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Introduction: 
We would like to sincerely thank both reviewers for the comments and thoughts about our work and 
this manuscript. We think that the input significantly improved the manuscript. 
 
Based on the reviewers comments and by reviewing the code once again transposed numbers were 
found in the coding. By correcting the calculation method ACC*w provides the lowest RMSE and 
largest NCS in three out of four station. At the same time we were able to further decrease the RMSE 
for the ACC*w calculation method. The reasons for the ACC*w resulting in lower RMSE compared to 
ACC or w only, is now described in detail in the methods section. Overall, the results (correlations, 
RMSE, NCS, ∆RBTcalc) changed only so slightly, that the scientific conclusion and the key 
messages were not influenced. This also visible in the attached track changes version of the 
manuscript. 
 

GENERAL COMMENTS 
 
The manuscript presents a study of short term and long term changes in river temperature 
and investigates the influence of natural and anthropogenic drivers of these changes which 
is interesting and generally within the scope of HESS. River temperatures at various 
monitoring locations along the river Rhine as well as industrial production and nuclear power 
plant activities are analyzed. The authors further develop a novel approach of calculating a 
catchment-wide average air temperature which is used in the linear regression relationship 
between air and river temperature. Overall, the scientific approach and the methods appear 
to be valid. However, there are some points which need further clarification: 
 
(1) The relationships between river temperature and its drivers are investigated using 
multiple linear regressions separating the so-called Rhine base temperature (i.e. the river 
temperature without influences of air temperature and discharge) and air temperature and 
discharge influences on river temperature. More information on the multiple linear 
regressions for each location is required for the reader to be able to evaluate the robustness 
of this approach 
 
 Comment: The RMSE and the NCS information is provided for every measurement station. 
In addition, the data is now included in the supplement. We used the year 2001 as a test 
year and regressed Tw using Tc and Q just for this year. Then the 2001 regression 
coefficients were used to calculate a modelled Tw for the years 2000 to 2018. The RMSE 
and NCS show better results compared to the long term regression, which is sensible for a 
shorter regression period. The RMSE and NCS for each year from 2000 to 2018 follow the 
same pattern among the calculation methods. This means that the ACC*w method is always 
the best at three stations and the methods without time lag always show a larger RMSE 
than the ones with time lag 
 
(2) The computation of the catchment-wide average air temperature is based on the air 
temperature in each grid cell of the catchment area and the hydrological distance to the river 



temperature monitoring station assuming a constant flow speed. It would be interesting on 
what basis the constant flow speed has been derived and how the flow speed varies in 
space and time and what is the justification of combining a rather complex averaging 
method of air temperature with a constant flow speed. In order to show the benefits of this 
rather complex method, benchmarking with simple approaches (e.g. Catchment average air 
temperature in combination with constant lag time, as in Pohle et al., 2019) is suggested. 
 
 Comment: In our model, the flow speed does not vary in space and time. Generally, the 
flow speed in the shipping channel is between 1 m/s and 2 m/s. This is supported by ADCP 
round robin tests (https://www.bafg.de/DE/05_Wissen/02_Veranst/2007/10-09-
07_bericht.pdf?__blob=publicationFile) which showed a average flow speed of 1.2 m/s. 
Using the Koblenz data as reference we tried several flow speeds to minimize the RMSE of 
the model. We found a minimum of RMSE at 0.4 m/s. This is in the extended-range flow 
speeds. We expected a higher correlation at lower flow speeds than actually measured in 
the Rhine as we do not model standing water bodies. To us a flow speed with a magnitude 
difference would be questionable, but the one used is within reasonable limits. 
 
(3) A data filter is used to compare river temperature and gross domestic product. It would 
be interesting how the filter parameters have been chosen and how sensitive the results are 
to different values of these filter parameters. 
 
 Comment: We used a Butterworth band-pass filter instead of a running mean filter because 
the filter function of a butterworth is much easier to understand and it simply cuts all 
variations that are outside of the pass area. 
In this manuscript everything with a periodicity of 20 years (0.05 y

-1
) or longer is cut off. The 

reason is to eliminate long term trends, because the aim is to compare RBT to the GDP 
change. 
The lower limit is 0.9 years (1.1 y

-1
). Fast variations (faster than a year) of the RBT could 

influence the correlation vs a data-set (here the GDP) which is provided on a yearly basis. 
Therefore we smoothing is needed. 
 
(4) As short-term and long-term changes of river temperature and its drivers are presented, 
it would be interesting to know if the data also show statistically significant trends and 
change points. The introduction section would benefit from more information and references 
to recently published literature. Also, the results need to be discussed with reference to 
related work and including appropriate reference to studies on river temperature. To that 
end, the authors are suggested to further familiarize with recently published studies on 
factors influencing river temperature (e.g. Garner et al., 2017; Lisi et al., 2015), river 
temperature modelling (e.g. Ketabchy et al., 2019; Wondzell et al., 2019; Zhu 

et al., 2019) as well as short-term and long-term changes in river temperature and its drivers 
(e.g. Basarin et al., 2016; Caldwell et al., 2015; Isaak et al., 2018; Pohle et al.,2019).The 
manuscript is overall well-written and structured. The results section includes many 
statements which would be better suited in the methods section. Further, I suggest adding a 
separate discussion section. 
 
 Comment: Thank you for pointing out additional literature. We added the rescaled adjusted 
partial sums to the manuscript. We checked trends of Tw and Ta at the four measurement 
stations and differences are visible. These differences are in accordance with our 
hypothesis that the progress of Tw at Worms, Koblenz and Mainz cannot be fully explained 
by the trend of Ta. 



 
 
SPECIFIC COMMENTS 
 
 
Page 1 – line 22 probably it is better to use “physical based” than “physical”. Also, please 
check whether “deterministically” is the right term – probably it is referred to statistical 
models? 
 
 Comment: Thank you, we changed the wording. 
 
Page 2 – line 6/7 Is the statement by Markovic true for all rivers? (Their paper refers to Elbe 
& Danube.) 
 
 Comment: We added the information that their study is based on Elbe and Danube data. As 
these two rivers are more or less comparable in size and catchment area to the Rhine, we 
think and also show that consistent results are given. 
 
Page 2 – line 20 The equation is very specific and may be better suited in the “methods 
“part. 
 
 Comment: Thank you for the comment, but the fundamental idea of our hypothesis is to use 
the regression coefficients as explanation for changes in Tw. Therefore we need a simple 
linear Ta�Tw model. We want to present this idea and thought process in the Introduction. 
This is also done because we want to explain why we do not use hybrid, exponential 
models. 
 
Page 2 – line 21 Suggestion to define coefficients already directly below the equation. 
 
 Comment: Thank you, we changed it. 
 
Page 2 – line 25/26 Is this statement universal or only valid for the rivers studied in the cited 
papers – in that case please name these rivers. 
 
 Comment: We reorganized the references and specified to which subject the references 
addressed. 
 
Page 3 – line 3 what is the original temporal resolution of the datasets? What were the 
procedures for quality control and have there been missing values? 
 
 Comment: The original resolution is 10 min. We added a line to missing values and 
resolution in Sec. 2.1. The quality control is done by the sources. They initially verify the 
data-set. Additionally, the data-set was screened by us for suspicious features. 
 
 
Page 4 – Fig. 1 Please revise the map: make the river Rhine more visible, include 
monitoring stations and NPPs. Do the time lags refer to hydrological distance or to the grid? 
How have 0.733 m/s been derived? How robust is this number – I would assume spatial & 
temporal variability of flow speed. 



 
 Comment: We revised Fig. 1 which is now Fig. 2. The NPPs and measurement stations are 
now also included. We also describe in Sec. 2.7 how we obtained the flow speed and 
compare it to measured flow speeds. 
 
 
Page 5 – tab. 2 How exactly have these values been derived? 
 
 Comment: We changed the table caption and added a few sentences in the “weighing 
coefficients” subsection, answering the question. 
 
Page 7 – line 10 Sentence not needed. 
 
 Comment: We removed this sentence. 
 
Page 7 – line 13-15 Suggest moving sentence to “methods” section. 
 
 Comment: These lines briefly explain Fig. 3. Hence, the authors think it should better 
remain in the Results section. 
 
Page 8 – Fig. 3, tab. 3 Suggest adding 2nd figure column for air temperature. Merge figure 
and table (i.e. add slope values to the table). Please check robustness of number of digits of 
slopes, also state whether slopes are statistically significant. 
 
 Comment: We reduced the number of digits and added R^2 values and a significance 
statement. We also added Ta in the figure and the RAPS index for trend analysis. 
 
Page 8 – line 3 Which difference? It is stated that Ta warming rates are not really different. 
Comments: We added “from each other” to clarify this sentence. 
 
Page 9 – line 3/4 Please be more specific what is meant with “average European river” 
 
 Comment: We removed this part. 
 
Page 9 – line 9/10 Move to “methods” section. 
 
 Comment: This is a brief reminder and explanation for Tab. 5. We prefer to keep it there. 
 
Page 9 & 10 Combine tab. 4 & 5 and highlight the best model for each criterion & location 
 
 Comment: We combined the tables and highlighted the best model. 
 
Page 11 - tab. 6 what does “GW” stand for? Omit “the table shows” 
 
 Comment: Thank you, we replaced GW with “∆Hi [GW]”. We removed “the table shows”. 
 
Page 11 – line 16 What is meant with “on average constant” – what time step does the 
average refer to? 
 
 Comment: The sentence was completely revised. P 16 Line 289. 



 
Page 11 – line 25 Why has this particular company (BASF) been chosen? 
 
 Comment: It is close to the measurement station Worms and also provides significant heat 
input. We added this information to the manuscript. 
 
Page 12 – line 2 Provide test statistics for significance or reword. 
 
 Comment: We omitted the word significant. 
 
Page 14 – line 2 Linear models have also been applied elsewhere. However, it is unclear 
from this sentence how a linear relationship between air and river temperature implies 
universal applicability of the method presented in this paper. Furthermore, Morrill et al. found 
a better fit of non-linear models which might be even more pronounced outside of the tropics 
(i.e. conditions when air temperature, unlike river temperature, goes far below 0◦C) 
 
 Comment: The scope of this paper is not only finding a better (lower RMSE) way to model 
Tw, but to apply coefficients of a linear regression to better explain trend in Tw. more 
precise (etc.) models might be available, but most of them don’t allow to distinct between 
anthropogenic, meteorological and hydrological impacts. If they allow this distinction, they 
are very labor-, time-, staff- and computing capacity intensive. This is not the case for the 
model proposed by us. 
Morrill et al. found suitable linear relationships between Ta and Tw for rivers around the 
world. This was a prerequisite for our analysis. 
 
 
Page 15 – line 8 for reproducibility, please also name the data providers. 
 
 Comment: The data providers are mentioned in the methods section. 
 
 
TECHNICAL CORRECTIONS 
 
Page 1 – line 2/3 Sentence unclear – please revise. 
 
 Comment: Changed. 
 
Page 1 – line 15 What does “their” refer to? 
 
 Comment: It refers to: energy intensive industries such as power plants, oil refineries, paper 
or steel mills. Changed to: “Its availability is a basic requirement for the facilitie’s location 
(Förster and Lilliestam, 2010). 
 
Page 2 – line 8 Please revise sentence structure. 
 
 Comment: We revised the sentence. 
 
Page 2 – line 16 Please correct spelling to “assess” 
 
 Comment: Thanks we changed it. 



 
Page 2 – line 24 Is the Markovic reference at the correct position of the sentence? 
 
 Comment: We changed the position. 
 
Page 3 – tab. 1 Move table into methods section. 
 
 Comment: It is in the methods section. The final formatting is applied by Copernicus. 
 
Page 3 – line 13 Please correct to “European Centre for Medium-Range Weather Fore-
cast”. 
 
 Comment: Sorry, an awkward mistake. We changed it. 
 
Page 3 – line 23 Hydrological distance between what? Noun missing. 
 
 Comment: Corrected. 
 
Page 4 – line 12 Please consider moving reference to end of sentence. 
 
 Comment: We moved them. 
 
Page 6 – line 3 “2019” instead of “20019” 
 
 Comment: We corrected it. 
 
Page 7 – line 2 Better “reunification” as “unification” refers to 1871. 
 
 Comment: Typo, corrected. 
 
Page 9 – line 9&10 Nash-Sutcliffe (“e” missing”). 
 
 Comment: We added an e. 
 
Page 12 – Fig. 5 Y-Axis missing for Worms. 
 
 Comment: We added the axis. 
 
Page 12 – line 3 Remove duplicate “by a”. 
 
 Comment: Thanks, corrected. 
 
Page 13 – line 2 Check spelling of “Mineralölraffinerie“ and use the official name “Ober-
rhein” instead of “Karlsruhe”. 
 
 Comment: We changed that. 
 
Page 13 – line 2 Use Author (Year) citation format. 
 
 Comment: That’s the formatting prescribed by Copernicus. 



 
Page 14 – line 2 Remove given name from reference. 
 
 Comment: Changed. 
 
Page 14 – line 10 Sentence unclear – “and” missing? 
 
 Comment: We corrected it. 
 
Page 14 – line 15 Use Author (Year) citation format. Suggest to use “physical-based 
 
 Comment: That’s the formatting prescribed by Copernicus. 
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Reviewer 2 

 

Interactive comment on “Anthropogenic Influence on the 
Rhine water temperatures” 
by Alex Zavarsky and Lars Duester 
 
In this study, the authors analyze the effects of Nuclear Power Plants on river water 
temperature of the Rhine. The authors propose a multiple linear regression model where 
river water temperature is simulated based on air temperature and streamflow as predictor 
variables. Air temperature is evaluated through an averaging procedure that accounts for 
the geomorphology of the hydrological catchment. The intercept of the multiple linear 
regression models is used as a proxy for the anthropogenic impact on river water 
temperature and is compared to the time series of GDP and heat input from NPPs. The 
presentation of the methodological approach and of the results should be improved, both in 
terms of clarity and quality. In my opinion the robustness of some methodological aspects is 
weak (e.g., the use of a constant flow velocity, the interpretation of the multiple linear 
regression intercept as "indicator for industrial heat input") and the discussion of the results 
should be expanded and deepened. The literature review on modeling of river water 
temperature and assessment of anthropogenic impacts should be updated and the grammar 
and syntax of the manuscript should be checked carefully. Please, find below some specific 
comments. 
 
 
Introduction by the authors: 
We would like to sincerely thank both reviewers for the comments and thoughts about our work and 
this manuscript. We think that the input significantly improved the manuscript. 
 
Based on the reviewers comments and by reviewing the code once again transposed numbers were 
found in the coding. By correcting the calculation method ACC*w provides the lowest RMSE and 
largest NCS in three out of four station. At the same time we were able to further decrease the RMSE 
for the ACC*w calculation method. The reasons for the ACC*w resulting in lower RMSE compared to 
ACC or w only, is now described in detail in the methods section. Overall, the results (correlations, 
RMSE, NCS, ∆RBTcalc) changed only so slightly, that the scientific conclusion and the key 
messages were not influenced. This also visible in the attached track changes version of the 
manuscript. 

 
 
 
 
Specific comments 
 
Introduction: 
 
The literature review on modeling of river water temperature should be expanded and 
updated including the most recent studies in this field. Besides "classical" deterministic and 
statistical models, there is a wide range of models based on machine learning techniques or 



hybrid physically-based/statistical approaches (e.g., Sahoo et al., 2009;Toffolon and 
Piccolroaz, 2015; Sohrabi et al., 2017), which have been emerging in the last years. Despite 
it is not recent, I suggest giving a look to the review paper by Benyahya et al. (2007), which 
provides a good overview of deterministic and statistical models used in the field of river 
water temperature prediction. Another useful and more recent paper is that by Gallice et al. 
(2015). 
 
  
 Comment: Another thorough literature search was undertaken and we added among other 
references, the references proposed the reviewers. The overview of water temperature 
models was extended in the introduction. 
 
In addition, the authors should refer also to existing literature on the assessment of 
anthropogenic impact on river water temperature (e.g., Cai et al., 2018; Gaudard et al., 
2018; Raman Vinna et al., 2018,just to cite some recent papers). 
 
