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Abstract. River temperature is an important parameter for water quality and an important variable for physical, chemical and

biological processes. River water is also used by production facilities as cooling agent. We introduce a new way of calculating a

catchment-wide air temperature and regressing river temperature vs air temperatures. As a result the meteorological influence

and the anthropogenic influence can be studied separately. We apply this new method at four monitoring stations (Basel,

Worms, Koblenz and Cologne) along the Rhine and show that the long term trend (1979-2018) of river water temperature is,5

next to the increasing air temperature, mostly influenced by decreasing nuclear power production. Short term changes on time

scales < 5 years are due to changes in industrial production. We found significant positive correlations for this relationship.

1 Introduction

River water temperature (Tw) greatly influences the most important physical, chemical and ecological processes in rivers and10

is a key factor for river system health (Delpla et al., 2009). Tw also defines and confines ecological habitats (Isaak et al., 2012;

Durance and Ormerod, 2009) and the spread of invasive species (Wenger et al., 2011; Hari et al., 2006). River water is not

solely important from an environmental perspective but an important means of production. Especially for energy intensive

industries such as power plants, oil refineries, paper or steel mills, river water is an important cooling agent. Its availability

is a reason for the choice of their location (Förster and Lilliestam, 2010). In this context, one has to bear in mind, that given15

a 32 % energy efficiency, 68 % of the energy used in a facility is discharged through the cooling system into the respective

stream (Förster and Lilliestam, 2010). This leads to a significant heat load even on large rivers such as the Rhine (IKSR, 2006;

Lange, 2009). As a consequence, anthropogenic heat fluxes (heat discharge) can contribute significantly to the heat budget of

a river. The natural influences on Tw are: [1] Meteorology, including sensible heat flux, latent heat flux, radiative heat fluxes;

[2] Source temperature, which describes the origin of the water, e.g. snow-fed, glacier-fed, groundwater-fed; [3] Hydrology,20

which influences the water temperature through the amount of water and the flow velocity; [4] Ground heat flux.

Tw can be modeled in two ways, physically or deterministically. A physical Tw model (Sinokrot and Stefan, 1993) parame-

terizes all fluxes mentioned in [1] and [3], adds anthropogenic heat input and collects the hydrological and source boundary

conditions. Each modeled heat flux is then applied to the water mass, initialized with the starting and boundary conditions.
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However, it is difficult to get a good estimation of these parameters over the catchment area of a large river. As a consequence,

statistical models use air temperature (Ta) as a proxy for sensible, latent and radiative heat fluxes (ground heat flux can be

neglected) and establish a Ta→ Tw relationship through regression. This is a well established method and depending on the

complexity, linear or exponential models (Stefan and Preud'homme, 1993; Mohseni et al., 1998; Koch and Grünewald, 2010)

are used. Generally the exponential model has advantages due to the better simulation of extremely warm and cold Ta→ Tw5

relationships but lacks the clear analytical separation of the different influences to Tw. Markovic et al. (2013) show that between

81 %-90% of the Tw variability can be described by Ta. 9 %-19 % can be attributed to hydrological factors (e.g. discharge).

Along the Rhine, up to 12 nuclear power plants (NPP) have caused for decades the largest part of anthropogenic heat input

in the river. The nuclear power production increased in the 1970s and 1980s and reached a peak in the mid 1990s. After the

Fukushima disaster in 2011, the German government decided to exit from nuclear power production and the first NPPs were10

shut down. With this political decision a clear drop on nuclear power production was visible, on top of already decreasing

production rates. Currently (July 2019) eight NPPs are operational in the catchment area of the Rhine using (partly) river water

as cooling agent. In this publication, we hypothesize that, next to environmental factors, this long term decrease in power pro-

duction together with short term economic changes have an impact on Tw of the Rhine. This impact might be heterogeonous

along the river as the location of industry and NPPs is concentrated at several highly industrialized spots.15

To revise the hypothesis and asses the varying impact of industry, meteorology and hydrology on the Rhine river temperatures,

we run a multiple regression model (Eq. 1) on a Tw time series from 1979 to 2018 measured at four Rhine stations (Basel

