
Response  to  Reviewer  3  are  structured  as  follow:  (1)  3.X:  comments  from  Reviewer  3,  (2)
Response to 3.X: author’s response and author’s  changes in manuscript when any.  For sake of
clarity, line and page numbering from the revised version are used.

Reviewer#3

[...] Overall, the LDAS-Monde system is great, but the paper needs a thorough revision [...]

Dear Reviewer#3 many thanks for reviewing the manuscript and for highlighting its relevance and
interest. Your comments and suggestions led to an improved version of the manuscript. Below is a
point by point answer to your specific comments, all your editorial and technical comments were
accounted for in the revised version of the manuscript. 

3.1 [Are the perturbations chosen to get an optimal data assimilation system? Please discuss]

Response to 3.1

Yes,  several  studies  have  investigated  the  size  of  the  perturbations  within  the  ISBA LSM.  In
particular  Draper  et  al.,  2009,  for  soil  moisture,  Rüdiger  et  al.,  2010,  for  LAI.  The  following
sentence has been added to the revised version of the manuscript (as well as the new reference to
Draper et al., 2009):
Section 2.1.3 on data assimilation
P.7,  Lines  202-204:“Several  studies  (e.g.  Draper  et  al.,  2009;  Rüdiger  et  al.,  2010)  have
demonstrated  that  small  perturbations  lead  to  a  good  approximation  of  this  linear  behaviour,
provided that computational round-off error is not significant.”

References:
Draper, C. S., Mahfouf, J.-F., and Walker, J. P.: An EKF assimilation of AMSR-E soil moisture into
the  ISBA  land  surface  scheme,  J.  Geophys.  Res.,  114,  D20104,
https://doi.org/10.1029/2008JD011650, 2009.
Rüdiger, C., Albergel, C., Mahfouf, J.-F., Calvet, J.-C., and Walker, J. P.: Evaluation of Jacobians
for  Leaf  Area  Index data  assimilation  with  an  extended  Kalman  filter,  J.  Geophys.  Res.,  115,
D09111, https://doi.org/10.1029/2009JD012912, 2010.

3.2 [How are the cross correlations between the errors in the various soil layers defined, and
the error correlations between LAI and soil moisture?]

Response to 3.2

In the SEKF, no covariance is directly prescribed between LAI and soil moisture or soil moisture
between the various soil layers. The sensitivity of model variables to observations is entirely driven
by the Jacobian of the observation operator, which is defined as the product of the model state
evolution from t to t + 24h and the conversion of the model state into the observation equivalent
(see paragraph 2.3.1 and supplementary material of Bonan et al. (2020)). The value of Jacobian has
been heavily studied in previous publications such as Albergel et al. (2017) or Tall et al. (2019).

Within LDAS-Monde, cross correlations between the errors in the various variables (soil moisture
of the different layers and LAI) will be investigated in a near future based on the Ensemble Square
Root Filter (EnSRF) proposed by Bonan et al., 2020.

References:



Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo,
W.,  Faroux,  S.,  Meurey,  C.,  Le  Moigne,  P.,  Decharme,  B.,  Mahfouf,  J.-F.,  and  Calvet,  J.-C.:
Sequential  assimilation  of  satellite-derived  vegetation  and  soil  moisture  products  using
SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev.,
10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017. 
Bonan, B., Albergel, C., Zheng, Y., Barbu, A. L., Fairbairn, D., Munier, S., and Calvet, J.-C.: An
Ensemble Square Root Filter for the joint assimilation of surface soil moiture and leaf area index
within LDAS-Monde:  application over the Euro-Mediterranean region,  Hydrol.  Earth Syst.  Sci.
Discuss., https://doi.org/10.5194/hess-2019-391, accepted, 2020. 
Tall, M.; Albergel, C.; Bonan, B.; Zheng, Y.; Guichard, F.; Dramé, M.S.; Gaye, A.T.; Sintondji,
L.O.; Hountondji, F.C.C.; Nikiema, P.M.; Calvet, J.-C. Towards a Long-Term Reanalysis of Land
Surface Variables over Western Africa: LDAS-Monde Applied over Burkina Faso from 2001 to
2018. Remote Sens., 11, 735, 2019

3.3  [ASCAT  has  an  approximate  resolution  of  25  km.  How  are  these  coarse  data
assimilated/downscaled into the 0.1ˆo model simulations?]

