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Abstract. River temperature is an important parameter for water quality and an important variable for physical, chemical and

biological processes. River water is also used by production facilities as cooling agent. We introduce a new way of calculating a

catchment-wide air temperature and regressing river temperature vs air temperatures. As a result the meteorological influence

and the anthropogenic influence can be studied separately. We apply this new method at four monitoring stations (Basel,

Worms, Koblenz and Cologne) along the Rhine and show that the long term trend (1979-2018) of river water temperature is,5

next to the increasing air temperature, mostly influenced by decreasing nuclear power production. Short term changes on time

scales < 5 years are due to changes in industrial production. We found significant positive correlations for this relationship.

Copyright statement. TEXT

1 Introduction

River water temperature (Tw) greatly influences the most important physical and chemical processes in rivers and is a key10

factor for river system health (Delpla et al., 2009). Tw also defines and confines animal habitats (Isaak et al., 2012; Durance

and Ormerod, 2009) and the spread of invasive species (Wenger et al., 2011; Hari et al., 2006) and is therefore an important

ecological parameter. River water is not solely important from an environmental perspective but is an important means of

production. Especially for energy intensive industries such as power plants, oil refineries, paper or steel mills, river water is

an important cooling agent. Its availability is a basic requirement for the facilities location (Förster and Lilliestam, 2010). In15

this context, one has to bear in mind, that given a 32 % energy efficiency, 68 % of the energy used in a facility is discharged

through the cooling system into the respective stream (Förster and Lilliestam, 2010). This leads to a significant heat load even

on large rivers such as the Rhine (IKSR, 2006; Lange, 2009). As a consequence, anthropogenic heat fluxes (heat discharge) can

contribute significantly to the heat budget of a river. The natural influences on Tw are: [1] Meteorology, including sensible heat

flux, latent heat flux, radiative heat fluxes; change in riparian vegetation [2] Source temperature, which describes the origin20

of the water, e.g. snow-fed, glacier-fed, groundwater-fed; [3] Hydrology, which influences the water temperature through the

amount of water and the flow velocity; [4] Ground heat flux.

Dependent on data availability, computing power, accuracy and the questions asked, Tw can be modeled in different ways. The

common options are statistical models, physical based models and modeling by neural networks. Neural networks use a sample
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teaching data set to train artificial neurons the relationship between input (e.g. air temperature) and output (Tw) (Zhu et al.,25

2018). A physical Tw model (Sinokrot and Stefan, 1993) parameterizes all fluxes mentioned in [1] and [3], adds anthropogenic

heat input and collects the hydrological and source boundary conditions [2] and [4]. Each modeled heat flux is then applied to

the water mass, initialized with the starting and boundary conditions. However, it is difficult to get a good estimation of these

parameters over a larger catchment area. As a consequence, statistical models use air temperature (Ta) as a proxy for sensible,

latent and radiative heat fluxes (ground heat flux can be neglected) and establish a Ta→ Tw relationship through regression. Ta30

is rather easily available from meteorological networks or reanalysis products. This is a well established method and depending

on the complexity, linear or exponential models (Stefan and Preud'homme, 1993; Mohseni et al., 1998; Koch and Grünewald,

2010) are used. Generally the exponential model has advantages due to the better simulation of extremely warm and cold Tw

but lacks the clear analytic separation of the influences to Tw. Using linear models, Markovic et al. (2013) show that between

81 % - 90 % of the Tw variability can be described by Ta. 9 % - 19 % can be attributed to hydrological factors (e.g. discharge).35

The study was done for the Danube and Elbe basin using data from the 1939 to 2008. These two rivers have comparable size

and catchment area to the Rhine river. Hybrid models are in between physical based and statistical models. They use physical

formulation of fluxes but determine their parameters stochastically (Piccolroaz et al., 2016). Another development are spa-

tial statistical models. They correlate various landscape variables (e.g. elevation, orientation, hill shading, river slope, channel

width...) across the catchment area and try to statistically determine their influence on Tw at a certain point. These correlations40

can be across any distance and do not have to satisfy flow connection or direction in the river system. As a prerequisite, a de-

tailed knowledge about the river system and its characteristics is needed (Jackson et al., 2017a, b). An improvement to spatial

statistic models is to recognize rivers as a network of connected segments with a definite flow direction(Hoef et al., 2006; Hoef

and Peterson, 2010; Isaak et al., 2010; Peterson and Hoef, 2010; Isaak et al., 2014). Correlation of the variables (e.g. Ta, Tw

discharge, ...) which influence other Tw, is weighted on their flow connectivity and euclidean or flow distance. These models45

can also include time lag considerations using temporal auto correlation (Jackson et al., 2018).

1.1 Rhine

Along the Rhine, up to 12 nuclear power plants (NPP) have caused, for decades, the largest part of anthropogenic heat input

(Lange, 2009). The nuclear power production increased in the 1970s and 1980s and reached a peak in the mid 1990s. After50

the Fukushima disaster in 2011, the German government decided to exit from nuclear power production and the first NPPs

were shut down. With this political decision a clear drop on nuclear power production is visible, on top of already decreasing

production rates. Currently (July 2019) eight NPPs are operational in the catchment area of the Rhine using (partly) river

water as cooling agent. In this publication, we hypothesize that, next to environmental factors, this long term decrease in power

production together with short term economic changes have an impact on Tw of the Rhine. This impact might be heterogeonous55

along the river as the location of industry and NPPs is concentrated at several highly industrialized spots.