(CH), Worms (DE), Koblenz (DE) and Cologne (DE)). The period from 1979 to 2018 experienced several changes in anthro-

pogenic heat input to the Rhine catchment area, which makes it an almost ideal scenario to be studied. Tw is regressed with a

catchment-wide air temperature Ta and river discharge Q, Eq. 1. a1, a2 and a3 are the resulting regression coefficients.20

Tw = a1 + a2 ·Ta + a3 ·Q (1)

The origin of water, e.g. ground water, snow melt, glacier melt, is included by the catchment wide approach where Ta at

high elevations (e.g. Alps) is also included. Webb et al. (2003) have shown that Q is inversely related to Tw and an important

factor (Markovic et al., 2013) in the Ta→ Tw relationship. Additionally, it functions as measure of how fast a the water mass

responds to changes in Tw. Ground heat flux, ground water influx and heat generation due to friction are not included in this25

model because of the comparable small influence (Sinokrot and Stefan, 1993; Webb and Zhang, 1997).

Using the multiple regression (Eq. 1), we aim to especially investigate the change of a1 over time, which we call the Rhine

base temperature (RBT). This temperature represents the Tw without the influence of meteorology and discharge. RBT is an

indicator for industrial heat input and the use of Rhine water as cooling agent. We hypothesize that its long term change is

connected with the electricity production of NPPs and its short term variations is connected with overall industrial production30

and general economic indicators. Using different time series along the Rhine, we investigate where anthropogenic heat fluxes

may influence Tw and may lead to an overall heterogeneous warming rate along the Rhine.
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name stream km time period important tributary upstream reference

Cologne KM 690 1.1.1985-31.12.2018 Mosel WSA (2019)

Koblenz KM 550 1.1.1978-31.12.2018 Main BfG (2019)

Worms KM 443 1.1.1971-31.12.2018 Neckar LfU (2019)

Basel KM 170 1.1.1977-31.12.2018 Aare BAFU (2019)
Table 1. Lists of monitoring stations used in this study. Column two provides the location as Rhine km. Column three provides the data

range. The third column names the important upstream tributary and column four names the reference.

2 Methods

2.1 Water temperature and discharge

We use a data-set of daily averaged Tw and Q from 1979-2018 gathered from different sources (WSA, 2019; BfG, 2019;

LfU, 2019; BAFU, 2019). Table 1 lists the respective stations along the Rhine (Col. 1), stream km (Col. 2), data availability

(Col. 3), the important tributaries upstream (Col. 4) and the reference (Col. 5). Tw was measured by platinum resistivity5

sensors (Pt100). The accuracy of theses sensors is commonly ±0.5 oC but the precision, which describes the ability to detect

temperature changes, is 0.05 oC.As we focus on the change Tw over time and do not compare the absolute temperature, the

accuracy is not essential and the precision is sufficient. Errors inflicted by measuring depth and location in the river are also

not influencing the calculation, regarding the aim of this study, as long as the measured Tw is a linearly dependent proxy for

the average river temperature. Q is provided as daily averages in m3s−1 by the reference (Tab. 1 and usually calculated from10

river stage).

2.1.1 Air temperature

Ta is retrieved from the European Centre for Meridional Weatherforcast (ECMWF) Reanalysis Model ERA5. It provides an

hourly time resolution of the 2 m Ta on a 1
4

o by 1
4

o grid. The data-set is available from 1979-2018. We took the hourly Ta

output and calculated a daily mean for each grid point between 1979 and 2018 to fit the time resolution of Tw.15

2.2 Catchment Area

The catchment area was calculated using the Hydrosheds database (Lehner et al., 2008). The 1
125

o by 1
125

o gridded data-set

provides information, at each grid point, to which cell the water of a grid cell is drained. Selecting a starting location, e.g.

Koblenz at 50.350 oN and 7.602 oE it is possible to iteratively calculate all grid points draining into this location. These

grid points represent the catchment area of this location, in this case Koblenz. By counting the iteration steps, the distance a20

water drop travels to reach the monitoring station Koblenz is determined. This was done for each station. Additionally, the

accumulation number ACC was calculated. It defines how many cells are draining into a particular cell and is a measure for the

size of a river. Finally, a grid, which defines the catchment area, the ACC and the hydrological distance between was established
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Figure 1. Catchment area of the Koblenz monitoring station. The colors show the hydrological distance between the monitoring station and

each grid point of the catchment area. The second y-axis shows the time it takes to flow from a grid point to the monitoring station. The flow

speed is 0.733 ms−1

spanning the whole catchment area. Figure 1 shows the catchment area, the distance calculations and the calculated flow time

to the Koblenz monitoring station.