Response to 3.3

The assimilated SWI product is  provided by the Copernicus Global Land Service directly on a
global 0.1° regular grid. Informations on how the SWI product is derived from ASCAT data at 25-
km resolutions can be found in the Product User Manual
(https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_SWIV3-
SWI10-SWI-TS_I2.60.pdf).

3.4 [CDF matching ‘ refers to rescaling of the entire CDF, and is not a correct terminology
when only rescaling the mean and variance.]

Response to 3.4

We use in this paper a seasonal linear rescaling. Linear rescaling was introduced by Scipal et al.
(2008)  and  has  been  shown  giving  results  that  are  very  similar  to  an  exact  CDF  matching.
Nevertheless, to avoid any confusion, we have rewritten the sentence as follows (P.9-10, Lines 299-
301): “This is done through a linear rescaling as proposed by Scipal et al. (2007), where the mean
and variance of observations are matched to the mean and variance of the modelled soil moisture
from the second layer of soil (1-4 cm depth). This rescaling gives in practice very similar results to
CDF (cumulative distribution function) matching. The linear rescaling is performed on a seasonal
basis (with a 3-month moving window) as suggested by Draper et al., (2011), Barbu et al., (2014).”
Further  mentions  of  CDF matching  in  the  manuscript  have  been  replaced  by  “seasonal  linear
rescaling”.

3.5 [How exactly are the LAI data ‘interpolated’ from 1 km to 0.25 degree? Do you mean
interpolation to bridge cloudy pixels and then aggregation (upscaling)?]

Response to 3.5

Thanks for this suggestion. As in previous studies (e.g, Barbu et al., 2014, Albergel et al., 2019),
observations are aggregated using an arithmetic average to the model grid points (0.25° or 0.10° in
this study), if at least 50 % of the model grid points are observed (i.e. half the maximum amount). 

Future work will  focus on looking at  the impact of cloud cover on the LAI upscaling process.
Instead of 50%, a possibility could be to use an arithmetic average to the model grid point if at least



70% of the model grid point are observed. Then during the assimilation/evaluation ERA5 (or HRES
IFS) total cloud cover field (tcc) could be use to mask out grid point if tcc is greater than 30%. This
is already used when evaluating e.g. satellite land surface temperature to model data (e.g. Johannsen
et al., 2019).
 
Reference:
Johannsen, F.; Ermida, S.; Martins, J.P.A.; Trigo, I.F.; Nogueira, M.; Dutra, E. Cold Bias of ERA5
Summertime Daily Maximum Land Surface Temperature over Iberian Peninsula. Remote Sens., 11,
2570, 2019.

3.6 [Is the LAI also ‘converted from the observation space to the model space’ as is done for
soil  moisture? Please describe how? If there is  no such rescaling, then the results may be
trivial, i.e there will be more impact of a non-rescaled LAI assimilation than when doing a
gentle  nudging  with  rescaled  soil  moisture.   However,  since  you  use  a  KF variant,  there
probably is some rescaling for both (otherwise the KF assumptions would be violated).]

Response to 3.5

Soil  moisture  is  a  very  model-specific  variable,  precipitation,  evapotranspiration,  soil  texture,
topography, vegetation, and land use could either enhance or reduce the spatial variability of soil
moisture depending on how it is distributed and combined with other factors (Famiglietti et al.
2008). In particular, differences in soil properties between the model grid points and reality could
imply  important  variations  in  the  mean and variance  of  soil  moisture.  Furthermore,  vegetation
effects  are  not  completely  corrected  when  going  from  the  satellite  measurement  (e.g.  radar
backscatter in the case of ASCAT) to SSM, leading to potential seasonal biases (e.g. Shamambo et
al.,  2019).  That  is  why  we  apply  the  linear  rescaling  to  the  ASCAT SWI.  It  also  acts  as  an
observation operator to go from the observational space (SWI, an index 0 and 1) to the model space
(SSM in m3m-3). 