  
 Comment: The publications were cross-checked. The input was included in the revision of 
the manuscript. 
 
 
In general, I believe that the paragraph from P1, line 19 to P2, line 8, should be thoroughly 
restructured and revised, and the authors should be more precise throughout the text (e.g., 
at P1, line 22: I believe that the authors intend deterministic and statistical models here; at 
P2, lines 21-23, the sentence is unclear; at P2, lines 25-26, the comment is superfluous 
since in a multiple linear regression, such as the one used by the authors, these 
components are obviously neglected). P2, lines 7-8: I would rephrase this sentence in more 
general terms, because the amount of variance in river water temperature explained by air 
temperature and streamflow are strongly dependent on the case study (hydrological regime, 
season, etc.). 
 
  
 Comment: Thank you for the comments. We revised the whole introduction. The changes 
we made can be seen in the track changes version. 
P2 lines 25-26: We know that our model does exclude ground heat flux and friction.  
If the parameters are important they would appear most likely and unfortunately in the 
regression coefficient a1. However, a1 is the basis of our analysis which should display the 
anthropogenic heat input We just want to say that we think these heaf fluxes are neglible 
and do not interfere with our anthropogenic heat input. 
In this regard, the authors should expand the analysis of parameters a2 and a3 of their 
regression model. The second half of the Introduction (from P2, line 16) should be moved to 
the methods section and should be improved, as in its current form it does not clearly 
describe how the authors set up their analysis, especially concerning the definition and use 
of RBT as an "indicator for industrial heat input" and the time resolution of the data used in 
the multiple linear regression analysis. 
Figure 1 This figure should be updated with the location of the monitoring station and of the 
NPPs. The main course of the Rhine should also be indicated. 
 
 Comment: We changed Figure 1. In the introduction we give just a basis overview of our 



idea which is closely linked to the linear regression model. We moved some parts to the 
methods section. The detailed calculations are described in the methods section. 
 
 
Section 2.1. I agree on the comment about accuracy and precision, however I wonder if the 
measurements are affected by instrumental drift and, in case, if the dataset has been 
corrected accordingly. 
 
 Comment: The data was verified by the data provider(e.g., by recurrent validation 
measurments, recalibration if needed or cross-validation). The data-set was screened for 
suspicious features. We stated this in the manuscript. 
 
 
P3, line 9: this sentence is unclear. In general, I agree that water temperature is rather 
homogeneous at a river section if it has a compact geometry, while it may be non-uniform if 
the geometry is complex. 
 
 Comment: We know that the measured water temperature, especially in complex river 
geometries, is an on-spot in-situ temperature and could be different from a cross-section 
average Tw. However, a method benefit of this analysis is that only the water temperature 
differences are needed. If the measured Tw changes and the cross-section Tw does, 
accordingly. 
 
Section 2.2.Here the authors used a constant flow speed to evaluate the flow time required 
to travel from a cell of the catchment to the catchment outlet. The authors should clarify how 
they selected this flow speed and if it is reasonable to assume a constant value 
(was this velocity the same for the four outlets?). I wonder about the methodological 
robustness of the approach proposed by the authors since they applied the same flow 
velocity to all cells pertaining to the catchment, thus both to hillslope and river network cells. 
In this regard, I also do not fully agree on the sentence at P5, lines 21-22 since before 
reaching the channel network, rainfall may follow different paths (infiltration,C3runoff, etc.), 
thus exchanging heat with the surrounding environment and decreasing its correlation to Ta.  
 
 Comment: In our model, the flow speed does not vary in space and time. Generally, the 
flow speed in the shipping channel is between 1 m/s and 2 m/s. This is supported by ADCP 
round robin tests (https://www.bafg.de/DE/05_Wissen/02_Veranst/2007/10-09-
07_bericht.pdf?__blob=publicationFile) which showed a average flow speed of 1.2 m/s. 
Using the Koblenz data as reference we tried several flow speeds to minimize the RMSE of 
the model. We found a minimum of RMSE at 0.4 m/s. This is in the extended-range flow 
speeds. We expected a higher correlation at lower flow speeds than actually measured in 
the Rhine as we do not model standing water bodies. To us a flow speed with a magnitude 
difference would be questionable, but the one used is within reasonable limits. 
 
 
P3, line 20: 
 
 Comment: We changed the wording. 
 
P4, line 1 



 
 Comment: We changed the wording 
 
 
Section 2.3 
The authors state that parameter a1 (the intercept) summarizes all effects that are not 
directly ascribable to Ta and Q, which "are mostly from anthropogenic sources". Personally, 
I do not agree that, in general, the value of a1 can be unequivocally related to anthropogenic 
factors. 
 
 Comment: Of course there is no proven, but this the hypothesis. We are able to strongly 
support this hypothesis by comparing changes in anthropogenic heat input (nuclear power 
plants) and short term economic changes to a1 and draw a consistent picture in the 
manuscript. 
 
 
The authors should support this statement referring to previous literature on the topic. In this 
regard, a useful reading is Isaak et al (2011), where also the multiplicative interaction term 
has been included in the multiple linear regression model. 
 
 Comment: We reviewed all citations, thank you for the hints. If applicable we changed the 
manuscript. Especially, the different methods for modelling Tw are described now more 
detailed in the introduction. 
 
 
Variablesx0,y0, and in eq 2 are not defined. Table 2 (and corresponding description in the 
main text): the authors should provide details on why they assumed a linearly deceasing 
weighting factor instead of other weighting functions. 
 
 Comment: We added an explanation of x,y. We revised our model and use now ACC*w as 
weighting factor. The reason for a linear decrease cannot be answered within this 
manuscript and more research is needed. 
 
 

While the weighting factors decreases with ∆t, I expect that Tw is no more correlated to Ta 

after some time. The authors obtain the best results using the "Time lag" model instead of 
the "Time lag + weight" model, saying that the furthest and oldest Ta influences on Tw are 
still carried as information in the water mass (P9, lines 4-5). In my opinion, the real reason is 
that without assuming a deceasing weighting factor the authors increase the dependence of 
current river water temperature on previous conditions, thus implicitly accounting for the 
thermal inertia of the river. This is an important aspect controlling river water temperature, 
which is not explicitly included in the model proposed by the authors and that can be 
accounted for e.g., through autocorrelation terms (e.g., Caissie et al., 2001; Toffolon and 
Piccolroaz, 2015). 
 
 Comment: We think that the reason for using a weighting factor decreasing is a) to put less 
weight on the large amount of grid-points with less ACC and b) to put less weight on 
temperatures with a large ∆t. 

Autocorrelation is an option but we decided not use it for this model. 
 



 
Control scenarios I would use a different word than "scenarios" here, since these are not 
scenarios but different approaches to calculate Tc . 
 
 Comment: Changed. 
 
 
Section 2.4 The authors should explain how they calculated the heat input by NPP to the 
Rhine. The section should be expanded, and the sentences harmonized to make the 
reading more fluid (too short sentences). 
 
 Comment: We moved the explanation of the NPP heat input to the methods section and 
revised it. 
 
 
Figure 3 and Table 3 Figure 3 would benefit from the inclusion of the air temperature time 
series with the corresponding linear trends. This would be useful for better understanding 
the correlation between river water temperature and air temperature fluctuations, which are 
filtered out when using linear trends. In this regard, it would be useful to add the Pearson 
correlation coefficient between these two variables in Table 3. 
 
 Comment: We added air temperature to the figure. We also added the RAPS index to make 
trends more visible. 
 
 
At P8, lines 12-15 it would be useful to compare the trends found by the authors with those 
of more recent studies. 
 
 Comment: We removed this section. The focus of the paper is on providing reasons for the 
heterogeneous Tw trends in the Rhine river, an urgent matter in regulative river heat 
evaluation in times of climate change. 
 
 
Tables 4 and 5 Why did the authors use the "Time lag weight" approach for all other results 
instead of the "Time lag" approach, which performed the best? It should be clearly indicated 
if the RMSE and NSC refer to daily or annual values. 
 
 Comment: As mentioned before (first page of this document), the data was reanalyzed. As 
a consequence the tables and parts of the results were revised. The scientific conclusion 
was not changed. 
 
 
Section 3.3 It is unclear how the authors evaluated RBT over time. Did I correctly 
understand that they applied the multiple linear regression model for overlapping two-year 
time windows shifted by one month? What was the rationale of assuming two-year time 
windows instead of longer periods? Are the results affected by the length of the time window 
used for this analysis? 
 
 Comment: Longer time windows would decrease the temporal resolution of the regression. 
A shorter time window increases the influence by other linear dependent influences. The two 



years were chosen to address two full annual cycles. If a year was extraordinary concerning 
air temperature or discharge, a two year cycle would not be prone to such events. 
 
 
P10, line 2  these sentences are qualitative, and not sufficiently supported by the results. 
 
 Comment: We changed the wording. We add that we cannot meaningfully interpret the 
absolute value RBT. 
 
 
P11, line 4: these sentences are qualitative, and not sufficiently supported by the results. 
 
 Comment: The similar trends are supported by the analysis comparing calculated ∆RBT 
with measured ∆RBT. 
 
 
The comment on the effect of alpine lakes is not well connected to the rest of the paragraph 
and should be expanded with some more detailed discussion. 
 
 Comment: We just hypothesize why Basel has such an alternating RBT. However, the RBT 
does not show a long term trend over the whole dataset. Finding the reason is not in the 
scope of this paper. 
 
Eq 10 is dimensionally not consistent. 
 
 Comment: Thank you, we missed the density. Changed. 
 
 
How did the authors select the periods in Table 6? 
 
 Comment: The start of the period is the time of the maximum heat input by NPPs at the 
respective station. We added this information to the text. 
 
 
The authors could do the same calculation in continuous, for the entire period when the data 
are available (e.g., using the same two-year time windows as before). 
 
 Comment: This would be a good idea. However, tha aim was to use a time windows with 
the largest signal to noise ratio. Therefore we picked the largest ∆HI to avoid influences by 
short term trends. 
 
 
P11, line 16: what is the BASF company? This should be explained. 
 
 Comment: We added two sentences to explain the BASF. 
 
 
Why RBT in Figures 4 and 5 are different? How sensitive are the results of the correlation 
analysis to the filtering of the data? 



 
 Comment: Figure 5 has filtered RBT. 
We used a Butterworth band-pass filter instead of a running mean filter because the filter 
function of a butterworth is much easier to understand and it simply cuts all variations that 
are outside of the pass area. 
In this manuscript everything with a periodicity of 20 years (0.05 y

-1
) or longer is cut off. The 

reason is to eliminate long term trends, because the aim is to compare RBT to the GDP 
change. 
The lower limit is 0.9 years (1.1 y

-1
). Fast variations (faster than a year) of the RBT could 

influence the correlation vs a data-set (here the GDP) which is provided on a yearly basis. 
Therefore we smoothing is needed. 
 
 
 
How the filtering parameters have been chosen and why 480 days has been used to shift 
the GDP-change time series? This number seems quite arbitrary. 
 
 Comment: It was shifted to ensure a visual match between the two data-sets (GDP and 
RBT). The shift can be explained by lagging and leading economic factors. This is explained 
in the manuscript. Mathematically the 480 days shift does not yield the largest positive 
correlation. 
 
 
Appendices could be moved to the main text. In particular, the sentences in Appendix B 
should be revised because they have some syntax errors and typos. Figures A1 andA2 are 
inverted and the caption is the same. The analysis of parametersa2anda3should be 
deepened and moved to the main text. 
 
 Comment: We move the biggest part of the appendix into the main text, as advised. 
 
 
Technical corrections 
 
P1, line 13: "but an" –> "but is an". Is "means of production" an appropriate term in 
thiscontext? 
 
 Comment: Thank you for the hint. We think means of production is appropriate. 
 
 
P2, line 3 and following lines: the use of "Ta –> Tw" is informal and should be modified. 
 
 Comment: Thank you for your comment but we would like to keep it that way. 
 
 
P2, line 8: "hydro-logical" –> "hydrological" 
 
 Comment: We changed it. 
 
 
P2, lines 8-9: a reference is needed here. 



 
 Comment: This part has been moved and we added a reference in this sentence. 
 
 
P2, line 16: is "revise" the most appropriate term here? 
 
 Comment: You are right. We use “test” now. 
 
 
P2, line 20: "almost ideal" –> "ideal", "interesting", "meaningful" 
 
 Comment: Thank you, we changed it. 
 
P4, line 13: "followed, by" –> "followed by". Please, thoroughly revise the 
punctuationthroughout the article (use of commas, missing close-brackets, etc). 
 
 Comment: We completely revised this part. The sentence is now rewritten. 
 
 
P5, line 17: "ptovided" –> "provided" 
 
 Comment: We changed it. 
 
P6, line 1: I would say that authors present fourTccalculations, not two. 
 
 Comment: We revised this part completely. 
 
 
P6, line 18: "heat input by NPPsto the Rhine" –> "heat input by NPP to the Rhine" 
 
 Comment: We changed it. 
 
 
P8, line 5: "(0.0350◦Cy−1)" –> "(0.0489◦Cy−1)" 
 
 Comment: We completely revised this table. 
 
 
P10, line 15: "over the a time period" –> "over a time period" 
 
 Comment: Thank you, we changed it. 
 
P11, line 1: "shorter timer scale but do not seem,to our" –> "shorter time scale but doC6 
not seem, to our" 
 
 Comment: Thank you, we changed it. 
 
 
P11, line 14: "A a discontinuity" –> "A discontinuity" 



 
 Comment: Changed. 
P11, line 19: "by a by a" –> "by a" 
 
 Comment: Changed. 
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Anthropogenic Influence on the Rhine water temperatures
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Abstract. River temperature is an important parameter for water quality and an important variable for physical, chemical and

biological processes. River water is also used by production facilities as cooling agent. We introduce a new way of calculating a

catchment-wide air temperature and regressing river temperature vs air temperatures. As a result the meteorological influence

and the anthropogenic influence can be studied separately. We apply this new method at four monitoring stations (Basel,

Worms, Koblenz and Cologne) along the Rhine and show that the long term trend (1979-2018) of river water temperature is,5

next to the increasing air temperature, mostly influenced by decreasing nuclear power production. Short term changes on time

scales < 5 years are due to changes in industrial production. We found significant positive correlations for this relationship.
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1 Introduction

River water temperature (Tw) greatly influences the most important physical , chemical and ecological
✿✿✿

and
✿✿✿✿✿✿✿✿

chemical processes10

in rivers and is a key factor for river system health (Delpla et al., 2009). Tw also defines and confines ecological
✿✿✿✿✿

animal
✿

habitats

(Isaak et al., 2012; Durance and Ormerod, 2009) and the spread of invasive species (Wenger et al., 2011; Hari et al., 2006)

✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿

therefore
✿✿✿

an
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿✿

parameter. River water is not solely important from an environmental perspective but

✿

is
✿

an important means of production. Especially for energy intensive industries such as power plants, oil refineries, paper or

steel mills, river water is an important cooling agent. Its availability is a reason for the choice of their
✿✿✿✿✿

basic
✿✿✿✿✿✿✿✿✿✿

requirement
✿✿✿

for15

✿✿

the
✿✿✿✿✿✿✿✿

facilities
✿

location (Förster and Lilliestam, 2010). In this context, one has to bear in mind, that given a 32 % energy effi-

ciency, 68 % of the energy used in a facility is discharged through the cooling system into the respective stream (Förster and

Lilliestam, 2010). This leads to a significant heat load even on large rivers such as the Rhine (IKSR, 2006; Lange, 2009). As a

consequence, anthropogenic heat fluxes (heat discharge) can contribute significantly to the heat budget of a river. The natural

influences on Tw are: [1] Meteorology, including sensible heat flux, latent heat flux, radiative heat fluxes;
✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿✿✿✿

riparian20

✿✿✿✿✿✿✿✿

vegetation
✿

[2] Source temperature, which describes the origin of the water, e.g. snow-fed, glacier-fed, groundwater-fed; [3]

Hydrology, which influences the water temperature through the amount of water and the flow velocity; [4] Ground heat flux.

