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Abstract. Hydrologic models have been applied to predict land surface water and energy budgets in 

mountainous watersheds that are characterized by complex geological features and climatic variability. A 

common practice is to calibrate the models and achieve the best performing parameter set according to 

historical observations, and then the calibrated model was used to do future projections. One drawback is 

that the influence of parameter uncertainty on model projections is not well discussed. In this study, we 15 

applied multiple objective functions to choose a group of best performing parameter sets to the Boulder 

Creek Watershed, USA to investigate how parameter uncertainties can propagate to future projections. 

We used 16 parameter sets that have similar performance in simulating streamflow amount and regime 

historically, and applied the same parameter sets to predict hydrologic variables including streamflow, 

evapotranspiration, and soil moisture in two future phases (Phase 1 is 2040-2069 and Phase 2 is 2070-20 

2099). The results show that variability due to parameter uncertainty was up to 10 % annually and 26 % 

monthly under future climate change scenarios, and the uncertainties are especially prominent during May 

to September. The different parameter sets can result to annual streamflow changes in opposite directions. 

The results indicate that a single parameter set may yield biased representation of hydrologic variability. 

It is necessary to consider multiple optimal parameter sets in applying hydrologic models for hydrological 25 

projections and water resources decision making. 
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1. Introduction 

Streamflow variability in the mountains is influenced by factors such as the frequency, 

magnitude, and type of precipitation, land cover characteristics, snow accumulation and ablation, and the 

timing and rate of snowmelt (Harding et al., 2012; Barnhart et al., 2016; Musselman et al., 2017; Zhang et 

al., 2018). Future climate change is predicted to impact all of these factors with implications for regional 5 

water availability to municipal, industrial, mining, irrigation, hydropower generation (Wagener et al., 

2010; Bates et al., 2008; Barnett et al., 2005; Liu et al., 2016; Yin et al., 2017). Further, hydrological 

impacts due to warming are accentuated at high elevations because water yields are larger and the 

processes that dictate snow accumulation and melt are sensitive to changes in air temperature (Gao et al., 

2010; Bales et al., 2006). The Intergovernmental Panel on Climate Change (IPCC) has specifically stated 10 

that current water management systems cannot cope with the impacts of climate change, and that 

significant drought and flood damage is expected to occur (Bates et al., 2008). However, given accurate 

information, land managers can develop targeted watershed management plans to adapt to and potentially 

mitigate the effects of climate change on streamflow and ecosystem function (Watts et al., 2016; Poff et 

al., 1997). Robust characterization of streamflow conditions under future climate scenarios is essential for 15 

assessing the sustainability of the long-term supply of water to the natural and managed system 

downstream (Pradhanang et al., 2013).  

Hydrological models can improve our understanding of land surface water and energy budgets in 

mountainous areas by simulating the future hydrological cycle as a function of climate forcing data from 

Global Climate Models (GCMs) (Dessu and Melesse, 2013). Downscaled climate data from General 20 

Circulation Models (GCMs) are frequently used within a hydrologic model to predict how changes in 

climate affect the water balance using a variety of multi-scale approaches and analyses (Wilby et al., 

2009; Liu et al., 2017). Previous studies have shown that the magnitude of projected climate perturbation 

represents a major source of uncertainty associated with hydrologic variables obtained from hydrologic 

models (Schewe et al., 2014; Mendoza et al., 2015; Raje and Krishnan, 2012; Guo et al., 2018). In 25 

addition, different GCMs, emission scenarios, and the time period over which the climate perturbation 

was obtained, can all affect the magnitude and direction of hydrologic projections (Addor et al., 2014). 

Previous studies have specifically considered hydrological models in the context of a “cascade of 

uncertainty” to compare its contribution to total uncertainty with the other elements of the model chain, 

which provides valuable insights into the development of hydrological modeling in changing conditions 30 

(Addor et al., 2014). Further, hydrologic response of one particular type of catchments to climate change 

may be representative of similar types (Köplin et al., 2012). The uncertainties in hydrologic modeling 

from parameter sets are not well discussed. Mendoza et al. (2016) mentioned that parameter sets with 
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different locations in the parameter space can have different signals when projecting future streamflow 

conditions. The traditional measure of performance is a single objective function, which may not be 

sufficient to discriminate between competing models (Wagener, 2003). The use of multiple objective 

functions to calibrate model parameters can help to partition total runoff between direct runoff and 

baseflow (Liu et al., 2018), and to overcome the problem of lacking detail in conceptual models (Gupta et 5 

al., 2008). As a result, this work is focused on the influence of parameter uncertainty on modeled 

hydrological outputs in a snowmelt-dominated watershed, toward an improved understanding of how 

uncertainty affects model projections under future climate change scenarios.  

This work specifically applied the distributed, physically-based Variable Infiltration Capacity 

(VIC) hydrologic model to a regionally important (Boulder Creek) watershed. The specific objectives of 10 

the study were to: (1) quantify the uncertainty resultant from model parameters to projections of 

hydrologic flux and state variables, and to (2) assess the time-dependency of this uncertainty within the 

context of hydrological change within the Boulder Creek Watershed. As human activity is increasing and 

human-induced climate warming is occurring, appropriate management strategies must be based on 

reliable predictions of freshwater occurrence, circulation, distribution, and quality under a perturbed 15 

climate such as that provided by this work. 

2. Study area 

The Boulder Creek Watershed at Orodell is located in the southern Rocky Mountains, USA and 

has an area of 264 km2. The elevation ranges from 1779 m to 4117 m, with a mean elevation of 3139 m. 

The mean annual precipitation is 840 mm. Orodell is located downstream of the confluence of Middle and 20 

North Boulder Creek at an elevation of 1779 m, with coordinates of 40.006° N and 105.33° W (USGS 

stream gauge 6727000). In general, low-flow at the watershed occurs from October to March, while high-

flow occurs from May to July and peaks in June, depending on snowpack depth and air temperature 

(Murphy et al., 2003). Soil cover is generally thin and thus streamflow is relatively independent of soil 

moisture conditions (Rauscher et al., 2008). However, soil water is maintained through the sustained 25 

input of snowmelt water during the spring, which promotes significant runoff during wet periods (Hamlet 

and Lettenmaier, 2007). The geographical location of the watershed is shown in Figure 1. 
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3. Data and methods 