For  LAI,  biases  between  the  model  and  the  observations  are  linked  to  the  way processes  are
represented in the model as well as uncertainties on the atmospheric forcing (cumulated effect on
modelled LAI). The assimilation sequentially removes bias in the modelled LAI (with respect to the
observed LAI). This technical difference between SSM and LAI assimilation, combined with the
longer memory of LAI compared to SSM contributes to the results presented in this study. See also
response to comment 3.14.

References:
Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson, 2008: Field observations of soil
moisture variability across scales. Water Resour. Res., 44, W01423, doi:10.1029/2006WR005804.
Shamambo, D.C.; Bonan, B.; Calvet, J.-C.; Albergel, C.; Hahn, S. Interpretation of ASCAT Radar
Scatterometer Observations Over Land: A Case Study Over Southwestern France.  Remote Sens.
2019, 11, 2842.

3.6 [How exactly is the ‘climatology’ defined? Is it seasonally varying, how much smooth-
ing is applied, etc?]

Response to 3.6

The following sentence “This 9-yr global reanalysis was then used to provide a climatology for
estimating anomalies of the land surface conditions.” has been reformulated and is now (P.10, Lines
317-320) “This  9-yr  global  reanalysis  was  then  used  to  provide  a  monthly  climatology  for



estimating anomalies of the land surface conditions. For each month (and variable considered) of
2018 we have removed the monthly mean and scaled by the monthly standard deviation of the
2010-2018 period”

3.7  [The  spinup  period  for  the  0.1ˆo  simulation  seems  unrealistically  short.  How  was  it
initialized? Could you cycle over the short April-December period multiple times?

Response to 3.7

Nine months can be perceived as a too short period to spin up the system. Unfortunately, HRES
atmospheric forcing is only available from April 2016 and the LDAS-HRES experiment ends in
December 2018. We have considered this 9 months period for the spin up in order to have the
longest possible time series for land surface variables, thus giving more strength to statistics. We
could have considered a longer period for spin up (April 2016 to December 2017) and studied only
2018. This gives very similar results on surface soil moisture and LAI (not shown). While not being
fully spun-up, results obtained with LDAS-HRES can be considered as representative of the system
response to data assimilation. Note that most initial values of the LDAS-HRES run are taken from
the ECOCLIMAP-II database. For instance, initial LAI is set from a 1999-2005 climatology derived
from MODIS  

Another possibility to initialise LDAS-HRES could have been to downscale the state of LDAS-
ERA5 run in April 2016 to 0.10°x0.10° spatial resolution. LDAS-ERA5 runs have been set to an
equilibrium spinning up 20 times the first year (2010).

The following sentence:  “The period 2017-2018 is  presented,  HRES is  available  at  this  spatial
resolution from April 2016, only, and the time period from April to December 2016 is used as a
short spinup.” has been modified and is now (P.10, L.327-332): “HRES is available at a 0.1° x 0.1°
resolution only from April 2016. April to December 2016 is used as a short period for spinup and
results are presented for the period 2017-2018. Although a 9-month spinup period can be seen as
rather  short,   evaluating LDAS-HRES on either  2017-2018 or  2018 (using instead a  21-month
spinup) leads to similar results on surface soil moisture and LAI (not shown). While the system is
not  fully  spun-up,  it  can  be  considered  as  representative  of  the  system  response  to  data
assimilation.”

3.8 [Table II: An observation operator is a function, not a variable; also explain what you
mean by control variable (updated variables) for readers who are new to the field.  In fact, the
control  vector enters  the  observation  operator,  which  in  turn selects  a  subset  of  relevant
variables to produce the observation prediction.]

