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Abstract. River temperature is an important parameter for water quality and an important variable for physical, chemical and

biological processes. River water is also used by production facilities as cooling agent. We introduced a new way of calculating

a catchment-wide air temperature using a time-lagged and a weighted average. Regressing the new air temperature vs river

water temperature, the meteorological influence and the anthropogenic heat input could be studied separately. The new method

was tested at four monitoring stations (Basel, Worms, Koblenz and Cologne) along the river Rhine and lowered the root-mean-5

square error of the regression from 2.37 oC (simple average) to 1.02 oC. The analysis also showed that the long-term trend

(1979-2018) of river water temperature was, next to the increasing air temperature, mostly influenced by decreasing nuclear

power production. Short-term changes on time scales < 5 y were connected with changes in industrial production. We found

significant positive correlations for the relationship.
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1 Introduction

River water temperature (Tw) greatly influences the most important physical and chemical processes in rivers and is a key

factor for river system health (Delpla et al., 2009). Tw also confines animal habitats (Gaudard et al., 2018; Isaak et al., 2012;

Durance and Ormerod, 2009), regulates the spread of invasive species (Wenger et al., 2011; Hari et al., 2006) and is therefore

an important ecological parameter. River water is not solely important from an environmental perspective but is also of very15

significant interest for economy. Especially for energy intensive industries such as power plants, oil refineries, paper or steel

mills, river water is an important resource. Its availability is a basic requirement for the facilities location (Förster and Lillies-

tam, 2010). As a cooling agent, given a 32 % energy efficiency, 68 % of the energy is discharged through the cooling system

into the respective stream (Förster and Lilliestam, 2010). This leads to a significant heat load even on large rivers such as the

Rhine (IKSR, 2006; Lange, 2009). As a consequence, anthropogenic effects such as industrial heat input, river regulation or20

stream-side land change can contribute significantly to the heat budget of a river and furthermore on Tw (Cai et al., 2018; Gau-

dard et al., 2018; Råman Vinnå et al., 2018). The natural influences on Tw are: [1] Meteorology, including sensible heat flux,

latent heat flux, radiative heat fluxes; [2] source temperature, which describes the origin of the water, e.g. snow-fed, glacier-fed,

groundwater-fed; [3] hydrology, which influences the water temperature through the amount of water and the flow velocity;
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together with the change in riparian vegetation; [4] ground heat flux.25

Dependent on data availability, computing power, accuracy and the questions asked, Tw can be modeled in different ways. The

common options are statistical models and physical based models.

A physical based Tw model (Sinokrot and Stefan, 1993) usually parameterizes or estimates the meteorological and ground

heat fluxes and adds anthropogenic heat input. Each modeled heat flux is then applied to the water mass, initialized with the

starting and boundary conditions of source temperature and discharge. However, it is difficult to get a good estimation of these30

different terms over a larger catchment area. Hybrid models are in between physical based and statistical models. They use

physical formulation of fluxes but determine their parameters stochastically (Piccolroaz et al., 2016). Hybrid models can re-

produce river water temperatures better than simple statistical models ( e.g. linear regression) (Toffolon and Piccolroaz, 2015).

Their approach includes more parameters and thus, is more complex. However, a simple hybrid model with three parameters

is comparable to a statistical model with the same number of parameters. Statistical models use air temperature (Ta) as a proxy35

for sensible, latent and radiative heat fluxes (ground heat flux can be neglected) and establish a Ta→ Tw relationship through

regression. Ta is rather easily available from meteorological networks or reanalysis products. This is an established method

and depending on the complexity, linear or exponential models are used (Stefan and Preudhomme, 1993; Mohseni et al., 1998;

Koch and Grünewald, 2010). Generally exponential models delivers better results with temperature extremes. However, they

lack the distinct separation between contribution to Tw from anthropogenic heat input and natural influences. Using linear40

models, Markovic et al. (2013) show that between 81 % - 90 % of the Tw variability can be described by Ta. Furthermore,

the authors showed that 9 % - 19 % can be attributed to hydrological factors (e.g. discharge). The study was conducted for the

Danube and Elbe basins using data from 1939 - 2008. These two rivers have comparable discharges and catchment areas to the

Rhine river, which could mean his results are transferable. These, although simple, linear models are able to clearly separate

the different influences on Tw. Another development are spatial statistical models. They correlate various landscape variables45

(e.g. elevation, orientation, hill shading, river slope, channel width, ...) across the catchment area and aim to statistically de-

termine their influence on Tw at a certain point. These correlations can be across any distance and do not have to satisfy flow

connection or direction in the river system. As a prerequisite, a detailed knowledge about the river system and its character-

istics is needed (Jackson et al., 2017a, b). An improvement to spatial statistic models was to recognize rivers as a network of

connected segments with a definite flow direction (Hoef et al., 2006; Hoef and Peterson, 2010; Isaak et al., 2010; Peterson and50

Hoef, 2010; Isaak et al., 2014). Correlation of the variables (e.g. Ta, Tw discharge, ...) which influence other Tw, is weighed on

their flow connectivity and euclidean distance or flow distance. These models can also include time-lag considerations using

temporal auto correlation (Jackson et al., 2018). Artificial Neural Networks (ANN) are a subset of the statistical models and

used when an incomplete understanding of most contributing processes is given (Hassoun, 1995). ANN use a sample data-set

to train artificial neurons the relationship between input (e.g. air temperature) and output (Tw) (Zhu et al., 2018).55

We used a simple linear regression model (transferable to other streams) to investigate the temperature changes of the Rhine

river over 40 years, which had been influenced by 12 nuclear power plants (NPP) along the river Rhine. These NPPs had

caused, for decades, the largest part of anthropogenic heat input (Lange, 2009). The nuclear power production increased in

the 1970s and 1980s and reached a peak in the mid 1990s. After the Fukushima disaster (2011), the German government de-
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cided to exit nuclear power production and first NPPs were shut down. After this political decision a distinct drop on nuclear60

power production was visible, on top of already decreasing production rates. By July 2019 eight NPPs remained operational

in the catchment area of the Rhine using (partly) river water as cooling agent. In this publication, we hypothesized that, next

to environmental factors, the long-term decrease of power production, which is coupled to a decreasing use of river water as

cooling agent, has a long-term (> 10 y) impact on Tw of the Rhine. Short-term economic changes, observable in the change

of the gross domestic product (GDP), may influence Tw on shorter time scales (< 5 y). As several industrialized hot-spots are65

present along the river, this impact might be spatially heterogeneous. Using the nuclear power production and GDP data, we

also investigated the varying anthropogenic impact on Tw along the Rhine at four monitoring stations (Basel, Worms, Koblenz

and Cologne).