3.1 The Variable Infiltration Capacity (VIC) Model 

3.1.1 Model mechanism 

The VIC model is a physically-based, distributed, macro-scale hydrologic model that is capable 

of simulating the water balance from distributed grid cells through calculations of runoff, baseflow, 5 

evapotranspiration (ET), snow water equivalent, and other variables (Liang et al., 1994). It has been 

applied to assess the impact of climate change in many river basins in the western United States (Harding 

et al., 2012; Barnhart et al., 2016). The grid cells are modeled as flat surfaces and sub-grid heterogeneity 

is handled via statistical distributions. No horizontal routing of surface overland flow, subsurface flow, or 

channel flow is performed (Mendoza et al., 2015), although streamflow routing can be post-processed 10 

through a routing model (Lohmann et al., 1996). Surface runoff at each time step is defined as 

precipitation that exceeds the storage capacity of the soil at the previous time step. Baseflow is defined as 

a function of the soil moisture in the third soil layer (Arno formulation) from the surface, which is linear 

below a threshold and non-linear above that threshold (Gao et al., 2010). Total runoff is the sum of 

surface runoff and baseflow. 15 

3.1.2 Historical data input and streamflow 

The VIC model simulations were driven by inputs of daily gridded precipitation, maximum and 

minimum air temperature, and wind speed, and were calibrated against streamflow observations between 

water years (1 Oct – 30 Sep) 1981 to 1990. In total, eight parameters were calibrated at 1/8° spatial 

resolution (Table 1). The parameter ranges were selected following Demaria et al. (2007) for the 20 

contiguous United States and former modeling experiments at this watershed. It is assumed that these 

parameters are constant in time and representative of inherent properties of this watershed. The climate 

forcing data was obtained from Maurer et al. (2002) at 1/8° spatial resolution.  

Naturalized daily streamflow data from 1906 to 2011 were combined from the United States 

Geological Survey at station number 6727000 and the Colorado Division Support System at gage 25 

BOCOROCO. Both of the streamflow gauges are located at Orodell. Naturalized flow represents flow 

that would have occurred at the stream gauge had historical depletions and reservoir regulation not been 

present (Harding et al., 2012). Simulated streamflow from 1981 to 2010 was applied as the baseline level 

for subsequent analyses. Since both model parameters and climate forcing inputs could influence 

hydrologic simulations (Ren et al., 2016), a time series including wet and dry climatic conditions is 30 

necessary when calibrating models. 
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3.1.3 Land cover and soil parameters 

Land cover types were obtained from the United States Geological Survey National Gap Analysis 

Program and were reclassified into 11 classes according to the 1-km Global Land Cover Classification at 

the University of Maryland (Hansen et al., 2000). Leaf area index (LAI), in particular, has been shown to 

influence interception, evaporation, and runoff generation (Dietz et al., 2006; Chen et al., 2005). In our 5 

study, the annual LAI was held constant through time but was allowed to vary on a monthly basis. For 

each vegetation type, monthly LAIs were applied from the VIC vegetation library file. 

Soil parameters at 1/8° spatial resolution including saturated hydrologic conductivity, mineral 

type, fractional soil moisture at the critical point and at the wilting point, and soil bulk density were 

compiled from the STATSGO database produced by the United States Department of Agriculture (Soil 10 

Survey Staff, 2015). In STATSGO, Map Unit Delineation consists of one or more closed polygons that 

are generally geographic mixtures of groups of soils or soils and non-soil areas. Each map unit can have 

as many as 21 components. A component is a phase of a soil series (which is the lowest category of the 

national soil classification system) representing the most homogenous classes in the taxonomy system. 

Each component can have multiple soil layers and the size of each component is provided by areal 15 

percentage of the map unit (Huang, 2005). In this study, the dominant soil class in each grid cell was 

applied to calculate soil parameters for that grid cell. 

3.1.4 Model calibration and performance evaluation 

 Model parameters were calibrated by comparing observed streamflow with simulated streamflow 

from 1981 to 1990; the two years prior to 1981 was used for model spin-up (Shi et al., 2008). The period 20 

1991 to 2010 was used for model validation. We calibrated the model by comparing simulated and 

observed streamflow data using the Borg Multi-Objective Evolutionary Algorithm (MOEA), which is an 

iterative search algorithm for many-objective optimization problems (Hadka and Reed, 2013). Sampling 

with MOEA is performed via the random seed method, where the parameters are selected randomly from 

a parameter range by optimizing the user-specified multiple objective functions (Hadka and Reed, 2013; 25 

Hadka and Reed, 2015). In the calibration process, the number of total iterations was set to 10 000. Model 

performance was evaluated using the Nash-Sutcliffe efficiency (NSE), correlation coefficient (R2), root 

mean square error (RMSE), percent bias (PBIAS), and the ratio of standard deviations of simulations to 

observations (RSD) (Table 2).  

3.2 Global climate models and future scenarios 30 

The selection of a particular climate model simulation affects water yield predictions under 

climate change (Stone et al., 2003) and may give biased results. Hence, the use of multiple climate 
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models constrains the possible range of hydrologic change. The Coupled Model Intercomparison Project 

Phase 5 (CMIP5) dataset compares multiple global climate models under four future emission scenarios. 

The four emission scenarios, also called representative concentration pathways (RCPs), are based on 

concentration pathways that approximate various level of radiative forcing (W m-2) at the end of the 21st 

century (Meinshausen et al., 2011). Specifically, the greenhouse gas concentration trajectories RCP 2.6 5 

(Vuuren et al., 2011), 4.5 (Thomson et al, 2011), 6 and 8.5 (Riahi et al, 2011) are based on radiative 

forcing values of 2.6, 4.5, 6 and 8.5 W m-2, respectively, in the year 2100. In particular, the RCP 8.5 

scenario assumes high population growth and high-energy demand without implementation of policy to 

address climate change. In this study, eighteen CMIP5 GCMs were applied in RCP 8.5 (Table 3) for the 

purpose of simulating hydrologic responses to future climate projections using the VIC model. 10 

Hydrologic predictions (including streamflow, evapotranspiration as ET, and soil moisture) under future 

climate change were compared with baseline simulations in historical period. The ensemble mean of the 

eighteen climate models was also applied as an additional climate dataset to represent the average 

condition from the individual models. The climate datasets were statistically downscaled using the Bias 

Corrected Spatial Downscaling (BCSD) method and were obtained from the United States Bureau of 15 

Reclamation (Reclamation, 2013). 

3.3 The delta-change method 

The delta-change method computes the difference between the current and future simulations of 

air temperature and precipitation and adds these changes to the observed time series (Wood et al., 1997; 

Hay et al., 2000; Fowler et al., 2007). This approach assumes that GCMs more accurately simulate 20 

relative change than absolute values (i.e., there is a constant bias through time). The delta-change method 

uses the initial input forcing datasets and the GCMs change signal, which equals the observations under 

current conditions and outperforms the other bias correction methods (Teutschbein and Seibert, 2012). 