✿✿✿✿✿✿✿✿✿

Dependent
✿✿

on
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿

availability,
✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿✿✿

power,
✿✿✿✿✿✿✿✿

accuracy
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

questions
✿✿✿✿✿

asked,
✿

Tw can be modeled in two ways, physically

or deterministically.
✿✿✿✿✿✿✿

different
✿✿✿✿✿

ways.
✿✿✿✿

The
✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿

options
✿✿

are
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

models,
✿✿✿✿✿✿✿

physical
✿✿✿✿✿

based
✿✿✿✿✿✿✿

models
✿✿✿

and
✿✿✿✿✿✿✿✿

modeling
✿✿

by
✿✿✿✿✿✿

neural

1



✿✿✿✿✿✿✿✿

networks.
✿✿✿✿✿✿

Neural
✿✿✿✿✿✿✿✿

networks
✿✿✿

use
✿✿

a
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿

teaching
✿✿✿✿

data
✿✿

set
✿✿✿

to
✿✿✿✿

train
✿✿✿✿✿✿✿

artificial
✿✿✿✿✿✿✿

neurons
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿

between
✿✿✿✿✿

input
✿✿✿✿

(e.g.
✿✿✿

air25

✿✿✿✿✿✿✿✿✿✿

temperature)
✿✿✿✿

and
✿✿✿✿✿✿

output
✿✿✿✿

(Tw)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Zhu et al., 2018).
✿

A physical Tw model (Sinokrot and Stefan, 1993) parameterizes all fluxes

mentioned in [1] and [3], adds anthropogenic heat input and collects the hydrological and source boundary conditions [
✿

2]
✿✿✿

and

[
✿

4]. Each modeled heat flux is then applied to the water mass, initialized with the starting and boundary conditions. How-

ever, it is difficult to get a good estimation of these parameters over the catchment areaof a large river
✿

a
✿✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿✿

catchment

✿✿✿

area. As a consequence, statistical models use air temperature (Ta) as a proxy for sensible, latent and radiative heat fluxes30

(ground heat flux can be neglected) and establish a Ta → Tw relationship through regression.
✿✿

Ta
✿

is
✿✿✿✿✿✿

rather
✿✿✿✿✿

easily
✿✿✿✿✿✿✿

available
✿✿✿✿✿

from

✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

networks
✿✿

or
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿✿✿✿

products.
✿

This is a well established method and depending on the complexity, linear or

exponential models (Stefan and Preud'homme, 1993; Mohseni et al., 1998; Koch and Grünewald, 2010) are used. Generally

the exponential model has advantages due to the better simulation of extremely warm and cold Ta → Tw relationships
✿✿✿

Tw but

lacks the clear analytical
✿✿✿✿✿✿

analytic
✿

separation of the different influences to Tw.
✿✿✿✿✿

Using
✿✿✿✿✿

linear
✿✿✿✿✿✿✿

models, Markovic et al. (2013) show35

that between 81 % -90
✿

-
✿✿✿

90 % of the Tw variability can be described by Ta. 9 % -19
✿

-
✿✿

19 % can be attributed to hydrological

factors (e.g. discharge).
✿✿✿

The
✿✿✿✿✿

study
✿✿✿✿

was
✿✿✿✿

done
✿✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

Danube
✿✿✿

and
✿✿✿✿✿

Elbe
✿✿✿✿✿

basin
✿✿✿✿✿

using
✿✿✿✿

data
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

1939
✿✿

to
✿✿✿✿✿✿

2008.
✿✿✿✿✿

These
✿✿✿✿

two

✿✿✿✿

rivers
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿

comparable
✿✿✿✿

size
✿✿✿

and
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿

to
✿✿✿

the
✿✿✿✿✿

Rhine
✿✿✿✿✿

river.
✿✿✿✿✿✿

Hybrid
✿✿✿✿✿✿

models
✿✿✿

are
✿✿

in
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

physical
✿✿✿✿✿

based
✿✿✿✿

and
✿✿✿✿✿✿✿✿

statistical

✿✿✿✿✿✿

models.
✿✿✿✿✿

They
✿✿✿

use
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿✿✿

fluxes
✿✿✿

but
✿✿✿✿✿✿✿✿

determine
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿✿✿✿✿

stochastically
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Piccolroaz et al., 2016)
✿

.
✿✿✿✿✿✿✿

Another

✿✿✿✿✿✿✿✿✿✿

development
✿✿✿

are
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

models.
✿✿✿✿

They
✿✿✿✿✿✿✿✿

correlate
✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿

landscape
✿✿✿✿✿✿✿

variables
✿✿✿✿

(e.g.
✿✿✿✿✿✿✿✿✿

elevation,
✿✿✿✿✿✿✿✿✿

orientation,
✿✿✿

hill
✿✿✿✿✿✿✿✿

shading,40

✿✿✿✿

river
✿✿✿✿✿

slope,
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿

width...)
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿✿✿

and
✿✿✿

try
✿✿

to
✿✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿

determine
✿✿✿✿

their
✿✿✿✿✿✿✿✿

influence
✿✿✿

on
✿✿✿

Tw
✿✿

at
✿✿

a
✿✿✿✿✿✿

certain

✿✿✿✿✿

point.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿✿

correlations
✿✿✿

can
✿✿

be
✿✿✿✿✿✿

across
✿✿✿

any
✿✿✿✿✿✿✿

distance
✿✿✿✿

and
✿✿

do
✿✿✿

not
✿✿✿✿

have
✿✿

to
✿✿✿✿✿✿

satisfy
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿

connection
✿✿

or
✿✿✿✿✿✿✿✿

direction
✿✿

in
✿✿✿

the
✿✿✿✿

river
✿✿✿✿✿✿✿

system.

✿✿

As
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

prerequisite,
✿

a
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿

river
✿✿✿✿✿✿

system
✿✿✿✿

and
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿

is
✿✿✿✿✿✿

needed
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Jackson et al., 2017a, b)
✿

.

✿✿

An
✿✿✿✿✿✿✿✿✿✿✿✿

improvement
✿✿

to
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

statistic
✿✿✿✿✿✿

models
✿✿

is
✿✿✿

to
✿✿✿✿✿✿✿✿

recognize
✿✿✿✿✿

rivers
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿

network
✿✿

of
✿✿✿✿✿✿✿✿✿

connected
✿✿✿✿✿✿✿✿

segments
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿

definite
✿✿✿✿✿

flow

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

direction(Hoef et al., 2006; Hoef and Peterson, 2010; Isaak et al., 2010; Peterson and Hoef, 2010; Isaak et al., 2014).
✿✿✿✿✿✿✿✿✿✿

Correlation45

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variables
✿✿✿✿✿

(e.g.
✿✿✿

Ta,
✿✿✿

Tw
✿✿✿✿✿✿✿✿

discharge,
✿✿✿

...)
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

influence
✿✿✿✿

other
✿✿✿✿

Tw,
✿✿

is
✿✿✿✿✿✿✿✿

weighted
✿✿

on
✿✿✿✿

their
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿✿✿

connectivity
✿✿✿

and
✿✿✿✿✿✿✿✿

euclidean
✿✿✿

or

✿✿✿✿

flow
✿✿✿✿✿✿✿

distance.
✿✿✿✿✿

These
✿✿✿✿✿✿✿

models
✿✿✿

can
✿✿✿✿

also
✿✿✿✿✿✿

include
✿✿✿✿

time
✿✿✿

lag
✿✿✿✿✿✿✿✿✿✿✿✿

considerations
✿✿✿✿✿

using
✿✿✿✿✿✿✿

temporal
✿✿✿✿

auto
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Jackson et al., 2018)
✿

.

1.1
✿✿✿✿✿

Rhine

Along the Rhine, up to 12 nuclear power plants (NPP) have causedfor decades
✿

,
✿✿✿

for
✿✿✿✿✿✿✿

decades,
✿

the largest part of anthropogenic50

heat input in the river
✿✿✿✿✿✿✿✿✿✿✿

(Lange, 2009). The nuclear power production increased in the 1970s and 1980s and reached a peak in

the mid 1990s. After the Fukushima disaster in 2011, the German government decided to exit from nuclear power production

and the first NPPs were shut down. With this political decision a clear drop on nuclear power production was
✿

is visible, on top

of already decreasing production rates. Currently (July 2019) eight NPPs are operational in the catchment area of the Rhine

using (partly) river water as cooling agent. In this publication, we hypothesize that, next to environmental factors, this long55

term decrease in power production together with short term economic changes have an impact on Tw of the Rhine. This impact

might be heterogeonous along the river as the location of industry and NPPs is concentrated at several highly industrialized

spots.
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To revise the hypothesis and asses
✿✿✿

test
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

hypothesis
✿✿✿

and
✿✿✿✿✿

assess
✿

the varying impact of industry, meteorology and hydrology

on the Rhine river temperatures, we run a multiple regression model
✿✿✿

want
✿✿

to
✿✿✿✿✿✿✿✿

combine
✿✿✿✿

ideas
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

models60

✿✿

to
✿✿✿✿✿✿

develop
✿✿

a
✿✿✿✿

new
✿✿✿✿✿✿

method
✿✿

of
✿✿✿✿✿✿✿✿✿✿

calculating
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿✿✿✿✿✿✿✿

catchment
✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

(Tc).
✿✿

Tc
✿✿✿✿

and
✿✿✿✿✿✿✿✿

discharge
✿✿

Q
✿✿

is
✿✿✿✿

then
✿✿✿✿

used
✿✿

in
✿✿

a

✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿

Tc → Tw
✿

(Eq. 1).
✿✿✿✿

The
✿✿✿✿✿

model
✿✿

is
✿✿✿

run
✿

on a Tw time series from 1979 to 2018 measured at four Rhine

stations (Basel (CH), Worms (DE), Koblenz (DE) and Cologne (DE)). The period from 1979 to 2018 experienced several

changes in anthropogenic heat input to the Rhine catchment area, which makes it an almost ideal
✿✿✿✿✿✿✿✿✿

interesting scenario to be

studied. Tw is regressed with a catchment-wide air temperature Ta and river discharge Q, Eq. 1.65

Tw = a1 + a2 ·Tc + a3 ·Q
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(1)

a1, a2 and a3 are the resulting regression coefficients .

Tw = a1 + a2 ·Ta + a3 ·Q

✿✿✿✿✿

which
✿✿✿✿✿✿✿

describe
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿

fluxes
✿✿✿✿✿✿✿✿✿✿✿✿✿

(anthropogenic,
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

hydrological).
✿✿✿

Tc
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

newly

✿✿✿✿✿✿✿

proposed
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿

Q
✿✿✿

the
✿✿✿✿✿✿✿✿

discharge
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿

station. The origin of water, e.g. ground water, snow70

melt, glacier melt, is included by the catchment wide approach where Ta at
✿✿

Tc
✿✿✿✿✿✿✿

because
✿✿✿✿

data
✿✿✿✿

from
✿

high elevations (e.g. Alps) is

also included. Webb et al. (2003)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Webb et al. (2003); Markovic et al. (2013) have shown that Q is inversely related to Tw and

an important factor (Markovic et al., 2013) in the Ta → Tw
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Tc → Tw
✿

relationship. Additionally, it functions as measure

of how fast a the water mass responds to changes in Tw. Ground heat flux, ground water influx and heat generation due to fric-

tion are not included in this model because of the comparable small influence (Sinokrot and Stefan, 1993; Webb and Zhang, 1997)75

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Sinokrot and Stefan (1993)
✿✿

for
✿✿✿✿✿✿✿✿✿✿

Mississippi;
✿✿✿✿✿✿✿✿✿✿✿✿✿

Caissie (2006)
✿

as
✿✿✿✿✿✿

review
✿✿✿✿✿✿✿

article).
✿✿✿✿

Other
✿✿✿✿✿✿✿

models
✿✿✿✿

such
✿✿

as
✿✿✿✿✿

hybrid
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Toffolon and Piccolroaz,

✿✿✿✿✿

would
✿✿✿✿✿

create
✿✿✿✿✿✿

lower
✿✿✿✿✿✿

RMSE
✿✿✿

but
✿✿

do
✿✿✿✿

not
✿✿✿✿✿

allow
✿✿✿

for
✿

a
✿✿✿✿✿

clear
✿✿✿✿✿✿✿✿✿

distinction
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological,
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

anthropogenic

✿✿✿✿✿

input.

Using the multiple regression (Eq. 1), we aim to especially investigate the change of a1 over time, which we call the Rhine

base temperature (RBT). This temperature represents the Tw without the influence of meteorology and discharge. RBT is an80

indicator for industrial heat input and the use of Rhine water as cooling agent. We hypothesize that its long term change is

connected with the electricity production of NPPs and its short term variations is connected with overall industrial production

and general economic indicators. Using different time series along the Rhine, we investigate where anthropogenic heat fluxes

may influence Tw and may lead to an overall heterogeneous warming rate along the Rhine.

2 Methods85

2.1 Water temperature and discharge

We use a data-set of daily averaged Tw and Q from 1979-2018 gathered from different sources (WSA, 2019; BfG, 2019; LfU,

2019; BAFU, 2019). Table 1
✿✿✿

The
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿

data-sets
✿✿✿✿

have
✿✿

a
✿✿

10
✿✿✿✿

min
✿✿✿✿✿✿

sample
✿✿✿✿✿✿✿✿✿

frequency.
✿✿✿✿

Table
✿✿✿

(1)
✿

lists the respective stations along

the Rhine (Col. 1), stream km (Col. 2), data availability (Col. 3), the important tributaries upstream (Col. 4) and the reference
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name stream km time period important tributary upstream reference

Cologne KM 690 1.1.1985-31.12.2018 Mosel WSA (2019)

Koblenz KM 550 1.1.1978-31.12.2018 Main BfG (2019)

Worms KM 443 1.1.1971-31.12.2018 Neckar LfU (2019)

Basel KM 170 1.1.1977-31.12.2018 Aare BAFU (2019)

Table 1. Lists of monitoring stations used in this study. Column two provides the location as Rhine km. Column three provides the data

range. The third column names the important upstream tributary and column four names the reference.

(Col. 5). Tw was measured by platinum resistivity sensors (Pt100). The accuracy of theses sensors is commonly ±0.5 oC but90

the precision, which describes the ability to detect temperature changes, is 0.05 oC. As we focus on the change Tw over time

and do not compare the absolute temperature, the accuracy is not essential and the precision is sufficient. Errors inflicted by

measuring depth and location in the river are also not influencing the calculation, regarding the aim of this study, as long as the

measured Tw is a linearly dependent proxy for the average river temperature. Q is provided as daily averages in m3s−1 by the

reference (Tab. 1
✿✿✿✿

3s−1

✿✿

by
✿✿✿

the
✿✿✿✿✿✿

source
✿✿

in
✿✿✿✿

Tab.
✿✿✿

(1) and usually calculated from river stage).95

✿✿✿

The
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿

data-sets
✿✿✿✿

have
✿✿✿✿✿✿✿

already
✿✿✿✿

been
✿✿✿✿✿✿

verified
✿✿✿

by
✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿

source
✿✿✿

but
✿✿✿

are
✿✿✿✿✿✿✿✿

screened
✿✿

by
✿✿

us
✿✿✿

for
✿✿✿✿✿✿✿✿✿

suspicious
✿✿✿✿✿✿✿

features.
✿✿✿✿✿✿✿

Missing

✿✿✿

data
✿✿✿✿✿✿

points
✿✿

up
✿✿

to
✿✿✿✿

one
✿✿✿✿

week
✿✿✿

are
✿✿✿✿✿✿✿

linearly
✿✿✿✿✿✿✿✿✿✿✿

interpolated.
✿✿✿✿✿✿

Longer
✿✿✿✿✿✿✿✿✿✿✿

data-outages
✿✿✿

and
✿✿✿✿✿✿✿✿

recurring
✿✿✿✿✿✿✿✿✿✿

data-outages
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿

experienced.
✿✿✿✿

The

✿✿✿✿✿✿

data-set
✿✿

is
✿✿✿✿✿✿✿✿

provided
✿✿

by
✿✿✿✿

state
✿✿✿✿

and
✿✿✿✿✿✿

federal
✿✿✿✿✿✿✿

operated
✿✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

stations
✿✿✿✿✿✿

which
✿✿✿✿✿✿

usually
✿✿✿

run
✿✿✿✿✿✿

backup
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿✿

systems.

