  being  potential  hot  spots  for
droughts and heat waves, see section on experimental setup.
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Figure  3: RMSD values between observed Leaf Area Index (LAI) and LDAS_ERA5 (a) before
assimilation and (b) after assimilation of surface soil moisture (SSM) and LAI.

2625



76

Figure  4: Latitudinal plots of (a) Leaf Area Index (LAI), (b) Surface Soil Moisture (SSM), (c)
Gross Primary Production (GPP) and (d) Evapotranspiration for LDAS_ERA5 before assimilation
(Model, blue solid line) and after assimilation (Analysis, red solid line) as well as observations
(black solid line). Cyan dashed line represents the number of points considered per latitudinal
stripes of 0.25°.
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Figure 5: Latitudinal plots of score differences (analysis minus open-loop) for a) correlation,
b) RMSD for Leaf Area Index (LAI), c) correlation , d) RMSD for Surface Soil Moisture (SSM
1-4  cm),  e)  correlation  ,f)  normalized  RMSD  for  Gross  Primary  Production  (GPP),  g)
correlation,  h)  RMSD  for  evapotranspiration  (EVAP)  and  I)  correlation  for  Sun-Induced
Fluorescence (SIF). Scores were computed based on monthly average over 2010-2018 for LAI
and SSM,  2010-2013 for  GPP,  2010-2016 for  EVA and 2010-2015 for  SIF.  For  SIF only
differences in correlation are represented. Dashed lines represent the zero lines (equal scores
for open-loop and analysis).
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Figure 6: Histograms of score differences (correlation and RMSD, analysis minus open-loop) for
a),b)  Leaf  Area  Index  (LAI),  c),d)  Surface  Soil  Moisture  (SSM 1-4  cm),  e),f)  Gross  Primary
Production  (GPP),  g),h)  evapotranspiration  (EVAP)  and  i)  Sun-Induced  Fluorescence  (SIF).
Scores were computed based on monthly average over 2010-2018 for LAI and SSM, 2010-2013 for
GPP, 2010-2016 for EVAP and 2010-2015 for SIF. For SIF only differences in correlation are
represented. Number of available data (in blue) as well as the percentage of positive and negative
values (in red) are reported. Note that for sake of clarity, the y-axis is logarithmic. 
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Figure  7:  Map of correlations (R) differences (analysis minus open-loop) for stations available
over North America. Small dots represent stations where R differences are not significant (i.e. 95%
confidence intervals are overlapping), large circles where differences are significant.
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Figure  8:  2018 monthly  anomalies  scaled by standard deviation of  analysed (a)  Surface Soil
Moisture (SSM, 1-4 cm) and (b) Leaf Area Index (LAI), with respect to 2010-2018, for the 19
regions presented in Table 1 and Figure  2. Solid red line, dashed red line and solid green line
represent regions MUDA, WEUR and EAFR. Solid cyan line represent all other boxes (see Table 1
and Figure 2).
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Figure 9: Seasonal cycles of a) observed Leaf Area Index (LAI) from the Copernicus Global Land
Service (GEOV1, CGLS), b) LAI from the  open-loop (in blue) and the analysis (in red), c) LAI
RMSD values between either the open-loop or the analysis and the LAI GEOV1 for the Western
Europe (WEUR) area (see Table I for geographical extent). d) same as (c) for correlation values.
e), ASCAT Soil Wetness Index (SWI) from CGLS, f), g) and h)  same as b), c) and d) for Surface
Soil Moisture (SSM). Note that in g) and h) ASCAT SWI has been converted to SSM using the
CDF-matching techniqueseasonal linear rescaling discussed in section 2.3 on assimilated Earth
Observations dataset. For each panels dashed line represents the averaged over 2010-2017 along
with the minimum and maximum values, the solid line is for year 2018.
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Figure 10: Same as Figure 9 for the Murray-Darling river (MUDA) area in south eastern 
Australia.
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Figure  11: Upper panel, seasonal  (a) root mean square differences (RMSD) and (b) correlation
values between surface soil moisture (SSM) from the second layer of soil (1–4 cm) from the model
forced by HRES (LDAS_HRES, open-loop in blue solid line, analysis in red solid line) and ASCAT
SSM estimates from the Copernicus Global Land Service project over 2017-2018 over the WEUR
area. Scores between SSM from the second layer of soil of LDAS_HRES 4-day (dashed/dotted blue
– when initialised by the open-loop- and red – when initialised by the analysis- lines) and 8-day
(dashed blue and red lines) forecasts and ASCAT SSM estimates are also reported. Lower panel
(c) and (d) , same as upper panel between modeled/analyzed Leaf Area index (LAI)  and GEOV1
LAI estimates from the Copernicus Global Land Service project.
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Figure  12:  Same  as  Figure  11 for  the  Murray-Darling  river  (MUDA)  area  in  southeastern
Australia.
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Figure 13: Top row, (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates
from the Copernicus Global Land Service (CGLS) over 2017-2018 for the WEUR domain, (b)
RMSD differences between LDAS_HRES analysis (open-loop) and ASCAT SSM. (c), (d) and (e)
Same as (b) between LDAS_fc4 initialised by the analysis (open-loop) and LDAS_fc8. Bottom row,
same as top row for Leaf Area Index (LAI) from the different experiments and LAI GEOV1.
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Figure 14: Same as Figure 13 or the Murray-Darling river (MUDA) area in south eastern 
Australia.
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Figure 15: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates from
the  Copernicus  Global  Land  Service  (CGLS)  over  2017-2018  for  the  WEUR domain,  (b)  R
differences between LDAS_HRES analysis (open-loop) and ASCAT SWI. (c) and (d) same as (b)
between LDAS_fc4 initialised by the analysis (open-loop) and LDAS_fc8. Bottom row, same as top
row for R values based on anomaly time-series.

Figure  16:  Top row,  (a)  drainage values  for  LDAS_HRES open-loop over  2017-2018 for  the
WEUR domain, (b) drainage differences between LDAS_HRES analysis and open-loop. (c), (d),
same as (b) between LDAS_fc4 initialised by the analysis and LDAS_fc4 initialised by the open-
loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8 initialised by the open-loop.
Bottom row, same as top row for runoff. Units are kg.m-2  .day-1  