Hay et al. (2000) compared several downscaling methods and determined that the delta-change method 

provided more conservative estimates of changes in future runoff. The current study applied the delta-25 

change method to existing downscaled GCM data to obtain a new dataset for each GCM model. Since the 

variability in internal parameterizations from GCMs results in significant uncertainty, the use of model 

ensembles can provide a realistic assessment of climate change (Fowler et al., 2007). Two future time 

periods in RCP 8.5 were considered: Phase 1 (2040-2069) and Phase 2 (2070-2099), which are 

representative of the middle and the end of the 21st century, respectively. 30 

 The following workflow describes the steps that were performed to generate the precipitation and 

air temperature datasets that were acted as input forcing data for VIC: (1) Climate data from eighteen 

GCMs using the BCSD downscaling method were obtained from the United States Bureau of 
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Reclamation (Reclamation, 2013); (2) For each month in the historical time period 1981-2010, monthly 

average values for precipitation and maximum and minimum air temperature from each CMIP5 climate 

model were calculated and averaged over the study area; (3) Monthly average values of precipitation, 

maximum and minimum air temperature of the initial climate data (Maurer et al., 2002) were calculated 

during the historical time period (1981-2010); (4) The delta change was calculated as the difference in air 5 

temperature (℃) or the ratio of precipitation (%) between the initial climate data and each of the eighteen 

CMIP5 climate models; (5) The delta values from each model were applied to the initial daily forcing 

data. Calculations of the new future climate data are shown in Equations (1) (minimum and maximum air 

temperature) and (2) (precipitation): 

T#$%,'() = T#$%_,-.,'(	) + DeltaT)   (1) 10 

P#$%,'() = P#$%_,-.,'() 	× 	RatioP)   (2) 

where Tfut,d-m and Pfut,d-m represent the projected temperature (℃) and precipitation (mm) for day d in 

month m (m = 1, …, 12), Tfut_GCM,d-m and Pfut_GCM,d-m represent the CMIP5 temperature (℃) and 

precipitation (mm) for day d in month m in the future, DeltaTm represents the air temperature delta change 

(℃) for month m, and RatioPm represents the precipitation ratio (%) of the initial data to CMIP5 15 

precipitation for month m. In this way, we generated eighteen new future climate datasets corresponding 

to the BCSD downscaled climate data. 

3.4 Percent change and uncertainty analysis 

 Percent changes in future precipitation, streamflow, and soil moisture were calculated as 

Delta X (%) = (<=>?>@A(<BCD?E@CFGH)
<BCD?E@CFGH

× 100%   (3) 20 

where X#$%$NO represents precipitation, streamflow, or soil moisture for a future time period and XPQR%SNQTUV 

represents precipitation, streamflow, or soil moisture in the historical time period. For each of these 

variables, the median value was calculated for each parameter set and for all climate data. The range of 

the median values from all parameter sets was then divided by the total range of the projected variable 

using all parameter sets and climate data (Table 4). 25 

4. Results 

4.1 Model calibration results  

The VIC model was calibrated against the observed streamflow at the Orodell stream gauge. The 

16 best performing parameter sets were chosen randomly using the Borg MOEA framework. Figure 2 

shows the parameter sets with daily NSEs. All parameters except soil depth 1 were sensitive to 30 

streamflow simulations as evidenced by decreasing scatter with increasing NSE. Figure 3 shows the 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 8 

relationship between NSE during the calibration period and other calibration metrics. The RMSE was 

inversely correlated with NSE, indicating autocorrelation and thus redundancy of the RMSE metric 

whereby the minimization of RMSE is equivalent to the maximization of NSE (Mendoza et al., 2016). 

The R2 values were directly proportional to NSE, whereas the PBIAS and RSD values demonstrated a 

non-linear relationship to NSE. The optimal parameters of the RSDs and NSEs form a Pareto Front where 5 

the best performing parameters along this front have no preference over one another (Hadka and Reed, 

2013). As expected, the NSEs during the validation time period were lower than during the calibration 

time period, but the NSEs during the validation and calibration time periods were correlated, suggesting 

that the performance of a given parameter set may be transferrable across time periods. Among the 

optimal parameter sets, the NSE values varied from 0.745 to 0.779. The ratio of standard deviations 10 

(RSD) ranged from 0.689 to 0.994, percent bias (PBIAS) ranged from 0.0008 to 6.594, R2 ranged from 

0.76 to 0.79, and RMSE ranged from 0.43 to 0.46. 

The selected parameters were subsequently used to simulate streamflow (Figure 4). During the 

validation period (1991 to 2010), daily NSEs ranged from 0.549 to 0.687 and averaged 0.617. Although 

there were discrepancies between flow volumes at peak flow, the timing of observed streamflow was well 15 

predicted by the model (Figure 4a). Figure 4b presents the daily simulated and observed streamflow on a 

log scale to emphasize the low flow period when different parameter sets produced a large uncertainty 

range. 

4.2 Precipitation and air temperature changes under perturbed climate 

 The delta change method was applied to each GCM model using BCSD downscaled data. Daily 20 

precipitation and maximum and minimum air temperature between 2040-2069 (Phase 1) and 2070-2099 

(Phase 2) were compared with the historical period 1981-2010 (Figure 5). Different climate models show 

various trends and magnitudes in changes in average annual precipitation, but similar trends in maximum 

and minimum temperatures. The majority of models predicted higher precipitation in Phase 2 relative to 

Phase 1. Changes in annual precipitation varied from -5.4 % to +29.2 % and averaged +8.7 % in Phase 1 25 

compared to the historical period. In phase 2, changes in average annual precipitation varied from -2.7 % 

to +31.0 % and averaged +12.7 % in Phase 2 compared to the historical period. In contrast, all models 

showed increasing trends in maximum and minimum air temperatures. Changes in daily maximum 

temperature varied from +1.7 ºC to +3.9 ºC with an average of +2.9 ºC in Phase 1, and from +3.1 ºC to 

+6.8 ºC with an average of +5.0 ºC in Phase 2. Changes in daily minimum temperature varied from +1.7 30 

ºC to +3.9 ºC with an average of +2.9 ºC in Phase 1, and from +3.3 ºC to +6.3 ºC with an average of +4.8 

ºC in Phase 2.  
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4.3 The water balance 

Changes in average annual streamflow, ET, and soil moisture in Phases 1 and 2 with respect to 

the historical period were calculated. Figure 6 presents the median values of percent changes in average 

annual streamflow, ET, and soil moisture using each parameter set and all climate data input. The dashed 

lines represent the median values using all parameter sets and climate data. Generally, annual streamflow 5 

will increase by 0.1 % but decrease by 0.9 % in Phases 1 and 2, respectively (Figure 6a). The different 

parameter sets show that streamflow will change by -1.1 % to 1.9 % in Phase 1 and change by -4.6 % to 

3.2 % in Phase 2. Annual ET will increase by 9.6 % and 18.2 % in Phases 1 and 2 (Figure 6b). The 

different parameter sets show that ET will increase by 9 % to 9.7 % in Phase 1 and increase by 17 % to 

18.9 % in Phase 2. Soil moisture will decrease by 2.9 % and 5.1 % in Phases 1 and 2, respectively (Figure 10 

6c). The different parameter sets show that soil moisture will decrease by 2.3 % to 3.7 % in Phase 1 and 

decrease by 2.5 % to 5.5 % in Phase 2.  