2.1.1 Air temperature

2.2
✿✿

Air
✿✿✿✿✿✿✿✿✿✿✿✿

temperature100

Ta is retrieved from the European Centre for Meridional
✿✿✿✿✿✿✿✿✿✿✿✿

Medium-Range
✿

Weatherforcast (ECMWF) Reanalysis Model ERA5.

It provides an hourly time resolution of the 2 m Ta on a 1

4

o
by 1

4

o
grid. The data-set is available from 1979-2018. We took the

hourly Ta output and calculated a daily mean for each grid point between 1979 and 2018 to fit the time resolution of Tw.

2.3 Catchment Area
✿✿✿✿✿✿

Nuclear
✿✿✿✿✿✿

Power
✿✿✿✿✿✿

Plants

✿✿✿

The
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿

electrical
✿✿✿✿✿✿

power
✿✿✿✿✿✿✿✿✿

production
✿✿✿

by
✿✿✿✿✿

NPPs
✿✿

is
✿✿✿✿✿✿✿✿

available
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

International
✿✿✿✿✿✿✿

Atomic
✿✿✿✿✿✿

Energy
✿✿✿✿✿✿✿

Agency
✿✿✿✿✿✿✿

(IAEA)
✿✿✿✿✿✿

Power105

✿✿✿✿✿✿

Reactor
✿✿✿✿✿✿✿✿✿✿

Information
✿✿✿✿✿✿✿

System
✿✿✿✿✿✿✿✿✿✿✿

(IAEA, 2019)
✿

.
✿✿

At
✿✿✿✿✿

most
✿✿

12
✿✿✿✿✿

NPPs
✿✿✿✿✿✿✿✿✿✿✿

(1986-1988)
✿✿✿✿

were
✿✿✿✿✿✿

online
✿✿

in
✿✿✿

the
✿✿✿✿✿

Rhine
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area.
✿✿✿✿✿✿✿✿

Separate

✿✿✿✿✿

blocks
✿✿

of
✿✿✿✿

one
✿✿✿✿

NPP
✿✿✿

are
✿✿✿✿✿✿✿✿✿

combined.
✿✿

In
✿✿✿✿

July
✿✿✿✿

2019
✿✿✿✿✿

eight
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿

operational.
✿✿✿

All
✿✿✿✿✿✿✿✿✿

shutdowns
✿✿✿✿✿

were
✿✿✿✿

done
✿✿

in
✿✿✿✿✿✿✿✿

Germany.

✿✿✿✿

From
✿✿✿✿✿✿✿✿

estimates
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

Lange (2009)
✿✿✿

and
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿

personal
✿✿✿✿✿✿✿✿✿✿✿✿✿

communication
✿✿✿✿

from
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

sources,
✿✿✿

the
✿✿✿

heat
✿✿✿✿✿

input
✿✿✿

by
✿✿✿✿✿

NPPs
✿✿

to
✿✿✿

the

✿✿✿✿✿

Rhine
✿✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

station,
✿✿✿

Fig.
✿✿✿

(1).
✿✿✿✿

The
✿✿✿✿✿

NPPs
✿✿

in
✿✿✿✿

Tab.
✿✿

(2)
✿✿✿

are
✿✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿

heat
✿✿✿✿✿

input
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿✿

through

✿

a
✿✿✿✿✿✿✿✿✿

conversion
✿✿✿✿✿

factor
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

converts
✿✿✿✿✿✿✿✿

electrical
✿✿✿✿✿✿✿

produced
✿✿✿✿✿✿

power
✿✿

to
✿✿✿✿

heat
✿✿✿✿✿

input.
✿✿✿✿✿

NPPs
✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿✿

exclusive
✿✿✿✿

river
✿✿✿✿✿

water
✿✿✿✿✿✿✿

cooling
✿✿✿✿✿✿

system110

✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿✿

conversion
✿✿✿✿✿

factor
✿✿✿

of
✿✿✿✿✿

three,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

power
✿✿✿✿✿✿✿✿

efficiency
✿✿✿

of
✿✿✿✿✿✿✿✿

electricity
✿✿✿✿✿✿✿✿✿✿

generation.
✿✿✿✿✿

Other
✿✿✿✿✿✿

factors
✿✿✿

are
✿✿✿✿✿✿✿✿

estimated

✿✿✿✿✿✿✿✿

depending
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

cooling
✿✿✿✿✿✿

system
✿✿✿✿

used
✿✿✿✿

and
✿✿✿✿✿✿✿

personal
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

communication.
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Figure 1.
✿✿✿✿

Using
✿✿✿

the
✿✿✿✿

PRIS
✿✿✿✿✿✿✿✿✿✿✿

(IAEA, 2019)
✿✿✿✿✿✿✿

database
✿✿

we
✿✿✿✿✿✿✿✿

estimated
✿✿✿

the
✿✿✿

heat
✿✿✿✿✿

input
✿✿

by
✿✿✿✿✿

NPPs
✿✿✿✿

from
✿✿✿✿

1969
✿✿

to
✿✿✿✿✿

2018.
✿✿✿✿

This
✿✿✿✿✿

figure
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿

total

✿✿✿✿✿✿✿

upstream
✿✿✿

heat
✿✿✿✿

input
✿✿

of
✿✿✿✿

each
✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station.

✿✿✿✿

name
✿✿✿✿✿✿

country
✿✿✿

river
✿✿✿✿✿✿✿✿

conversion
✿✿✿✿✿

factor
✿✿✿✿

const.
✿✿✿✿

heat
✿✿✿✿

input

✿✿✿✿✿

Beznau
✿✿✿

I+II
✿✿

CH
✿✿✿✿

Aaare
✿

3
✿✿✿

N/A

✿✿✿✿

Biblis
✿✿✿✿

I+II
✿✿

DE
✿✿✿✿

Rhine
✿

2
✿✿✿

N/A

✿✿✿✿✿✿✿

Cattenom
✿✿✿

I-IV
✿✿

DE
✿✿✿✿

Mosel
✿✿✿

N/A
✿✿✿

200
✿✿✿

MW

✿✿✿✿✿✿✿✿

Fessenheim
✿✿✿✿

I+II
✿✿

FR
✿✿✿✿

Rhine
✿

3
✿✿✿

N/A

✿✿✿✿✿✿

Goesgen
✿✿

CH
✿✿✿✿

Aare
✿✿✿

N/A
✿✿

50
✿✿✿✿

MW

✿✿✿✿✿✿✿✿✿✿✿✿

Grafenrheinfeld
✿✿

DE
✿✿✿✿

Main
✿✿✿

N/A
✿✿✿

200
✿✿✿

MW

✿✿✿✿✿✿

Leibstatt
✿✿

CH
✿✿✿✿

Rhine
✿✿✿

N/A
✿✿

50
✿✿✿✿

MW

✿✿✿✿✿✿✿✿

Muehleberg
✿✿

CH
✿✿✿✿

Aare
✿

3
✿✿✿

N/A

✿✿✿✿✿✿✿✿✿✿✿✿

Neckarwestheim
✿✿✿✿

I+II
✿✿

DE
✿✿✿✿✿

Neckar
✿

1
✿✿✿

N/A

✿✿✿✿✿✿✿✿

Obrigheim
✿✿

DE
✿✿✿✿✿

Neckar
✿

3
✿✿✿

N/A

✿✿✿✿✿✿✿✿✿

Philippsburg
✿✿✿

I+II
✿✿

DE
✿✿✿✿

Rhine
✿

1
✿✿✿

N/A

Table 2.
✿✿✿✿

NPPs
✿✿✿✿✿✿

included
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿✿✿

manuscript.
✿✿✿✿

The
✿✿✿✿✿✿✿

coversion
✿✿✿✿✿

factor
✿✿✿✿✿✿✿

describes
✿✿✿

the
✿✿✿✿✿✿✿✿

conversion
✿✿✿✿

from
✿✿✿✿✿✿✿

electrical
✿✿✿✿✿

power
✿✿✿✿✿✿✿✿

generation
✿✿

to
✿✿✿

heat
✿✿✿✿✿

input.
✿✿

If

✿✿✿✿✿

cooling
✿✿✿✿✿✿

towers
✿✿

are
✿✿✿✿✿✿✿

installed
✿

a
✿✿✿✿✿✿✿

constant
✿✿✿

heat
✿✿✿✿

input
✿✿

is
✿✿✿

used
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿✿✿

Lange (2009)
✿

.

2.3.1
✿✿✿✿✿✿✿✿✿

Calculated
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

change

✿✿✿

We
✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿

RBT
✿✿✿✿✿✿✿

(∆RBT)
✿✿✿✿✿

based
✿✿✿

on
✿

a
✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿

heat
✿✿✿✿✿

input
✿✿✿✿✿

(∆HI)
✿✿✿

by
✿✿✿✿

NPPs
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿

discharge

✿✿

Q̄,
✿✿✿

the
✿✿✿✿

heat
✿✿✿✿✿✿✿

capacity
✿✿

of
✿✿✿✿✿

water
✿✿

cp
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿

water
✿✿✿✿✿✿

density
✿✿

ρ,
✿✿✿

Eq.
✿✿✿✿

(2).115

∆RBT =
∆HI

cp · Q̄ · ρ
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2)
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✿✿✿✿

This
✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿✿

follows
✿✿✿

the
✿✿✿✿

idea
✿✿✿

that
✿✿✿

the
✿✿✿✿

heat
✿✿✿✿✿

input
✿✿

of
✿✿✿✿✿

NPPs
✿✿

is
✿✿✿✿✿✿✿✿

essential
✿✿✿

for
✿✿✿

the
✿✿✿

heat
✿✿✿✿✿✿

budget
✿✿✿

of
✿✿✿

the
✿✿✿✿

river
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿

alters

✿✿✿✿

RBT
✿✿

as
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿

influences,
✿✿✿✿

such
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

meteorology
✿✿✿✿

(a2)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

hydrology
✿✿✿✿

(a3),
✿✿✿

are
✿✿✿✿✿✿✿✿

excluded
✿✿

by
✿✿✿✿✿✿✿✿

applying
✿✿✿

the
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

linear

✿✿✿✿✿✿✿✿✿

regression.

2.4
✿✿✿✿

Gross
✿✿✿✿✿✿✿✿✿

Domestic
✿✿✿✿✿✿✿

Product120

✿✿✿

The
✿✿✿✿✿

gross
✿✿✿✿✿✿✿✿

domestic
✿✿✿✿✿✿

product
✿✿✿✿✿✿

(GDP)
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

adjacent
✿✿✿✿✿✿✿

German
✿✿✿✿✿✿

federal
✿✿✿✿✿

states
✿✿

is
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

VGdL (2019a, b)
✿

.
✿✿✿✿

Due
✿✿

to
✿✿✿✿✿✿✿

changes

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿✿

method
✿✿

of
✿✿✿

the
✿✿✿✿✿

GDP
✿✿✿✿✿

before
✿✿✿✿

and
✿✿✿✿

after
✿✿✿

the
✿✿✿✿✿✿✿

German
✿✿✿✿✿✿✿✿✿✿✿

reunification
✿✿✿✿✿✿

(1991),
✿✿✿✿

two
✿✿✿✿✿✿✿

separate
✿✿✿✿✿✿✿✿

data-sets
✿✿✿

are
✿✿✿✿

used.
✿✿✿✿

For

✿✿✿

this
✿✿✿✿✿

study
✿✿✿✿

only
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

GDP-change
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

secondary
✿✿✿✿✿✿

sector
✿✿✿✿✿✿✿✿✿✿✿

(construction
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

production)
✿✿

is
✿✿✿✿

used.

✿✿✿

The
✿✿✿✿✿

RBT,
✿✿

if
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿

GDP,
✿✿

is
✿✿✿✿✿✿

filtered
✿✿✿✿✿

using
✿✿

a
✿✿✿✿

10th
✿✿✿✿

order
✿✿✿✿✿✿✿✿✿✿

butterworth
✿✿✿✿✿✿✿✿

bandpass
✿✿✿✿✿

filter.
✿✿✿✿

The
✿✿✿✿✿✿✿

sampling
✿✿✿✿

rate
✿✿

of
✿✿✿

the
✿✿✿✿✿

GDP
✿✿

is

✿

1
✿✿✿✿

y−1.
✿✿✿

We
✿✿✿✿

use
✿✿✿

1.1
✿✿✿

y−1

✿✿

as
✿✿✿✿✿✿

higher
✿✿✿

and
✿✿✿✿

0.05
✿✿✿✿

y−1

✿✿

as
✿✿✿✿✿

lower
✿✿✿✿✿✿

cutoff
✿✿✿✿✿✿✿✿✿

frequencies
✿✿✿

for
✿✿✿✿✿

RBT.
✿✿✿✿

This
✿✿✿✿✿✿

means
✿✿✿

that
✿✿✿✿✿✿

signals
✿✿✿✿

with
✿✿

a
✿✿✿✿✿✿✿✿✿

periodicity125

✿✿✿✿✿

larger
✿✿✿✿

than
✿✿

20
✿✿

y
✿✿✿

and
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿✿

0.9
✿

y
✿✿✿

are
✿✿✿✿✿✿✿✿

excluded.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

reasoning
✿✿

is
✿✿✿

to
✿✿✿✿

make
✿✿✿

the
✿✿✿✿✿

RBT
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

comparable
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

yearly
✿✿✿

data
✿✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

GDP-change.
✿✿✿

The
✿✿✿✿

low
✿✿✿✿✿✿✿✿

frequency
✿✿✿✿✿

cutoff
✿✿

is
✿✿✿✿✿✿✿✿

canceling
✿✿✿✿

long
✿✿✿✿✿

term
✿✿✿✿✿

trends
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿✿✿

GDP-change
✿✿

is
✿✿✿✿

only
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

previous
✿✿✿✿✿

year.

✿✿✿

The
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

frequency
✿✿✿✿✿

cutoff
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

dampen
✿✿✿

fast
✿✿✿✿✿✿✿✿✿

alternating
✿✿✿✿✿

RBT
✿✿✿✿✿✿

signals
✿✿

in
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

to
✿✿✿

the
✿✿✿✿

slow
✿✿✿✿✿✿✿

sampled
✿✿✿✿

GDP
✿✿✿✿✿

data.

2.5
✿✿✿✿✿✿✿

Rescaled
✿✿✿✿✿✿✿✿

adjusted
✿✿✿✿✿✿

partial
✿✿✿✿✿

sums

✿✿✿✿✿✿✿

Rescaled
✿✿✿✿✿✿✿

adjusted
✿✿✿✿✿✿

partial
✿✿✿✿✿

sums
✿✿✿✿✿✿✿

(RAPS)
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

visualize
✿✿✿✿✿

trends
✿✿

in
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

which
✿✿✿✿

may
✿✿✿

not
✿✿✿

be
✿✿✿✿✿✿

clearly
✿✿✿✿✿

visible
✿✿✿

in
✿✿✿

the
✿✿✿✿

time130

✿✿✿✿✿

series
✿✿✿✿✿

itself.
✿✿✿✿✿✿✿

Equation
✿✿✿

(3)
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿

calculation
✿✿

of
✿✿✿

the
✿✿✿✿✿

RAPS
✿✿✿✿✿

index
✿✿✿✿

(X)
✿✿✿✿

using
✿✿

a
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

Y.
✿

Xk =

i=k
∑

i=1

Yi −Y

σY
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)

✿✿

Y
✿

is
✿✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿

over
✿✿✿

the
✿✿✿✿

total
✿✿✿✿

time
✿✿✿✿✿✿

series,
✿

σ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

whole
✿✿✿✿

time
✿✿✿✿✿

series,
✿✿✿

Yi
✿✿

is
✿✿✿

the
✿✿

ith
✿✿✿✿✿✿✿✿✿

data-point
✿✿

in
✿✿

Y .