2.3 Multiple regression

We use a multiple linear regression to separate the meteorological, hydrological and anthropogenic contributions to the river

water temperature. Tw is regressed with Ta and river discharge Q. Their regression coefficients a2 (Ta slope) and a3 (Q slope)5

represent the magnitude of the respective influences. The offset a1, which we call RBT, combines all other influences, which

are mostly from anthropogenic sources.

Instead of using Ta at the monitoring station, we improve Eq. 1 by averaging Ta over the whole catchment area and make Ta

time dependent. We call this new parameter catchment temperature Tc. Tc is defined by the location (x,y) and a time lag (∆t).

Tw (t) = a1 + a2 ·Tc (x,y, t + ∆t) + a3 ·Q(x0,y0, t) (2)10

Time lag and Tc

Linear as well as exponential models have already introduced ∆t (Stefan and Preud'homme, 1993; Webb and Nobilis, 1995,

1997) to the Ta→ Tw relationship. A change in Ta at a location is certainly followed, by a change of Tw to restore equilibrium

conditions. The first reason is that the water masses’ mixing capability, heat capacity and surface area cause a thermal inertia.

Secondly, advection is not taken into account when Ta is measured at the same location and the very same time as Tw. The15
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∆t [d] weighing factor distance from measurement point [km]

0 1 0

-1.0588 0.9412 67

-2.1176 0.8824 113

... ... ...

-18 0 1140
Table 2. This table defines the weighing factors for different time lags and distances from the measurement point. The weight coefficient is

linearly correlated to the time lag. Once the time lag is calculated from distance and flow speed (Eq. 5) only the time lag is used in further

calculations.

Rhine exhibits current velocities which enable its water to cover significant distances on time scales larger than days. Therefore

it is necessary to take advection and the change of Ta, in space and time, during advection into account. Haag and Luce (2008)

suggest to use Ta at the same location of the measurement but include the days before to extend the temporal significance. This

approach is shown in Eq. 3.

Ta = w (t0) ·Ta (x0,y0, t0) + w (t0 + ∆t) ·Ta (x0,y0, t0 + ∆t) + w (t0 + 2 ·∆t) ·Ta (x0,y0, t0 + 2 ·∆t) ... (3)5

Time dependent weighing factors w (t) are used to average Ta (t) at different times before the measurement. A linearly de-

creasing w(t) is used. However, this approach satisfies the idea of thermal inertial but does not include advection. Hence, we

extend this idea of a time lagged Ta (x0,y0, t0 + ∆t) from the location of the Tw measurement to the entire catchment area. All

grid points and therefore all possible water streams in the catchment area are assigned with a specific time lag ∆t(x,y). Using

directional discharge maps (Sec. 2.2) and gridded temperature reanalysis data (Sec. 2.1.1), we propose this new 3D (x,y, t)10

averaging of Ta and call it the catchment temperature Tc, Eq. 4.

Tc (t) =
1∑

w (∆t(x,y))

x=n,y=m∑

x=1,y=1

w (∆t(x,y)) ·Ta (x,y, t + ∆t(x,y)) (4)

Tc (t) is calculated by weighted averaging Ta (x,y, t) over all grid points of the catchment area (x=1,...n y=1,...m) which arrive

at the monitoring station at time t. The time lag ∆ t is the time it takes for a water droplet from a specific grid point in the

catchment area to the measurement location. This time can be calculated using the distance s between each grid point in the15

catchment area and the measurement point and an average flow speed v, Eq. 5. ∆t is per definition negative. A comparison of

time lag, distance and weighing factor is provided in Tab. 2.

∆t(x,y) =−s(x,y)
v

(5)

For reasons of simplification, we did not use a catchment wide hydrological flow model to model the flow speed at every

grid point for every hydrological scenario. Therefore we use a constant flow speed of 0.733 ms−1. The weighing factors20

w (∆t(x,y)) are shown in Tab. 2. Based on Eq. 4, we calculated the daily Tc for each monitoring station. This temperature

represents the meteorological influence all water droplets have experienced on their way to the monitoring station.
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Control scenarios

As control scenarios, we introduce two additional weighing coefficients and two different Tc calculations.