The percent ranges of median changes using each parameter set were 3.8 % and 10.2 % for 

annual streamflow, 3.3 % and 6.2 % for ET, and 5 % and 10.8 % for soil moisture with respect to the total 

ranges using all parameter sets and climate data for Phases 1 and 2 respectively (Table 4). 15 

4.4 Monthly changes in flux and state variables 

The average monthly values of streamflow, ET, and soil moisture during the historical and future 

periods are presented in Figure 7. Using the ensemble mean climate data, uncertainty in streamflow and 

ET predictions was higher between May and August than in the other months, whereas the soil moisture 

uncertainty was relatively consistent throughout the year. 20 

Boxplots of percent changes in monthly values and boxplots using median values of percent 

changes from historical to Phases 1 and 2 were shown in Figure 8. In general, streamflow showed an 

increasing trend between February and June, and a decreasing trend from July to November in Phase 1. In 

Phase 2, streamflow showed an increasing trend between February and May, and a decreasing trend from 

June to December. The magnitudes of increases were the highest in May in Phase 1 and in April in Phase 25 

2, respectively (Figure 8a). ET showed an increasing trend in all months, while the increasing magnitudes 

were lower in June to September than in the other months (Figure 8b). Soil moisture showed an 

increasing trend in February to May, and a decreasing trend in other months in the two phases (Figure 8c). 

The magnitude and variability of changes were generally higher in Phase 2 than in Phase 1 for 

streamflow, ET, and soil moisture. 30 

 Monthly changes in the streamflow uncertainty were higher in February to April, June, and 

August than in the other months in Phase 1, while the uncertainties were higher in March to June than in 

the other months in Phase 2 (Figure 8d and 8g). The uncertainty associated with monthly changes in ET 
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was higher in the period July to September than in the other months (Figure 8e and 8h). Monthly changes 

in soil moisture uncertainty were higher in January to May than in the other months in Phases 1 and 2, 

while the uncertainties also increased in July to September in Phase 2 (Figure 8f and 8i). 

5. Discussion 

 This study applied the VIC model to the Boulder Creek Watershed to analyze the impacts of 5 

predicted climate change on hydrologic flux and state variables. The selected model parameters were 

calibrated by comparing simulated streamflow against observed streamflow using the multiple objective 

optimization mechanisms. Climate input forcing data in the future applied BCSD downscaled data from 

eighteen GCM models. The results from all climate model inputs and parameter sets show that in general, 

annual streamflow will increase by 0.1 % but will decrease by 0.9 %, annual ET will increase by 9.6 % 10 

and 18.2 %, and soil moisture will decrease by 2.9 % and 5.1 % in Phases 1 and 2, respectively. Different 

parameter sets resulted in up to 10 % in annual and 26 % in monthly projection uncertainties. 

5.1 Multiple objective functions and climate data processing 

All of the chosen parameter sets had NSE values of greater than 0.7, which is considered good 

model performance (Moriasi et al., 2007). The choice of objective functions may be necessary to consider 15 

non-autocorrelation. For example, RMSE and NSE are closely correlated, and therefore may be 

redundant. The choice of many parameters provides general information about parameter sensitivity, 

which constrains uncertainty in streamflow and facilitates the transfer of model parameters from data-rich 

to data-sparse areas (e.g. Huang 2005). In this case, the calibrated parameters all converged to a small 

range at the best model performance except soil depth 1. The parameter b and soil depth 1 may be 20 

important for high-flows, while the other calibrated parameters may be important for low-flows or 

baseflow. Over the long-term, the simulated monthly trends in streamflow represented observed values 

during the historical period (Figure 7). 

Although the delta change method removed large variations in climate data from the GCMs, it 

also assumes that the magnitude of changes in precipitation and temperature remain stationary. Hewitson 25 

and Crane (2006) asserted that the degree of non-stationarity in projected climate change is relatively 

small, and that circulation dynamics in particular may be more robust to non-stationarities. Gutmann et al. 

(2014) used climate data to compare several statistical downscaling methods and found that precipitation 

from the BCSD method is biased low for individual months, but unbiased on an annual scale. In this 

study, BCSD downscaling was used to show that average annual precipitation and maximum and 30 
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minimum air temperature will increase in both Phases 1 and 2, but that the increase in magnitude will be 

higher in Phase 2 than in Phase 1 (Figure 5). 

5.2 Uncertainty in projected annual hydrologic fluxes 

Although average annual precipitation is projected to increase by 8.7 % and 12.7 % in Phases 1 

and 2, respectively, average annual streamflow shows no significant change in either Phase 1 (0.1 %) or 5 

Phase 2 (-0.9 %) compared to the historical period. The results showed that average annual ET increases 

by 9.6 % (Phase 1) and 18.2 % (Phase 2), while soil moisture decreases by 2.9 % (Phase 1) and 5.1 % 

(Phase 2). This indicates that the impact of increased air temperature on water resources availability may 

supersede that of precipitation changes in the future, as increasing temperature translated to increased ET. 

For each parameter set, simulation uncertainties were higher in Phase 2 than in Phase 1 (Figure 6). The 10 

different directions and magnitudes of changes in streamflow and soil moisture using various parameter 

sets indicate that using only one parameter set may give a biased result. Though different parameter sets 

resulted in a more consistent average annual ET trend, i.e., an increase in Phases 1 and 2, changes in 

average annual streamflow were uncertain (Figure 6). Overall, these results show that using median 

values from the best performing parameter sets can result in up to a 10 % uncertainty range in the 15 

corresponding model simulations (Table 4). Though annual streamflow demonstrated no significant 

change in Phase 1, the different parameter sets produced between a 1.9 % increase and a 1.1 % decrease. 