2 Methods

We investigated the change in anthropogenic heat input and its spatial and temporal heterogeneity along the Rhine combining70

ideas from spatial correlation models to develop a new method of calculating a representative catchment air temperature (Tc). Tc

and discharge at the measurement stationQwere used in a multiple linear regression Tc→ Tw (Eq. 1). The resulting regression

coefficients a1, a2 and a3 describe the magnitude of the respective influences (anthropogenic heat input, meteorological and

hydrological).

Tw = a1 + a2 ·Tc + a3 ·Q (1)75

Using an improved calculation method for Tc, which includes catchment-wide averaging with river-size weighing and a time-

lag, the regression should deliver a better estimate for a1, a2 and a3.

The model was run on a Tw time series from 1979 to 2018 measured at four Rhine stations (Basel (CH), Worms (DE), Koblenz

(DE) and Cologne (DE)). From 1979 to 2018 several changes in anthropogenic heat input to the Rhine catchment area occurred,

making it an interesting data-set to be studied. Webb et al. (2003); Markovic et al. (2013) have shown thatQ is inversely related80

to Tw and an important factor in the Tc→ Tw relationship. Additionally, it may function as a measure of how fast the water

mass responds to changes in Tw. Ground heat flux, ground water influx and heat generation due to friction were not included

in this model because of the comparable small influence (Sinokrot and Stefan (1993) for the Mississippi; Caissie (2006) as

review article).

Using the multiple regression (Eq. (1)), we especially investigated the change of a1 over time, which we call in this study the85

Rhine base temperature (RBT). This temperature represents Tw without the influence of meteorology (Ta) and discharge (Q).

RBT was defined to be an indicator for industrial heat input and the use of Rhine water as cooling agent, in case both are mostly

independent of Ta and Q.
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station stream km time period important tributary upstream data-provider

Basel KM 171 1.1.1977-31.12.2018 Aare BAFU (2019)

Worms KM 443 1.1.1971-31.12.2018 Neckar LfU (2019)

Koblenz KM 590 1.1.1978-31.12.2018 Main BfG (2019)

Cologne KM 688 1.1.1985-31.12.2018 Mosel WSA (2019)
Table 1. Monitoring stations used in this study from Switzerland (Basel) to the lower Rhine region (Cologne, Germany). The location as

Rhine km, the time-period, the important upstream tributary and the data-source are listed.

2.1 Water temperature and discharge

We used a data-set of daily averaged Tw and Q from 1979-2018 provided by (WSA, 2019; BfG, 2019; LfU, 2019; BAFU,90

2019). The original data-sets had a 10 min sample frequency and were averaged to a daily output. Table (1) lists the respective

stations along the Rhine, stream km, data availability, the important tributaries upstream and the data-provider. Tw was mea-

sured by platinum resistivity sensors (Pt100). The accuracy of theses sensors is commonly ±0.5 oC but the precision, which

describes the ability to detect temperature changes, is 0.05 oC. As we focused on the change of Tw over time and did not

compare the absolute temperature, the accuracy was not essential and the precision of the sensors was sufficient for this study.95

Measurement uncertainties (e.g. depth and location of the sensor) were not influencing the calculation, regarding the aim of

this study, as long as the measured Tw was a linearly dependent proxy for the average river temperature. Q was provided as

daily averages in m3 s−1 by the source in Tab. (1) and usually calculated from a river stage nearby.

The original data-sets were provided by state and federal operated monitoring stations which usually run backup measurement

systems. They verified the data and we additionally screened the data-set for suspicious features. Missing data points up to one100

week were linearly interpolated. Longer or recurring data-outages were not given.

2.2 Air temperature

Ta is retrieved from the European Centre for Medium-Range Weatherforcast (ECMWF) Reanalysis Model ERA5. It provides

an hourly time resolution of the 2 m Ta on a 1
4

o by 1
4

o grid. The data-set is available from 1979-2018. We took the hourly Ta

output and calculated a daily mean for each grid point between 1979 and 2018 to fit the time resolution of Tw.105

2.3 Nuclear Power Plants

The annual electrical power production (EPP) by NPPs is available from the International Atomic Energy Agency (IAEA)

Power Reactor Information System (IAEA, 2019). 12 NPPs (1986-1988) were online in the Rhine catchment area and eight

remained operational by July 2019. All shutdowns were undertaken in Germany. In this study separate reactor blocks of the

same plant NPP were combined.110

The heat input (HI) by NPPs to the Rhine was calculated for each monitoring station using the conversion factor c and the

yearly EPP, Eq. 2. NPPs with an exclusive river water cooling system have a conversion factor of three, which is based on
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Figure 1. Heat input by upstream NPP from 1969 to 2018 at each monitoring station.

the power efficiency of electricity generation (Lange, 2009). Other factors are estimated depending on the cooling system and

personal communication with technicians from NPPs. If no conversion factor was available a constant HI was assumed (Lange,

2009).115

HI[GW ] =
c ·EPP [GWh]

365 · 24[h]
(2)

The NPPs, their conversion factor and if applicable the constant HI are shown in Tab. 2. The time series of upstream HI by

NPPs for each monitoring station is shown in Fig. 1.