To test this hypothesis and assess the varying impact of industry, meteorology and hydrology on the Rhine river temperatures,

we want to combine ideas from the spatial correlation models to develop a new method of calculating a representative catchment
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air temperature (Tc). Tc and discharge Q is then used in a multiple linear regression Tc→ Tw (Eq. 1). The model is run on a Tw

time series from 1979 to 2018 measured at four Rhine stations (Basel (CH), Worms (DE), Koblenz (DE) and Cologne (DE)).60

The period from 1979 to 2018 experienced several changes in anthropogenic heat input to the Rhine catchment area, which

makes it an interesting scenario to be studied.

Tw = a1 + a2 ·Tc + a3 ·Q (1)

a1, a2 and a3 are the resulting regression coefficients which describe the magnitude of the respective fluxes (anthropogenic,

meteorological and hydrological). Tc is the newly proposed catchment temperature and Q the discharge at the measurement65

station. The origin of water, e.g. ground water, snow melt, glacier melt, is included by Tc because data from high elevations

(e.g. Alps) is also included. Webb et al. (2003); Markovic et al. (2013) have shown that Q is inversely related to Tw and an

important factor in the Tc→ Tw relationship. Additionally, it functions as measure of how fast a the water mass responds to

changes in Tw. Ground heat flux, ground water influx and heat generation due to friction are not included in this model because

of the comparable small influence (Sinokrot and Stefan (1993) for Mississippi; Caissie (2006) as review article). Other models70

such as hybrid models (Toffolon and Piccolroaz, 2015) would create lower RMSE but do not allow for a clear distinction

between meteorological, hydrological and anthropogenic input.

Using the multiple regression (Eq. 1), we aim to especially investigate the change of a1 over time, which we call the Rhine

base temperature (RBT). This temperature represents the Tw without the influence of meteorology and discharge. RBT is an

indicator for industrial heat input and the use of Rhine water as cooling agent. We hypothesize that its long term change is75

connected with the electricity production of NPPs and its short term variations is connected with overall industrial production

and general economic indicators. Using different time series along the Rhine, we investigate where anthropogenic heat fluxes

may influence Tw and may lead to an overall heterogeneous warming rate along the Rhine.

2 Methods

2.1 Water temperature and discharge80

We use a data-set of daily averaged Tw and Q from 1979-2018 gathered from different sources (WSA, 2019; BfG, 2019; LfU,

2019; BAFU, 2019). The original data-sets have a 10 min sample frequency. Table (1) lists the respective stations along the

Rhine (Col. 1), stream km (Col. 2), data availability (Col. 3), the important tributaries upstream (Col. 4) and the reference

(Col. 5). Tw was measured by platinum resistivity sensors (Pt100). The accuracy of theses sensors is commonly ±0.5 oC but

the precision, which describes the ability to detect temperature changes, is 0.05 oC. As we focus on the change Tw over time85

and do not compare the absolute temperature, the accuracy is not essential and the precision is sufficient. Errors inflicted by

measuring depth and location in the river are also not influencing the calculation, regarding the aim of this study, as long as the

measured Tw is a linearly dependent proxy for the average river temperature. Q is provided as daily averages in m3s−1 by the

source in Tab. (1) and usually calculated from river stage).

The original data-sets have already been verified by the respective source but are screened by us for suspicious features. Missing90
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name stream km time period important tributary upstream reference

Cologne KM 690 1.1.1985-31.12.2018 Mosel WSA (2019)

Koblenz KM 550 1.1.1978-31.12.2018 Main BfG (2019)

Worms KM 443 1.1.1971-31.12.2018 Neckar LfU (2019)

Basel KM 170 1.1.1977-31.12.2018 Aare BAFU (2019)
Table 1. Lists of monitoring stations used in this study. Column two provides the location as Rhine km. Column three provides the data

range. The third column names the important upstream tributary and column four names the reference.

data points up to one week are linearly interpolated. Longer data-outages and recurring data-outages are not experienced. The

data-set is provided by state and federal operated monitoring stations which usually run backup measurement systems.

2.2 Air temperature

Ta is retrieved from the European Centre for Medium-Range Weatherforcast (ECMWF) Reanalysis Model ERA5. It provides

an hourly time resolution of the 2 m Ta on a 1
4

o by 1
4

o grid. The data-set is available from 1979-2018. We took the hourly Ta95

output and calculated a daily mean for each grid point between 1979 and 2018 to fit the time resolution of Tw.

