
Thank you for the opportunity to review this manuscript. This study deals with an important 
issue on uncertainty in hydrological models. The authors calibrated the VIC model using a 
multiobjective approach based on historical data. Sixteen sets of model parameters were 
randomly selected. Then the model with these 16 sets of parameters were applied to two future 
phases up to year 2100 with 18 different scenarios. The changes in system states were 
represented using ensemble means. It is an interesting study. However, it is not very clear what is 
the major contribution of this study considering the large number of studies on uncertainty in the 
literature. In addition, some major modeling steps/decisions are not described clearly or justified. 
Therefore, this reviewer recommends major revision. 
Reply: We thank Reviewer 1 for the constructive comments and suggestions that will improve 
the quality of this work. We have carefully considered all suggestions and outlined a set of 
proposed revisions in the following response. 
 
Detailed comments: 1. Uncertainty is important as pointed out by the authors. However, what is 
the major contribution of this paper considering there are a large number of studies dealing with 
uncertainty in hydrological models? One of the objectives of the study is to “quantify the 
uncertainty resultant from model parameters to projections of hydrologic flux and state 
variables”. Has this never been done before? If so, please support with evidence in the 
introduction section. 
Reply: We agree that there are a large number of studies dealing with uncertainty in hydrologic 
models. That said, there are considerably fewer studies that focus specifically on the role of 
parametric uncertainty in the context of future climate change projections, which is the focus of 
this paper. We make sure to more clearly articulate this distinction in the revised manuscript. 
In this context, Dobler et al. (2012) quantified uncertainties resulting from global or regional 
climate models, bias-correction method, and hydrological model parameterizations in an Alpine 
watershed of Austria. They concluded that hydrological model parameterization was the least 
important source of uncertainty. Other studies that have compared multiple uncertainty sources 
(Addor et al. 2014; Yuan et al. 2017; Joseph et al. 2018) have largely downplayed the 
importance of model parameterizations. Another study in India went as far as concluding that 
hydrologic model parametric uncertainty is negligible relative to meteorological uncertainty, 
(Joseph et al. 2018). If that was indeed true, then it would be justifiable to use any uncalibrated 
hydrological model to project future hydrological fluxes and state variables. However, a recent 
study demonstrated that while uncertainty of GCM projections was the dominant source for 
faster components of hydrologic response like surface runoff, the uncertainty of hydrological 
model parameterization was found to be a significant source of uncertainty, particularly for slow 
response components (Her et al., 2019). This finding indicates that calibration of hydrological 
models is still important for projecting some important hydrological variables. Another study 
also demonstrated that model parameters could be of major importance for projecting changes in 
water-quality (Steffens et al., 2014). 
 
Most relevant to this manuscript, a few studies have investigated how hydrologic modeling 
decisions can affect future hydrological projections (e.g. Mendoza et al., 2016; Seiller et al., 
2017). These studies considered the impacts of the selection of hydrological model, model 
structure, and parameter sets over a number of river basins. However, what remains unclear, and 
the focus of this manuscript, is whether the impact of parameter set selection alone is large 
enough to impact the direction and magnitude of projected changes, and if so, how the 
magnitude of this impact would translate across different temporal scales. For example, we 
evaluate whether two model parameter sets that have both been calibrated can produce a 



different sign in climate sensitivity, e.g. increasing- versus decreasing projected future 
streamflow. As a result, we focused this work on the contribution of model parameter uncertainty 
to future hydrological projections, including the contribution of parametric uncertainty at 
different time scales (annual, monthly, and daily) and for different hydrological variables. 
Relative to previous studies, we focus here on only a single river basin, but investigate more 
thoroughly the details of model parameter contributed uncertainty at fine time scales (i.e. daily) 
and the resultant affects on hydroclimatic extremes. 
 
2. The context in which parameter uncertainty is assessed. Parameter uncertainty is only one 
contributor of uncertainties, among model uncertainty, input uncertainty, climate uncertainty, 
etc. Where does parameter uncertainty sit among all uncertainties? 
Reply: We agree that parameter uncertainty is only one contributor of uncertainties (see 
references to Mendoza et al., 2016; Seiller et al., 2017, among others) and that its magnitude 
relative to other uncertainties can vary. In larger (global) domains, parameter uncertainty might 
have a smaller impact on future projections due to the potential for compensating errors to 
partially offset at large spatial scales (Elsner et al., 2014). However, at smaller scales with less 
potential for errors to cancel out, like the one presented in this manuscript, the impact of 
parameter uncertainty has the potential to be large and potentially dominant. In order to evaluate 
where parameter uncertainty sits among other uncertainties, we compare it with the uncertainty 
from future climate change scenarios and emphasize this distinction in the revision. 
 