The first scenarios (time lag) has a weighing coefficient equal to one for all grid cells, Eq. 6.

w (∆t(x,y)) = 1 Tc (t) =
1

n ·m

x=n,y=m∑

x=1,y=1

Ta (x,y, t + ∆t(x,y)) (6)

The second scenario (time lag + ACC) is weighing by numbers of grid cells flowing into a particular cell. We call this the5

accumulation control. The ACC takes into account how much water is accumulated in a specific cell, Eq. 7, which puts more

weight on large rivers.

w (x,y) = ACC (x,y) Tc (t) =
1∑

ACC (x,y)

x=n,y=m∑

x=1,y=1

ACC (x,y) ·Ta (x,y, t + ∆t(x,y)) (7)

The third scenario (no time lag) has a weighing coefficient equal to 1 and does not include a time lag, Eq. 8. It is a plain average

over catchment wide Ta at the time of the measurement.10

w (x,y) = 1 Tc (t) =
1

n ·m

x=n,y=m∑

x=1,y=1

Ta (x,y, t) (8)

The fourth scenario (Ta at station) uses a single value Ta for each time step at the respective monitoring station, Eq. 9.

Tc (t) = Ta (x0,y0, t) (9)

2.4 Nuclear Power Plants

The annual electrical power production by NPPs is available from the International Atomic Energy Agency (IAEA) Power15

Reactor Information System (IAEA, 2019). At most 12 NPPs (1986-1988) were online in the Rhine catchment area. Separate

blocks of one NPP are combined. In July 20019 eight were operational. All shutdowns were done in Germany.

From estimates by Lange (2009) and based on personal communication, the heat input by NPPs to the Rhine was calculated

for each monitoring station, Fig. 2.

2.4.1 Calculated temperature change20

We calculate the expected change in RBT (∆RBT) due to the change in heat input (∆HI) by NPPS using the average discharge

Q̄ and the heat capacity of water cp, Eq. 10.

∆RBT =
∆HI

cp · Q̄
(10)

This approach is based on the idea that the heat input of NPPs is essential for the heat budget of the river and significantly

alters a1 as other important influences, such as meteorology (a2) and hydrology (a3), are excluded.25
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Figure 2. Using the PRIS (IAEA, 2019) database we estimated the heat input by NPPs from 1969 to 2018. This figure shows the total

upstream heat input of each monitoring station.

2.5 Gross Domestic Product

The gross domestic product (GDP) for the adjacent German federal states was obtained from VGdL (2019a, b). Due to changes

in the calculation method of the GDP before and after the German unification (1991), two separate data-sets are used. For this

study only the GDP-change of the secondary sector (construction and production) is used.

The RBT, if compared to the GDP, is filtered using a 10th order butterworth bandpass filter. The sampling rate was 12 y−1 the5

cutoff frequencies were 1.1 y−1 and 0.05 y−1. This means that a signal with a periodicity larger than 20 y and lower than 0.9 y

was dampened. The reason was to make the RBT data comparable to the yearly data of the GDP-change. The low frequency

cutoff is canceling long term trends as a GDP-change is only related to the previous year.

3 Results

Using the time series of the four monitoring stations and the collected supporting data, we investigate the heterogeneity of the10

temperature change along the Rhine and the possible anthropogenic influence on Tw.

3.1 Water temperature time series

To investigate the long term change over time, we fitted a time dependent linear function to the time series of Tw and Ta

(catchment average) of all four monitoring stations (Basel, Worms, Koblenz, Cologne). The same was done only, when all four

monitoring stations had an overlapping data-set (1985-2018). Fig. 3 shows the yearly averaged water temperatures and the15

linear fits to the two time periods. The fit coefficients and the rate of warming per year are shown in Tab. 3. We also calculated

the Ta increase in the catchment area of all monitoring stations. These slopes are shown in column four and five of Tab. 3.