2.3 Nuclear Power Plants

The annual electrical power production by NPPs is available from the International Atomic Energy Agency (IAEA) Power

Reactor Information System (IAEA, 2019). At most 12 NPPs (1986-1988) were online in the Rhine catchment area. Separate

blocks of one NPP are combined. In July 2019 eight were operational. All shutdowns were done in Germany.100

From estimates by Lange (2009) and based on personal communication from different sources, the heat input by NPPs to the

Rhine is calculated for each monitoring station, Fig. (1). The NPPs in Tab. (2) are included in the heat input calculation through

a conversion factor which converts electrical produced power to heat input. NPPs with an exclusive river water cooling system

have a conversion factor of three, which is based on the power efficiency of electricity generation. Other factors are estimated

depending on the cooling system used and personal communication.105

2.3.1 Calculated temperature change

We calculate the expected change in RBT (∆RBT) based on a change in heat input (∆HI) by NPPs using the average discharge

Q̄, the heat capacity of water cp and the water density ρ, Eq. (2).

∆RBT =
∆HI

cp · Q̄ · ρ
(2)

This approach follows the idea that the heat input of NPPs is essential for the heat budget of the river and significantly alters110

RBT as other important influences, such as meteorology (a2) and hydrology (a3), are excluded by applying the multiple linear

regression.
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Figure 1. Using the PRIS (IAEA, 2019) database we estimated the heat input by NPPs from 1969 to 2018. This figure shows the total

upstream heat input of each monitoring station.

name country river conversion factor const. heat input

Beznau I+II CH Aaare 3 N/A

Biblis I+II DE Rhine 2 N/A

Cattenom I-IV DE Mosel N/A 200 MW

Fessenheim I+II FR Rhine 3 N/A

Goesgen CH Aare N/A 50 MW

Grafenrheinfeld DE Main N/A 200 MW

Leibstatt CH Rhine N/A 50 MW

Muehleberg CH Aare 3 N/A

Neckarwestheim I+II DE Neckar 1 N/A

Obrigheim DE Neckar 3 N/A

Philippsburg I+II DE Rhine 1 N/A
Table 2. NPPs included in this manuscript. The coversion factor describes the conversion from electrical power generation to heat input. If

cooling towers are installed a constant heat input is used based on Lange (2009).

2.4 Gross Domestic Product

The gross domestic product (GDP) for the adjacent German federal states is obtained from VGdL (2019a, b). Due to changes

in the calculation method of the GDP before and after the German reunification (1991), two separate data-sets are used. For115

this study only the GDP-change of the secondary sector (construction and production) is used.

The RBT, if compared to the GDP, is filtered using a 10th order butterworth bandpass filter. The sampling rate of the GDP is
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1 y−1. We use 1.1 y−1 as higher and 0.05 y−1 as lower cutoff frequencies for RBT. This means that signals with a periodicity

larger than 20 y and lower than 0.9 y are excluded. The reasoning is to make the RBT data comparable to the yearly data of

the GDP-change. The low frequency cutoff is canceling long term trends as a GDP-change is only related to the previous year.120

The high frequency cutoff is used to dampen fast alternating RBT signals in comparison to the slow sampled GDP data.

2.5 Rescaled adjusted partial sums

Rescaled adjusted partial sums (RAPS) is used to visualize trends in time series which may not be clearly visible in the time

series itself. Equation (3) shows the calculation of the RAPS index (X) using a time series Y.

Xk =

i=k∑
i=1

Yi−Y
σY

(3)125

Y is the average over the total time series, σ is the standard deviation of the whole time series, Yi is the ith data-point in Y .

A change in the slope of the RAPS index only indicates a change in the slope of the original time-series. A negative RAPS

slope does not indicate a negative slope in the original time series. Garbrecht and Fernandez (1994); Basarin et al. (2016) used

this method to investigate trends in hydrological time series.

2.6 Catchment area130

The catchment area is calculated using the Hydrosheds database (Lehner et al., 2008). The 1
125

o by 1
125

o gridded data-set

provides information, at each grid point, to which cell the water of a grid cell is drained. Selecting a starting location, e.g.

Koblenz at 50.350 oN and 7.602 oE it is possible to iteratively identify all grid points draining into this location. These grid

points represent the catchment area of this location, in this example Koblenz. By counting the iteration steps, the distance

a water drop travels to reach the monitoring station Koblenz is determined. This is done for each station. Additionally, the135

accumulation number ACC is obtained from the data-set. It defines how many cells in total are draining into a particular cell

and is a measure for the size of a river. Finally, a grid, which defines the catchment area, the ACC and the hydrological distance

is established spanning the whole catchment area. Figure (2) shows the catchment area, the hydrological distance and the

calculated flow time to the Koblenz monitoring station.

Accumulation140

ACC is an estimate for the river size. Grid points of large rivers which are fed by many grid points have a large ACC. Figure

3 shows the distribution of the ACC. Each grid points is given the the number of grid points discharging into this very grid

point. Large rivers, such as the Rhine, Main, Neckar are easily visible.

2.7 Multiple regression

We use a multiple linear regression to separate the anthropogenic (a1), meteorological (a2) and hydrological (a3) contributions145

to the river water temperature. Tw is regressed with Tc and river discharge Q. Their regression coefficients a2 (Tc slope) and
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Figure 2. Catchment area of the Koblenz monitoring station. The colors show the hydrological distance between the monitoring station and

each grid point of the catchment area. The second y-axis shows the time, in our model, it takes to flow from a grid point to the monitoring

station based on the hydrological distance. The flow speed is 0.4 ms−1 and in this study constant in space and time. The Xs with the name-tag

Basel, Worms, Koblenz and Cologne mark the monitoring stations. The other markers show the location of the NPPs. For names refer to the

legend.

a3 (Q slope) represent the magnitude of the respective influences. The offset a1 (RBT) combines all other influences, which

are controlled by anthropogenic sources.