In Phase 2, annual streamflow is projected to decrease by 4 % where the different parameter sets ranged 

from a 3.2 % increase to a 4.5 % decrease. Consequently, the uncertainties resulted from parameter sets 

can have significant role in water supply and prediction. 20 

5.3 Monthly projections 

In snowmelt dominated watersheds, reservoirs are replenished in spring and water is released for 

agricultural, industrial, and urban water use during the summer (Ficklin et al., 2013). Using different 

parameter sets, the monthly streamflow and ET projections generally diverged during the summer, 

whereas soil moisture showed a relatively consistent but large range in all months. Parameter uncertainty 25 

causes a large variation for streamflow in June historically, and an equally large variation in June in the 

future periods considered by this work. Parameter uncertainty causes a small streamflow uncertainty in 

April historically, and an equally small variation in future periods. The uncertainties in monthly changes 

increase in March to May than the uncertainties in the other months.  

The ET values were higher in Phase 2 than in Phase 1 or the historical period due to increased air 30 

temperature, which could also decrease the snow to rain ratio during the spring and therefore contribute to 

the higher spring streamflow. In summer, the combination of increased air temperature and decreased 
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precipitation amount could result in higher ET but lower streamflow in Phase 2 relative to Phase 1. 

Changes in soil moisture increased between March to May and decreased thereafter.  

Ficklin et al. (2013) used three different modeling approaches to project streamflow under the A2 

emission scenario in the UCRB and suggested that spring and summer streamflow is likely to decline by 

the end of the 21st century. The current results in the Boulder Creek Watershed show that on average, 5 

streamflow will increase from March to May but then decrease from June to August (Figure 8a). Further, 

the median monthly changes using different parameter sets result in a range of projected variables that 

allows for characterization of the uncertainty associated with predictions of both hydrologic flux and state 

variables. In particular, the uncertainty for changes in streamflow and soil moisture was higher in spring 

than in the other months, whereas the uncertainty for changes in ET was higher during the summer 10 

compared to the other months (Figure 8). In the context of Köplin et al. (2012) that used a cluster analysis 

to reduce 186 catchments to 7 response types in Switzerland, this study from a snowmelt dominated 

watershed may provide additional insights into other similar snowmelt dominated basins where 

hydrologic predictions may be unconstrained without uncertainty ranges resultant from the use of 

multiple parameter sets. These results demonstrate the need to apply multiple optimal parameter sets in 15 

order to make meaningful projections of water resource availability into the future. 

6. Conclusion 

 Models are useful tools with which to evaluate the potential impacts of climate change on 

hydrologic variables. Though climate data inputs are critical to deciding model results, parameter 

uncertainty can also result in projection uncertainties. This study applied multi-objective optimization 20 

functions to calibrate the VIC model in the Boulder Creek Watershed at 1/8° spatial resolution. The 

optimal parameter sets were subsequently applied to simulate various water balance components in two 

future time periods. Using the ensemble mean climate data, average annual precipitation is predicted to 

increase by 8.7 % and 12.7 % from 2040-2069 (Phase 1) and from 2070-2099 (Phase 2) compared to the 

historical period, respectively. The median values from all models show that annual streamflow has no 25 

significant change, ET is projected to increase by 9.6 % and 18.2 %, while soil moisture is projected to 

decrease by 2.9 % and 5.1 % in Phases 1 and 2, respectively. The corresponding uncertainty analysis 

using different parameter sets further provides a range of expected flux and state characteristics during 

both Phase 1 and Phase 2. Parameter uncertainty has an important role in deciding changes in future 

hydrologic variables annually (up to 10.8 %) and seasonally (up to 26 %), and especially for streamflow 30 

and soil moisture. These results constrain the uncertainty resultant from model parameter sets with 

implications for water resources allocation and supply.  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 13 

Data availability. The climate forcing data in historical period are freely available from Maurer et al. 

(2002) (http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html) at 1/8° spatial 

resolution. The BCSD climate data are available from United States Bureau of Reclamation (http://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/#Projections:%20Complete%20Archives; Reclamation, 

2013). 5 

Author contributions. QZ, QT and BL designed the study. QZ performed the analysis and wrote the 

manuscript. JK, QT, and BL commented on the manuscript. 

Competing interests. The authors declare that they have no conflict of interest. 

Acknowledgements. This research is partly supported by the National Natural Science Foundation of 

China (41730645, 41790424 and 41425002), the Strategic Priority Research Program of Chinese 10 

Academy of Sciences (XDA20060402) and International Partnership Program of Chinese Academy of 

Sciences (131A11KYSB20170113). We acknowledge computing time on the University of Colorado 

CSDMS High-Performance Computing Cluster. We also acknowledge the World Climate Research 

Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the 

climate modeling groups (listed in Table 3 of this paper) for producing and making available their model 15 

outputs. The United States Department of Energy’s Program for Climate Model Diagnosis and 

Intercomparison provided coordinating support for CMIP and led development of software infrastructure 

in partnership with the Global Organization for Earth System Science Portals. The authors also thank 

Pablo Mendoza for his former suggestions. 

References 20 

Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and 

sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. 

Res., 50, 7541-7562, https://doi.org/10.1002/2014WR015549, 2014. 

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain 

hydrology of the western United States, Water Resour. Res., 42, W08432, 25 

https://doi.org/10.1029/2005WR004387, 2006. 

Barnett, T. P., Adam, J. C., Lettenmaier, D. P.: Potential impacts of a warming climate on water 

availability in snow-dominated regions, Nature, 438, 303-309, 

https://doi.org/10.1038/nature04141, 2005. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 14 

Barnhart, T. B., Molotch, N. P., Livneh, B., Harpold, A. A., Knowles, J. F., and Schneider, D.: Snowmelt 

rate dictates streamflow, Geophys. Res. Lett., 43, 8006-8016, 

https://doi.org/10.1002/2016GL069690, 2016. 

Bates, B., Kundzewicz, Z. W., Wu, S., Palutikof, J., Eds.: Climate Change and Water, Technical Paper of 

the Intergovernmental Panel on Climate Change, IPCC Secretariat: Geneva, Switzerland, 210 pp, 5 

2008. 

Chen, J. M., Chen, X., Ju, W., and Geng, X.: Distributed hydrological model for mapping 

evapotranspiration using remote sensing inputs, J. Hydrol., 305, 15-39, 

https://doi.org/10.1016/j.jhydrol.2004.08.029, 2005. 

Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity analysis of land surface parameters 10 

using the Variable Infiltration Capacity model, J. Geophys. Res., 112, D11113, 

https://doi.org/10.1029/2006JD007534, 2007. 

Dessu, S. B. and Melesse, A. M.: Impact and uncertainties of climate change on the hydrology of the 

Mara River basin, Kenya/Tanzania., Hydrol. Process., 27, 2973-2986, 

https://doi.org/10.1002/hyp.9434, 2013. 15 

Dietz, J., Hölscher, D., Leuschner, C., and Hendrayanto: Rainfall partitioning in relation to forest 

structure in differently managed montane forest stands in Central Sulawesi, Indonesia, For. Ecol. 