Fig. 3 and Tab. 3 show that the change of Tw is heterogenous along the Rhine. The slope at Basel is approx. six times higher

(0.0350 oCy−1) than the one in Cologne (0.0084 oCy−1), comparing only the overlapping data-set. However, during the same

period Ta shows similar behavior at these two stations, which is an indication of similar meteorological influence. The Tw20
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Figure 3. Yearly averages of water temperatures at four monitoring stations (black line). The red dashed line is a fit to the available data-set.

The red dotted line is a fit to the overlapping time period.

name slope Tw whole data-set slope Tw 1985-2018 slope Ta whole data-set slope Ta 1985-2018

[oCy−1] [oCy−1] [oCy−1] [oCy−1]

Basel 0.0541 0.0489 0.0502 0.0497

Worms 0.0554 0.0350 0.0503 0.0481

Koblenz 0.0328 0.0240 0.0518 0.0481

Cologne 0.0084 0.0084 0.0497 0.0497
Table 3. Slope of the linear fits to the daily temperature data. The second column is a fit to the available Tw data-set. The third column is a

fit to the overlapping Tw data-set from 1985-2018. The fourth column is the rate of Ta increase in the respective catchment area during the

whole data-set. The fifth column is the rate of Ta increase in the respective catchment area from 1985-2018.

warming rate from 1985-2018 for Worms and Koblenz are in between those from Cologne and Basel. These two stations show

similar Ta warming rates when comparing to Basel and Cologne. Generally, the Ta warming rates are less than 5 % different.

We hypothesize that meteorological conditions are not the reason for this difference. Meteorological differences should be

8
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Basel Worms Koblenz Cologne

Time lag+weight 1.71 1.35 1.27 1.65

Time lag 1.68 1.32 1.18 1.50

Time lag+ACC 1.72 1.37 1.39 1.72

No time lag 2.48 2.43 2.37 2.56

Ta at station 2.66 2.55 2.63 2.85
Table 4. Root mean square errors [oC] for five scenarios. The model is applied over the whole data-set. The first row is the scenarios used

for all other results.

visible in the Ta warming rate, which is not the case in this data-set. Therefore, we applied the regression model (Eq. 2) to

investigate this pattern of Tw along the Rhine river.

Comparing this data-set to a study by Webb (1996) shows that the Tw increase is relatively high in comparison the 20th century

results. Webb (1996) reported a 1 oC warming rate for an average European river during the 20th century (=̂ 0.01 oCy−1).

Using the warming rate of this study, only Cologne fits this projection. Basel and Worms show a five to six times higher and5

Koblenz a three times higher warming rate.

3.2 RBT, long and short term trends

We fitted the multiple regression model (Eq. 2), using Tc and Q to Tw of each monitoring station. Afterwards, we recalculated

Tw using the regression coefficients a1, a2 and a3. From the comparison between the modeled and measured Tw, we calculated

the root mean square error (RMSE) and the Nash-Sutcliff coefficient (NSC) for each monitoring station (Tab. 4 and 5).10

As a control, to support the introduction of weighing coefficients and a catchment-wide time lag, we used the four scenarios

from Sec. 2. Tab. 4 and 5 show the RMSE and NCS values for all scenarios. The lowest RSME is 1.18 oC for the time lag

(row two) at the Koblenz station. At this location also the largest NCS of 0.96 appears at two scenarios, time lag and time

lag+weight. It is evident that the two scenarios with time lag have a lower RMSE (below 1.75 oC) than the two scenarios

without a time lag (above 2.4 oC). The same trend holds for NCS where the time lag scenarios are above 0.91 and the other15

two are below 0.86.

We think that the use a catchment wide time lag improves the quality of the multiple regression analysis and is a significant

improvement to Ta→ Tw based modelling. It is interesting that a time (or distance) dependent weighing factor does not

improve the model output. This implies that even the furthest and oldest Ta influences on Tw are still carried as information by

a small temperature difference in the water mass.20

3.3 Rhine base temperature

From the multiple regression in Sec. 3.2 we obtained the coefficients a1-a3 (Eq. 2). The magnitudes a2 and a3 relate to the

influences by meteorology and hydrology (discharge). a1 is the RBT, which is an indicator for the anthropogenic impact on

Tw. We use the RBT to explain differences in the Tw warming rates of Tab. 3.
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Basel Worms Koblenz Cologne

Time lag+weight 0.91 0.95 0.96 0.94

Time lag 0.92 0.95 0.96 0.95

Time lag+ACC 0.91 0.95 0.95 0.93

No time lag 0.82 0.84 0.86 0.84

Ta at station 0.79 0.82 0.82 0.80
Table 5. NSC for five scenarios. The model is applied over the whole data-set. The first row is the scenarios used for all other results.