✿

A
✿✿✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿✿

slope
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

RAPS
✿✿✿✿✿

index
✿✿✿✿

only
✿✿✿✿✿✿✿✿

indicates
✿

a
✿✿✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿✿

slope
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿

time-series.
✿✿

A
✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿

RAPS

✿✿✿✿

slope
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿

indicate
✿✿

a
✿✿✿✿✿✿✿

negative
✿✿✿✿

slope
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿

time
✿✿✿✿✿✿

series.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Garbrecht and Fernandez (1994); Basarin et al. (2016)
✿✿✿✿

used135

✿✿✿

this
✿✿✿✿✿✿

method
✿✿

to
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿✿✿✿

trends
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿

time
✿✿✿✿✿

series.
✿

2.6
✿✿✿✿✿✿✿✿✿

Catchment
✿✿✿✿

area

The catchment area was
✿

is
✿

calculated using the Hydrosheds database (Lehner et al., 2008). The 1

125

o
by 1

125

o
gridded data-set

provides information, at each grid point, to which cell the water of a grid cell is drained. Selecting a starting location, e.g.

Koblenz at 50.350 oN and 7.602 oE it is possible to iteratively calculate
✿✿✿✿✿✿

identify
✿

all grid points draining into this location.140

These grid points represent the catchment area of this location, in this case
✿✿✿✿✿✿

example
✿

Koblenz. By counting the iteration steps,

the distance a water drop travels to reach the monitoring station Koblenz is determined. This was
✿

is
✿

done for each station.

Additionally, the accumulation number ACC was calculated
✿

is
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

data-set. It defines how many cells
✿✿

in
✿✿✿✿

total are

draining into a particular cell and is a measure for the size of a river. Finally, a grid, which defines the catchment area, the ACC

and the hydrological distance between was
✿✿

is established spanning the whole catchment area. Figure 2
✿✿✿

(2) shows the catchment145

area, the distance calculations
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿

distance and the calculated flow time to the Koblenz monitoring station.

6



Figure 2. Catchment area of the Koblenz monitoring station. The colors show the hydrological distance between the monitoring station and

each grid point of the catchment area. The second y-axis shows the time,
✿✿

in
✿✿✿

our
✿✿✿✿✿

model,
✿

it takes to flow from a grid point to the monitoring

station
✿✿✿✿

based
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿

distance. The flow speed is 0.733
✿✿

0.4 ms−1

✿✿✿

and
✿✿

in
✿✿✿

this
✿✿✿✿

study
✿✿✿✿✿✿✿

constant
✿✿

in
✿✿✿✿

space
✿✿✿

and
✿✿✿✿

time.
✿✿✿✿

The
✿✿

Xs
✿✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿✿

name-tag
✿✿✿✿✿

Basel,
✿✿✿✿✿✿

Worms,
✿✿✿✿✿✿

Koblenz
✿✿✿

and
✿✿✿✿✿✿✿

Cologne
✿✿✿✿

mark
✿✿✿

the
✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

stations.
✿✿✿

The
✿✿✿✿

other
✿✿✿✿✿✿✿

markers
✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

location
✿✿

of
✿✿✿

the
✿✿✿✿✿

NPPs.
✿✿✿

For
✿✿✿✿✿

names

✿✿✿

refer
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

legend.

✿✿✿✿✿✿✿✿✿✿✿✿

Accumulation

✿✿✿✿

ACC
✿✿

is
✿✿

an
✿✿✿✿✿✿✿✿

estimate
✿✿

for
✿✿✿

the
✿✿✿✿✿

river
✿✿✿✿

size.
✿✿✿✿

Grid
✿✿✿✿✿✿

points
✿✿

of
✿✿✿✿

large
✿✿✿✿✿

rivers
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿

fed
✿✿

by
✿✿✿✿✿

many
✿✿✿✿

grid
✿✿✿✿✿✿

points
✿✿✿✿

have
✿

a
✿✿✿✿✿

large
✿✿✿✿✿

ACC.
✿✿✿✿✿✿

Figure

✿

3
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

ACC.
✿✿✿✿✿

Each
✿✿✿✿

grid
✿✿✿✿✿

points
✿✿

is
✿✿✿✿✿

given
✿✿✿

the
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

grid
✿✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿✿

discharging
✿✿✿

into
✿✿✿✿

this
✿✿✿✿

very
✿✿✿✿

grid

✿✿✿✿✿

point.
✿✿✿✿✿

Large
✿✿✿✿✿

rivers,
✿✿✿✿

such
✿✿✿

as
✿✿

the
✿✿✿✿✿✿

Rhine,
✿✿✿✿✿

Main,
✿✿✿✿✿✿✿

Neckar
✿✿✿

are
✿✿✿✿✿

easily
✿✿✿✿✿✿

visible.
✿

150

2.7 Multiple regression

We use a multiple linear regression to separate the meteorological, hydrological and anthropogenic
✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿✿

(a1),
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological

✿✿✿

(a2)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿

(a3) contributions to the river water temperature. Tw is regressed with Ta
✿✿

Tc and river discharge Q. Their

regression coefficients a2 (Ta
✿✿

Tc
✿

slope) and a3 (Q slope) represent the magnitude of the respective influences. The offset a1 ,

which we call RBT,
✿✿✿✿✿✿

(RBT) combines all other influences, which are mostly from
✿✿✿✿✿✿✿✿

controlled
✿✿✿

by anthropogenic sources.155

Instead of using
✿✿✿

The
✿✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

regression
✿✿

is
✿✿✿✿✿✿✿✿

improved
✿✿✿

by
✿✿✿✿✿

using
✿

a
✿✿✿✿

new
✿✿✿✿✿✿

method
✿✿✿

for
✿✿✿✿✿✿✿✿✿

calculating
✿✿✿

Tc.
✿✿✿✿✿✿✿

Instead
✿✿

of
✿✿✿✿✿

taking
✿

Ta at the mon-

itoring station, we improve Eq. 1 by averaging
✿✿

(1)
✿✿✿

by
✿

a
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿✿✿✿✿

average
✿✿

of Ta
✿✿✿✿✿

(x,y,t) over the whole
✿

,
✿✿✿

Eq.
✿✿✿

(4).
✿✿✿✿✿

(x,y)
✿✿✿

are

✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

coordinates
✿✿

in
✿✿✿

the
✿

catchment area and make Ta time dependent. We call this new parameter catchment temperature
✿

a

7



Figure 3.
✿✿✿✿✿✿✿✿

Catchment
✿✿✿✿

area
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

Koblenz
✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station.
✿✿✿

The
✿✿✿✿✿

colors
✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

number
✿✿

of
✿✿✿

grid
✿✿✿✿✿

points
✿✿✿✿✿✿

flowing
✿✿✿

into
✿✿✿

the
✿✿✿✿✿✿

specific
✿✿✿

gird
✿✿✿✿

point

✿✿✿✿✿✿✿

subscript
✿✿
0

✿✿✿✿✿

marks
✿✿✿

the
✿✿✿✿✿✿✿

location
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿

station.

Tw (t0) = a1 + a2 ·Tc (x,y, t0 +∆t(x,y))+ a3 ·Q(x0,y0, t)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4)160

✿✿✿

The
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿✿✿✿

representative
✿✿✿✿✿✿✿✿

catchment
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿

is
✿✿✿✿✿✿

called Tc. Tc is defined by the location (x,y) and a time lag (
✿✿✿

The
✿✿✿✿✿✿✿✿✿

difference

✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

time
✿✿

t0
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

reading
✿✿

of
✿✿✿

Ta
✿

is
✿✿✿✿✿✿

called
✿✿✿✿

time
✿✿✿

lag ∆t).

✿✿✿✿

(x,y)
✿✿✿

and
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿✿

between
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿

point
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

reading.

Tw (t) = a1 + a2 ·Tc (x,y, t+∆t)+ a3 ·Q(x0,y0, t)

✿✿✿✿

Time
✿✿✿

lag165

Time lag and Tc

Linear as well as exponential models have already introduced ∆t (Stefan and Preud'homme, 1993; Webb and Nobilis, 1995, 1997)

to the Ta → Tw relationship. A change in Ta at a location is certainly followed, by a change of Tw to restore equilibrium
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conditions. The first reason
✿✿✿

Tw
✿✿

is
✿✿✿✿✿

slower
✿✿✿✿

than
✿✿

a
✿✿✿✿✿✿

change
✿✿

in
✿✿✿

Ta.
✿✿✿✿

The
✿✿✿✿

time
✿✿✿

lag
✿✿

∆t
✿✿✿✿✿✿✿✿

describes
✿✿✿✿

this
✿✿✿✿✿✿

lagging
✿✿✿✿

and
✿

is
✿✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿

used
✿✿

in

✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

models.170

✿

A
✿✿✿✿✿✿

reason
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

occurrence
✿✿

of
✿✿✿

∆t is that the water masses
✿✿✿✿

mass’ mixing capability, heat capacity and surface area cause a
✿✿✿✿✿

strong

thermal inertia. Secondly, advection is not taken into account when
✿✿✿✿✿✿✿

Changing
✿✿✿

Tw
✿✿✿✿✿✿✿

through
✿✿✿✿

new
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿

and

✿✿✿

heat
✿✿✿✿✿✿

fluxes
✿✿✿

take
✿✿✿✿✿

time.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿✿✿✿

linear
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿✿✿✿✿✿

exponential
✿✿✿✿✿✿✿

models
✿✿✿✿✿

either
✿✿✿

use
✿

a
✿✿✿✿✿

fixed
✿✿✿

∆t
✿✿✿

for Ta
✿✿✿

(Eq.
✿✿✿

5)
✿✿

or
✿✿

an
✿✿✿✿✿✿✿

average
✿✿

of
✿✿✿

Ta

✿✿✿✿✿✿✿✿

including
✿

a
✿✿✿✿

time
✿✿✿✿

span
✿✿✿✿✿

before
✿✿✿✿

(Eq.
✿✿

6)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Stefan and Preud'homme, 1993; Webb and Nobilis, 1995, 1997; Haag and Luce, 2008; Benyaha et al.,

✿

.175

T (t0)
✿✿✿✿

=
✿

Ta (x0,y0, t0 +∆t)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(5)

T (t0)
✿✿✿✿

=
✿

t=∆t
∑

t=to

Ta (x0,y0, t0)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(6)

✿

A
✿✿✿✿✿✿✿

second
✿✿✿✿✿

reason
✿✿✿✿✿✿

reason
✿✿✿

for
✿

a
✿✿✿✿✿✿✿✿✿

mismatch
✿✿

is
✿✿✿✿✿✿✿✿

advection.
✿✿✿

Ta
✿

is measured at the same location and the very same time as Tw. The

Rhineexhibits
✿✿✿✿✿

Rivers,
✿✿✿

in
✿✿✿

this
✿✿✿✿

case
✿✿✿

the
✿✿✿✿✿✿

Rhine,
✿✿✿✿✿✿✿

exhibit current velocities which enable its water to cover significant distances180

on time scales larger than days. Therefore it is necessary to take advection and the change of Ta, in space and time, during

advection into account. Haag and Luce (2008) suggest to use Ta at the same location of the measurement but include the days

before to extend the temporal significance. This approach is shown in Eq. ??.

Ta = w (t0) ·Ta (x0,y0, t0)+w (t0 +∆t) ·Ta (x0,y0, t0 +∆t)+w (t0 +2 ·∆t) ·Ta (x0,y0, t0 +2 ·∆t) ...

Time dependent weighing factors w (t) are used to average Ta (t) at different times before the measurement. A linearly185

decreasing w(t) is used
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿✿

important
✿✿✿

for
✿✿✿✿✿

daily
✿✿✿✿✿✿✿✿

averaged
✿✿✿

Tw
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Erickson and Stefan, 2000)
✿

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pohle et al. (2019)

✿✿✿✿✿✿

average
✿✿✿✿✿

eight
✿✿✿✿

days
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

hydroclimatic
✿✿✿✿✿✿✿✿

variables
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area,
✿✿✿✿

Eq.
✿✿

(7). However, this approach satisfies the idea

of thermal inertial but does not include advection. Hence, we extend this idea of a time lagged Ta (x0,y0, t0 +∆t) from the

location of the Tw measurement to the entire catchment area. All grid points and therefore all possible water streams in the

catchment area are assigned with
✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿

of
✿✿✿✿

flow
✿✿✿

path
✿✿✿✿

and
✿✿✿✿

flow
✿✿✿✿✿

speed.
✿

190

T (t0) =

x=n,y=m,t=8
∑

x=0,y=0,t=0

Ta (x,y, t)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(7)

✿✿✿

We
✿✿✿✿✿✿✿

combine
✿✿✿

and
✿✿✿✿✿✿

extend
✿✿✿✿

both
✿✿✿✿✿

ideas
✿✿✿✿

(Eq.
✿✿

5,
✿

6
✿✿✿

and
✿✿✿

7)
✿✿✿

and
✿✿✿✿✿✿✿

average
✿✿

Ta
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿✿

but
✿✿✿✿

each
✿✿✿✿

grid
✿✿✿✿

point
✿✿

is
✿✿✿✿✿✿

linked

✿✿

to a specific time lag ∆t(x,y). Using directional discharge maps (Sec. 2.6) and gridded temperature reanalysis data (Sec. 2.2),

we propose this new 3D (x,y, t) averaging of Ta and call it the catchment temperature Tc, Eq. 9.

Tc (t) =
1

∑

w (∆t(x,y))

x=n,y=m
∑

x=1,y=1

w (∆t(x,y)) ·Ta (x,y, t+∆t(x,y))195
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∆t [d] weighing factor distance from

measurement point [km]

0 1 0

-1.0588
✿✿✿

-1.01 0.9412
✿✿✿

0.96 67
✿✿✿✿

35.1

-2.1176
✿✿✿

-2.00 0.8824
✿✿✿

0.92 113
✿✿✿

69.6

...
✿✿✿

-5.02
✿✿✿

0.81
✿✿✿✿

174.6

...

✿✿✿✿

-13.01
✿✿✿

0.50
✿✿✿✿

452.5

...

-18
✿✿

-26 0 1140
✿✿✿

904

Table 3. This table defines the weighing factors for different time lags
✿✿

the
✿✿✿✿✿✿

distance
✿

and distances from the measurement point. The weight

coefficient is linearly correlated to
✿✿✿✿✿✿

resulting
✿✿✿

∆t
✿✿

for
✿

the time lag
✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station
✿✿✿✿✿✿

Koblenz. Once the time lag
✿✿

∆t
✿

is calculated from distance

and flow speed(
✿

, Eq.
✿

(8)only the time lag .
✿✿✿✿

The
✿✿✿✿✿✿✿

weighing
✿✿✿✿✿✿✿✿

coefficient is used in further calculations
✿✿✿✿✿✿

linearly
✿✿✿✿✿✿✿

correlated
✿✿

to
✿✿✿

the
✿✿✿

∆t.

Tc (t) is calculated by weighted averaging Ta (x,y, t) over all grid points of the catchment area (x=1,...n y=1,
✿✿✿✿✿✿✿

∆t(x,y)
✿✿

is

✿✿✿✿✿✿✿✿

dependent
✿✿✿

on
✿

a
✿✿✿✿✿

fixed
✿✿✿✿

flow
✿✿✿✿✿

speed
✿✿

v
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿

s(x,y)
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

point,
✿✿✿✿

Fig.
✿✿✿

(2). ..m)which arrive

at the monitoring station at time t. The time lag ∆ t is the time it takes for a water droplet from a specific grid point in the

catchment area to the measurement location. This time can be calculated using the distance s between each grid point in the

catchment area and the measurement point and an average flow speed v , Eq. 8. ∆t is per definition negative. A comparison of200

time lag, distance and weighing factor is provided in Tab. 3.
✿✿✿✿

The
✿✿✿✿✿✿✿

distance
✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

map
✿✿✿✿

(Sec.
✿✿✿✿

2.6)
✿✿✿✿

and

✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

with
✿✿

v
✿✿

as
✿✿✿✿✿✿✿✿✿

desctribed
✿✿

by
✿✿✿

Eq.
✿✿✿✿

(8).

