
Response  to  Reviewer  1  are  structured  as  follow:  (1)  1.X:  comments  from  Reviewer  1,  (2)
Response to 1.X: author’s response and author’s  changes in manuscript when any.  For sake of
clarity, line and page numbering from the revised version are used.

Reviewer#1

Dear Reviewer#1 many thanks for reviewing the manuscript and for highlighting its relevance and
interest. Your comments and suggestions led to an improved version of the manuscript. Below is a
point by point answer to your specific comments, all your editorial and technical comments were
accounted for in the revised version of the manuscript. 

1.1 [It would have been interesting to see a comparison of analysis vs. open-loop root-zone soil
moisture skill (compared to the International Soil Moisture Network), as this could have a
longer  memory  than  the  surface  zone  soil  moisture,  however,  this  is  not  crucial  for  the
conclusions of this study.]

Response to 1.1

Thank your for your highly relevant comment. Following it and similar comments from the other
Reviewers, it has been decided to revisit the soil moisture evaluation part of the study: 
(1) we have added an evaluation of soil moisture from LDAS-Monde fourth layer of soil (10 to 20
cm) against in situ measurements of soil moisture at 20 cm depth when available (10 networks and
685 stations),
(2) for surface soil moisture (SSM), correlation values (R) were calculated for both absolute and
anomaly time-series in order to remove the strong impact from the SSM seasonal cycle on this
specific metric,
(3) a 95% Confidence Interval (CI) has been added to R values.
(4)  we  have  added  the  number  of  stations  for  which  correlations  differences  are  significant
(significant improvement or degradation from the analysis) as well as a map over North America for
illustration.

It involves several changes in the revised version of the manuscript, they are listed below.

Methodology section, 2.5 Evaluation datasets and metrics

P.11, Lines 358-365: “In situ measurements of surface soil moisture from 19 networks across 14
countries available from the ISMN are also used to evaluate the performance of the soil moisture
analysis. They represent 782 stations with at least 2 years of daily data over 2010-2018. Sensors at 5
cm depth (SSM) are compared with soil moisture from LDAS_ERA5 third layer of soil (4-10 cm),
sensors at 20 cm depth with the fourth layer of soil (10-20 cm, 685 stations from 10 networks).
Beside 11 stations located in 4 countries of Western Africa (Benin, Mali, Sénégal and Niger) and 21
stations in Australia, most stations are located in North America and Europe, see Table S3.”

P.12, Lines 374-377: “For global estimates, Normalized RMSD (NRMSD, Eq.(2)) was used, also.
Finally, for surface soil moisture, R was calculated for both absolute and anomaly time-series in
order to remove the strong impact from the SSM seasonal cycle on this specific metric (see e.g.
Albergel et al., 2018a, 2018b).”

Result section, 3..1.2 Ground-based datasets

P.17-18, Lines 548-580: “The statistical scores for soil moisture from LDAS_ERA5 open-loop and
analysis (third and fourth layers of soil,  4-10 cm depth,  10-20 cm depth, respectively) over 2010-



2018 when compared with ground measurements from the ISMN (5 cm depth and 20 cm depth) are
presented in Table S2 for each individual network. Averaged statistical metrics (ubRMSD, R,Ranomaly