Figure 4. RBT from four monitoring stations (black solid line). The red dashed line is a four year running mean. The blue dotted line is the

upstream heat input by NPPs (Sec. 2.4).

To point out changes over time, we regressed a two year segment of the Tw time series and used a step size of one month to

create a RBT time series over the available data-set. As the absolute RBT does not have a distinct meaning, only the changes of

RBT over time are shown in Fig. 4. We subtracted the last data point of each time series from the rest of the data and show the

change of RBT vs time and a four-year running mean. The heat input by NPPs is shown as a dotted blue line with the y-axis

on the right hand side.5
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name period ∆RBT from data-set ∆RBT from Eq. 10 ∆GW

Basel 2008-2017 -0.08 0.04 0.17

Worms 1996-2017 1.26 1.18 7.14

Koblenz 1999-2017 1.55 1.45 10.5

Cologne 1998-2017 1.2 1.52 10.7
Table 6. The table shows the change of RBT (column 3) in the period given in column 2. The calculated temperature change (column 4) and

the change in HI by nuclear power plants (column 5) are also provided.

Long term trend

In this study long term trends occur on time scales of decades. This time scale is on one hand small enough to have significance

in this 40 year data-set and on the other hand covers the increase and decrease of nuclear power production.

The heat input by NPPs and the four-year running mean RBT follow a similar trend. After the maximum of heat discharge by

NPPs between 1996-1998, the heat input as well as the RBT of Worms, Koblenz and Cologne decline. At Basel the RBT as5

well as the heat input stay comparably constant. To investigate these similar trends we calculate ∆RBT, using Eq. 10, at every

station and compare it to the ∆RBT from the measured Tw, Tab. 6.

At Basel, both simulated and calculated RBT changes are negligible due to the lack of change in HI. At all other stations, the

change in HI is reflected in the change of RBT. The maximum difference between simulation and calculation is 0.32 oC.

The change in nuclear power production over the a time period of 30 years or more can explain changes and heterogenous10

warming rates of Tw along the Rhine river. NPPs may also impact Tw at much shorter timer scale but do not seem,to our best

knowledge, to change their power output accordingly.

Short term trend

Short term changes (< 5 y) in RBT (Fig. 4) are not influenced by the overall heat in put from NPPs, as they change production

at longer time scales, but rather by local industrial conditions, which could also include fossil fuel power plants.15

For Basel, we hypothesize that the varying, but on average constant, RBT is influenced by alpine lakes. Lakes and reservoirs

are to some extend decoupled from the Ta→ Tw relationship (Erickson and Stefan, 2000). The upper layer (epilimnion)

closely follows Ta and the temperature of the larger volume underneath is usually more stable and colder (summer) or warmer

(winter). The stratification plays an important role in the outflow temperature of a lake. Another indication, for the weakness of

the Ta→ Tw model, is that the regression model has its largest RMSE (1.71 oC) at this station regarding the time lag scenarios.20

For all other stations, we hypothesize that local production facilities and their heat input into the Rhine are responsible for

the short term changes. Therefore we compare the RBT time series to economic data. Fig. 5 shows the comparison of RBT

(black line, one year running mean) vs the changes in the GDP (blue line). A discontinuity in the GDP at 1991 is visible, due

to the German reunification, when the calculation method of the GDP changed. Therefore they are plotted as separate lines.

For Worms (Fig. 5, bottom panel) we added the change of turnover of the BASF company (red dashed line (AG, 1989)). Its25
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Figure 5. The change of RBT (black solid line) at three monitoring stations (Colgone, Koblenz, Worms). The blue dashed line is the GDP-

change of the adjacent federal states. To explain trends during two time periods the red dashed line, which is the turnover of the BASF

company, and the red dotted line, production rate of the oil refineries, are added.

production facility is located 12 km upstream (km 431) from the Worms station. In 1985, although the change in GDP does not

indicate a large RBT change, a significant RBT decrease is visible. This is backed by a turnover decrease in 1985 and 1986.