The linear regression is improved by using a new method for calculating Tc. Instead of taking Ta at the monitoring station, we

improve Eq. (1) by a time dependent average of Ta (x,y,t) over the whole, Eq. (4). (x,y) are spatial coordinates in the catchment150

area and a subscript 0 marks the location of the measurement station.

Tw (t0) = a1 + a2 ·Tc (x,y, t0 + ∆t(x,y)) + a3 ·Q(x0,y0, t) (4)

The new representative catchment temperature is called Tc. The difference between the measurement time t0 and the reading

of Ta is called time lag ∆t(x,y) and depends on the hydrological distance between the measurement point and the reading.

Time lag155

A change in Tw is slower than a change in Ta. The time lag ∆t describes this lagging and is commonly used in water temper-

ature models.

A reason for the occurrence of ∆t is that the water mass’ mixing capability, heat capacity and surface area cause a strong

thermal inertia. Changing Tw through new meteorological conditions and heat fluxes take time. Therefore, linear as well as
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Figure 3. Catchment area of the Koblenz monitoring station. The colors show the number of grid points flowing into the specific gird point

exponential models either use a fixed ∆t for Ta (Eq. 5) or an average of Ta including a time span before (Eq. 6) (Stefan and160

Preud'homme, 1993; Webb and Nobilis, 1995, 1997; Haag and Luce, 2008; Benyaha et al., 2008).

T (t0) = Ta (x0,y0, t0 + ∆t) (5)

T (t0) =

t=∆t∑
t=to

Ta (x0,y0, t0) (6)

A second reason reason for a mismatch is advection. Ta is measured at the same location and the very same time as Tw. Rivers,165

in this case the Rhine, exhibit current velocities which enable its water to cover significant distances on time scales larger than

days. Therefore it is necessary to take the change of Ta, in space and time, during advection into account. This is especially

important for daily averaged Tw (Erickson and Stefan, 2000). Pohle et al. (2019) average eight days of hydroclimatic variables

over the whole catchment area, Eq. (7). However, this approach does not include the characteristics of flow path and flow speed.
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∆t [d] weighing factor distance from

measurement point [km]

0 1 0

-1.01 0.96 35.1

-2.00 0.92 69.6

-5.02 0.81 174.6

...

-13.01 0.50 452.5

...

-26 0 904
Table 3. This table defines the weighing factors for the distance and the resulting ∆t for the monitoring station Koblenz. ∆t is calculated

from distance and flow speed, Eq. (8). The weighing coefficient is linearly correlated to the ∆t.

170

T (t0) =

x=n,y=m,t=8∑
x=0,y=0,t=0

Ta (x,y, t) (7)

We combine and extend both ideas (Eq. 5, 6 and 7) and average Ta over the whole catchment area but each grid point is

linked to a specific time lag ∆t(x,y). ∆t(x,y) is dependent on a fixed flow speed v and the hydrological distance s(x,y) to the

measurement point, Fig. (2). The distance is obtained from the discharge map (Sec. 2.6) and calculated with v as desctribed by

Eq. (8).175

∆t(x,y) =−s(x,y)

v
(8)

Weighing coefficients

Tobler (1970) proposed that close spatial and temporal conditions tend to be higher correlated than those further away. This

leads to the introduction of the weighing factor w. We use a linear decreasing weighing factor from 1 to 0 . 1 is given the grid

point closest (smallest ∆t) to the monitoring station and 0 the point farthest away (largest ∆t). As the size of the catchment180

area is different for the four monitoring station, four weight coefficient tables are calculated. Table (3) shows the weighing

coefficient for Koblenz, as an example.

For reasons of simplification, a catchment-wide hydrological flow model is not used estimating the flow speed at every grid

point for every hydrological scenario. Therefore, the flow speed of 0.4 ms−1 is set constant. This flow speed is determined by

calculating RMSE with a step wise reduction of the flow speed from 1.5 ms−1 to 0.3 ms−1. The lowest RMSE at Koblenz is185

obtained at 0.4 ms−1. The weighing coefficient w is combined with ACC. ACC is used as a second coefficient which over-

weighs grid points with large accumulation and therefore large water masses. This ensures a balance between the large number

of low ACC grid points, which carry less water, with the influence of Ta on large water masses. Figure (4) shows the product
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Figure 4. Catchment area of the Koblenz monitoring station. The colors show ACC multiplied with w, which is depending on the distance

(∆t).

of ACC and w over the whole catchment area of Koblenz. We also calculate the number of grid points in several ACC bins.

The red bars in Fig. (5) show the relative contribution of each ACC group using only their quantity without ACC*w weighing.190

This shows that the large amount of low ACC (small water mass) grid points would have a large influence over large ACC (e.g.

large water masses, rivers, lakes) grid points. The difference is four powers of magnitude. The white bars show the relative

contribution using the ACC*w weighing. This distribution gives rather equal importance to all grid points as it puts more

weight on grid points covering lakes and rivers. The average difference is about 1 power of magnitude.