Manage., 237, 170-178, https://doi.org/10.1016/j.foreco.2006.09.044, 2006. 

Ficklin, D. L., Stewart, I. T., Maurer, E. P.: Climate Change Impacts on Streamflow and Subbasin-Scale 

Hydrology in the Upper Colorado River Basin, PLoS ONE, 8, e71297, 20 

https://doi.org/10.1371/journal.pone.0071297, 2013. 

Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: 

recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 

1547-1578, https://doi.org/10.1002/joc.1556, 2007. 

Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., Su, F., Sheffield, J., Pan, M., Lettenmaier, D., and Wood, 25 

E. F.: Water Budget Record from Variable Infiltration Capacity (VIC) Model. In Algorithm 

Theoretical Basis Document for Terrestrial Water Cycle Data Records, 120-173, 

https://doi.org/10.1139/L05-056, 2010. 

Guo, D., Johnson, F., and Marshall, L.: Assessing the potential robustness of conceptual rainfall-runoff 

models under a changing climate, Water Resour. Res., 54, 30 

https://doi.org/10.1029/2018WR022636, 2018. 

Gupta, H. V., Wagener, T., Liu, Y.: Reconciling theory with observations: elements of a diagnostic 

approach to model evaluation, Hydrol. Process., 22, 3802-3813, https://doi.org/10.1002/hyp.6989, 

2008. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 15 

Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., and Rasmussen, R. M.: An 

intercomparison of statistical downscaling methods used for water resource assessments in the 

United States, Water Resour. Res., 50, 7167-7186, https://doi.org/10.1002/2014WR015559, 

2014. 

Hadka, D. and Reed, P.: Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework, 5 

Evolutionary Computation, 21, 231-259, https://doi.org/10.1162/EVCO_a_00075, 2013. 

Hadka, D. and Reed, P.: Large-scale parallelization of the Borg multiobjective evolutionary algorithm to 

enhance the management of complex environmental systems, Environmental Modelling & 

Software, 69, 353-369, https://doi.org/10.1016/j.envsoft.2014.10.014, 2015. 

Hamlet, A. F. and Lettenmaier, D. P.: Effects of 20th century warming and climate variability on flood 10 

risk in the western U.S., Water Resour. Res., 43, W06427, 

https://doi.org/10.1029/2006WR005099, 2007. 

Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.: Global land cover classification at 

1 km spatial resolution using a classification tree approach, Int. J. Remote Sensing, 21, 1331-

1364, https://doi.org/10.1080/014311600210209, 2000. 15 

Harding, B. L., Wood, A. W., and Prairie, J. R.: The implications of climate change scenario selection for 

future streamflow projection in the Upper Colorado River Basin, Hydrol. Earth Syst. Sci., 16, 

3989-4007, https://doi.org/10.5194/hess-16-3989-2012, 2012. 

Hay, L. E., Wilby, R. L., and Leavesley, G. H.: A Comparison of Delta Change and Downscaled GCM 

Scenarios for Three Mountainous Basins in the United States, J. Am. Water Resour. Assoc., 36, 20 

387-397, https://doi.org/10.1111/j.1752-1688.2000.tb04276.x, 2000. 

Hewitson, B. C. and Crane, R. G.: Consensus between GCM climate change projections with empirical 

downscaling: precipitation downscaling over South Africa, Int. J. Climatol., 26, 1315-1337, 

https://doi.org/10.1002/joc.1314, 2006. 

Huang, M.: Surface and groundwater interactions and their impacts on water and energy budgets at the 25 

land surface, PhD Dissertation, University of California Berkeley, 2005. 

Köplin, N., Schädler, B., Viviroli, D., and Weingartner, R.: Relating climate change signals and 

physiographic catchment properties to clustered hydrological response types, Hydrol. Earth Syst. 

Sci., 16, 2267-2283, https://doi.org/10.5194/hess-16-2267-2012, 2012. 

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of 30 

land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415-

14428, https://doi.org/10.1029/94JD00483, 1994. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 16 

Liu, Y., Hejazi, M., Li, H., Zhang, X., and Leng, G.: A hydrological emulator for global applications – 

HE v1.0.0, Geosci. Model Dev., 11, 1077-1092, https://doi.org/10.5194/gmd-11-1077-2018, 

2018. 

Liu, X., Tang, Q., Voisin, N., and Cui, H.: Projected impacts of climate change on hydropower potential 

in China, Hydrol. Earth Syst. Sci., 20, 3343-3359, https://doi.org/10.5194/hess-20-3343-2016, 5 

2016. 

Liu, X., Tang, Q., Cui, H., Mu, M., Gerten, D., Gosling, S., Masaki, Y., Satoh, Y., and Wada, 

Y.: Multimodel uncertainty changes in simulated river flows induced by human impact 

parameterizations, Environ. Res. Lett., 12, 025009, https://doi.org/10.1088/1748-

9326/aa5a3a, 2017. 10 

Lohmann, D., Nolte-Holube, R., and Raschke, E.: A large-scale horizontal routing model to be coupled to 

land surface parametrization schemes, Tellus A: Dynamic Meteorology and Oceanography, 48, 

708-721, https://doi.org/10.3402/tellusa.v48i5.12200, 1996. 

Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P.: A long-term hydrologically based dataset of 

land surface fluxes and states for the conterminous United States, J. Climate, 15, 3237-3251, 15 

https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2, 2002. 

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, 

K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., Vuuren, D. P. P.: 

The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic 

Change, 109, 213-241, https://doi.org/10.1007/s10584-011-0156-z, 2011. 20 

Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M., Gutmann, E. D., and 

Rasmussen, R. M.: Effects of Hydrologic Model Choice and Calibration on the Portrayal of 

Climate Change Impacts, J. Hydrometeor., 16, 762-780, https://doi.org/10.1175/JHM-D-14-

0104.1, 2015. 

Mendoza, P. A., Clark, M. P., Mizukami, N., Gutmann, E. D., Arnold, J. R., Brekke, L. D., and 25 

Rajagopalan, B.: How do hydrologic modeling decisions affect the portrayal of climate change 

impacts? Hydrol. Process., 30, 1071-1095, https://doi.org/10.1002/hyp.10684, 2016. 