and bias) are similar for both LDAS_ERA5 analysis and open-loop even if local differences exist.
For the analysis, averaged R (Ranomaly) values along with its 95% Confidence Interval (CI) using in
situ  measurements  at  5  cm  (782  stations  from  19  networks)  are  0.68±0.03  (0.53±0.04)
(0.67±0.03(0.53±0.04)  for  the  open-loop)  with  averaged-network values  going up to  0.88±0.01
(0.58±0.04) for the analysis (SOILSCAPE network, 49 stations in the USA) and always higher than
0.55 except for one network, ARM (10 stations in the USA) presenting an averaged R value of
0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5 minus in situ) are 0.060 m3m-3 and 0.077
m3m-3 for the analysis, 0.060 m3m-3 and 0.076 m3m-3 for the open-loop, respectively. NIC (Eq.1) has
also been applied to R values, 65% of the pool of stations present a neutral impact from the analysis
(511 stations at NIC ranging between -3 and +3), 12% present a negative impact (91 stations at NIC
< -3) and 23% present a positive impact at (180 stations at NIC > +3). 
The number of stations where R differences between the analysis and the openloop are significant
(i.e. their 95% CI are not overlapping) is 186 out of 782 (about 26%). There is an improvement
from the analysis w.r.t. the openloop for 128 stations (out of 186, i.e. about 69%) and a degradation
for  58  stations  (about  31%).  Figure  7  illustrates  R  differences  between  the  analysis  and  the
openloop  runs.  When  differences  (analysis  minus  openloop)  are  not  significant  stations  are
represented by a small dot. When they are significant, large circles have been used, blue for positive
differences (an improvement from the analsysis) and red for negative differences (a degradation
from the analysis). For most of the stations where a significant difference is obtained, it represent an
improvement from the analysis. 
Averaged analysis R (95%CI), bias and ubRMSD for the fourth layer of soil (685 stations from 10
networks) are 0.65±0.03, 0.049  m3m-3 and 0.055  m3m-3, respectively. For the open-loop, they are
0.064±0.03, 0.048 m3m-3 and 0.056 m3m-3, respectively.  For soil moisture at that depth, about 60%
of the stations present a neutral impact from the analysis (410 stations at NIC ranging between -3
and +3), 28% a positive impact (189 stations at NIC > +3) and 12% a negative impact (86 stations
at NIC < -3). Although differences between the openloop run and the analysis are rather small, these
results underline the added value of the analysis with respect to the model run. Figure S6 represents
the  distribution  of  the  scores  values  for  LDAS_ERA5 open-loop  and  analysis  using  boxplots
centred on the median value. They look very similar and from this figure, it is difficult to see either
improvement or degradation from the analysis.”



Figure 7: Map of correlations (R) differences (analysis minus openloop) for stations available over
North America.  Small  dots  represent  stations  where R differences  are not  significant  (i.e.  95%
confidence intervals are overlapping), large circles where differences are significant.

Figure S6: a) Boxplots representing the distribution of the correlation values on absolute time-
series and anomaly time-series (“Ano”) between the stations with in situ measurements of soil



moisture  either  5cm depth  or  20 cm depth  and soil  moisture from LDAS_ERA5 openloop and
analysis  over  2010-2018  (third  and  forth  layer  of  soil,  respectively).  Correlation  values  are
presented for surface soil moisture (5 cm depth measurements against third layer of soil),  only.
Distribution  are  centred  on the median values.  b)  Distribution  of  the  Bias  values  between the
stations  with in  situ  measurements  of  soil  moisture either  5cm depth or  20 cm depth  and soil
moisture from LDAS_ERA5 openloop and analysis over 2010-2018 (third and forth layer of soil,
respectively).c) Same as b) for ubRMSD.

1.2 [L107-117: Is it necessary to include such details about the datasets in the introduction?]

Response to 1.2

We agree that a lot of information is provided in this bullet. However we believe acronyms should
be detailed and appropriate references should be used the first time they appear in the text. 

1.3 [L180: Please specify what you mean by flow dependency between the prognostic variables
and the observations.]

Response to 1.3

This sentence has been rephrased: “Flow dependency between the model control variables and the
observations are generated using finite differences from perturbed simulations” is now (P.6, Lines
192-195): “The flow-dependency (dynamic link) between prognostic variables and the observations
is ensured in the SEKF through the observation operator Jacobians, which propagate information
from the observations to the analysis via finite-difference computations (de Rosnay et al., 2013)”

1.4 [L198-200: Difficult to interpret the difference in LAI error when you use a mix of percent
and m2/m2. Please could you clarify this?]

Response to 1.4

We agree that this sentence could be improved. Setting up the observed and modelled LAI standard
deviation to 20 % of the LAI value is an empirical option coming from previous studies by Jarlan et
al.  (2008) and Rudiger  et  al.  (2010),  which have underlined the need for a  variable  LAI error
definition. Barbu et al. (2011) further explored the impact of LAI model and background errors on
the assimilation results by using diagnostics on model and observation errors (e.g. Desroziers and
Ivanov, 2001) on different setups (see figure 2 of Barbu et al., 2011). They found that for small LAI
values, it is necessary to use a fixed error standard deviation. This value was set to 0.04 m2m-2 for
LAI values lower than 2 m2m-2 and is also used in this study.