195
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Figure 5. ACC bins (x.axis) vs the relative contribution. The red bars show the relative contribution using by number only. The white bars

show the distribution using the weighing ACC*w.

Tc

Combining ∆t with ACC*w weighing and the gridded temperature reanalysis data of Sec. (2.2), we propose this new 3D

(x,y, t) averaging of Ta shown in, Eq. (9).

Tc (t0) =
1∑

w (∆t(x,y)) ·ACC (x,y)

x=n,y=m∑
x=1,y=1

w (∆t(x,y)) ·ACC (x,y) ·Ta (x,y, t0 + ∆t(x,y)) (9)

Tc (t) is calculated by weighted (ACC*w) averaging Ta (x,y, t) over all grid points of the catchment area (x=1,...n y=1,...m)200

which reach at the monitoring station at time t0. The time lag ∆t is an estimate for the time it takes for a water droplet from a

specific grid point x,y in the catchment area to the measurement location. Based on Eq. (9), we calculated the daily Tc for each

monitoring station. This temperature represents the meteorological influence all water droplets have experienced on their way

to the monitoring station and is subsequently used in the multiple linear regression.

Tc calculation methods205

We additionally use these four calculations methods, [1] w+∆t; [2] avg+∆t; [3] avg; [4] point, to compare their results of the

linear regression to the calculation proposed in Eq. (9).

[1] We use only the w weight (Eq. 10) with time lag.

Tc (t0) =
1∑

w (∆t(x,y))

x=n,y=m∑
x=1,y=1

w (∆t(x,y)) ·Ta (x,y, t0 + ∆t(x,y)) (10)
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[2] No weight, only time lag is used, Eq. (11).210

Tc (t0) =

x=n,y=m∑
x=1,y=1

Ta (x,y, t0 + ∆t(x,y)) (11)

[3] We calculate a mean Ta(x,y, t0) over the whole catchment area at the time t0 of the measurement, Eq. (12). ∆t is not used

here.

w (x,y) = 1 Tc (t) =
1

n ·m

x=n,y=m∑
x=1,y=1

Ta (x,y, t0) (12)

[4] The fourth method uses Ta(x0,y0, t0) at the location x0,y0 and time t0 of the measurement, Eq. (13).215

Tc (t) = Ta (x0,y0, t0) (13)

3 Results

3.1 Water temperature time series

To investigate the long term change over time, we fit a time dependent linear function to the time series of Tw and Ta (catchment

average) of all four monitoring stations (Basel, Worms, Koblenz, Cologne). The same is also done, when all four monitoring220

stations have an overlapping data-set (1985-2018). The left column of Fig. (6) shows the yearly averaged Tw and the linear fits

to the two time periods. The average Ta of the catchment area is also shown. The right column of Fig. (6) shows the RAPS

index of Ta as well as Tw. The fit coefficients and the rate of warming per year are shown in Tab. (4). We also calculated the

Ta increase in the catchment area of all monitoring stations. These slopes are shown in column four and five of Tab. (4).

Figure (6) and Table (4) show that the change of Tw is heterogenous along the Rhine. The slope at Basel is approx. six times225

higher (0.0350 oCy−1) than the one in Cologne (0.0084 oCy−1), comparing only the overlapping data-set. However, during

the same period Ta shows similar behavior at these two stations, which is an indication of similar meteorological influence.

The Tw warming rate from 1985-2018 for Worms and Koblenz are in between those from Cologne and Basel. These two

stations show similar Ta warming rates when comparing to Basel and Cologne. Generally, the Ta warming rates are less than

5 % different from each other. The R2 also shows differences between the measurement stations. Basel exhibits the largest R2230

values and these are consistently high for Ta and Tw. This is in contrast to the station Cologne, where R2 of Tw is low and

insignificant. The slope of Ta at Cologne is lower than at the other stations but still significant. For Ta the RAPS indexes of all

monitoring stations shows four concurrent sections (start-1987; 1987-2000; 2000-2014; 2014-end). Their borders are marked

by the blue triangles in Fig. (6). The sections represent slope changes of the RAPS index and indicate trend changes in the

original time-series. The Tw RAPS index for Basel shows the same pattern of sections as the Ta index. All other stations show235

a different RAPS Tw to RAPS Ta pattern. This means that the Ta and Tw trends of the original time-series are different at these

stations. Ta can not fully describe the trends in Tw.

