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Thank you for the opportunity to review this manuscript. This study deals with an im-
portant issue on uncertainty in hydrological models. The authors calibrated the VIC
model using a multiobjective approach based on historical data. Sixteen sets of model
parameters were randomly selected. Then the model with these 16 sets of parameters
were applied to two future phases up to year 2100 with 18 different scenarios. The
changes in system states were represented using ensemble means. It is an interesting
study. However, it is not very clear what is the major contribution of this study consider-
ing the large number of studies on uncertainty in the literature. In addition, some major
modeling steps/decisions are not described clearly or justified. Therefore, this reviewer
recommends major revision.
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Reply: We thank Reviewer 1 for the constructive comments and suggestions that will
improve the quality of this work. We have carefully considered all suggestions and
outlined a set of proposed revisions in the following response.

Detailed comments: 1. Uncertainty is important as pointed out by the authors. How-
ever, what is the major contribution of this paper considering there are a large number
of studies dealing with uncertainty in hydrological models? One of the objectives of the
study is to “quantify the uncertainty resultant from model parameters to projections of
hydrologic flux and state variables”. Has this never been done before? If so, please
support with evidence in the introduction section.

Reply: We agree that there are a large number of studies dealing with uncertainty in hy-
drologic models. That said, there are considerably fewer studies that focus specifically
on the role of parametric uncertainty in the context of future climate change projec-
tions, which is the focus of this paper. We make sure to more clearly articulate this
distinction in the revised manuscript. In this context, Dobler et al. (2012) quantified
uncertainties resulting from global or regional climate models, bias-correction method,
and hydrological model parameterizations in an Alpine watershed of Austria. They
concluded that hydrological model parameterization was the least important source of
uncertainty. Other studies that have compared multiple uncertainty sources (Addor et
al. 2014; Yuan et al. 2017; Joseph et al. 2018) have largely downplayed the impor-
tance of model parameterizations. Another study in India went as far as concluding
that hydrologic model parametric uncertainty is negligible relative to meteorological un-
certainty, (Joseph et al. 2018). If that was indeed true, then it would be justifiable to
use any uncalibrated hydrological model to project future hydrological fluxes and state
variables. However, a recent study demonstrated that while uncertainty of GCM pro-
jections was the dominant source for faster components of hydrologic response like
surface runoff, the uncertainty of hydrological model parameterization was found to be
a significant source of uncertainty, particularly for slow response components (Her et
al., 2019). This finding indicates that calibration of hydrological models is still important
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for projecting some important hydrological variables. Another study also demonstrated
that model parameters could be of major importance for projecting changes in water-
quality (Steffens et al., 2014).

Most relevant to this manuscript, a few studies have investigated how hydrologic mod-
eling decisions can affect future hydrological projections (e.g. Mendoza et al., 2016;
Seiller et al., 2017). These studies considered the impacts of the selection of hydrolog-
ical model, model structure, and parameter sets over a number of river basins. How-
ever, what remains unclear, and the focus of this manuscript, is whether the impact of
parameter set selection alone is large enough to impact the direction and magnitude of
projected changes, and if so, how the magnitude of this impact would translate across
different temporal scales. For example, we evaluate whether two model parameter sets
that have both been calibrated can produce a different sign in climate sensitivity, e.g.
increasing- versus decreasing projected future streamflow. As a result, we focused
this work on the contribution of model parameter uncertainty to future hydrological pro-
jections, including the contribution of parametric uncertainty at different time scales
(annual, monthly, and daily) and for different hydrological variables. Relative to previ-
ous studies, we focus here on only a single river basin, but investigate more thoroughly
the details of model parameter contributed uncertainty at fine time scales (i.e. daily)
and the resultant affects on hydroclimatic extremes.

2. The context in which parameter uncertainty is assessed. Parameter uncertainty is
only one contributor of uncertainties, among model uncertainty, input uncertainty, cli-
mate uncertainty, etc. Where does parameter uncertainty sit among all uncertainties?

Reply: We agree that parameter uncertainty is only one contributor of uncertainties
(see references to Mendoza et al., 2016; Seiller et al., 2017, among others) and that its
magnitude relative to other uncertainties can vary. In larger (global) domains, param-
eter uncertainty might have a smaller impact on future projections due to the potential
for compensating errors to partially offset at large spatial scales (Elsner et al., 2014).
However, at smaller scales with less potential for errors to cancel out, like the one
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presented in this manuscript, the impact of parameter uncertainty has the potential to
be large and potentially dominant. In order to evaluate where parameter uncertainty
sits among other uncertainties, we compare it with the uncertainty from future climate
change scenarios and emphasize this distinction in the revision.