The following sentence: “The standard deviation of errors for the observed LAI is assumed to be
20%  and a similar assumption is made for the standard deviation of errors of the modelled LAI
values higher than 2 m2m−2. For modelled LAI values lower than 2 m2m−2, a constant error of 0.4
m2m−2 is assumed (Barbu et al., 2011). More details can be found in Albergel et al, 2017 or Tall et
al., 2019.” as been reformulated and is now (P.7, Lines 220-224): “Based on previous results from
Jarlan et al., 2008, Rüdiger et al., 2010, Barbu et al., 2011, observed and modelled LAI standard
deviation errors  are set to 20 % of the LAI value itself for values higher than 2m2m-2. For LAI
values lower than 2 m2m-2, a fixed value of 0.04 m2m-2 has been used. More detailed can be found in
Barbu et al., 2011 (section 2.3 on data assimilation scheme and figure 2).”

Reference (not added to the manuscript):



Desroziers, D. and Ivanov, S.: Diagnosis and adaptive tuning of observation-error parameters in a
variational assimilation, Q. J. Roy. Meteorol. Soc., 127, 1433–1452, 2001.

Reference (added to the manuscript):
Jarlan, L., Balsamo, G., Lafont, S., Beljaars, A., Calvet, J.-C., and Mougin, E.: Analysis of leaf area
index in the ECMWF land surface model and impact on latent heat on carbon fluxes: Application
to West Africa, J. Geophys. Res., 113,  D24117, doi:10.1029/2007JD009370, 2008. 

Reference (already in the manuscript):

Rüdiger, C.; Albergel, C.; Mahfouf, J.-F.; Calvet, J.-C.; Walker, J.P. Evaluation of Jacobians for leaf
area index data assimilation with an extended Kalman filter. J. Geophys. Res. 2010.

1.5 [L251: Could you please include why you don’t consider assimilating surface soil moisture
observations  from  the  Soil  Moisture  and  Ocean  Salinity  (SMOS)  and/or  from  the  Soil
Moisture Active Passive (SMAP) satellite missions? As these satellites are expected to be more
sensitive to surface soil moisture than the C-band observations from ASCAT.

Response to 1.5

We  find  it  difficult  at  this  stage  to  include  why  a  specific  dataset  has  not  been  used.  The
development  of  LDAS-Monde  at  CNRM  has  been  made  possible  through  different  externally
funded project including the Copernicus Gobal Land Service providing, amongst other datasets, the
ASCAT Soil Wetness Index used in this study. ASCAT is from 2007 onward an operational product
obtained from sensors onboard the METOP satellites and has been used at CNRM for many years.
However, it is true than any satellite surface soil moisture products can be assimilate into LDAS-
Monde. At CNRM, Albergel et al., 2017 have assimilated the ESA CCI (European Space Agency,
Climate  Change  Initiative)  combined  surface  soil  moisture  product  (e.g.  Dorigo  et  al.,  2015),
Parrens et al., 2014 have assimilated SMOS surface soil moisture. Future work will assimilate the
most recent ESA CCI surface soil moisture dataset (v4.5) up to 2018. It includes the SMOS data. 

Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo,
W.,  Faroux,  S.,  Meurey,  C.,  Le  Moigne,  P.,  Decharme,  B.,  Mahfouf,  J.-F.,  and  Calvet,  J.-C.:
Sequential  assimilation  of  satellite-derived  vegetation  and  soil  moisture  products  using
SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev.,
10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, 2017.

Dorigo, W.A., A. Gruber, R.A.M. De Jeu, W. Wagner, T. Stacke, A. Loew, C. Albergel, L. Brocca,
D. Chung, R.M. Parinussa and R. Kidd: Evaluation of the ESA CCI soil moisture product using
ground-based  observations,  Remote  Sensing  of  Environment,
http://dx.doi.org/10.1016/j.rse.2014.07.023, 2015.
Parrens, M., Mahfouf, J.-F., Barbu, A. L., and Calvet, J.-C.: Assimilation of surface soil moisture
into a multilayer soil model: design and evaluation at local scale, Hydrol. Earth Syst. Sci., 18, 673–
689, https://doi.org/10.5194/hess-18-673-2014, 2014.