We hypothesize that different meteorological conditions are not the reason for this difference. Meteorological differences
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Figure 6. Left column: Yearly averages of water temperatures at four monitoring stations (black line). The red dashed line is a fit to the

available data-set. The red dotted line is a fit to the overlapping time period. The blue line is the average air temperature of the catchment

area. Right Column: RAPS Tw (black) and Ta (blue) indexes. The triangle markers divide the RAPS index into sections based on a slope

change in the RAPS index. Each section also represent a trend change in the original Ta and Tw time-series.

name slope Tw whole data-set slope Tw 1985-2018 slope Ta whole data-set slope Ta 1985-2018

[oCy−1] [oCy−1] [oCy−1] [oCy−1]

Basel 0.054,R2 = 0.66 0.049,R2 = 0.38 0.050,R2 = 0.48 0.050,R2 = 0.32

Worms 0.055,R2 = 0.52 0.035,R2 = 0.38 0.050,R2 = 0.20 0.048,R2 = 0.36

Koblenz 0.033,R2 = 0.31 0.024,R2 = 0.38 0.052,R2 = 0.11 0.048,R2 = 0.36

Cologne 0.008,R2 = 0.001 0.008,R2 = 0.31 0.050,R2 = 0.001 0.050,R2 = 0.31

Table 4. Slope of the linear fits to the daily temperature data. The second column is a fit to the available Tw data-set. The third column is a

fit to the overlapping Tw data-set from 1985-2018. The fourth column is the rate of Ta increase in the respective catchment area during the

whole data-set. The fifth column is the rate of Ta increase in the respective catchment area from 1985-2018. Next to the slope values are the

R2 values, which are statistical significant only if R2 > 1.99

should be visible in the Ta warming rate of the four stations, which is not the case. Ta and Tw RAPS only correspond for the

Basel data-set. Therefore, we applied the regression model (Eq. 4) to investigate the patterns of Tw in relation to Ta along the240

Rhine river.
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RMSE NSC

descr. Basel Worms Koblenz Cologne Basel Worms Koblenz Cologne

ACC*w+∆t 1.65 1.24 1.02 1.41 0.93 0.96 0.97 0.95

(1) w+∆t 1.56 1.33 1.43 1.86 0.92 0.95 0.95 0.92

(2) avg+∆t 1.61 1.45 1.70 2.01 0.93 0.94 0.93 0.90

(3) avg 2.48 2.43 2.37 2.97 0.82 0.84 0.86 0.79

(4) point 2.73 2.55 2.63 2.85 0.78 0.82 0.82 0.80
Table 5. RSME [oC] and NSC for all Tc calculation method.The regressions are applied over the total data-set. The first column contains

the calculation method number and the method short description. The best results for each monitoring station and each calculation method

are bold.

3.2 RBT, long and short term trends

We fit the multiple regression model (Eq. 4), using Tc and Q to Tw of each monitoring station for the available data-set.

Afterwards, we recalculate Tw using the regression coefficients a1, a2 and a3. From the comparison between the modeled and

measured Tw, we calculate the root mean square error (RMSE) and the Nash-Sutcliffe coefficient (NSC) for each monitoring245

station, Tab. (5). To support the introduction of weighing coefficients ACC*w and a catchment-wide ∆t, we compare five

different calculations of Tc from Sec. (2).

Table (5) shows the RMSE and NCS values for all correlations. The lowest (RMSE) and highest (NSC) values are displayed

bold in Tab. (5). The lowest RSME is 1.02 oC for ACC*w+∆t (row one) at the Koblenz station. At this location also the largest

NCS of 0.97 appears. We optimized the flow speed for lowest RMSE at the Koblenz station. It is evident that the three methods250

including a ∆t have a lower RMSE (below 2.01 oC, lowest 1.02 oC) than the two methods without a ∆t (above 2.37 oC, largest

2.97 oC). The same trend holds for NCS where the ∆t methods are above 0.90 and the other two are below 0.86. We think

that the use a catchment-wide ∆t improves the quality of the multiple regression analysis and is a significant improvement to

Ta→ Tw based modeling. It is interesting hat combining ACC with the w weighing factor provides the best estimation. Figure

(5) could be the reason. Without ACC weighing small water masses (small ACC) are over represented in the contribution to255

Tc. Large ACC grid points represent large water masses (rivers and lakes) and the influence of Ta on them would be otherwise

underestimated.

As the ACC*w+∆t provides the smallest RMSE, this calculation method is used for all further calculations of Tc.

In the supplement we provide a calculation of the regression coefficients for the year 2001 only. These coefficients are used

to calculate Tw for each year from 2000 to 2018. The RMSE and NCS data is consistent in magnitude with the long-term260

regression of this section. The RMSE at Koblenz ranges from 0.75 oC to 1.22 oC. A lower RMSE is caused by the shorter

regression period. This supports the stability and validity of our regression model.
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Figure 7. RBT from four monitoring stations (black solid line). The red dashed line is a four year running mean. The blue dotted line is the

upstream heat input by NPPs, Sec. (2.3).

3.3 Rhine base temperature

Using the multiple regression in Sec. (3.2), we calculate the coefficients a1-a3, Eq. (4). The magnitudes of a2 and a3 relate to

the influences by meteorology and hydrology (discharge). a1 is the RBT, which is an indicator for the anthropogenic impact265

on Tw. We use the RBT to explain differences in the Tw warming rates of Tab. (4).

To point out changes over time, we regress a two year segment of the Tw time series and use a step size of one month to create

a RBT time series over the available data-set. As the absolute RBT cannot be meaningfully interpreted, only the changes of

RBT over time are shown in Fig. (7). We subtract the last data point of each time series from the rest of the data and show the

change of RBT vs time and a four-year running mean. The heat input by NPPs is shown as a dotted blue line with the y-axis270

on the right hand side.