3. The authors emphasized uncertainty related to Climate Change in introduction.
But ensemble mean across different future scenarios are used in the study, where
uncertainty represented by the different future scenarios is lost.

Reply: We clarify this issue in the revision. Namely that we consider both the ensemble
meanâĂŤwhich is widely used for future projectionsâĂŤas well as the ensemble spread
as a way to quantify the uncertainty across future climate scenarios. In this way, we
aim to preserve the uncertainty represented by different future scenarios. We consider
18 future scenarios and 16 parameter sets to make a total ensemble of 18*16=288
members. The spread of the 288 members is used as a measure of the total uncer-
tainty. For each parameter set, there are 18 future scenarios and the spread of these
18 future scenarios is used to quantify the uncertainty of future scenarios associated
with the parameter set. We will therefore obtain the median of the 18 future scenarios
for each parameter set and finally get the range from the 16 median values (as for the
16 parameter sets). Following the same approach, we can quantify the uncertainty
associated with the different parameter sets. We have clarified the calculation in the
revision.

4. The authors selected a large number of performance measures. Why were they
selected? If they are randomly selected with no justification, the authors are increasing
calibration effort without additional benefit.

Reply: We selected the parameter sets with similar performance but located in different
regions of the parameter space following the approaches used by Moriasi et al. (2007)
and Demaria et al. (2007). Performance measures were selected for the following
specific reasons: NSE is the most commonly used metric in hydrologic modeling and
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quantifies the overall performance, putting an emphasis on the seasonal cycle. In con-
trast, RMSE measures the error in the squared units of the simulated versus observed
datasets and emphasizes high flows and outliers. PBIAS measures the average of the
simulations compared to the observed datasets, evaluating the quality of the overall
water balance. R2 is the coefficient of determination between observed and simulated
datasets. The ratio of standard deviations exclusively evaluates the variability of the
model relative to the observation and thus represents a valuable quality control. We
now clarify this rationale further in the revision.

5. The authors stated that “The 16 best performing parameter sets were chosen ran-
domly using the Borg MOEA framework.” This statement is confusing. If the “best”
parameter sets are selected, they much be selected based on some criteria rather
than randomly. Did the authors mean they are selected randomly from the Pareto-
optimal front obtained from multiobjective optimization using Borg? Then why are they
selected randomly? Will another different set of parameters selected randomly lead to
different results and conclusions?

Reply: We thank the reviewer for making this point. Yes, we chose the parameters from
the Pareto optimal front, so as to represent non-dominated solutions. That is, parame-
ter sets with similar performance but located in different regions of the parameter space
were chosen. The Borg MOEA uses the epsilon non-dominance operator, which has
the advantages of convergence and diversity with respect to approximating the true
Pareto-optimal front over other MOEA. The epsilons represent the resolutions of the
objective functions. Specifically, the epsilon-box dominance archive divides the objec-
tive space into hyper-boxes with side-length epsilon, so called epsilon-boxes (Hadka
and Reed, 2013). The 16 parameter sets represent epsilon-box non-dominated so-
lutions that were sampled from the full Pareto-optimal front such that the conclusions
here are expected to be robust. The selecting principle and method have been clarified
in the revision.

6. One of the conclusions in the manuscript is that future changes in system state
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are similar to those in the past (Section 5.3). However, the model was calibrated using
historical data then applied to future scenarios. What is the implication of this approach
to the conclusion?

Reply: I think you refer to L354-357. The implicit assumption here is that parameter
sets calibrated during historical periods can be applied to future simulations. The cho-
sen parameter sets give satisfactory results during validation period historically. The
focus here is how uncertainties across ‘calibrated’ parameter sets will change between
past conditions relative to future climate. We make this assumption clearer in the re-
vised manuscript.

7. The authors claimed that “variability due to parameter uncertainty was up to 10 %
annually and 26 % monthly under future climate change scenarios”. Without under-
standing the whole picture of uncertainty, it will be difficult to reach this conclusion.

Reply: Please see our response to #3 above and associated clarifications in the
manuscript. These numbers represent the fraction (or percentage) of the uncertainty
associated with parametric spread relative to the total (parametric + climate scenario)
uncertainty.

Minor comments: 1. Description on the Borg MOEA between lines 148 and 152 is
inaccurate.

Reply: We have updated the description of the Borg MOEA for accuracy.

2. Many terms are used in an ad hoc manner. For example, Borg is an optimization
algorithm not a framework. Line 224: “Borg MOEA framework”.

Reply: We correct and streamline the terminology and usage in the updated version.

3. Line 351 and Line 353: Remove “the” before “summer”.

Reply: Will be corrected.
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