∆t(x,y) =−
s(x,y)

v
(8)

For reasons of simplification, we did not use a catchment wide hydrological flow model to model the flow speed at every

grid point for every hydrological scenario. Therefore we use a constant flow speed of 0.733 ms−1. The weighing factors205

w (∆t(x,y)) are shown in Tab. 3

✿✿✿✿✿✿✿✿

Weighing
✿✿✿✿✿✿✿✿✿✿

coefficients

✿✿✿✿✿✿✿✿✿✿✿✿

Tobler (1970)
✿✿✿✿✿✿✿

proposed
✿✿✿

that
✿✿✿✿✿

close
✿✿✿✿✿✿

spatial
✿✿✿✿

and
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿

tend
✿✿✿

to
✿✿

be
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿

correlated
✿✿✿✿

than
✿✿✿✿✿

those
✿✿✿✿✿✿

further
✿✿✿✿✿✿

away.
✿✿✿✿

This

✿✿✿✿

leads
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

introduction
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

weighing
✿✿✿✿✿

factor
✿✿

w.
✿✿✿

We
✿✿✿

use
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿✿✿

weighing
✿✿✿✿✿

factor
✿✿✿✿✿

from
✿

1
✿✿

to
✿✿

0 .
✿

1
✿✿

is
✿✿✿✿✿

given
✿✿✿

the
✿✿✿✿

grid

✿✿✿✿

point
✿✿✿✿✿✿

closest
✿✿✿✿✿✿✿✿

(smallest
✿✿✿✿

∆t)
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station
✿✿✿✿

and
✿

0
✿✿✿

the
✿✿✿✿✿

point
✿✿✿✿✿✿✿

farthest
✿✿✿✿

away
✿✿✿✿✿✿✿

(largest
✿✿✿✿

∆t).
✿✿✿

As
✿✿✿

the
✿✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment210

✿✿✿

area
✿✿

is
✿✿✿✿✿✿✿✿

different
✿✿✿

for
✿✿✿

the
✿✿✿✿

four
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

station,
✿✿✿✿

four
✿✿✿✿✿✿

weight
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿✿

tables
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿

calculated.
✿✿✿✿✿

Table
✿✿✿

(3)
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿

weighing

✿✿✿✿✿✿✿✿

coefficient
✿✿✿

for
✿✿✿✿✿✿✿✿

Koblenz,
✿✿

as
✿✿

an
✿✿✿✿✿✿✿✿

example.

Based on Eq. 9, we calculated the daily Tc for each monitoring station. This temperature represents the meteorological

influence all water droplets have experienced on their way to the monitoring station.

10



Control scenarios215

As control scenarios, we introduce two additional weighing coefficients and two different Tc calculations. The first scenarios

(time lag) has a weighing coefficient equal to one for all grid cells, Eq. 10
✿✿

For
✿✿✿✿✿✿✿

reasons
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

simplification,
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

catchment-wide

✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿

flow
✿✿✿✿✿✿

model
✿✿

is
✿✿✿

not
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

the
✿✿✿✿

flow
✿✿✿✿✿

speed
✿✿

at
✿✿✿✿✿

every
✿✿✿✿

grid
✿✿✿✿✿

point
✿✿

for
✿✿✿✿✿

every
✿✿✿✿✿✿✿✿✿✿✿

hydrological
✿✿✿✿✿✿✿✿

scenario.
✿✿✿✿✿✿✿✿✿

Therefore,

✿✿

the
✿✿✿✿✿

flow
✿✿✿✿✿

speed
✿✿

of
✿✿✿

0.4
✿✿✿✿✿

ms−1

✿✿

is
✿✿✿

set
✿✿✿✿✿✿✿

constant.
✿✿✿✿

This
✿✿✿✿

flow
✿✿✿✿✿✿

speed
✿

is
✿✿✿✿✿✿✿✿✿✿

determined
✿✿✿

by
✿✿✿✿✿✿✿✿✿

calculating
✿✿✿✿✿✿

RMSE
✿✿✿✿

with
✿

a
✿✿✿✿

step
✿✿✿✿

wise
✿✿✿✿✿✿✿✿✿

reduction
✿✿

of

✿✿

the
✿✿✿✿✿

flow
✿✿✿✿✿

speed
✿✿✿✿

from
✿✿✿

1.5
✿✿✿✿✿

ms−1

✿✿

to
✿✿✿✿

0.3
✿✿✿✿✿

ms−1.
✿✿✿✿

The
✿✿✿✿✿✿

lowest
✿✿✿✿✿✿

RMSE
✿✿

at
✿✿✿✿✿✿✿

Koblenz
✿✿

is
✿✿✿✿✿✿✿

obtained
✿✿

at
✿✿✿

0.4
✿✿✿✿✿✿

ms−1.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

weighing
✿✿✿✿✿✿✿✿✿

coefficient220

✿

w
✿✿

is
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿✿✿✿

ACC.
✿✿✿✿✿

ACC
✿✿

is
✿✿✿✿

used
✿✿✿

as
✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿✿

over-weighs
✿✿✿✿

grid
✿✿✿✿✿✿

points
✿✿✿✿

with
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿

accumulation
✿✿✿✿

and

✿✿✿✿✿✿✿

therefore
✿✿✿✿✿

large
✿✿✿✿✿

water
✿✿✿✿✿✿

masses.
✿✿✿✿

This
✿✿✿✿✿✿✿

ensures
✿

a
✿✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

large
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿

low
✿✿✿✿✿

ACC
✿✿✿

grid
✿✿✿✿✿✿

points,
✿✿✿✿✿

which
✿✿✿✿✿

carry
✿✿✿

less
✿✿✿✿✿✿

water,

✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

influence
✿✿✿

of
✿✿

Ta
✿✿✿

on
✿✿✿✿

large
✿✿✿✿✿

water
✿✿✿✿✿✿✿

masses.
✿✿✿✿✿✿

Figure
✿✿

(4)
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

product
✿✿✿

of
✿✿✿✿

ACC
✿✿✿✿

and
✿✿

w
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿

of

✿✿✿✿✿✿✿

Koblenz.

w (∆t(x,y)) = 1 Tc (t) =
1

n ·m

x=n,y=m
∑

x=1,y=1

Ta (x,y, t+∆t(x,y))225

The second scenario (time lag + ACC) is weighingby numbers of grid cells flowing into a particular cell.We call this the

accumulation control. The ACC takes into account how much water is accumulated in a specific cell, Eq. ??, which
✿✿✿

We
✿✿✿✿

also

✿✿✿✿✿✿✿

calculate
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

grid
✿✿✿✿✿

points
✿✿

in
✿✿✿✿✿✿✿

several
✿✿✿✿

ACC
✿✿✿✿✿

bins.
✿✿✿

The
✿✿✿

red
✿✿✿✿

bars
✿✿

in
✿✿✿✿

Fig.
✿✿✿

(5)
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

of
✿✿✿✿

each
✿✿✿✿✿

ACC

✿✿✿✿✿

group
✿✿✿✿✿

using
✿✿✿✿

only
✿✿✿✿

their
✿✿✿✿✿✿✿

quantity
✿✿✿✿✿✿✿

without
✿✿✿✿✿✿✿

ACC*w
✿✿✿✿✿✿✿✿

weighing.
✿✿✿✿

This
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿

the
✿✿✿✿✿

large
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿

low
✿✿✿✿✿

ACC
✿✿✿✿✿✿

(small
✿✿✿✿

water
✿✿✿✿✿✿

mass)

✿✿✿

grid
✿✿✿✿✿✿

points
✿✿✿✿✿

would
✿✿✿✿

have
✿✿

a
✿✿✿✿

large
✿✿✿✿✿✿✿✿

influence
✿✿✿✿

over
✿✿✿✿✿

large
✿✿✿✿✿

ACC
✿✿✿✿

(e.g.
✿✿✿✿

large
✿✿✿✿✿

water
✿✿✿✿✿✿✿

masses,
✿✿✿✿✿

rivers,
✿✿✿✿✿✿

lakes)
✿✿✿✿

grid
✿✿✿✿✿✿

points.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

difference
✿✿

is230

✿✿✿

four
✿✿✿✿✿✿✿

powers
✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude.
✿✿✿✿

The
✿✿✿✿✿

white
✿✿✿✿

bars
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

ACC*w
✿✿✿✿✿✿✿✿

weighing.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿

gives

✿✿✿✿✿

rather
✿✿✿✿✿

equal
✿✿✿✿✿✿✿✿✿

importance
✿✿✿

to
✿✿

all
✿✿✿✿

grid
✿✿✿✿✿✿

points
✿✿

as
✿✿

it
✿

puts more weight on large rivers.
✿✿✿

grid
✿✿✿✿✿

points
✿✿✿✿✿✿✿✿

covering
✿✿✿✿✿

lakes
✿✿✿

and
✿✿✿✿✿✿

rivers.
✿✿✿✿

The

✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿

difference
✿✿

is
✿✿✿✿

about
✿✿

1
✿✿✿✿✿

power
✿✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude.

w (x,y) =ACC (x,y) Tc (t) =
1

∑

ACC (x,y)

x=n,y=m
∑

x=1,y=1

ACC (x,y) ·Ta (x,y, t+∆t(x,y))235

The third scenario (no time lag) has a weighing coefficient equal to 1 and does not include a time lag, Eq. 12. It is a plain

average over catchment wide Ta at the time of the measurement.

✿✿

Tc

w (x,y) = 1 Tc (t) =
1

n ·m

x=n,y=m
∑

x=1,y=1

Ta (x,y, t)

The fourth scenario (
✿✿✿✿✿✿✿✿✿

Combining
✿✿✿

∆t
✿✿✿✿

with
✿✿✿✿✿✿✿

ACC*w
✿✿✿✿✿✿✿✿

weighing
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

gridded
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

reanalysis
✿✿✿✿

data
✿✿

of
✿✿✿✿✿

Sec.
✿✿✿✿✿

(2.2),
✿✿✿

we240

✿✿✿✿✿✿

propose
✿✿✿✿

this
✿✿✿✿

new
✿✿✿

3D
✿✿✿✿✿✿

(x,y, t)
✿✿✿✿✿✿✿✿✿

averaging
✿✿

of Ta at station)uses a single value Ta for each time step at the respective monitoring

11



Figure 4.
✿✿✿✿✿✿✿✿

Catchment
✿✿✿✿

area
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

Koblenz
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿

station.
✿✿✿✿

The
✿✿✿✿

colors
✿✿✿✿✿

show
✿✿✿✿

ACC
✿✿✿✿✿✿✿✿

multiplied
✿✿✿✿

with
✿✿

w,
✿✿✿✿✿

which
✿

is
✿✿✿✿✿✿✿✿

depending
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿

distance

✿✿✿✿

(∆t).

station
✿✿✿✿✿✿

shown
✿✿

in, Eq. 11
✿✿

(9).

Tc

(

t0

)

=
1

∑

w (∆t(x,y)) ·ACC (x,y)

x=n,y=m
∑

x=1,y=1

w

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(

∆t
✿✿

(

x,y
✿✿

))

·ACC
✿✿✿✿✿

(

x,y
✿✿

)

·Ta

(

x0,y0, t0 +∆t
✿✿✿✿✿

(

x,y
✿✿

))

(9)

2.8 Nuclear Power Plants

The annual electrical power production by NPPs is available from the International Atomic Energy Agency (IAEA) Power245

Reactor Information System (IAEA, 2019). At most 12 NPPs (1986-1988) were online in the Rhine catchment area
✿✿✿✿✿

Tc (t)

✿

is
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿

by
✿✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿✿

(ACC*w)
✿✿✿✿✿✿✿✿✿

averaging
✿✿✿✿✿✿✿✿✿

Ta (x,y, t)
✿✿✿✿

over
✿✿✿

all
✿✿✿✿

grid
✿✿✿✿✿

points
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿✿✿✿

(x=1,..Separate blocks

of one NPP are combined.In July 20019 eight were operational.All shutdowns were done in Germany.From estimates by

Lange (2009) and based on personal communication,the heat input by NPPs to the Rhine was calculated
✿

.n
✿✿✿✿✿✿✿✿

y=1,...m)
✿✿✿✿✿✿

which

✿✿✿✿

reach
✿✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station
✿✿✿

at
✿✿✿✿

time
✿✿✿

t0.
✿✿✿

The
✿✿✿✿✿

time
✿✿✿

lag
✿✿✿

∆t
✿✿

is
✿✿✿

an
✿✿✿✿✿✿✿

estimate
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

time
✿

it
✿✿✿✿✿

takes
✿✿✿

for
✿✿

a
✿✿✿✿✿

water
✿✿✿✿✿✿

droplet
✿✿✿✿✿

from
✿✿

a250
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Figure 5.
✿✿✿✿

ACC
✿✿✿✿

bins
✿✿✿✿✿✿

(x.axis)
✿✿

vs
✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿

contribution.
✿✿✿

The
✿✿✿

red
✿✿✿✿

bars
✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿✿

using
✿✿

by
✿✿✿✿✿✿

number
✿✿✿✿

only.
✿✿✿✿

The
✿✿✿✿

white
✿✿✿✿

bars

✿✿✿✿

show
✿✿

the
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

weighing
✿✿✿✿✿✿✿

ACC*w.

✿✿✿✿✿✿

specific
✿✿✿✿

grid
✿✿✿✿

point
✿✿✿

x,y
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿

location.
✿✿✿✿✿✿

Based
✿✿

on
✿✿✿

Eq.
✿✿✿✿

(9),
✿✿

we
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿

the
✿✿✿✿

daily
✿✿✿

Tc for each

monitoring station, Fig. 1.

Using the PRIS (IAEA, 2019) database we estimated the heat input by NPPs from 1969 to 2018. This figure shows the total

upstream heat input of each monitoring station.
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

influence
✿✿✿

all
✿✿✿✿✿

water
✿✿✿✿✿✿✿

droplets

✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿

experienced
✿✿

on
✿✿✿✿✿

their
✿✿✿

way
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station
✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

subsequently
✿✿✿✿

used
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

regression.
✿

255

2.7.1 Calculated temperature change

We calculate the expected change in RBT (∆RBT) due to the change in heat input (∆HI)by NPPS using the average discharge

Q̄ and the heat capacity of water cp, Eq. 2

✿✿

Tc
✿✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿✿✿

methods

✿✿✿

We
✿✿✿✿✿✿✿✿✿✿

additionally
✿✿✿

use
✿✿✿✿✿

these
✿✿✿

four
✿✿✿✿✿✿✿✿✿✿

calculations
✿✿✿✿✿✿✿✿

methods,
✿

[
✿

1]
✿✿✿✿✿

w+∆t;
✿

[
✿

2]
✿✿✿✿✿✿✿

avg+∆t;
✿

[
✿

3]
✿✿✿

avg;
✿

[
✿

4]
✿✿✿✿

point,
✿✿

to
✿✿✿✿✿✿✿✿

compare
✿✿✿✿

their
✿✿✿✿✿✿

results
✿✿

of
✿✿✿

the260

✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

regression
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿✿

proposed
✿✿

in
✿✿✿✿

Eq.
✿✿

(9).

[
✿

1]
✿✿

We
✿✿✿✿

use
✿✿✿✿

only
✿✿✿

the
✿✿

w
✿✿✿✿✿✿

weight
✿✿✿

(Eq.
✿✿✿✿

10)
✿✿✿✿

with
✿✿✿✿

time
✿✿✿

lag.
✿

∆RBTTc
✿

(

t0
✿

)

=
∆HI

cp · Q̄

1
∑

w (∆t(x,y))

x=n,y=m
∑

x=1,y=1

w

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(

∆t
✿✿

(

x,y
✿✿

))

·Ta
✿✿

(

x,y, t0 +∆t
✿✿✿✿✿✿✿✿✿

(

x,y
✿✿

))

(10)

This approach is based on the idea that the heat input of NPPs is essential for the heat budget of the river and significantly

alters a1 as other important influences, such as meteorology (a2)and hydrology (a3), are excluded. [
✿

2]
✿✿✿

No
✿✿✿✿✿✿

weight,
✿✿✿✿✿

only
✿✿✿✿

time265
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✿✿

lag
✿✿

is
✿✿✿✿✿

used,
✿✿✿

Eq.
✿✿✿✿

(11).
✿

Tc (t0) =

x=n,y=m
∑

x=1,y=1

Ta (x,y, t0 +∆t(x,y))

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(11)

2.8 Gross Domestic Product

[
✿

3]
✿✿

We
✿✿✿✿✿✿✿✿

calculate
✿

a
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

Ta(x,y, t0)
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

whole
✿✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿

at
✿✿

the
✿✿✿✿

time
✿✿✿

t0
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement,
✿✿✿✿

Eq.
✿✿✿✿

(12).
✿✿✿

∆t
✿✿

is
✿✿✿

not
✿✿✿✿

used

✿✿✿✿

here.
✿

The gross domestic product (GDP) for the adjacent German federal states was obtained from VGdL (2019a, b). Due to270

changes in the calculation method of the GDP before and after the German unification (1991), two separate data-sets are used.