Long term trend

In this study long term trends occur on time scales of decades. This time scale is on one hand small enough to have significance

in this 40 year data-set and on the other hand covers the increase and decrease of nuclear power production.

The heat input by NPPs and the four-year running mean RBT follow a similar trend, Fig. (7). After the maximum of heat275
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name period ∆RBT from data-set ∆RBT from Eq. (2) ∆HI [GW]

Basel 2008-2017 -0.26 0.04 0.17

Worms 1996-2017 1.29 1.19 7.14

Koblenz 1999-2017 1.59 1.45 10.5

Cologne 1998-2017 1.21 1.55 10.7
Table 6. Change of RBT (column three) in the period given in column two. The start of the period indicates the maximum heat input of

NPPs at the respective measurement station. The calculated temperature change (column four) and the change in HI by nuclear power plants

(column five) are also provided. The calculations were done using Eq. (2)

discharge by NPPs between 1996-1998, the heat input as well as the RBT of Worms, Koblenz and Cologne decline. At Basel

the RBT as well as the heat input stay comparably constant. To investigate these similar trends we calculate ∆RBT, using Eq.

(2), at every station and compare it to the ∆RBT from the measured Tw, Tab. (6). The period for each measurement station

starts at the maximum heat input by NPPs for the respective station and ends in the year 2017.

At Basel, both simulated and calculated RBT changes are negligible due to the lack of change in HI. At all other stations, the280

change in HI is reflected in the change of RBT. The maximum difference between simulation and calculation is 0.34 oC.

The change in nuclear power production over a time period of 30 years or more can explain changes and heterogenous warming

rates of Tw along the Rhine river. NPPs may also impact Tw at much shorter timer scale but do not seem, to our best knowledge,

to change their power output accordingly.

285

Short term trend

Short term changes (< 5 y) in RBT (Fig. 7) are not influenced by the overall heat in put from NPPs, as they change production

at longer time scales, but rather by local industrial conditions, which could also include fossil fuel power plants.

For Basel, we hypothesize that the varying, but without a increasing or decreasing trend over the whole data-set, RBT is

influenced by alpine lakes and natural variations. Lakes and reservoirs are to some extend decoupled from the Ta→ Tw290

relationship (Erickson and Stefan, 2000). The upper layer (epilimnion) closely follows Ta and the temperature of the larger

volume underneath is usually more stable and colder (summer) or warmer (winter). The stratification plays an important role

in the outflow temperature of a lake.

For all other stations, we hypothesize that local production facilities and their heat input into the Rhine are responsible for the

short term changes. Therefore we compare the RBT time series to economic data. Figure (8) shows the comparison of RBT295

(black line, one year running mean) vs the changes in the GDP (blue line). A discontinuity in the GDP at 1991 is visible, due to

the German reunification, when the calculation method of the GDP changed. Therefore they are plotted as separate lines. For

Worms (Fig. 8, bottom panel) we added the change of turnover of the BASF company (red dashed line (AG, 1989)). The BASF

is a chemical company. One of its largest production facility, with an estimated heat input of 500 MW to 1 GW, is located

12 km upstream (km 431) from the Worms station. We hypothesize that production and heat input changes of this factory are300
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Figure 8. The change of RBT (black solid line) at three monitoring stations (Colgone, Koblenz, Worms). The blue dashed line is the GDP-

change of the adjacent federal states. To explain trends during two time periods the red dashed line, which is the turnover of the BASF

company, and the red dotted line, production rate of the oil refineries, are added. The triangles mark the years 2000 (burst of the dot-com

bubble) and 2008 (mortgage crisis).

also visible. In 1985, although the change in GDP does not indicate a large RBT change, a RBT decrease is visible. This is

backed by a turnover decrease in 1985 and 1986. After the German reunification 1991, a negative GDP change (recession) is

evident. This is followed by a BASF turnover decline as well as a decrease in RBT. After that, the RBT follows the up and

down movements of the GDP, so does the BASF turnover (only shown until 2000). Especially the economic events such as the

burst of the dot-com bubble (early 2000s) and the mortgage crisis (2008) are visible in the RBT and the GDP, when a decrease305

of both parameters followed. The two events are marked with triangles in Fig. (8).

Before 1990, the RBT at Koblenz does not follow the GDP trend and shows a rather anti-cyclic behavior, which can not be
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name ACC*w+∆t significance

Worms 0.48 p<0.05

Koblenz 0.53 p<0.05

Cologne 0.44 p<0.05
Table 7. Spearman’s rank correlations between RBT and GDP-Change for ACC*w+∆t. The last column shows the significance.

explained yet. After 1991, the RBT follows the general trend of the GDP but does not seem to be strongly influenced by the

recession after the German reunification. Again, economic events such as the burst of the dot-com bubble (early 2000s) and

the mortgage crisis (2008) have influence on the RBT.310

The RBT at Cologne does not seem to be strongly influenced by the recession connected to the German reunification, but after

1999 the RBT follows the up and down trends of the GDP.