Response to 3.8

Agreed, in Table II “Observations operators” has been replaced by “Model equivalents” and  the
following sentences have been added to the revised version of the manuscript (section 2.1.3 on data
assimilation,  P.6,  Lines  200-202):  “The eight  control  variables  are  directly  updated  using  their
sensitivity  to  observed  variables  (i.e.  defined  by  the  Jacobians).  Other  variables  are  indirectly
modified through biophysical processes and feedbacks from the model”

3.9 [Why is there no skill evaluation in terms of anomalies? Would be interesting.]

Response to 3.9



Thank your for your highly relevant comment. Following it and similar comments from the other
Reviewers, it has been decided to revisit the soil moisture evaluation part of the study: 
(1) we have added an evaluation of soil moisture from LDAS-Monde fourth layer of soil (10 to 20
cm) against in situ measurements of soil moisture at 20 cm depth when available (10 networks and
685 stations),
(2) for surface soil moisture (SSM), correlation values (R) were calculated for both absolute and
anomaly time-series in order to remove the strong impact from the SSM seasonal cycle on this
specific metric,
(3) a 95% Confidence Interval (CI) has been added to R values.
(4)  we  have  added  the  number  of  stations  for  which  correlations  differences  are  significant
(significant improvement or degradation from the analysis) as well as a map over North America for
illustration.

It involves several changes in the revised version of the manuscript, they are listed below.

Methodology section, 2.5 Evaluation datasets and metrics

P.11, Lines 358-365:“In situ measurements of surface soil moisture from 19 networks across 14
countries available from the ISMN are also used to evaluate the performance of the soil moisture
analysis. They represent 782 stations with at least 2 years of daily data over 2010-2018. Sensors at 5
cm depth (SSM) are compared with soil moisture from LDAS_ERA5 third layer of soil (4-10 cm),
sensors at 20 cm depth with the fourth layer of soil (10-20 cm, 685 stations from 10 networks).
Beside 11 stations located in 4 countries of Western Africa (Benin, Mali, Sénégal and Niger) and 21
stations in Australia, most stations are located in North America and Europe, see Table S3.”

P.12, Lines 374-377: “For global estimates, Normalized RMSD (NRMSD, Eq.(2)) was used, also.
Finally, for surface soil moisture, R was calculated for both absolute and anomaly time-series in
order to remove the strong impact from the SSM seasonal cycle on this specific metric (see e.g.
Albergel et al., 2018a, 2018b).”

Result section, 3..1.2 Ground-based datasets

P.17-18, Lines 548-582: “The statistical scores for soil moisture from LDAS_ERA5 open-loop and
analysis (third and fourth layers of soil,  4-10 cm depth,  10-20 cm depth, respectively) over 2010-
2018 when compared with ground measurements from the ISMN (5 cm depth and 20 cm depth) are
presented in Table S2 for each individual network. Averaged statistical metrics (ubRMSD, R,Ranomaly

and bias) are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist.
For the analysis, averaged R (Ranomaly) values along with its 95% Confidence Interval (CI) using in
situ  measurements  at  5  cm  (782  stations  from  19  networks)  are  0.68±0.03  (0.53±0.04)
(0.67±0.03(0.53±0.04)  for  the  open-loop)  with  averaged-network values  going up to  0.88±0.01
(0.58±0.04) for the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than
0.55 except for one network, ARM (10 stations in the USA) presenting an averaged R value of
0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077
m3m-3 for the analysis, 0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.1) has
also been applied to R values, 65% of the pool of stations present a neutral impact from the analysis
(511 stations at NIC ranging between -3 and +3), 12% present a negative impact (91 stations at NIC
< -3) and 23% present a positive impact at (180 stations at NIC > +3). 
The number of stations where R differences between the analysis and the openloop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis w.r.t. the openloop for 128 stations (out of 186, i.e. about 69%) and a degradation
for  58  stations  (about  31%).  Figure  7  illustrates  R  differences  between  the  analysis  and  the
openloop  runs.  When  differences  (analysis  minus  openloop)  are  not  significant  stations  are



represented by a small dot. When they are significant, large circles have been used, blue for positive
differences (an improvement from the analsysis) and red for negative differences (a degradation
from the analysis). For most of the stations where a significant difference is obtained, it represent an
improvement from the analysis. 
Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65±0.03, 0.049  m3m-3 and 0.055  m3m-3, respectively. For the open-loop, they are
0.064±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively.  For soil moisture at that depth, about 60%
of the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3
and +3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations
at NIC < -3). Although differences between the openloop run and the analysis are rather small, these
results underline the added value of the analysis with respect to the model run. Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”

Figure 7: Map of correlations (R) differences (analysis minus openloop) for stations available over
North America.  Small  dots  represent  stations  where R differences  are not  significant  (i.e.  95%
confidence intervals are overlapping), large circles where differences are significant.