For this study only the GDP-change of the secondary sector (construction and production)is used

w (x,y) = 1
✿✿✿✿✿✿✿✿✿

Tc (t) =
1

n ·m

x=n,y=m
∑

x=1,y=1

Ta (x,y, t0)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(12)

[
✿

4]
✿✿✿

The
✿✿✿✿✿

fourth
✿✿✿✿✿✿✿

method
✿✿✿

uses
✿✿✿✿✿✿✿✿✿✿✿✿

Ta(x0,y0, t0)
✿✿

at
✿✿

the
✿✿✿✿✿✿✿

location
✿✿✿✿✿

x0,y0
✿✿✿✿

and
✿✿✿✿

time
✿✿

t0
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement,
✿✿✿

Eq.
✿✿✿✿

(13). The RBT, if compared

to the GDP, is filtered using a 10th order butterworth bandpass filter. The sampling rate was 12 y−1 the cutoff frequencies were275

1.1 y−1 and 0.05 y−1. This means that a signal with a periodicity larger than 20 y and lower than 0.9 y was dampened. The

reason was to make the RBT data comparable to the yearly data of the GDP-change. The low frequency cutoff is canceling

long term trends as a GDP-change is only related to the previous year.

Tc (t) = Ta (x0,y0, t0)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(13)

3 Results280

Using the time series of the four monitoring stations and the collected supporting data, we investigate the heterogeneity of the

temperature change along the Rhine and the possible anthropogenic influence on Tw.

3.1 Water temperature time series

To investigate the long term change over time, we fitted
✿✿

fit a time dependent linear function to the time series of Tw and Ta

(catchment average) of all four monitoring stations (Basel, Worms, Koblenz, Cologne). The same was doneonly
✿

is
✿✿✿✿

also
✿✿✿✿

done,285

when all four monitoring stations had
✿✿✿✿

have an overlapping data-set (1985-2018). Fig. 6
✿✿✿

The
✿✿✿

left
✿✿✿✿✿✿

column
✿✿✿

of
✿✿✿

Fig.
✿✿✿

(6)
✿

shows the

yearly averaged water temperatures
✿✿

Tw
✿

and the linear fits to the two time periods. The
✿✿✿✿✿✿

average
✿✿✿

Ta
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿

is
✿✿✿✿

also

✿✿✿✿✿✿

shown.
✿✿✿

The
✿✿✿✿

right
✿✿✿✿✿✿✿

column
✿✿

of
✿✿✿✿

Fig.
✿✿

(6)
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿

RAPS
✿✿✿✿✿

index
✿✿

of
✿✿✿

Ta
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

Tw.
✿✿✿✿

The fit coefficients and the rate of warming per

year are shown in Tab. 4. Yearly averages of water temperatures at four monitoring stations (black line). The red dashed line

is a fit to the available data-set. The red dotted line is a fit to the overlapping time period. nameslope Tw whole data-setslope Tw290

1985-2018slope Ta whole data-setslope Ta 1985-2018oCy−1oCy−1oCy−1oCy−1Basel0.05410.04890.05020.0497Worms0.05540.03500.0503

of the linear fits to the daily temperature data. The second column is a fit to the available Tw data-set. The third column is a fit
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✿✿✿✿

name
✿✿✿✿

slope
✿✿

Tw
✿✿✿✿✿

whole
✿

data-setto a study by Webb (1996) shows that the
✿✿✿✿

slope
✿

Tw

[oC warming rate for an average European river during the 20th century (=̂ 0.01
✿✿✿✿✿

Cy−1] [oCy−1). Using the warming rate of this study, only

✿✿✿✿

Basel
✿✿✿✿✿✿✿✿✿✿✿✿

0.054,R2
= 0.66

✿✿✿✿✿

Worms
✿✿✿✿✿✿✿✿✿✿✿✿

0.055,R2
= 0.52

✿✿✿✿✿✿

Koblenz
✿✿✿✿✿✿✿✿✿✿✿✿

0.033,R2
= 0.31

✿✿✿✿✿✿

Cologne
✿✿✿✿✿✿✿✿✿✿✿✿✿

0.008,R2
= 0.001

Table 4.
✿✿✿✿

Slope
✿✿

of
✿✿

the
✿✿✿✿✿

linear
✿✿✿

fits
✿

to
✿✿✿

the
✿✿✿✿

daily
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

data.
✿✿✿✿

The
✿✿✿✿✿

second
✿✿✿✿✿✿

column
✿✿

is
✿

a
✿✿

fit
✿✿

to
✿✿

the
✿✿✿✿✿✿✿

available
✿✿✿

Tw
✿✿✿✿✿✿✿

data-set.
✿✿✿

The
✿✿✿✿

third
✿✿✿✿✿✿

column
✿

is
✿✿

a

✿✿

fit
✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

overlapping
✿✿✿

Tw
✿✿✿✿✿✿

data-set
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

1985-2018.
✿✿✿

The
✿✿✿✿✿

fourth
✿✿✿✿✿✿

column
✿

is
✿✿✿

the
✿✿✿

rate
✿✿

of
✿✿✿

Ta
✿✿✿✿✿✿

increase
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿

catchment
✿✿✿✿

area
✿✿✿✿✿

during
✿✿✿

the

✿✿✿✿

whole
✿✿✿✿✿✿✿

data-set.
✿✿✿

The
✿✿✿✿

fifth
✿✿✿✿✿

column
✿✿

is
✿✿✿

the
✿✿✿

rate
✿✿

of
✿✿

Ta
✿✿✿✿✿✿✿

increase
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿

catchment
✿✿✿

area
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿

1985-2018.
✿✿✿✿

Next
✿✿

to
✿✿

the
✿✿✿✿

slope
✿✿✿✿✿

values
✿✿✿

are
✿✿✿

the

✿✿

R
2

✿✿✿✿✿✿

values,
✿✿✿✿✿

which
✿✿

are
✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿

significant
✿✿✿✿

only
✿✿

if
✿✿✿✿✿✿✿✿

R
2
> 1.99

to the overlapping Tw data-set from 1985-2018. The fourth column is the rate of Ta increase in the respective catchment area

during the whole data-set. The fifth column is the rate of Ta increase in the respective catchment area from 1985-2018.
✿✿✿

(4). We

also calculated the Ta increase in the catchment area of all monitoring stations. These slopes are shown in column four and295

five of Tab. 4
✿✿✿

(4).

Fig. 6and Tab. 4
✿✿✿✿✿

Figure
✿✿✿

(6)
✿✿✿✿

and
✿✿✿✿✿

Table
✿✿✿

(4) show that the change of Tw is heterogenous along the Rhine. The slope at Basel is

approx. six times higher (0.0350 oCy−1) than the one in Cologne (0.0084 oCy−1), comparing only the overlapping data-set.

However, during the same period Ta shows similar behavior at these two stations, which is an indication of similar meteo-

rological influence. The Tw warming rate from 1985-2018 for Worms and Koblenz are in between those from Cologne and300

Basel. These two stations show similar Ta warming rates when comparing to Basel and Cologne. Generally, the Ta warming

rates are less than 5 % different
✿✿✿✿

from
✿✿✿✿

each
✿✿✿✿✿

other.
✿✿✿✿

The
✿✿✿

R2

✿✿✿✿

also
✿✿✿✿✿✿

shows
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿✿✿

stations.
✿✿✿✿✿

Basel

✿✿✿✿✿✿

exhibits
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿

R2

✿✿✿✿✿✿

values
✿✿✿

and
✿✿✿✿✿

these
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿✿

high
✿✿✿

for
✿✿✿

Ta
✿✿✿

and
✿✿✿✿

Tw.
✿✿✿✿

This
✿✿

is
✿✿

in
✿✿✿✿✿✿

contrast
✿✿✿

to
✿✿✿

the
✿✿✿✿✿

station
✿✿✿✿✿✿✿✿

Cologne,
✿✿✿✿✿✿

where

✿✿

R2

✿✿✿

of
✿✿✿

Tw
✿

is
✿✿✿✿

low
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

insignificant.
✿✿✿✿

The
✿✿✿✿

slope
✿✿✿

of
✿✿

Ta
✿✿

at
✿✿✿✿✿✿✿

Cologne
✿✿

is
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿

at
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿

stations
✿✿✿

but
✿✿✿✿

still
✿✿✿✿✿✿✿✿✿

significant.
✿✿✿

For
✿✿✿

Ta
✿✿✿

the

✿✿✿✿✿

RAPS
✿✿✿✿✿✿✿

indexes
✿✿

of
✿✿

all
✿✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

stations
✿✿✿✿✿✿

shows
✿✿✿

four
✿✿✿✿✿✿✿✿✿

concurrent
✿✿✿✿✿✿✿

sections
✿✿✿✿✿✿✿✿✿✿

(start-1987;
✿✿✿✿✿✿✿✿✿✿

1987-2000;
✿✿✿✿✿✿✿✿✿✿

2000-2014;
✿✿✿✿✿✿✿✿✿

2014-end).
✿✿✿✿✿

Their305

✿✿✿✿✿✿

borders
✿✿✿

are
✿✿✿✿✿✿

marked
✿✿✿

by
✿✿✿

the
✿✿✿✿

blue
✿✿✿✿✿✿✿

triangles
✿✿

in
✿✿✿✿

Fig.
✿✿✿

(6).
✿✿✿

The
✿✿✿✿✿✿✿

sections
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿

slope
✿✿✿✿✿✿✿

changes
✿✿

of
✿✿✿

the
✿✿✿✿✿

RAPS
✿✿✿✿✿

index
✿✿✿

and
✿✿✿✿✿✿✿

indicate
✿✿✿✿✿

trend

✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿

time-series.
✿✿✿

The
✿✿✿

Tw
✿✿✿✿✿✿

RAPS
✿✿✿✿✿

index
✿✿

for
✿✿✿✿✿

Basel
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿

pattern
✿✿

of
✿✿✿✿✿✿✿

sections
✿✿

as
✿✿✿

the
✿✿✿

Ta
✿✿✿✿✿

index.
✿✿✿

All
✿✿✿✿✿

other

✿✿✿✿✿✿

stations
✿✿✿✿✿

show
✿

a
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿

RAPS
✿✿✿

Tw
✿✿

to
✿✿✿✿✿✿

RAPS
✿✿✿

Ta
✿✿✿✿✿✿

pattern.
✿✿✿✿

This
✿✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿

the
✿✿

Ta
✿✿✿✿

and
✿✿✿

Tw
✿✿✿✿✿

trends
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

original
✿✿✿✿✿✿✿✿✿✿

time-series
✿✿✿

are

✿✿✿✿✿✿✿

different
✿✿

at
✿✿✿✿

these
✿✿✿✿✿✿✿✿

stations.
✿✿

Ta
✿✿✿

can
✿✿✿

not
✿✿✿✿✿

fully
✿✿✿✿✿✿✿

describe
✿✿✿

the
✿✿✿✿✿

trends
✿✿

in
✿✿✿

Tw.

We hypothesize that
✿✿✿✿✿✿✿

different
✿

meteorological conditions are not the reason for this difference. Meteorological differences310

should be visible in the Ta warming rate
✿✿

of
✿✿✿

the
✿✿✿✿

four
✿✿✿✿✿✿

stations, which is not the casein this .
✿✿✿

Ta
✿✿✿

and
✿✿✿

Tw
✿✿✿✿✿✿

RAPS
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿

correspond
✿✿✿

for

✿✿

the
✿✿✿✿✿

Basel
✿

data-set. Therefore, we applied the regression model (Eq. 4) to investigate this pattern
✿✿✿

the
✿✿✿✿✿✿✿

patterns of Tw
✿

in
✿✿✿✿✿✿✿

relation

✿✿

to
✿✿

Ta
✿

along the Rhine river. Comparing this
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Figure 6.
✿✿✿

Left
✿✿✿✿✿✿

column:
✿✿✿✿✿

Yearly
✿✿✿✿✿✿✿

averages
✿✿

of
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿

at
✿✿✿

four
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

stations
✿✿✿✿✿

(black
✿✿✿✿

line).
✿✿✿✿

The
✿✿✿

red
✿✿✿✿✿

dashed
✿✿✿✿

line
✿

is
✿✿

a
✿✿

fit
✿✿

to
✿✿✿

the

✿✿✿✿✿✿

available
✿✿✿✿✿✿✿

data-set.
✿✿✿

The
✿✿✿

red
✿✿✿✿✿

dotted
✿✿✿

line
✿✿

is
✿✿

a
✿✿

fit
✿✿

to
✿✿

the
✿✿✿✿✿✿✿✿✿

overlapping
✿✿✿✿

time
✿✿✿✿✿✿

period.
✿✿✿

The
✿✿✿✿

blue
✿✿✿

line
✿✿

is
✿✿

the
✿✿✿✿✿✿

average
✿✿✿

air
✿✿✿✿✿✿✿✿✿

temperature
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

catchment

✿✿✿

area.
✿✿✿✿✿

Right
✿✿✿✿✿✿✿

Column:
✿✿✿✿✿

RAPS
✿✿✿

Tw
✿✿✿✿✿

(black)
✿✿✿✿

and
✿✿

Ta
✿✿✿✿✿

(blue)
✿✿✿✿✿✿

indexes.
✿✿✿✿

The
✿✿✿✿✿✿

triangle
✿✿✿✿✿✿

markers
✿✿✿✿✿

divide
✿✿✿

the
✿✿✿✿✿

RAPS
✿✿✿✿

index
✿✿✿✿

into
✿✿✿✿✿✿

sections
✿✿✿✿✿

based
✿✿

on
✿

a
✿✿✿✿✿

slope

✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿✿

RAPS
✿✿✿✿

index.
✿✿✿✿

Each
✿✿✿✿✿✿

section
✿✿✿

also
✿✿✿✿✿✿✿

represent
✿✿

a
✿✿✿✿

trend
✿✿✿✿✿

change
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

original
✿✿

Ta
✿✿✿

and
✿✿✿

Tw
✿✿✿✿✿✿✿✿✿

time-series.

3.2
✿✿✿✿

RBT,
✿✿✿✿

long
✿✿✿✿

and
✿✿✿✿✿

short
✿✿✿✿

term
✿✿✿✿✿✿

trends

3.3 RBT, long and short term trends315

We fitted
✿✿✿

We
✿✿

fit
✿

the multiple regression model (Eq. 4), using Tc and Q to Tw of each monitoring station
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

available

✿✿✿✿✿✿

data-set. Afterwards, we recalculated
✿✿✿✿✿✿✿✿✿

recalculate Tw using the regression coefficients a1, a2 and a3. From the comparison

between the modeled and measured Tw, we calculated
✿✿✿✿✿✿✿✿

calculate the root mean square error (RMSE) and the Nash-Sutcliff

✿✿✿✿✿✿✿✿✿✿✿✿

Nash-Sutcliffe coefficient (NSC) for each monitoring station(Tab. ?? and ??). As a control, to ,
✿✿✿✿

Tab.
✿✿✿✿

(5).
✿✿✿

To support the

introduction of weighing coefficients
✿✿✿✿✿✿✿

ACC*w and a catchment-wide time lag, we used the four scenarios
✿✿✿

∆t,
✿✿✿

we
✿✿✿✿✿✿✿

compare
✿✿✿✿

five320

✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿

calculations
✿✿

of
✿✿✿

Tc from Sec. 2. Tab. ?? and ?? show
✿✿✿

(2).