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L: Model 

evaluation guidelines for systematic quantification of accuracy in watershed simulations, 

ASABE, 50, 885-900, https://doi.org/10.13031/2013.23153, 2007. 30 

Murphy, S. F., Barber, L. B., Verplanck, P. L., and Kinner, D. A.: Environmental setting and hydrology 

of the Boulder Creek Watershed, Colorado. In Murphy, S. F. et al. (ed.) Comprehensive water 

quality of the Boulder Creek Watershed, Colorado, during high-flow and low-flow conditions. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 17 

2000. Water Resources Investigation Report 03-4045. Denver, CO: U.S. Geological Survey, 

2003. 

Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.: Slower snowmelt in a warmer 

world, Nature Climate Change, 7, 214-219, https://doi.org/10.1038/nclimate3225, 2017. 

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and 5 

Stromberg, J. C.: The Natural Flow Regime-A paradigm for river conservation and restoration, 

BioScience, 47, 769-784, https://doi.org/10.2307/1313099, 1997. 

Pradhanang, S. M., Mukundan, R., Schneiderman, E. M, Zion, M. S., Anandhi, A., Pierson, D. C., Frei, 

A., Easton, Z. M., Fuka, D., Steenhuis, T. S.: Streamflow responses to climate change: analysis of 

hydrologic indicators in a New York City water supply watershed, J. Am. Water Resour. Assoc., 10 

49, 1308-1326, https://doi.org/10.1111/jawr.12086, 2013. 

Raje, D. and Krishnan, R.: Bayesian parameter uncertainty modeling in a macroscale hydrologic model 

and its impact on Indian river basin hydrology under climate change, Water Resour. Res., 48, 

W08522, https://doi.org/10.1029/2011WR011123, 2012. 

Rauscher, S. A., Pal, J. S., Diffenbaugh, N. S., and Benedetti, M. M.: Future changes in snowmelt-driven 15 

runoff timing over the western US, Geophys. Res. Lett., 35, L16703, 

https://doi.org/10.1029/2008GL034424, 2008. 

Reclamation: Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 

Climate Projections, Comparison with Preceding Information, and Summary of User Needs. U.S. 

Department of the Interior, Bureau of Reclamation, 104pp. available at: http://gdo-20 

dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf, 2013. 

Ren, H., Hou, Z., Huang, M., Bao, J., Sun, Y., Tesfa, T. K., and Leung, L. R.: Classification of 

hydrological parameter sensitivity and evaluation of parameter transferability across 431 US 

MOPEX basins, J. Hydrol., 536, 92-108, https://doi.org/10.1016/j.jhydrol.2016.02.042, 2016. 

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and 25 

Rafaj, P.: RCP8.5-A scenario of comparatively high greenhouse gas emissions, Climatic Change, 

109, 33-57, https://doi.org/10.1007/s10584-011-0149-y, 2011. 

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W ., Clark, D. B., Rutger, D., Eisner, S., 

Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. 

T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K., Piontek, F., 30 

Warszawski, L., and Kabat, P.: Multimodel assessment of water scarcity under climate change, 

PNAS, 111, 3245-3250, https://doi.org/10.1073/pnas.1222460110, 2014. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 18 

Shi, X., Wood, A. W., and Lettenmaier, D. P.: How essential is hydrologic model calibration to seasonal 

streamflow forecasting? J. Hydrometeor., 9, 1350-1363, https://doi.org/10.1175/2008JHM1001.1, 

2008. 

Soil Survey Staff: Natural Resources Conservation Service, United States Department of Agriculture. 

Web Soil Survey, Available online at http://websoilsurvey.nrcs.usda.gov/, 2015. 5 

Stone, M. C., Hotchkiss, R. H., and Mearns, L. O.: Water yield responses to high and low spatial 

resolution climate change scenarios in the Missouri River Basin, Geophys. Res. Lett., 30, 1186, 

https://doi.org/10.1029/2002GL016122, 2003. 

Teutschbein, C., and Seibert, J.: Bias correction of regional climate model simulations for hydrological 

climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456-457, 10 

12-29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012. 

Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-

Lamberty, B., Wise, M. A., Clarke, L. E., and Edmonds, J. A.: RCP4.5: a pathway for 

stabilization of radiative forcing by 2100, Climatic Change, 109, 77-94, 

https://doi.org/10.1007/s10584-011-0151-4, 2011. 15 

Vuuren, D. P. V., Stehfest, E., Elzen, M. G. J. D., Kram, T., Vliet, J. V., Deetman, S., Isaac, M., 

Goldewijk, K. K., Hof, A., Beltran, A. M., Oostenrijk, R., and Ruijven, B. V.: RCP2.6: exploring 

the possibility to keep global mean temperature increase below 2 ℃, Climatic Change, 109, 95-

116, https://doi.org/10.1007/s10584-011-0152-3, 2011. 

Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., Kumar, P., 20 

Suresh, P., Rao, C., Basu, N. B., and Wilson, J. S.: The future of hydrology: An evolving science 

for a changing world, Water Resour. Res., 46, W05301, https://doi.org/10.1029/2009WR008906, 

2010. 

Wagener, T.: Evaluation of catchment models, Hydrol. Process., 17, 3375-3378, 

https://doi.org/10.1002/hyp.5158, 2003. 25 

Watts, A., Grant, G., Safeeq, M.: Flows of the future-How will climate change affect streamflows in the 

Pacific Northwest? Science Findings, 187. Portland, OR: U.S. Department of Agriculture, Forest 

Service, Pacific Northwest Research Station, 5 p, 2016. 

Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., Sutton, R. T.: A review of 

climate risk information for adaptation and development planning, Int. J. Climatol., 29, 1193-30 

1215, https://doi.org/10.1002/joc.1839, 2009. 

Wood, A. W., Lettenmaier, D. P., and Palmer, R. N.: Assessing climate change implications for water 

resources planning, Climatic Change, 37, 203-228, https://doi.org/10.1023/A:1005380706253, 

1997. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 19 

Yin, Y., Tang, Q., Liu, X., and Zhang, X.: Water scarcity under various socio-economic pathways and its 

potential effects on food production in the Yellow River Basin, Hydrol. Earth Syst. Sci., 21, 791-

804, https://doi.org/10.5194/hess-21-791-2017, 2017. 

Zhang, Q., Knowles, J. F., Barnes, R. T., Cowie, R. M., Rock, N., Williams, M. W.: Surface and 

subsurface water contributions to streamflow from a mesoscale watershed in complex mountain 5 

terrain, Hydrol. Process., 32, 954-967, https://doi.org/10.1002/hyp.11469, 2018.

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-52
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 18 February 2019
c© Author(s) 2019. CC BY 4.0 License.