Figure S6: a) Boxplots representing the distribution of the correlation values on absolute time-
series and anomaly time-series (“Ano”) between the stations with in situ measurements of soil
moisture  either  5cm depth  or  20 cm depth  and soil  moisture from LDAS_ERA5 openloop and
analysis  over  2010-2018  (third  and  forth  layer  of  soil,  respectively).  Correlation  values  are
presented for surface soil moisture (5 cm depth measurements against third layer of soil),  only.
Distribution  are  centred  on the median values.  b)  Distribution  of  the  Bias  values  between the
stations  with in  situ  measurements  of  soil  moisture either  5cm depth or  20 cm depth  and soil
moisture from LDAS_ERA5 openloop and analysis over 2010-2018 (third and forth layer of soil,
respectively).c) Same as b) for ubRMSD.

The following text has been added to the revised version of the manuscript: “Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”

3.10 [Which variable in LDAS-Monde output is related to SIF and how?]

Response to 3.10

In ISBA, the fluorescence is not simulated directly, but the photosynthesis activity is simulated
through the calculation of the GPP, which is driven by plant growth and mortality in the model. Sun
et al. (2017) demonstrated that SIF and GPP were driven by the same environmental and biological
factors and found that SIF observations from OCO-2 and GPP products from FLUXCOM were
highly consistent in time and space. The modelled GPP values are expressed in g(C)·m−2·day−1,
whereas SIF is an energy flux emitted by the vegetation in units of mW·m−2·sr−1·nm−1. Thus, GPP
and  SIF  cannot  be  directly  compared  as  they  do  not  represent  the  same  physical  quantities.
However, several studies (including Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have
found that their time dynamics and their spatial distributions can be investigated.



The following paragraph has been added to the revised version of the manuscript  (Section 2.5 on
evaluation datasets and metrics, P.13, Lines 400-406): “As for SIF, in ISBA the fluorescence is not
simulated directly, however photosynthesis activity is simulated through the calculation of the GPP,
which is driven by plant growth and mortality in the model. Modelled GPP values are expressed in
g(C)·m−2·day−1, while SIF is an energy flux emitted by the vegetation (mW·m−2·sr−1·nm−1). Hence,
GPP and SIF cannot be directly compared as they do not represent the same physical quantities.
However, several studies (e.g, Zhang et al., 2016, Sun et al., 2017, Leroux et al., 2018) have found
that their time dynamics investigated, highlighting the potential of SIF products to be used as a
validation support for GPP models.”

References:
Leroux, D.J.; Calvet, J.-C.; Munier, S.; Albergel, C. Using Satellite-Derived Vegetation Products to
Evaluate LDAS-Monde over the Euro-Mediterranean Area. Remote Sens. 2018, 10, 1199. 
Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.T.; Verma,
M.; Porcar-Castell, A.; Griffis, T.J.; et al. OCO-2 advances photosynthesis observation from space
via solar-induced chlorophyll fluorescence. Science 2017, 358, 189.
Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.; Zhang,
G.; et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production
of vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169.

3.11  [Overall,  it  is  a  bit  disconcerting  that  trivial  design  results  are  shown  repeatedly.
Assimilate a variable, and sure, the model will get closer the assimilated observations. The
results need to be thoroughly revised (both text and figures) to eliminate the trivial results.
They can be mentioned once, but then the focus needs to be on the independent evaluation.  It
is also not correct to say that results “improve” if they simply get closer to the assimilated
observations (e.g. L. 375, L. 516,...). This holds both for the global assessment and for the case
studies, e.g. all of L. 505-512 is ‘trivial’ and can be removed.]