3. The authors emphasized uncertainty related to Climate Change in introduction. But ensemble 
mean across different future scenarios are used in the study, where uncertainty represented by the 
different future scenarios is lost. 
Reply: We clarify this issue in the revision. Namely that we consider both the ensemble mean—
which is widely used for future projections—as well as the ensemble spread as a way to quantify 
the uncertainty across future climate scenarios. In this way, we aim to preserve the uncertainty 
represented by different future scenarios. We consider 18 future scenarios and 16 parameter sets 
to make a total ensemble of 18*16=288 members. The spread of the 288 members is used as a 
measure of the total uncertainty. For each parameter set, there are 18 future scenarios and the 
spread of these 18 future scenarios is used to quantify the uncertainty of future scenarios 
associated with the parameter set. We will therefore obtain the median of the 18 future scenarios 
for each parameter set and finally get the range from the 16 median values (as for the 16 
parameter sets). Following the same approach, we can quantify the uncertainty associated with 
the different parameter sets. We have clarified the calculation in the revision. 
 
4. The authors selected a large number of performance measures. Why were they selected? If 
they are randomly selected with no justification, the authors are increasing calibration effort 
without additional benefit. 
Reply: We selected the parameter sets with similar performance but located in different regions 
of the parameter space following the approaches used by Moriasi et al. (2007) and Demaria et al. 
(2007). Performance measures were selected for the following specific reasons: NSE is the most 
commonly used metric in hydrologic modeling and quantifies the overall performance, putting 
an emphasis on the seasonal cycle. In contrast, RMSE measures the error in the squared units of 
the simulated versus observed datasets and emphasizes high flows and outliers. PBIAS measures 
the average of the simulations compared to the observed datasets, evaluating the quality of the 
overall water balance. R2 is the coefficient of determination between observed and simulated 
datasets. The ratio of standard deviations exclusively evaluates the variability of the model 



relative to the observation and thus represents a valuable quality control. We now clarify this 
rationale further in the revision. 
 
5. The authors stated that “The 16 best performing parameter sets were chosen randomly using 
the Borg MOEA framework.” This statement is confusing. If the “best” parameter sets are 
selected, they much be selected based on some criteria rather than randomly. Did the authors 
mean they are selected randomly from the Pareto-optimal front obtained from multiobjective 
optimization using Borg? Then why are they selected randomly? Will another different set of 
parameters selected randomly lead to different results and conclusions? 
Reply: We thank the reviewer for making this point. Yes, we chose the parameters from the 
Pareto optimal front, so as to represent non-dominated solutions. That is, parameter sets with 
similar performance but located in different regions of the parameter space were chosen. The 
Borg MOEA uses the epsilon non-dominance operator, which has the advantages of convergence 
and diversity with respect to approximating the true Pareto-optimal front over other MOEA. The 
epsilons represent the resolutions of the objective functions. Specifically, the epsilon-box 
dominance archive divides the objective space into hyper-boxes with side-length epsilon, so 
called epsilon-boxes (Hadka and Reed, 2013). The 16 parameter sets represent epsilon-box non-
dominated solutions that were sampled from the full Pareto-optimal front such that the 
conclusions here are expected to be robust. The selecting principle and method have been 
clarified in the revision. 
 
6. One of the conclusions in the manuscript is that future changes in system state are similar to 
those in the past (Section 5.3). However, the model was calibrated using historical data then 
applied to future scenarios. What is the implication of this approach to the conclusion? 
Reply: I think you refer to L354-357. The implicit assumption here is that parameter sets 
calibrated during historical periods can be applied to future simulations. The chosen parameter 
sets give satisfactory results during validation period historically. The focus here is how 
uncertainties across ‘calibrated’ parameter sets will change between past conditions relative to 
future climate. We make this assumption clearer in the revised manuscript. 
 
7. The authors claimed that “variability due to parameter uncertainty was up to 10 % annually 
and 26 % monthly under future climate change scenarios”. Without understanding the whole 
picture of uncertainty, it will be difficult to reach this conclusion. 
Reply: Please see our response to #3 above and associated clarifications in the manuscript. These 
numbers represent the fraction (or percentage) of the uncertainty associated with parametric 
spread relative to the total (parametric + climate scenario) uncertainty.  
 
Minor comments: 1. Description on the Borg MOEA between lines 148 and 152 is inaccurate. 
Reply: We have updated the description of the Borg MOEA for accuracy.  
 
2. Many terms are used in an ad hoc manner. For example, Borg is an optimization algorithm not 
a framework. Line 224: “Borg MOEA framework”. 
Reply: We correct and streamline the terminology and usage in the updated version. 
 
3. Line 351 and Line 353: Remove “the” before “summer”. 
Reply: Will be corrected. 
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