  

 20 

Table captions 7 

Table 1. Summary of VIC parameters selected for calibration at Boulder Creek 8 

Parameter Description Units 
Calibration range 

Min Max 

b Variable infiltration curve parameter Fraction 0.001 0.8 

Ds Fraction of Dsmax where nonlinear baseflow begins Fraction 0.001 1 

Ds_max Maximum velocity of baseflow mm/day 1 20 

Ws Fraction of maximum soil moisture where nonlinear baseflow occurs Fraction 0.001 1 

c Exponent used in baseflow curve - 1 4 

Depth 1 Thickness of soil layer 1 m 0.01 0.5 

Depth 2 Thickness of soil layer 2 m 0.1 2 

Depth 3 Thickness of soil layer 3 m 0.1 2.9 
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Table 2. Evaluating functions of streamflow simulations at Boulder Creek 9 

Formula Name of indicator Perfect simulation value 

NSE = 1 −
∑(QS],Q − QRQ,Q)^

∑(QS],Q − Q_S])^
 Nash-Sutcliffe efficiency 1 

PBIAS = c
∑(QS],Q − QRQ,Q)

∑QS],Q
c × 100 Percent bias 0 

RMSE = e
∑ (QS] − QRQ)^f
Qgh

n  Root mean square error 0 

R^ =
∑(jQS],Q − Q_S]kjQRQ,Q − Q_RQk)

l∑(QS],Q − Q_S])^ ∑(QRQ,Q − Q_RQ)^
 Correlation coefficient 1 

RSD =
l1n∑(QRQ,Q − Q

_RQ)^

l1n∑(QS],Q − Q
_S])^

 Ratio of standard deviations 1 

Note: QS],Q-observed streamflow at time step i (mm/day); QRQ,Q-simulated streamflow at time step i (mm/day); Q_S]-10 

mean observed streamflow (mm/day); Q_RQ-mean simulated streamflow (mm/day)11 
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Table 3. General climate models used in this study 12 

Model ID Name Institution 

CCSM4 CCSM4 National Center for Atmospheric Research, USA 

CNRM CNRM National Centre for Meteorological Research, France 

CSIRO CSIRO 
Commonwealth Scientific and Industrial Research Organization, Queensland Climate 

Change Centre of Excellence, Australia 

CanESM2 CESM2 Canadian Centre for Climate Modeling and Analysis, Canada 

CSM1 CSM1 Beijing Climate Center, China Meteorological Administration 

CSM1m CSM1m Beijing Climate Center, China Meteorological Administration 

GFDLG GFDLG NOAA Geophysical Fluid Dynamics Laboratory, USA 

GFDLM GFDLM NOAA Geophysical Fluid Dynamics Laboratory, USA 

HadGEM2C HGEMC Met Office Hadley Center, UK 

HadGEM2E HGEME Met Office Hadley Center, UK 

MIROC-ESM MIROC 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 

Research Institute (The University of Tokyo), and National Institute for 

Environmental Studies, Japan 

MIROC5 MIROC5 

Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology, Japan 

MIROC-

CHEM 
MIROCC 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 

Research Institute (The University of Tokyo), and National Institute for 

Environmental Studies, Japan 

INM-CM4 INMCM Institute for Numerical Mathematics, Russia 

IPSL-CM5A-

MR 
IPSLA Institut Pierre-Simon Laplace, France 

IPSL-CM5B-

LR 
IPSLB Institut Pierre-Simon Laplace, France 

MRI-CGCM3 MRI Meteorological Research Institute, Japan 

NorEMS1-M NorESM Norwegian Climate Center, Norway 
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Table 4. Percent range of the median changes using all parameter sets compared to the total range for 13 
average annual and monthly streamflow (Q), evapotranspiration (ET), and soil moisture. 14 

Variable Time period Annual Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

D Q 
2040-2069 3.8 5.1 10.3 6.1 3.9 2.8 10.0 10.8 19.2 14.7 10.6 5.2 5.2 

2070-2099 10.2 3.0 8.5 10.1 8.8 8.9 19.1 19.7 26.1 19.1 14.4 9.5 7.3 

D ET 
2040-2069 3.3 2.1 1.4 2.4 1.2 2.2 5.2 10.8 10.3 13.7 3.4 1.7 2.4 

2070-2099 6.2 1.7 2.3 2.8 4.1 6.4 20.5 12.1 18.9 19.3 11.5 7.5 2.3 

D Soil 

moisture 

2040-2069 5.0 14.3 15.6 13.4 8.4 12.0 3.0 5.7 6.7 9.7 9.9 4.9 11.1 

2070-2099 10.8 12.8 23.3 21.1 14.2 23.8 3.8 19.2 21.4 18.2 8.3 6.7 7.4 
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Figure captions 15 

 16 
Figure 1. Geographical location of the study area and the 1/8° grid cells17 
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 18 
Figure 2. Parameter sets versus NSE at Boulder Creek. The x-axis represents parameters b, Ds, Ds_max, Ws, 19 
c, soil depth 1, soil depth 2, and soil depth 3 in each panel, and was described in Table 1. Grey dots represent 20 
all calibration runs (10 000 iterations), black dots represent the 16 optimal parameter sets. 21 
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 22 
Figure 3. Calibration metrics and validation NSE at 1/8° spatial resolution at Boulder Creek. The grey dots 23 
represent all calibration runs, black dots represent the optimal parameter sets. 24 
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 25 
Figure 4. (a) Monthly simulated (black lines) and observed (grey lines) streamflow at the Boulder Creek 26 
Orodell station between 1981 and 2010. (b) Same data shown on a log-scale. The red dashed line separates the 27 
calibration and validation periods. 28 
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 29 
Figure 5. Changes in average annual precipitation (a), daily maximum air temperature (b) and daily 30 
minimum air temperature (c) in Phase 1 (2040-2069) and Phase 2 (2070-2099) compared to the historical 31 
period at Boulder Creek. Colored bars correspond to individual climate models and boxplots summarize the 32 
variability. 33 
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 34 
Figure 6. Median value of changes in average annual streamflow (a), ET (b), and soil moisture (c) using each 35 
parameter set in Phase 1 (left column) and Phase 2 (right column). The dashed lines represent median values 36 
in annual changes using all parameter sets. 37 
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 38 
Figure 7. Average monthly values in streamflow (a), ET (b), and soil moisture (c) during the historical time 39 
period, Phase 1, and Phase 2 using the 16 parameter sets. The black line in (a) represents observed data.40 
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Figure 8. Boxplots of percent changes using all climate data and parameter sets (a-c), and boxplots of median percent 
changes using all parameter sets in Phase 1 (d-f) and Phase 2 (g-i) for basin-averaged monthly streamflow, ET, and 
soil moisture. The dashed lines in the middle and bottom rows represent median changes from all climate data and 
parameter sets. 5 
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