After the German reunification 1991, a negative GDP change (recession) is evident. This followed by a by a BASF turnover

decline as well as a decrease in RBT. After that, the RBT follows the up and down movements of the GDP, so does the BASF

turnover (only shown until 2000). Especially the economic events such as the burst of the dot-com bubble (early 2000s) and5

the mortgage crisis (2008) are visible in the RBT and the GDP, when a decrease of both parameters followed.

Before 1990, the RBT at Koblenz does not follow the GDP trend and shows a rather anti-cyclic behavior, which can not be

explained yet. After 1991, the RBT follows the general trend of the GDP but does not seem to be strongly influenced by the

recession after the German unification. Again, economic events such as the burst of the dot-com bubble (early 2000s) and the

mortgage crisis (2008) have influence on the RBT.10

The RBT at Cologne does not seem to be strongly influenced by the recession connected to the German reunification, but after

1999 the RBT follows the up and down trends of the GDP.

For all monitoring stations, we added a red dashed line between 1995 and 1999. This dashed line indicates the production

rate of German oil refineries (MWV, 2003). From 1995 to 1999 German refineries ran at full capacity level (100%). Usually

the capacity levels do not exceed 90%. The increase in production is clearly visible in the RBT of Cologne, where a large oil15

12

https://doi.org/10.5194/hess-2019-518
Preprint. Discussion started: 21 October 2019
c© Author(s) 2019. CC BY 4.0 License.



name time-lag + weigh time-lag significance

Worms 0.42 0.47 p<0.05

Koblenz 0.52 0.44 p<0.05

Cologne 0.44 0.39 p<0.05
Table 7. Spearman’s rank correlations between RBT and GDP-Change for two scenarios. The last column shows the significance

refinery is located 19 km upstream at km 671 (Rheinland refinery). RBT at Worms and Koblenz could be influenced by the

output of the refinery next to Karlsruhe at km 367 (Mineraloelraffinierie Karlsruhe).

Correlation

We correlate the GDP-change to the filtered RBT signal. It is noticeable that we shifted the GDP-change 480 days to the past

to get matching trends. This means that a change in RBT or anthropogenic heat input appears 480 days earlier than in the GDP5

calculation. The shift could be caused by two reasons: [1] We are using the GDP difference of two consecutive years, which has

a significance at a point of time within these two years. [2] The GDP could be lagging behind the real economic situation, in

this case the industrial production. (Yamarone, 2012) claims that GDP is a coincident economic indicator similar to industrial

production. However, he uses quarterly GDP calculations vs our annual data. The quaterly data-set could be reacting faster to

changes. A second thought is that he compares industrial production calculations, which is an economic index, to GDP (another10

economic index). We have basically real time data from the industrial heat input into the river. This shift was not done in Sec.

3.3 because a shift of 1.5 y on a 40-year time scale is negligible.

Tab. 7 shows the Spearman’s rank correlation coefficients of Worms, Koblenz and Cologne for the time-lag and the time-lag +

weight scenarios. All correlations are positive and significant (p<0.05). The correlation of the RBT data-set with weighing is

slightly higher (except for Worms) than those from equally weighted Ta. The correlation in Koblenz is the highest. Fig. 6 shows15

the filtered RBT signal vs the GDP-change at the three monitoring stations. Most of the time the change in filtered and shifted

RBT is coincident with the GDP-change. The RBT peak from 1995-1998 is not very well represented by the GDP-change,

which has already been discussed in context of Fig. 5.

4 Conclusions

We introduce a new catchment-wide air temperature Tc, which decreases the RMSE (Tab. 5 and 4) in a Ta→ Tw regression.20

Tc is an average of all Ta across the catchment including the improvement by using a the time lag for each grid point according

to the hydrological distance and flow speed. This time lag is an indicator when a measured water droplet was at a certain

grid cell in the catchment area. As a result, one can get a better estimate which Ta a water droplet experienced on its way

to a monitoring station and better linear Ta→ Tw estimates. An improvement in the Ta→ Tw relationship makes analysis,

reanalysis and forecast of Tw easier as Ta data is readily available. Still a sufficient time-series of Tw is required. The linear25

relationship is simpler than a full physical model which needs all meteorological fluxes as parameters.
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Figure 6. The three panels show the filtered RBT signal (black solid) and the GDP change (blue dashed) at the Cologne, Koblenz and Worms.