1.6 [Furthermore, as I understand ASCAT data are already assimilated in the production of
the ERA5 dataset.  Will  the LDAS-Monde assimilation not lead to a “double” counting or
usage of the ASCAT data and what are the potential consequences for your analyses results?]

Response to 1.6

Thank you for your comment. ASCAT soil moisture is indeed assimilated in the ERA5 LDAS.
However, previous studies showed that its impact is confined to the soil and that it is neutral on the



IFS atmospheric analysis and forecasts (de Rosnay et al 2014, Munoz-Sabater et al 2019). In our
study we use the ERA5 atmospheric analysis as forcing but we do not use any of the ERA5 soil
analysis variables as input of our system. So, we consider the ASCAT SM contribution to the ERA5
atmospheric forcing to be negligible.

Reference (already in the manuscript):
de  Rosnay,  P.;  Balsamo,  G.;  Albergel,  C.;  Muñoz-Sabater,  J.;  Isaksen,  L.  Initialisation  of  land
surface  variables  for  numerical  weather  prediction.  Surv.  Geophys.,  35,  607–621,  doi:
10.1007/s10712-012-9207-x, 2014.
Reference (not added to the revised version of the manuscript):
Muñoz Sabater, J. , Lawrence, H. , Albergel, C. , de Rosnay, P. , Isaksen, L. , Mecklenburg, S. ,‐Sabater, J. , Lawrence, H. , Albergel, C. , de Rosnay, P. , Isaksen, L. , Mecklenburg, S. ,
Kerr, Y. and Drusch, M. (2019), Assimilation of SMOS brightness temperatures in the ECMWF
Integrated  Forecasting  System.  Q  J  R  Meteorol  Soc.  Accepted  Author  Manuscript.
doi:10.1002/qj.3577 

1.7 [L268: Please could you specify the difference between linear rescaling and CDF-matching
(if  any)?  To  my  understanding  linear  rescaling  is  correction  of  the  mean  and  standard
deviation, while CDF-matching corrects the whole CDF (i.e., all moments of the probability
distribution function), hence linear rescaling is not the same as CDF-matching.]

Response to 1.7
We use in this paper a seasonal linear rescaling. Linear rescaling was introduced by Scipal et al.
(2008)  and  has  been  shown  giving  results  that  are  very  similar  to  an  exact  CDF  matching.
Nevertheless, to avoid any confusion, we have rewritten the sentence as follows (P.9-10, Lines 294-
301):  “This  is  done through  a  linear  rescaling  as  proposed by Scipal  et  al.  (2007),  where  the
observations mean and variance are matched to the modelled soil moisture mean and variance from
the second layer of soil (1-4 cm depth). This rescaling gives in practice very similar results to CDF
(cumulative distribution function) matching. The linear rescaling is performed on a seasonal basis
(with a 3-month moving window) as suggested by Draper et  al.,  (2011),  Barbu et  al.,  (2014).”
Further  mentions  of  CDF matching  in  the  manuscript  have  been  replaced  by  “seasonal  linear
rescaling”.

1.8  [L292-294:  Could  you  please  discuss  how  this  short  spinup  period  could  affect  your
results?]

Response to 1.8

Nine  months  can  be  perceived  as  a  short  period  to  spin  up  the  system.  Unfortunately,  HRES
atmospheric forcing is only available from April 2016 and the LDAS-HRES experiment ends in
December 2018. We have considered this 9 months period for the spin up in order to have the
longest possible time series for land surface variables, thus giving more strength to statistics. We
could have considered a longer period for spin up (April 2016 to December 2017) and studied only
2018. This gives very similar results on surface soil moisture and LAI (not shown). While not being
fully spun-up, results obtained with LDAS-HRES can be considered as representative of the system
response to data assimilation. Note that most initial values of the LDAS-HRES run are taken from
the ECOCLIMAP-II database. For instance, initial LAI is set from a 1999-2005 climatology derived
from MODIS. 