Calculated temperature change

We calculated the expected change ∆Tw based on a change in HI (∆ HI) by NPPs using the average discharge Q̄, the heat120

capacity of water cp and the water density ρ, Eq. (3).

∆Tw =
∆HI

cp · Q̄ · ρ
(3)

This approach follows the idea that the contribution of NPPs significantly alters the Tw and only influences the RBT fraction.

2.4 Gross domestic product

The GDP for the adjacent German federated states is obtained from VGdL (2019a, b). Due to changes in the calculation method125

of the GDP before and after the German reunification (1990), two separate data-sets were used. For this study only the GDP-

change of the secondary sector (construction and production) was taken into account.

The RBT, if compared to the GDP, was filtered using a 10th order butterworth bandpass filter. The sampling rate of the GDP

was 1 y−1. We used 1.1 y−1 as higher and 0.05 y−1 as lower cutoff frequencies for RBT. This means that signals with a
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NPP country river conversion factor const. HI

Beznau I+II CH Aaare 3 N/A

Biblis I+II DE Rhine 2 N/A

Cattenom I-IV DE Mosel N/A 200 MW

Fessenheim I+II FR Rhine 3 N/A

Goesgen CH Aare N/A 50 MW

Grafenrheinfeld DE Main N/A 200 MW

Leibstatt CH Rhine N/A 50 MW

Muehleberg CH Aare 3 N/A

Neckarwestheim I+II DE Neckar 1 N/A

Obrigheim DE Neckar 3 N/A

Philippsburg I+II DE Rhine 1 N/A
Table 2. NPPs included in this study. The conversion factor describes the conversion from EPP to HI. If cooling towers are installed a

constant heat input was used for the calculation based on Lange (2009).

periodicity larger than 20 y and lower than 0.9 y were excluded from calculations and display. The reasoning was to make the130

RBT data comparable to the yearly data of the GDP-change. The low frequency cutoff was canceling long-term trends as the

GDP-change was only related to the previous year. The high frequency cutoff was used to dampen fast alternating RBT signals

in comparison to the slow sampled GDP data.

2.5 Rescaled adjusted partial sums

Rescaled adjusted partial sums (RAPS) were used to visualize trends in time series which may not be clearly visible in the135

unprocessed data-set. Equation (4) shows the calculation of the RAPS index X using a time series Y.

Xk =

i=k∑
i=1

Yi−Y
σY

(4)

Y is the average over the total time series, σ is the standard deviation of the whole time series, Yi is the ith data-point in Y .

A change in the slope of the RAPS index only indicates a change in the slope of the original time-series. A negative RAPS

slope does not indicate a negative slope in the original time series. Garbrecht and Fernandez (1994) and Basarin et al. (2016)140

used this method to investigate trends in hydrological time series.

2.6 Catchment area

The catchment area was calculated using the Hydrosheds database (Lehner et al., 2008). The 1
125

o by 1
125

o gridded data-set

provides information, at each grid point, to which cell the water of a grid cell is drained. By selecting a starting location, e.g.

Koblenz at 50.350o N and 7.602o E it was possible to iteratively identify all grid points draining into this location. These grid145

points represent the catchment area of this location (in the example from Fig. (2) Koblenz). By counting the iteration steps,
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Figure 2. Catchment area of the Koblenz monitoring station as an example. The colors show the hydrological distance between the monitoring

station and each grid point of the catchment area. The second y-axis shows the time it takes in days, in our set-up, to flow from a certain grid

point to the monitoring station based on the hydrological distance. The flow speed is 0.4 m s−1 and was defined to be constant in space and

time. All monitoring stations are marked by X. The other markers show the location of the NPPs.

the distance a water drop travels to reach the monitoring station Koblenz was determined. This was done for each of the four

stations. Additionally, the accumulation number ACC was obtained from the data-set. It defines how many cells in total were

draining into a particular cell and it is a measure for the size of a river. Finally, a grid, which defines the catchment area, the

ACC and the hydrological distance was established spanning the whole catchment area. Figure (2) shows the catchment area,150

the hydrological distance and the calculated flow time to the Koblenz monitoring station.

The ACC displays is the number of grid points which were hydrologically connected to this specific grid point. Figure 3 (top

panel) shows the distribution of the ACC. Large rivers, which have a large ACC number, such as the Rhine, Main, Neckar are

easily visible due to their green to yellow color.

2.7 Multiple regression155

A multiple linear regression was used to separate the anthropogenic heat input a1, meteorological a2 and hydrological a3

contributions to the river water temperature. Tw was regressed with Tc and river discharge Q. Their regression coefficients

a2 (Tc slope) and a3 (Q slope) represent the magnitude of the respective influences. The offset a1 (RBT) combines all other

influences which were not related to a change in Tc or Q. We hypothesized that the RBT is directly linked to heat input by

power plants, in this study NPPs, and other industrial facilities.160
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Instead of taking Ta directly at the monitoring station, we improved Eq. (1) by a time-dependent and weighed average of Ta

(x,y,t) over the whole catchment, Eq. (5). (x,y) were spatial coordinates in the catchment area and the subscript 0 marks the

location of the monitoring station.

Tw (x0,y0, t0) = a1 + a2 ·Tc (x0,y0, t0 + ∆t(x,y)) + a3 ·Q(x0,y0, t0) (5)

The new representative catchment temperature was called Tc (x0,y0, t0). It was a weighed average of the whole catchment area165

(x,y) which is defined by the measurement point (x0,y0). The difference between the measurement time t0 and the reading

of Ta is called time-lag ∆t(x,y) and depends on the hydrological distance between the measurement point and the reading.

∆t(x,y) is negative and points to a moment in time before the measurement.

2.7.1 Time-lag

A change in Tw is slower than a change in Ta. The time-lag ∆t describes this lagging and is commonly used in water temper-170

ature models.