For all monitoring stations, we added a red dashed line between 1995 and 1999. This dashed line indicates the production

rate of German oil refineries (MWV, 2003). From 1995 to 1999 German refineries ran at full capacity level (100%). Usually

the capacity levels do not exceed 90%. The increase in production is clearly visible in the RBT of Cologne, where a large oil315

refinery is located 19 km upstream at km 671 (Rheinland refinery). RBT at Worms and Koblenz could be influenced by the

output of a refinery next to Karlsruhe at km 367 (Mineraloelraffinerie Oberrhein).

Correlation

We correlate the GDP-change to the filtered RBT signal. It is noticeable that we must shift the GDP-change 480 days to the

past to get matching trends. This means that a change in RBT or anthropogenic heat input appears 480 days earlier than in the320

GDP calculation. The shift could be caused by two reasons: [1] We are using the GDP difference of two consecutive years,

which has a significance at a point of time within these two years. [2] The GDP could be lagging behind the real economic

situation, in this case the industrial production. Yamarone (2012) claims that GDP is a coincident economic indicator similar to

industrial production. However, he uses quarterly GDP calculations vs our annual data. The quaterly data-set could be reacting

faster to changes. A second thought is that he compares industrial production calculations, which is an economic index, to GDP325

(another economic index). We have basically real time data from the industrial heat input into the river. This shift is not done

in Fig. (7) because a shift of 1.5 y on a 40-year time scale is negligible.

Table (7) shows the Spearman’s rank correlation coefficients of Worms, Koblenz and Cologne fo rACC*w+∆t calculation

method, which produces the lowest RMSE in Koblenz. All correlations are positive and significant (p<0.05). The correlation

in Koblenz is the highest. Fig. 9 shows the filtered RBT signal vs the GDP-change at the three monitoring stations. The RBT330

time-series is detrended and filtered. This graph depicts in detail the correlation of GDP-change and RBT. Most of the time the

change in filtered and shifted RBT is coincident, after shifting) with the GDP-change. The RBT peak from 1995-1998 is not

very well represented by the GDP-change, which has already been discussed in context of Fig. 8.
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Figure 9. The three panels show the detrended and filtered RBT signal (black solid) and the GDP change (blue dashed) at the Cologne,

Koblenz and Worms.

4 Conclusions

We introduce a new catchment-wide air temperature Tc, which decreases the RMSE (Tab. 5) in a Tc→ Tw regression. Tc is335

a weighted (ACC*w) average of all Ta across the catchment area including the use of ∆t for each grid point according to

the hydrological distance and flow speed. This time lag is an indicator when a measured water droplet was at a certain grid

cell in the catchment area. As a result, one can get a better estimate which Ta a water droplet experienced on its way to a

monitoring station and better linear Tc→ Tw estimates. This improvement in the Tc→ Tw relationship supports the analysis,

reanalysis and forecast of Tw. Usually Ta data is readily available and can easily be combined with Q data for a multiple linear340

regression. Still a sufficient long time-series of Tw is required. Nevertheless a linear relationship is simpler than a full physical

model which requires all meteorological fluxes as parameters.

This a case study for the Rhine catchment area but the model can be theoretically used in any river system around the globe.

Catchment area data and reanalysis Ta data are globally available. Morrill et al. (2005) show a linear Ta→ Tw relationship for

43 rivers with various catchment areas in the subtropics. This could indicated that this case study of the Rhine can be applied345

globally. There is a lack of studies on the Ta→ Tw relationship in the tropics, where precipitation and extreme events, such as

monsoon, could complicate this relationship. Future calculations could be coupled with catchment-wide hydrological models

to improve the accuracy of the time lag.

Using Tc we regress four Tw time series (Basel, Worms, Koblenz and Cologne) along the Rhine. The offset in the this regression

a1, which we call RBT, and its change over time is an indicator for anthropogenic heat input. The RBT can be correlated with350

long term economic changes such as the decrease of nuclear power production as well as short term economic events. We

show that change in production rates (oil refineries or chemical industry) as well as a change in GDP can influence the RBT
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and therefore the Rhine water temperature. Adsitionally, the Spearman’s Rank correlation is positive and significant which

supports the connection between RBT and GDP. This case study could be on one hand a tool for understanding the long term

consequences of industrial water use and on the other hand a verification tool for reported heat input. Germany has a rigorous355

reporting system on cooling water use. However, other countries could check if industrial heat input is in accordance with

legislative guidelines.

Hardenbicker et al. (2016) estimate, using a physical model (QSim), that between the reference period of 1961-1990 and the

near future 2021-2050 the mean annual Tw of the Rhine could increase by 0.6 oC-1.4 oC. This trend can be supported by our

historical data, however they use a constant anthropogenic heat input. Different warming rates along the Rhine could occur360

by a change in anthropogenic heat input. The difference of the Tw warming rate between Basel and the other monitoring

stations in our time-series data can be explained by the change in nuclear power production and the influence of general

industrial production. This could mean that with rising Ta and the linear correlation between Ta→ Tw, industrial production

and power production have to be more closely connected with river water temperature management. For the Rhine river we find

a decreasing, except for Basel, RBT, which indicates a decreasing anthropogenic heat input. However, other river catchment365

areas with growing energy intensive industries could experience a larger warming rate than it is caused by the general increase

of Ta experiencing all consequences for the physical, chemical and biological processes.
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