Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-532-RC2, 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

HESSD

Interactive comment

Interactive comment on "Evapotranspiration partition using the multiple energy balance version of the ISBA-A- g_s land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco)" by Ghizlane Aouade et al.

Pierre Gentine (Referee)

pg2328@columbia.edu

Received and published: 13 February 2020

This paper by Aouade et al demonstrates the potential of different complexity of the multi-source approaches to surface flux partitioning. The paper is quite clear and correctly organized. The strategy and methodology are sound. The conclusions are supported by the results. My comments are really minor, mostly related to some editing of the text. The authors did a good job in this submission, I believe. My detailed

Printer-friendly version

Discussion paper

comments are attached in a pdf.

Please also note the supplement to this comment: https://www.hydrol-earth-syst-sci-discuss.net/hess-2019-532/hess-2019-532-RC2supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-532, 2019.

HESSD

Interactive comment

Printer-friendly version

Discussion paper

HESSD

Interactive comment

https://doi.org/10.5194/hess-2019-532 Preprint. Discussion started: 15 October 2019 © Author(s) 2019. CC BY 4.0 License.

Evapotranspiration partition using the multiple energy balance version of the ISBA-A-g_s land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco)

Aouade Ghizlane¹, Jarlan Lionel²⁺, Ezzahar Jamal^{3,4}, Er-raki Salah^{5,4}, Napoly Adrien⁶, Benkaddour 5 Abdelfattah¹, Khabba Said^{7,4}, Boulet Gilles², Garrigues Sébastien⁸⁰, Chehbouni Abdelghan^{2,4}, Boone Aaron⁶

¹Laboratoire des Géo- ressources/LMI TREMA, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Maroc.

- 10 ³Centre d'Erudes Spatiales de la Biosphère (CESBIO)/IRD, Toulouse, France. ¹Equipe de Mahératiques et traitement de l'information (MTI), Ecole Nationale des Sciences Appliquées, Université Cadi Ayyad, Safi, Maroc. ¹CR8A, Center of Remote Sensing Application, Mohammed VI Polytechnic University UM6P, Benguerir, Morocco. ³LP2M2E, Paculée des Sciences et Techniques. Université Cadi Ayvad, Marakech.
- 15 6Centre National de Recherches Météorologiques (CNRM), Météo-France/CNRS, Toulouse, France.

⁷LMME, Département de physique, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Maroc ⁸EMMAH, INRA, Université d'Avignon et des Pays de Vaucluse, Avignon, France ⁹Centre for Ecology and Hydrology (CEH) Wallingford, UK

20 Correspondence to: Lionel Jarlan (lionel.jarlan@cesbio.cnes.fr)

Abstract. The main objective of this work is to question the representation of the energy budget in surface-vegetationatmosphere transfer (SVAT) models for the prediction of the convective fluxes in the case of irrigated crops with a complex structure (row) and under strong transient hydric regimes due to irrigation. To this objective, the Interaction Soil-Biosphere-Atmosphere (ISBA-A-gs) based on a composite energy budget (named hereafter ISBA-IP for 1 patch) is compared to the

- 25 new multiple energy balance (MEB) version of ISBA using two representations of the canopy energy budget: a coupled approach (ISBA-MEB) where the vegetation layer is located above the soil and a patch representation corresponding to two-adjacent uncoupled source schemes (ISBA-2P for 2 patches). The evaluation is performed over a winter wheat field, taken as an example of homogeneous canopy and on a more complex open olive orchard. Continuous observations of evaportanspiration (ET) with Eddy covariance system, soil evaporation (E) and plant transpiration (T) with Sapflow and
- 30 isotopic methods were used to evaluate the three representations. A preliminary sensitivity analyses showed a strong sensitivity to the parameters related to urbulence in the canopy introduced in the new ISBA-MEB version. The ability of the single and dual-source configuration to reproduce the composite soil-vegetation heat fluxes was very similar: the RMSE differences between ISBA-1P, -2P and -MEB did not exceed 10 Wim² for the latent heat flux. These results showed that a composite energy balance on homogeneous covers is sufficient to reproduce the total convective fluxes. By contrast,
- 35 differences were highlighted on the partition of ET. In particular, the ISBA-2P version showed an over-estimation of soil

Printer-friendly version

Discussion paper

Fig. 1.