A reason for the occurrence of ∆t is that the water mass’ mixing capability, heat capacity and surface area cause a strong

thermal inertia. Changing Tw through new meteorological conditions and heat fluxes take time. Therefore, linear as well as

exponential models include either a fixed ∆t for Ta (Eq. 6) or an average of Ta including a time span before (Eq. 7) (Stefan

and Preudhomme, 1993; Webb and Nobilis, 1995, 1997; Haag and Luce, 2008; Benyaha et al., 2008).175

Tc (x0,y0, t0) = Ta (x0,y0, t0 + ∆t) (6)

Tc (x0,y0, t0) =

t=t0+∆t∑
t=t0

Ta (x0,y0, t) (7)

A second reason for a mismatch is advection. Rivers, in this case the Rhine, exhibit current velocities which enable its water

to cover significant distances on time scales larger than days. Therefore, it is necessary to take the change of Ta, in space and180

time, during advection into account. This is especially important for daily averaged Tw (Erickson and Stefan, 2000). Pohle

et al. (2019) average eight days of hydroclimatic variables over the whole catchment area, Eq. (8). However, this approach

does not include the characteristics of flow path and flow speed.

Tc (x0,y0, t0) =

x=n,y=m,t=t0−8∑
x=0,y=0,t=t0

Ta (x,y, t) (8)

We combined the general idea of a time-lag and averaging Ta over the whole catchment area (Eq. 6, 7 and 8), but in this study185

each grid point was linked to a specific time-lag ∆t(x,y), which is dependent on a fixed flow speed v and the hydrological

distance s(x,y) to the measurement point, Fig. (2). The distance was obtained from the discharge map (Sec. 2.6) and calculated

with v as described by Eq. (9). The new ∆t(x,y) represents the mismatch by advection but not specifically the mismatch

through thermal inertia. The thermal inertia would be independent of s(x,y) and a constant added to ∆t. However, we are of
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∆t [d] weighing factor distance from

measurement point [km]

0 1 0

-1.01 0.96 35.1

-2.00 0.92 69.6

-5.02 0.81 174.6

...

-13.01 0.50 452.5

...

-26 0 904
Table 3. Weighing factors for the distance and the resulting ∆t for the monitoring station Koblenz. ∆t is calculated from distance and flow

speed, Eq. (9). The weighing coefficient is linearly correlated to the ∆t.

the opinion, that a sufficient part of the thermal inertia time-lag was included in our representation of ∆t(x,y).190

∆t(x,y) =−s(x,y)

v
(9)

2.7.2 Weighing coefficients

Tobler (1970) proposed that close spatial and temporal conditions tend to be higher correlated than those further away. This

led to the introduction of the weighing factor w. A linear decreasing weighing factor from 1 to 0 was used. 1 marks the grid

point closest (smallest ∆t) to the monitoring station and 0 the point farthest away (largest ∆t). As the size of the catchment195

areas were different for the four monitoring station, four weighing coefficient tables were calculated. As an example, Table (3)

shows the weighing coefficient for Koblenz.

A catchment-wide hydrological flow model, estimating the flow speed at every grid point for every hydrological scenario,

was not used. It had not been available yet for every grid point of the catchments and the the focus of this study was to create

a simple set-up, also transferable to other river catchments. Therefore, it was decided to work using a constant flow speed of200

0.4 m s−1 . This flow speed was determined by calculating the RMSE (whole data-set) of theACC+∆tmodel with a step wise

reduction of the flow speed from 1.4 m s−1 to 0.3 m s−1. The lowest RMSE was obtained at Koblenz at 0.4 m s−1. The RMSE

and NSC coefficients at all flow speeds and all stations are shown in the supplement. For Basel and for Worms slower flow

speeds would lower the RMSE further. We did not include this as it would create unreasonable low flow speeds. The reason

for the small flow speeds, with lowest RMSE, might be the thermal inertia. As thermal inertia is not explicitly represented in205

∆t (Eq. 9) a smaller flow speed could compensate for that, especially in smaller catchment areas.

The weighing coefficient w is combined with ACC. ACC is used as a second coefficient which over-weighs grid points with

large accumulation and therefore large water masses. This ensures a balance between the large number of low ACC grid

points, which carry less water, and the influence of Ta on large water masses. Figure (3) (bottom panel) shows ACC ·w over

the whole catchment area of Koblenz.210
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The grid points were binned according to their ACC value. A high bin represents large rivers, a low bin their tributaries. The

reason was to investigate the importance of different ACC bins to the total Tc calculation. The ACC bin with the largest

contribution in Fig. (4) was normalized to one making it a relative contribution. The red bars (Fig. (4)) show the relative

contribution (y-axis) of each ACC bin by the number of grid points in this bin only, no ACC ·w weighing was applied. The

results showed that the large number at low ACC bins (small water mass) have a larger influence compared to the rather low215

numbers at high ACC bins (e.g. large water masses, rivers, lakes). The difference in relative contribution is four powers of

magnitude. The white bars show the relative contribution using the number of grid points in the bin and the ACC ·w weighing.

This distribution delivered rather equal importance to all grid points as it puts more weight on grid points covering lakes and

rivers. The average difference in relative contribution is about one power of magnitude.

220

2.7.3 Tc

Combining ∆t, ACC ·w weighing and the gridded temperature reanalysis data of Sec. (2.2), we proposed a new 3D (x,y, t)

averaging of Ta shown in, Eq. (10).

Tc (x0,y0, t0) =
1

n ·m
1∑

w (∆t(x,y)) ·ACC (x,y)

x=n,y=m∑
x=1,y=1

w (∆t(x,y)) ·ACC (x,y) ·Ta (x,y, t0 + ∆t(x,y)) (10)

Tc (x0,y0, t0) was calculated by weighed (ACC ·w) averaging Ta (x,y, t+ ∆t(x,y)) over all grid points of the catchment area225

(x=1,...n y=1,...m) which was set by the measurement point (x0,y0). The time-lag ∆t was an estimate for the time it takes for

a water droplet from a specific grid point (x,y) in the catchment area to the measurement location.