This a case study for the Rhine catchment area but the model can be used in any river system around the globe. Catchment area

data and reanalysis Ta data are globally available. Morrill Jean et al. (2005) show a linear Ta→ Tw relationship for 43 rivers

with various catchment areas in the subtropics. This could indicated that this case study of the Rhine can be applied globally.

There is a lack of studies on the Ta→ Tw relationship in the tropics, where precipitation and extreme evens, such as monsoon,

could complicate this relationship. Future calculations could be coupled with catchment wide hydrological models to improve5

the accuracy of the time lag.

Using Tc we regress four Tw time series (Basel, Worms, Koblenz and Cologne) along the Rhine. The offset in the this regression

a1, which we call RBT and its change over time is an indicator for anthropogenic heat input. The RBT can be correlated with

long term economic changes such as the decrease of nuclear power production as well as short term economic events. We

showed that change in production rates (oil refineries), a change in GDP can influence the RBT and therefore the Rhine water10

temperature. Also a statistical correlation supports the connection between RBT and GDP. This case study could be on one

hand a tool for understanding the long term consequences of industrial water use and on the other hand a verification tool for

reported heat input. Germany has a rigorous reporting system on cooling water use. However, other countries could check if

industrial heat input is in accordance with legislative guidelines.

(Hardenbicker et al., 2016) estimate, using a physical model (QSim), that between the reference period of 1961-1990 and the15

near future 2021-2050 the mean annual Tw of the Rhine could increase by 0.6 oC-1.4 oC. This trend can be supported by our

historical data, however they use a constant anthropogenic heat input. Differences along the Rhine might be introduced by a

change in anthropogenic heat input. The difference of the Tw warming rate between Basel and the other monitoring stations can

be explained by the change in nuclear power production and the influence of general industrial production. This could mean

that with rising Ta and the linear correlation between Ta→ Tw, industrial production and power production have to be more20

closely connected with river water temperature management. For the Rhine river we find a decreasing, except for Basel, RBT.
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Figure A1. The relative contribution of a2 to the variation in Tw at the four monitoring stations.

Figure A2. The relative contribution of a2 to the variation in Tw at the four monitoring stations.

However, other river catchment areas with growing energy intensive industries could experience a larger warming rate than it

is caused by the general increase of Ta experiencing all consequences for the physical, chemical and biological processes.

Appendix A: Regression coefficients

In Sec. 3.2 regression coefficients a1−3 were calculated by regressing Tw by Tc and Q. The regression was done on a two-

year window with a step size of one month. Fig. A1 shows the evolution of the regression coefficients at all four monitoring5

stations for the Time-lag+ weight scenario, as an example. Fig. A2 shows a2 (meteorology) in relation to both environmental

influences a2+a3. The y-axis percentage gives an indication, how much influence a2 has on the variations of Tw. The remaining

percentage to 100 % can be attributed to a3 (hydrology).
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name country river conversion factor const. heat input

Beznau I+II CH Aaare 3 N/A

Biblis I+II DE Rhine 2 N/A

Cattenom I-IV DE Mosel N/A 200 MW

Fessenheim I+II FR Rhine 3 N/A

Goesgen CH Aare N/A 50 MW

Grafenrheinfeld DE Main N/A 200 MW

Leibstatt CH Rhine N/A 50 MW

Muehleberg CH Aare 3 N/A

Neckarwestheim I+II DE Neckar 1 N/A

Obrigheim DE Neckar 3 N/A

Philippsburg I+II DE Rhine 1 N/A
Table B1. NPPs included in this manuscript. The coversion factor describes the conversion from electrical power generation to heat input. If

cooling towers are installed a constant heat input was used based on Lange (2009).

Appendix B: Nuclear Power Plants and Output

Following NPPs were included in the heat input calculation(Tab. B1). The conversion factor is used to convert electrical

produced power to heat input. NPPs with an exclusive river water cooling system have a conversion factor of three, which is

based on the power efficiency of electricity generation. Other factors are estimated depending on the used cooling system.
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