Another possibility to initialise LDAS-HRES could have been to downscale the state of LDAS-
ERA5 run in April 2016 to 0.10°x0.10° spatial resolution. LDAS-ERA5 runs have been set to an
equilibrium spinning up 20 times the first year (2010).



The following sentence:  “The period 2017-2018 is  presented,  HRES is  available  at  this  spatial
resolution from April 2016, only, and the time period from April to December 2016 is used as a
short spinup.” has been modified and is now (P.10, Lines 327-332): “HRES is available at a 0.1° x
0.1° resolution only from April 2016. April to December 2016 is used as a short period for spinup
and results are presented for the period 2017-2018. Although a 9-month spinup period can be seen
as rather short,  evaluating LDAS-HRES on either 2017-2018 or 2018 (using instead a 21-month
spinup) leads to similar results on surface soil moisture and LAI (not shown). While the system is
not  fully  spun-up,  it  can  be  considered  as  representative  of  the  system  response  to  data
assimilation.”

1.9 [L383: Could you please provide more details on how this can explain the differences seen 
between ISBA and GLEAM?]

Response to 1.9

GLEAM is an hydrological model and vegetation is mainly driven by observations. On the contrary,
ISBA also represents plant growth and leaf-scale physiological processes, models key vegetation
variables like LAI and above ground biomass (see section 2.1.1 on ISBA Land Surface Model).
Within GLEAM, each grid cell comprises four different land-cover types: (1) bare soil,  (2) low
vegetation (e.g. grass), (3) tall vegetation (e.g. trees), and (4) openwater (e.g. lakes). Except for the
fraction of open water, these fractions are sourced from the Global Vegetation Continuous Fields
product (MOD44B), based on observations from the Moderate Resolution Image Spectroradiometer
(MODIS). While in ISBA, each grid cell can be composed of up to 12 generic land surface types,
bare soil, rocks, and permanent snow and ice surfaces as well as nine plant functional types (needle
leaf trees, evergreen broadleaf trees, deciduous broadleef trees, C3 crops, C4 crops, C4 irrigated
crops, herbaceous, tropical herbaceous and wetlands). Those types depart from prevalent land cover
products such as CLC2000 (Corine Land Cover) and GLC2000 (Global Land Cover) by splitting
existing classes into new classes that possess a better regional character by virtue of the climatic
environment (latitude, proximity to the sea, topography).

Work is undergoing at CNRM to better understand the differences between terrestrial evaporation
from ISBA and GLEAM. In  particular,  the  different  components  of  terrestrial  evaporation,  i.e.
transpiration, bare soil evaporation and, interception loss are investigated.

Paragraph: “However GLEAM only estimates (root-zone) soil moisture and terrestrial evaporation,
while  ISBA in  LDAS_ERA5  is  a  physically-based  land  surface  model,  accounting  for  more
processes linked to vegetation.”
is now (P.14-15, Lines 458-471):
“However GLEAM is an evaporation model designed to be driven by remote sensing observations
only. GLEAM only estimates (root-zone) soil moisture and terrestrial evaporation while the CO2-
responsive version of ISBA in LDAS_ERA5 is a physically-based land surface model, accounting
for more processes linked to vegetation (see section 2.1.1). It has to be noted that the auxiliary
dataset used to e.g. represent the different land cover types are different also. Within GLEAM, the
land  cover  types  fractions  are  sourced  from the  Global  Vegetation  Continuous  Fields  product
(MOD44B),  based  on  observations  from  the  Moderate  Resolution  Image  Spectroradiometer
(MODIS).  Four  land  cover  types  are  considered,  bare  soil,  low  vegetation  (e.g.  grass),  tall
vegetation (e.g. trees), and openwater (e.g. lakes). In ISBA the 12 land cover types fraction depart
from prevalent land cover products such as CLC2000 (Corine Land Cover) and GLC2000 (Global
Land  Cover).  It  can  potentially  impact  the  distribution  of  the  terrestrial  evaporation  between
GLEAM and ISBA.” 



Further work at CNRM will focus on understanding the differences between ISBA and GLEAM, in
particular investigating the sub-components of terrestrial evaporation.”