Based on Eq. (10), the daily Tc was calculated for each monitoring station. This temperature represents the meteorological

influence all water droplets have experienced on their way to the monitoring station and is subsequently used in the multiple

linear regression.230

2.7.4 Tc calculation methods

Additionally, we used these four calculations methods [1] w+ ∆t; [2] avg+∆t; [3] avg; [4] point, to compare their results of

the linear regression to the calculation proposed in Eq. (10).

[1] w weight (Eq. 11) and time-lag only.

Tc (x0,y0, t0) =
1

n ·m
1∑

w (∆t(x,y))

x=n,y=m∑
x=1,y=1

w (∆t(x,y)) ·Ta (x,y, t0 + ∆t(x,y)) (11)235

[2] No weight, only time-lag, Eq. (12).

Tc (x0,y0, t0) =
1

n ·m

x=n,y=m∑
x=1,y=1

Ta (x,y, t0 + ∆t(x,y)) (12)
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[3]A mean Ta(x0,y0, t0) over the whole catchment area at the time t0 of the measurement, Eq. (13). ∆t was not used.

w (x,y) = 1 Tc (x0,y0, t0) =
1

n ·m

x=n,y=m∑
x=1,y=1

Ta (x,y, t0) (13)

[4]Ta(x0,y0, t0) at the location x0,y0 and time t0 of the measurement, Eq. (14).240

Tc (x0,y0, t0) = Ta (x0,y0, t0) (14)

3 Results

3.1 Water temperature time series

To investigate the long-term change over time, we fitted a time dependent linear function to the time series of Tw and Ta (catch-

ment average) of all four monitoring stations (Basel, Worms, Koblenz and Cologne). The same was also done, when all four245

monitoring stations had an overlapping data-set (1985-2018), Tab. (1). The left column of Fig. (5) presents the yearly averaged

Tw and the linear fits for the two time periods. The average Ta of the catchment area is also shown. In the right column of Fig.

(5) the RAPS index of Ta as well as Tw is shown. The fit coefficients and the rate of warming per year are displayed in Tab.

(4).The calculated Ta increased in the catchment area of all monitoring stations and the respective slopes are shown in column

four and five of Tab. (4).250

Figure (5) and Table (4) show that the change of Tw was found to be heterogeneous along the Rhine. The slope at Basel is

approx. six times higher (0.049 oC y−1) than the one in Cologne (0.0084 oC y−1), comparing only the overlapping data-set.

However, during the same period Ta (0.05 oC y−1 Basel, 0.05 oC y−1 Cologne) display similar behavior at these two stations,

which is an indication of similar meteorological influence. The Tw warming rate from 1985-2018 for Worms and Koblenz are

in between those from Cologne and Basel. These two stations show similar Ta warming rates compared to Basel and Cologne.255

Generally, the Ta warming rates are less than 5 % different from each other. Arora et al. (2016) showed a mean Tw warm-

ing rate of north and north-east Germany rivers of 0.03 oC y−1 (1985-2000) and 0.09 oC y−1 (2000-2010). Regarding our

time-period (1985-2010) these values are plausible. Basarin et al. (2016) found a maximum increase of Tw at the Danube at

Bogojevo (1950-2012) of 0.05 oC y−1 which is matching the maximum increase at Basel. Ta increased by 0.02 oC y−1 between

1985-2010 in the study by Arora et al. (2016). We found a steeper slope at all stations. The reason could be the hiatus of global260

warming (Hartmann et al., 2014), which is a flattening of the Ta increase between 1998-2012. This period is fully included in

the Arora et al. (2016) and our data-set but we investigated further until 2018, when the warming of Ta has already increased

again (Hu and Fedorov, 2017). Michel et al. (2020) investigated Tw at 52 river gauges in Switzerland representing most of the

Rhine catchment area at Basel. The authors reported an average Tw increase at the 52 stations of 0.037 oC y−1 (1998-2018)

and 0.033 oC y−1 (1979-2018). Ta increased 0.039 oC y−1 (1998-2018) and 0.046 oC y−1 (1979-2018). Comparing this to265

our results at Basel, the Ta warming rates are similar. The difference might originate from the use of meteorological stations

nearby river gauges only (Michel et al., 2020) instead of a reanalysis product. The difference of Tw warming (approx. 0.021 oC

y−1) could be interpreted that most warming might occur in the broader vicinity before the Basel monitoring station.
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station slope Tw whole data-set corr. Tw↔ Ta slope Tw 1985-2018 corr. Tw↔ Ta slope Ta whole data-set slope Ta 1985-2018

[oC y−1] whole data-set [oC y−1] 1985-2018 [oC y−1] [oC y−1]

Basel 0.054,R2 = 0.66 0.867 0.049,R2 = 0.38 0.874 0.050,R2 = 0.48 0.050,R2 = 0.32

Worms 0.055,R2 = 0.52 0.690 0.035,R2 = 0.38 0.729 0.050,R2 = 0.20 0.048,R2 = 0.36

Koblenz 0.033,R2 = 0.31 0.778 0.024,R2 = 0.38 0.762 0.052,R2 = 0.11 0.048,R2 = 0.36

Cologne 0.008,R2 = 0.001 0.499 0.008,R2 = 0.31 0.499 0.050,R2 = 0.001 0.050,R2 = 0.31

Table 4. Slope of linear fits and Pearson’s correlation coefficients to the daily temperature data at the four monitoring stations. The data-set

used is described in the column header. Next to the slope values are the R2 values, which are statistically significant if R2 > 0.19