Response to 3.11

Verifying that the assimilation system works as intended is an important task. This is why several
figures have been included for “sanity check”. We have emphasized in the manuscript that several
presented evaluations are carried out to check if the assimilation system is working properly.

Also, using SSM and LAI as an independent source of information to evaluate the forecast has been
further  discussed  and  added  in  the  revised  version  of  the  manuscript.  While  LAI  remains  an
independent  source  of  information  for  the  forecast  evaluation  (although  constrained  by  the
assimilation),  ASCAT  SWI  has  been  rescaled  to  match  the  model  climatology.  The  seasonal
rescaling impacts both bias and correlation. In an attempt to have a more independent evaluation, an
additional  figure  has  been  put  in  the  revised  version  of  the  manuscript.  It  displays  maps  of
correlations between modelled soil  moisture (1-4 cm) from the four experiments (LDAS-HRES
openloop, analysis, LDAS_fc4 and LDAS_fc8) and ASCAT SWI (i.e. ASCAT data prior rescaling)
for the WEUR domain. Correlations are applied to both absolute values and to anomalies (to assess
the short term variability of soil moisture).

End of section 3.2.2
P.22, Lines 703-724: “Similarly to Figures 13(a, b, c, d), panels of Figure 15 illustrate the impact of
the analysis on SSM using correlations., To that end, ASCAT SWI (i.e. no rescaling) has been used.
Figure 14 (top panels) shows map of R values based on absolute values while Figure 14 (bottom
panels) shows R values on anomalies (short term variability) as defined in Albergel et al., 2018a.
Figure 15 (a) and (e) represents R values and anomaly R values for LDAS_HRES, respectively. As
expected R values are higher than anomaly R values. Maps of differences (panels b and f) of Figure



15 suggest that after assimilation, both scores are improved rather equally. While the 4 day and 8-
day forecast still show an improvement from the initial condition on R values (panels c and d of
Figure 15 dominated by positive differences, analysis minus openloop), maps of anomaly R values
forecast don’t show any negative or positive impact (panels g and h of Figure 15).”

Discussion and conclusion sections
P.23, Lines 749-754: “For SSM, the assimilation is done after a rescaling to the model climatology
(see section 2.3), which removes bias. For LAI, however it is not the case and the assimilation
process  removes bias in  the modelled LAI (w.r.t.  to  the observation).  This  technical  difference
between SSM and LAI assimilation, combined with the longer memory of LAI compared to SSM,
contributes to the results presented in this section”

3.12 [The snow cover results (Fig 7-8) can be removed. It is too trivial that there would be no
impact on snow cover by assimilating soil moisture or LAI. Or else, explain in detail how
either variable would affect the snow cover.]

Response to 3.12
Agreed, both figures have been moved to the supplementary document (Figures S1 and S2) and it
has been further emphasized that there is no snow data assimilation yet. Those results are  presented
to highlight areas of improvements in LDAS-Monde: 
P.15, Lines 487-492: “As expected, the analysis has an almost neutral impact on snow as both SSM
and LAI observations are filtered out from frozen/snow condition and as there is no snow data
assimilation in LDAS_ERA5 (Figure S2 and panels (j), (k) and (l) of Figure S1). This clearly shows
however an area of potential improvement of data assimilation within LDAS-Monde using satellite
data such as the IMS one (as in e.g. de Rosnay et al., 2014).”

3.13 [The independent validation (e.g against in situ SSM) shows no substantial improvement
in any of the metrics due to data assimilation.  Have the in situ data been thoroughly filtered
to remove bad points?  Why exactly do the authors see an advantage of LDAS_ERA5 for
these variables relative to the open loop (L. 458)?  There is some added value, but there is also
significant degradation, i.e.  I would say it is an equal game here.]

Response to 3.13

Figure 15: Top row, (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates from the Copernicus
Global Land Service (CGLS) over 2017-2018 for the WEUR domain, (b) R differences between LDAS_HRES analysis
(open-loop) and ASCAT SWI. (c) and (d) same as (b) between LDAS_fc4 initialised by the analysis (open-loop) and
LDAS_fc8. Bottom row, same as top row for R values based on anomaly time-series.