The R2 values make differences between the four monitoring stations visible. Basel exhibits the largest R2 values and these

are consistently high for Ta and Tw. This is in contrast to the station Cologne, where R2 of Tw was low and statistically270

not significant. The slope of Ta at Cologne is lower than at the other stations but still statistically significant. The Pearson’s

correlation coefficients between Ta and Tw were lowest at Cologne and largest in Basel. For Ta the RAPS index of all mon-

itoring stations showed four concurrent sections (start-1987; 1987-2000; 2000-2014; 2014-end). Their borders are marked by

the blue triangles in Fig. (5). The section between 2000-2014 could be a consequence of the hiatus of global-warming between

1998-2012 (Hartmann et al., 2014). Each section represent slope changes of the RAPS index and indicate trend changes in the275

original time-series. The Tw RAPS index for Basel displayed the same pattern of sections as the Ta index. All other stations

showed other RAPS Tw to RAPS Ta patterns. This means that the Ta and Tw trends of the original time-series were different

at these stations. Ta can not fully describe the trends in Tw.

We hypothesized that different meteorological conditions were not the reason for this difference. Meteorological differences

should have also been visible in the Ta warming rate of the four stations, which was not the case. The RAPS analysis for Ta280

and Tw only coincided within the Basel data-set.

3.2 Regression

We fitted the multiple regression model (Eq. 5), using Tc and Q to Tw of each monitoring station for the available data-

set. Afterwards, we recalculated Tw,modelled using the regression coefficients a1, a2 and a3. From the comparison between

the Tw,modelled and measured Tw, the root mean square error (RMSE) and the Nash-Sutcliffe coefficient (NSC) for each285

monitoring station was derived, Tab. (5). To support the introduction of weighing coefficients ACC ·w and ∆t, we compared

five different calculations of Tc from Sec. (2).

Table (5) shows the RMSE and NSC values for all correlations. The lowest (RMSE) and highest (NSC) values were displayed

in bold, Tab. (5). The lowest RSME was found to be 1.02 oC for ACC ·w+ ∆t (row one) at the Koblenz station. At this

location also the largest NSC of 0.97 appeared. The flow speed was optimized for lowest RMSE at the Koblenz station, Sec.290

(2.7.2). It was evident that the three methods including a ∆t have a lower RMSE (below 2.01 oC, lowest 1.02 oC) than the two

methods without a ∆t (above 2.37 oC, largest 2.97 oC). The same trend held true for NSC where the ∆t methods were above

0.90 and the other two were below 0.86. We think that the use of a catchment-wide ∆t improved the quality of the multiple
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RMSE NSC

method Basel Worms Koblenz Cologne Basel Worms Koblenz Cologne

ACC ·w + ∆t 1.65 1.24 1.02 1.31 0.93 0.96 0.97 0.95

(1) w+∆t 1.56 1.33 1.43 1.87 0.92 0.95 0.95 0.92

(2) avg+∆t 1.61 1.45 1.70 2.08 0.93 0.94 0.93 0.90

(3) avg 2.48 2.43 2.37 2.97 0.82 0.84 0.86 0.79

(4) point 2.67 2.55 2.63 2.85 0.78 0.82 0.82 0.80
Table 5. RSME [oC] and NSC for all Tc calculation methods. Different Tc calculation methods and the regressions are applied over the total

data-set. The RMSE and the NSC are calculated between Tw and Tw,modelled. The first column contains the calculation method. The best

results for each monitoring station and each calculation method are in bold.

regression analysis and delivered a significant improvement to the Ta→ Tw based modeling. Interestingly, combining ACC

and the weighing factor w provided the best estimation for all stations, except for Basel. The content of Fig. (4) could explain295

this result. Without ACC weighing small water masses (small ACC) may be over-represented in the contribution to Tc. Large

ACC grid points represent large water masses (rivers and lakes) and their influence on Ta may be otherwise underestimated.

At Basel the fraction of lowACC grid points was relatively small compared to the other stations, as Basel is closest to the

water sources and has the smallest catchment area. Therefore, the ACC weighing might have provided weaker results.

As ACC ·w+ ∆t provided the smallest RMSE, this calculation method was used for all further calculations of Tc.300

In the supplement we provide a calculation of the regression coefficients for the year 2001 only. These coefficients were then

taken as a basis to calculate Tw for each year from 2000 to 2018. The RMSE and NSC data was consistent in magnitude with

the long-term regressions of this section. The RMSE at Koblenz ranged from 0.75 oC to 1.22 oC. A lower RMSE was caused

by the shorter regression period. This supports the stability and validity of the regression model.

3.3 Rhine base temperature305

The RBT was taken to explain differences in the Tw warming rates of Tab. (4). We regressed a two-year segment of the Tw time

series and set a step size of one month in order to create a RBT time series over the full data-set. The regression of a two-year

segment should also compensate extreme events occurring during one year. These could be extreme low discharge or extreme

water temperatures, to which industrial and power production had to react. As the absolute RBT cannot be meaningfully

interpreted, only the changes of RBT over time are shown in Fig. (6). We subtracted the last data point of each time series from310

the rest of the data and showed the change of RBT, a four-year running mean and ∆ RBT (Eq. 3) vs time. The HI by NPPs is

shown as a dotted blue line with the y-axis on the right (Fig. (6)).

3.3.1 Long-term trend

In this study, long-term trends were visible on time scales of decades. The HI by NPPs, the four-year running mean RBT and

∆RBT followed a similar trend in this analyis, Fig. (6). After the maximum heat discharge from NPPs between 1996-1998,315
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name period ∆RBT from data-set ∆Tw from Eq. (3) ∆HI [GW]

Basel 2008-2017 -0.26 0.04 0.17

Worms 1996-2017 1.29 1.19 7.14

Koblenz 1999-2017 1.59 1.45 10.5

Cologne 1998-2017 1.21 1.55 10.7
Table 6. Change of RBT (column three) in the time period given in column two. The start of the period indicates the maximum HI of NPPs

at the respective monitoring station. The calculated ∆Tw (column four) and the change in HI by nuclear power plants (column five) are also

provided. The calculations were done using Eq. (3)

the HI as well as the RBT of Worms, Koblenz and Cologne declined. The RBT started its decline 1-2 years before 1995, which

might have been triggered by the recession in 1993 and a sharp drop in the German trade-balance. At Basel the RBT as well

as the HI remained comparably constant. Additionally, we calculated ∆Tw based on the change in HI, using Eq. (3), at every

station and compared it to the ∆RBT from the regression model, Tab. (6). The period for each monitoring station starts at the

maximum HI by NPPs for the respective station and ends in the year 2017.320

At Basel, both simulated and calculated RBT changes were negligible due to the lack of change in HI. At all other stations, the

change in HI was reflected in the change of RBT. The maximum difference between simulation and calculation was found to be

0.34 oC. Before 1995 Worms, Koblenz and Cologne showed an approx. 1 oC offset between ∆RBT and ∆Tw (Fig. (6)). This

was occuring during a time when the NPPs HI remained relatively stable but the GDP increased by 30 % between 1985-1995

(Worldbank, 2020). The change in nuclear power production over a time period of 30 years or more can explain changes and325

the heterogenous warming rates of Tw along the river Rhine. NPPs may also impact Tw at much shorter time scales but do not

change their power output accordingly.

3.3.2 Short-term trend

Short-term changes (< 5 y) in RBT (Fig. 6) are not likely to be influenced by the overall HI from NPPs, as these adopt330

production at longer time scales. More important are local industrial conditions, which could also include fossil fuel power

plants. However, not all influences to the coefficient a1 and subsequently to RBT originate from industrial production. Various

potential influences are unknown and not within the scope of this publication.

For Basel, it was not possible to satisfyingly explain the short-term variations. The Rhine and its tributaries upstream are flowing

through sub-alpine lakes and, in relation to the downstream part, are not strongly industrialized. Lakes have a complicated heat335

budget (Råman Vinnå et al., 2018), which was not focused on in this analysis.

For all other stations, we hypothesized that local production facilities and their HI into the Rhine are responsible for the short-

term changes by comparing the RBT time series to economic data. Figure (7) shows the comparison of RBT (black line, one

year running mean) vs the changes in the GDP (blue line). A discontinuity in the GDP at 1991 is visible, due to the German

reunification, when the calculation method of the GDP changed. Therefore the data was plotted as separate lines. For Worms340
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(Fig. 7, bottom panel) we added the change of turnover of the BASF company (red dashed line (AG, 1989)). BASF is a major

chemical company and one of its largest production facility, with an estimated HI of 500 MW to 1 GW, is located 12 km

upstream (km 431) from the Worms station. It was investigated if the production and HI changes of this factory were also

visible. In 1985, although the change in GDP did not indicate a large RBT change, a RBT decrease was visible. This was

indicated by a turnover decrease in 1985 and 1986. After the German reunification 1990, a negative GDP change (recession)345

was evident. This was followed by a BASF turnover decline as well as a decrease in RBT. After that, the RBT followed the

up and down movements of the GDP and so does the BASF turnover (only shown until 2000). Especially the economic events

such as the burst of the dot-com bubble (early 2000s) and the mortgage crisis (2008) were visible in the RBT and in the GDP,

when a decrease of both parameters followed. The two events are marked by triangles in Fig. (7).

Before 1990, the RBT at Koblenz did not follow the GDP trend and showed a rather anti-cyclic behavior, which can not be350

explained yet. After 1991, the RBT followed the general trend of the GDP but did not seem to be strongly influenced by the

short recession after the German reunification. Again, economic events such as the burst of the dot-com bubble (early 2000s)

and the mortgage crisis (2008) displayed an influence on the RBT.

The RBT at Cologne did not seem to be strongly influenced by the recession connected to the German reunification, but after

1999 the RBT follows the up and down trends of the GDP.355

For all monitoring stations, a red dashed line was added between 1995 and 1999. This dashed line indicates the production

rate of German oil refineries (MWV, 2003). From 1995 to 1999 German refineries ran at full capacity (100 %). Usually the

capacity levels did not exceed 90 %. The increase in production was clearly visible in the RBT ar Cologne, where a large oil

refinery is located 19 km upstream at km 671 (Rheinland refinery). The RBT at Worms and Koblenz could be influenced by

the output of a refinery next to Karlsruhe at km 367 (Mineraloelraffinerie Oberrhein).360

3.3.3 Correlation

We correlated the GDP-change and the filtered RBT signal. It was noticeable that a 480 days shift to the past was needed to

get matching trends. This means that a change in RBT or anthropogenic HI appeared about 480 days earlier than in the GDP

calculation. The shift could be caused by two reasons: [1] Using the GDP difference of two consecutive years, has a signifi-

cance at a unspecific point of time within these two years. [2] The GDP is lagging behind the real economic situation, in this365

case the industrial production. Yamarone (2012) claimed that GDP was a coincident economic indicator similar to industrial

production. However, the author used quarterly GDP calculations and in this study annual data was used. The quaterly data-set

may react faster to changes. A second thought was that (Yamarone, 2012) compared industrial production calculations, which

is an economic index, to GDP (another economic index). In this study real-time data from industrial HI into the river was

processed. This shift has not been done for Fig. (6) because a shift of 1.5 y on a 40-year time scale is negligible.370

Table (7) shows the Spearman’s rank correlation coefficients of Worms, Koblenz and Cologne for ACC ·w+ ∆t calculation

method, which resulted in the lowest RMSE in Koblenz. All correlations were found to be positive and statistically signifi-

cant (p<0.05). The correlation in Koblenz was highest. Fig. 8 shows the filtered RBT signal vs the GDP-change at the three

monitoring stations. The RBT time-series was detrended and filtered. Most of the time, the variations in the RBT (filterend
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name ACC ·w + ∆t significance

Worms 0.48 p<0.05

Koblenz 0.53 p<0.05

Cologne 0.44 p<0.05
Table 7. Spearman’s rank correlations between RBT and GDP-Change for ACC ·w + ∆t. The last column shows the significance.

and shifted) were coincident with the GDP-change. The RBT peak between 1995-1998 was not very well represented by the375

GDP-change, which has already been discussed earlier in context of Fig. 7.