Agreed, last paragraph of section 3.1.2 on ground based dataset has been modified and is now (P.18,
Lines 582-587): “For evapotranspiration, river discharge and surface soil moisture, there is a slight
advantage  for  LDAS_ERA5  analysis  with  respect  to  its  open-loop  counterpart.  Even  if  the
distribution of the averaged statistical metrics can be rather similar for both (particularly true for
surface soil moisture evaluation), there are significant differences for some sites, which shows the
added value of the analysis with respect to the openloop. Note that for fewer sites, a negative impact
from the analysis can also be observed.”

We have also revisited the soil moisture evaluation part of the manuscript, see response to comment
3.9.

3.14 [L. 535 & L. 545:  ‘more sensitive to’ is perhaps not the correct wording?  Sensitivity
would be quantified by something like the Jacobian. There is simply a larger update in LAI
than  in  SSM by  design,  and  this  propagates  in  time  differently  due  to  the  difference  in
memory for both variables (at this point in the paper, I am actually suspecting that LAI is
assimilated with a bias, see comment above).]

Response to 3.14

Agreed, “more sensitive” has been replaced by “relies more”. We also agree on the larger updates
allowed when assimilating LAI, and it has been stressed out by adding the following paragraph to
the discussions and conclusion stection (see also response to 3.5)

P.23, Lines 749-754: “For SSM, the assimilation is done after a rescaling to the model climatology
(see section 2.3), which removes bias. For LAI, however it is not the case and the assimilation
process removes bias in the modelled LAI (w.r.t. the observation). This technical difference between
SSM  and  LAI  assimilation,  combined  with  the  longer  memory  of  LAI  compared  to  SSM,
contributes to the results presented in this section.”

3.15 [Could you evaluate the impact of LAI and SSM assimilation in terms of runoff for the
high-resolution simulation?]

Response to 3.15
Thank you for this  suggestion,  we have added a figure to  show the impact  of the assimilation
(together with the impact of the initialisation on 4-day and 8-day forecasts) on drainage and runoff
over the WEUR domain.

The following paragraph and figure have been added to the revised version  of  the manuscript
(section  3.2.2  on    Case  studies  for  assessing  LDAS-Monde  high  resolutions  (0.1°  x  0.1°)  
experiments, P.22; Lines 713-724  ):   “Top panels of Figure 16 illustrate the impact of the analysis on
drainage monitoring and forecast over WEUR. Fig. 16 a) represents drainage from LDAS_HRES
openloop varying between 0 and 1 kg.m-2.day-1, as seen in Fig.16 b) (drainage difference between
LDAS_HRES analysis  and openloop) the analysis  impact is rather small,  about  ±3% and more
pronounced in areas where the analysis has affected LAI more (see panels f), g) and h) of Figure
16). As seen on panels c) and d), there is also an impact from the initialisation in areas were the
analysis was more effectively correcting LAI. Bottom panels of Figure 16 illustrate similar impact
on runoff. As for drainage, this variable is affected by the analysis. Initial conditions have an impact
on its forecast, also. Although we did not present a quality assessment of those two variables, our
findings  on  river  discharge  analysis  impact,  but  also  those  from Albergel  et  al.,  2017,  2018a,
suggest  a  neutral  to  positive  impact,  propagated  from the  analysis  of  SSM  and  LAI  to  river
discharge through variables such as drainage and runoff.”
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Figure  15:  Top row,  (a)  drainage values  for  LDAS_HRES open-loop over  2017-2018 for  the WEUR domain,  (b)
drainage differences between LDAS_HRES analysis and open-loop. (c), (d), same as (b) between LDAS_fc4 initialised
by the analysis and LDAS_fc4 initialised by the open-loop, between LDAS_fc8 initialised by the analysis and LDAS_fc8
initialised by the open-loop. Bottom row, same as top row for runoff. Units are kg.m-2.day-1