4 Conclusions

We introduced a new catchment-wide air temperature Tc, which decreased the RMSE (Tab. 5) in a Tc→ Tw regression. Tc

is a weighed (ACC ·w) average of all Ta across the catchment area including the use of ∆t for each grid point according to

the hydrological distance and flow speed. In the approach, this time-lag was used as an indicator for the point in time when a380

water droplet was at a certain grid cell in the catchment area. As a result, one can get a better estimate which Ta a water droplet

experienced on its way to a certain point (in this study a monitoring station) and it delivered better linear Tc→ Tw estimates.

This improvement in the Tc→ Tw relationship may support the analysis of processes in the heat budget of rivers. Usually Ta

data is readily available and can easily be combined with Q data for multiple linear regression analysis. Still a sufficient long

(decade) time-series of Tw was required. Nevertheless a linear relationship was found to be simpler than a full physical based385

model which requires all meteorological fluxes as input quantities.

In the prove of concept, we focused on the Rhine catchment area but in principle the model can be applied to any river system

around the globe, if the respective long-term data are available. However, catchment-area data and reanalysis Ta data are often

globally available. Morrill et al. (2005) showed a linear Ta→ Tw relationship for 43 rivers with various catchment areas in the

subtropics. This potentially indicates that the proposed model and procedure can be applied elsewhere. However, this still has390

to be verified. Future calculations may be coupled with catchment-wide hydrological models to improve the accuracy of the

time-lag. The time-lag used in this study was based on try and error in search for the lowest RMSE. A detailed catchment wide

hydrological flow model would be especially beneficial to set an upper limit for the time-lag and constrain its validity. It would

also be interesting to estimate the importance of the advection time-lag vs the thermal inertia time-lag.

With Tc we regressed four Tw time series (Basel, Worms, Koblenz and Cologne) along the Rhine. The offset in the this395

regression a1, was called RBT, and its change over time was found to be an indicator for anthropogenic HI. The RBT positively

correlated to long-term economic changes such as the decrease of nuclear power production as well as to short-term economic

events. We showed that changes in production rates (oil refineries or chemical industry) as well as a change in GDP may

influence the RBT and therefore the Rhine water temperature. Additionally, the Spearman’s Rank correlation between RBT

and GDP is positive and significant, delivering another indication for the relation. This case study might deliver a tool for400

better understanding of long-term consequences of industrial water use and it might be used as a verification tool for reported
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HI. Germany has a rigorous reporting system on cooling water use. However, other countries could check if industrial HI

is in accordance with legislative guidelines, without depending on official reports. Whether the ongoing COVID-19 (2020)

pandemic and its impact on the economy is also visible using the offered procedures, may be explored after the crisis.

Hardenbicker et al. (2016) estimated, using a physical based model (QSim), that between the reference period of 1961-1990405

and the near future 2021-2050 the mean annual Tw of the Rhine could increase by 0.6 oC-1.4 oC. This trend is plausible,

according to the historical data analyzed, if the Ta increase remains constant. However, they used a constant anthropogenic

HI by e.g. power plants and production industries and different warming rates along the Rhine can result from changes in

anthropogenic HI. Next to the global air temperature increase, the industrial use of river water is advised for the future Rhine

water temperature.410

The difference of the Tw warming rate between Basel and the other monitoring stations in the time-series data can be explained

by the change in nuclear power production and the influence of general industrial production. For the river Rhine a decreasing

(except for Basel) RBT which indicates a decreasing HI, was found. Other river catchment areas with growing energy intensive

industries might be impacted by much larger warming rates than those caused by the general increase of Ta, experiencing all

consequences for physical, chemical and biological processes.415
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Figure 3. Both panels show the catchment area of the Koblenz monitoring station. Top: Number of grid points ACC flowing into each

specific grid point. Bottom: ACC ·w, distance and ACC weighed grid cells.
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Figure 4. ACC bins (x-axis) vs the relative contribution (y-axis). The grid points are binned by their ACC value. The red bars show

the relative contribution (largest contribution normalized to one) by the number of grid points in this bin only. The white bars show the

distribution using the number of grid points in this bin and weighing ACC ·w.

Figure 5. Left column: Yearly averages of water temperatures at the four monitoring stations (black line). The red-dashed line is a fit to the

available data-set. The red-dotted line is a fit to the overlapping time period (1985-2018). The blue line is the yearly average air temperature

of the catchment area.

Right Column: RAPS Tw (black) and Ta (blue) indexes. The triangle markers divide the RAPS index into sections based on a slope change

in the RAPS index. Each section also represent a trend-change in the original Ta and Tw time-series.
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Figure 6. RBT from four monitoring stations (black solid line). The red dashed line is the RBT four-year running mean. The magenta line

with the + markers shows the ∆RBT relative to the last year. The blue dotted line is the upstream HI by NPPs, Sec. (2.3).
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Figure 7. The change of RBT (black solid line) at three monitoring stations (Colgone, Koblenz, Worms). The blue dashed line is the GDP-

change of the adjacent federal states. To explain trends during two time periods the red dashed line, which is the turnover of the BASF

company, and the red dotted line, production rate of the oil refineries, were added. The triangles mark the years 2000 (burst of the dot-com

bubble) and 2008 (mortgage crisis).
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Figure 8. Detrended and filtered RBT signal (black solid) and the GDP change (blue dashed) at Cologne, Koblenz and Worms.

26