✿✿✿✿

Table
✿✿✿

(5)
✿✿✿✿✿✿

shows the RMSE and NCS values for all scenarios
✿✿✿✿✿✿✿✿✿

correlations. The lowest RSME is 1.18
✿✿✿✿✿✿

(RMSE)
✿✿✿✿

and
✿✿✿✿✿✿

highest
✿✿✿✿✿✿

(NSC)

✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿✿✿✿✿✿

displayed
✿✿✿✿

bold
✿✿

in
✿✿✿✿

Tab.
✿✿✿✿

(5).
✿✿✿

The
✿✿✿✿✿✿

lowest
✿✿✿✿✿✿

RSME
✿✿

is
✿✿✿✿

1.02 oC for the time lag (row two
✿✿✿✿✿✿✿✿✿✿

ACC*w+∆t
✿✿✿✿

(row
✿✿✿✿

one) at the

Koblenz station. At this location also the largest NCS of 0.96 appearsat two scenarios, time lag and time lag+weight
✿✿✿✿

0.97

✿✿✿✿✿✿✿

appears.
✿✿✿

We
✿✿✿✿✿✿✿✿

optimized
✿✿✿

the
✿✿✿✿✿

flow
✿✿✿✿✿

speed
✿✿✿

for
✿✿✿✿✿

lowest
✿✿✿✿✿✿

RMSE
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

Koblenz
✿✿✿✿✿✿

station. It is evident that the two scenarios with time325

lag
✿✿✿✿

three
✿✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿✿

including
✿

a
✿✿✿

∆t
✿

have a lower RMSE (below 1.75
✿✿✿

2.01 oC
✿

,
✿✿✿✿✿

lowest
✿✿✿✿✿

1.02
✿✿

oC) than the two scenarios without

a time lag (above 2.4
✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿

without
✿

a
✿✿✿

∆t
✿✿✿✿✿✿

(above
✿✿✿✿

2.37 oC
✿

,
✿✿✿✿✿

largest
✿✿✿✿✿

2.97
✿✿

oC). The same trend holds for NCS where the time
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RMSE

✿✿✿✿

descr. Basel Worms Koblenz

Time lag1.681.321.181.50Time lag
✿✿✿✿✿

ACC*w+ACC
✿✿

∆t 1.72
✿✿✿✿

1.65 1.37
✿✿✿✿

1.24 1.39
✿✿✿✿

1.02

Ta at station
✿✿

(1)
✿✿✿✿✿

w+∆t 2.66
✿✿✿✿

1.56 2.55
✿✿✿✿

1.33 2.63
✿✿✿✿

1.43 2.85Root mean square errors o

Cfor five scenarios. The model

Time lag
✿✿

(2)
✿✿✿

avg+weight
✿✿

∆t 0.91
✿✿✿✿

1.61 0.95
✿✿✿✿

1.45 0.96
✿✿✿✿

1.70

Time lag+ACC
✿✿

(3)
✿✿✿

avg 0.91
✿✿✿✿

2.48 0.95
✿✿✿✿

2.43 0.95
✿✿✿✿

2.37

Ta at station
✿✿

(4)
✿✿✿✿

point 0.79
✿✿✿✿

2.73
✿✿✿

2.55
✿✿✿

2.63

Table 5.
✿✿✿✿✿

RSME
✿

[
✿✿✿

o

C]
✿✿

and
✿

NSC for five scenarios
✿✿

all
✿✿

Tc
✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿

method.The model is
✿✿✿✿✿✿✿✿

regressions
✿✿✿

are applied over the whole
✿✿✿

total
✿

data-set.

The first row is
✿✿✿✿✿✿

column
✿✿✿✿✿✿

contains the scenarios used for all other
✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿

method
✿✿✿✿✿✿

number
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

method
✿✿✿✿

short
✿✿✿✿✿✿✿✿✿

description.
✿✿✿

The
✿✿✿✿

best results

✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿

station
✿✿✿

and
✿✿✿

each
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿

method
✿✿

are
✿✿✿✿

bold.

lag scenarios are above 0.91
✿✿✿

∆t
✿✿✿✿✿✿✿

methods
✿✿✿

are
✿✿✿✿✿

above
✿✿✿✿

0.90
✿

and the other two are below 0.86. We think that the use a catchment

wide time lag
✿✿✿✿✿✿✿✿✿✿✿✿✿

catchment-wide
✿✿✿

∆t
✿

improves the quality of the multiple regression analysis and is a significant improvement to

Ta → Tw based modelling
✿✿✿✿✿✿✿✿

modeling. It is interesting that a time (or distance) dependent weighing factor does not improve the330

model output. This implies that even the furthest and oldest
✿✿✿

hat
✿✿✿✿✿✿✿✿✿

combining
✿✿✿✿

ACC
✿✿✿✿

with
✿✿✿

the
✿✿

w
✿✿✿✿✿✿✿✿

weighing
✿✿✿✿✿✿

factor
✿✿✿✿✿✿✿

provides
✿✿✿

the
✿✿✿✿

best

✿✿✿✿✿✿✿✿✿

estimation.
✿✿✿✿✿✿

Figure
✿✿

(5)
✿✿✿✿✿

could
✿✿✿

be
✿✿

the
✿✿✿✿✿✿✿

reason.
✿✿✿✿✿✿✿

Without
✿✿✿✿

ACC
✿✿✿✿✿✿✿✿

weighing
✿✿✿✿✿

small
✿✿✿✿✿

water
✿✿✿✿✿✿

masses
✿✿✿✿✿

(small
✿✿✿✿✿

ACC)
✿✿✿

are
✿✿✿✿

over
✿✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

to
✿✿✿

Tc.
✿✿✿✿✿

Large
✿✿✿✿

ACC
✿✿✿✿

grid
✿✿✿✿✿

points
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿

large
✿✿✿✿✿

water
✿✿✿✿✿✿

masses
✿✿✿✿✿

(rivers
✿✿✿✿

and
✿✿✿✿✿

lakes)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

influence
✿✿

of
✿

Ta influences on

✿✿

on
✿✿✿✿✿

them
✿✿✿✿✿✿

would
✿✿

be
✿✿✿✿✿✿✿✿✿

otherwise
✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimated.

✿✿

As
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

ACC*w+∆t
✿✿✿✿✿✿✿

provides
✿✿✿

the
✿✿✿✿✿✿✿

smallest
✿✿✿✿✿✿

RMSE,
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿✿

method
✿

is
✿✿✿✿✿

used
✿✿

for
✿✿✿

all
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿

calculations
✿✿

of
✿✿✿

Tc.335

✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿

supplement
✿✿✿

we
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

for
✿✿✿

the
✿✿✿✿

year
✿✿✿✿

2001
✿✿✿✿✿

only.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿

are
✿✿✿✿✿

used
✿✿

to

✿✿✿✿✿✿✿

calculate
✿

Tw are still carried as information by a small temperature difference in the water mass.
✿✿

for
✿✿✿✿

each
✿✿✿✿✿

year
✿✿✿✿

from
✿✿✿✿✿

2000
✿✿

to

✿✿✿✿✿

2018.
✿✿✿

The
✿✿✿✿✿✿

RMSE
✿✿✿

and
✿✿✿✿✿

NCS
✿✿✿

data
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿

in
✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

long-term
✿✿✿✿✿✿✿✿

regression
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

section.
✿✿✿✿

The
✿✿✿✿✿✿

RMSE
✿✿

at
✿✿✿✿✿✿✿

Koblenz

✿✿✿✿✿

ranges
✿✿✿✿✿

from
✿✿✿✿

0.75
✿✿✿

oC
✿✿

to
✿✿✿✿

1.22
✿✿✿✿

oC.
✿✿

A
✿✿✿✿✿

lower
✿✿✿✿✿✿

RMSE
✿✿

is
✿✿✿✿✿✿

caused
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

shorter
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿

period.
✿✿✿✿✿

This
✿✿✿✿✿✿✿

supports
✿✿✿

the
✿✿✿✿✿✿✿

stability
✿✿✿✿

and

✿✿✿✿✿✿

validity
✿✿

of
✿✿✿

our
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿✿✿

model.
✿

340

3.3 Rhine base temperature

From
✿✿✿✿✿

Using
✿

the multiple regression in Sec. 3.2 we obtained
✿✿✿✿

(3.2),
✿✿✿✿

we
✿✿✿✿✿✿✿

calculate
✿

the coefficients a1-a3(Eq.
✿

,
✿✿✿

Eq.
✿✿

(4). The

magnitudes
✿✿

of a2 and a3 relate to the influences by meteorology and hydrology (discharge). a1 is the RBT, which is an

indicator for the anthropogenic impact on Tw. We use the RBT to explain differences in the Tw warming rates of Tab. 4
✿✿✿

(4).

To point out changes over time, we regressed
✿✿✿✿✿

regress
✿

a two year segment of the Tw time series and used
✿✿

use
✿

a step size of one345

month to create a RBT time series over the available data-set. As the absolute RBT does not have a distinct meaning
✿✿✿✿✿

cannot
✿✿✿

be

✿✿✿✿✿✿✿✿✿✿✿

meaningfully
✿✿✿✿✿✿✿✿✿

interpreted, only the changes of RBT over time are shown in Fig. 7. We subtracted
✿✿✿

(7).
✿✿✿

We
✿✿✿✿✿✿✿

subtract the last data

point of each time series from the rest of the data and show the change of RBT vs time and a four-year running mean. The heat

input by NPPs is shown as a dotted blue line with the y-axis on the right hand side.
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Figure 7. RBT from four monitoring stations (black solid line). The red dashed line is a four year running mean. The blue dotted line is the

upstream heat input by NPPs(
✿

, Sec. (2.3).

Long term trend350

In this study long term trends occur on time scales of decades. This time scale is on one hand small enough to have significance

in this 40 year data-set and on the other hand covers the increase and decrease of nuclear power production.

The heat input by NPPs and the four-year running mean RBT follow a similar trend. ,
✿✿✿✿

Fig.
✿✿✿✿

(7). After the maximum of heat

discharge by NPPs between 1996-1998, the heat input as well as the RBT of Worms, Koblenz and Cologne decline. At Basel

the RBT as well as the heat input stay comparably constant. To investigate these similar trends we calculate ∆RBT, using Eq.355

2
✿✿

(2), at every station and compare it to the ∆RBT from the measured Tw, Tab. 6.
✿✿✿

(6).
✿✿✿

The
✿✿✿✿✿✿

period
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

station

✿✿✿✿

starts
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿

heat
✿✿✿✿

input
✿✿✿

by
✿✿✿✿✿

NPPs
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿

station
✿✿✿

and
✿✿✿✿

ends
✿✿

in
✿✿✿

the
✿✿✿✿

year
✿✿✿✿✿

2017.

At Basel, both simulated and calculated RBT changes are negligible due to the lack of change in HI. At all other stations, the

change in HI is reflected in the change of RBT. The maximum difference between simulation and calculation is 0.32
✿✿✿✿

0.34 oC.

The change in nuclear power production over the a time period of 30 years or more can explain changes and heterogenous360

warming rates of Tw along the Rhine river. NPPs may also impact Tw at much shorter timer scale but do not seem, to our best

knowledge, to change their power output accordingly.
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name period ∆RBT from data-set ∆RBT from Eq. 2
✿✿✿

(2) ∆GW
✿✿

HI [
✿✿✿

GW]

Basel 2008-2017 -0.08
✿✿✿

-0.26 0.04 0.17

Worms 1996-2017 1.26
✿✿✿

1.29 1.18
✿✿✿

1.19 7.14

Koblenz 1999-2017 1.55
✿✿✿

1.59 1.45 10.5

Cologne 1998-2017 1.2
✿✿✿

1.21 1.52
✿✿✿

1.55 10.7

Table 6. The table shows the change
✿✿✿✿✿

Change
✿

of RBT (column 3
✿✿✿✿

three) in the period given in column 2.
✿✿✿

two.
✿

The
✿✿✿

start
✿✿

of
✿✿✿

the
✿✿✿✿✿

period
✿✿✿✿✿✿✿

indicates

✿✿

the
✿✿✿✿✿✿✿✿

maximum
✿✿✿

heat
✿✿✿✿✿

input
✿✿

of
✿✿✿✿

NPPs
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

station.
✿✿✿

The
✿

calculated temperature change (column 4
✿✿✿

four) and the change

in HI by nuclear power plants (column 5
✿✿✿

five) are also provided.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

calculations
✿✿✿✿

were
✿✿✿✿

done
✿✿✿✿

using
✿✿✿

Eq.
✿✿✿

(2)

Short term trend

Short term changes (< 5 y) in RBT (Fig. 7) are not influenced by the overall heat in put from NPPs, as they change production365

at longer time scales, but rather by local industrial conditions, which could also include fossil fuel power plants.

For Basel, we hypothesize that the varying, but on average constant
✿✿✿✿✿✿

without
✿✿

a
✿✿✿✿✿✿✿✿✿

increasing
✿✿

or
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿

trend
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿

whole

✿✿✿✿✿✿

data-set, RBT is influenced by alpine lakes
✿✿✿

and
✿✿✿✿✿✿

natural
✿✿✿✿✿✿✿✿

variations. Lakes and reservoirs are to some extend decoupled from the

Ta → Tw relationship (Erickson and Stefan, 2000). The upper layer (epilimnion) closely follows Ta and the temperature of the

larger volume underneath is usually more stable and colder (summer) or warmer (winter). The stratification plays an important370

role in the outflow temperature of a lake.Another indication, for the weakness of the Ta → Tw model, is that the regression

model has its largest RMSE (1.71 oC) at this station regarding the time lag scenarios.

For all other stations, we hypothesize that local production facilities and their heat input into the Rhine are responsible for the

short term changes. Therefore we compare the RBT time series to economic data. Fig. 8
✿✿✿✿✿

Figure
✿✿✿

(8)
✿

shows the comparison of

RBT (black line, one year running mean) vs the changes in the GDP (blue line). A discontinuity in the GDP at 1991 is visible,375

due to the German reunification, when the calculation method of the GDP changed. Therefore they are plotted as separate

lines. For Worms (Fig. 8, bottom panel) we added the change of turnover of the BASF company (red dashed line (AG, 1989)).

Its production facility
✿✿✿

The
✿✿✿✿✿

BASF
✿✿

is
✿✿

a
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿✿

company.
✿✿✿✿

One
✿✿

of
✿✿✿

its
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿✿

production
✿✿✿✿✿✿✿

facility,
✿✿✿✿

with
✿✿✿

an
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

heat
✿✿✿✿✿

input

✿✿

of
✿✿✿

500
✿✿✿✿

MW
✿✿✿

to
✿

1
✿✿✿✿

GW,
✿

is located 12 km upstream (km 431) from the Worms station.
✿✿

We
✿✿✿✿✿✿✿✿✿✿✿

hypothesize
✿✿✿

that
✿✿✿✿✿✿✿✿✿

production
✿✿✿✿

and
✿✿✿✿

heat

✿✿✿✿

input
✿✿✿✿✿✿✿

changes
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

factory
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿

visible.
✿

In 1985, although the change in GDP does not indicate a large RBT change, a380

significant RBT decrease is visible. This is backed by a turnover decrease in 1985 and 1986. After the German reunification

1991, a negative GDP change (recession) is evident. This
✿

is
✿

followed by a by a BASF turnover decline as well as a decrease

in RBT. After that, the RBT follows the up and down movements of the GDP, so does the BASF turnover (only shown until

2000). Especially the economic events such as the burst of the dot-com bubble (early 2000s) and the mortgage crisis (2008)

are visible in the RBT and the GDP, when a decrease of both parameters followed.
✿✿✿

The
✿✿✿✿

two
✿✿✿✿✿✿

events
✿✿✿

are
✿✿✿✿✿✿

marked
✿✿✿✿

with
✿✿✿✿✿✿✿✿

triangles385

✿✿

in
✿✿✿

Fig.
✿✿✿✿

(8).

Before 1990, the RBT at Koblenz does not follow the GDP trend and shows a rather anti-cyclic behavior, which can not be

explained yet. After 1991, the RBT follows the general trend of the GDP but does not seem to be strongly influenced by the
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Figure 8. The change of RBT (black solid line) at three monitoring stations (Colgone, Koblenz, Worms). The blue dashed line is the GDP-

change of the adjacent federal states. To explain trends during two time periods the red dashed line, which is the turnover of the BASF

company, and the red dotted line, production rate of the oil refineries, are added.
✿✿

The
✿✿✿✿✿✿✿

triangles
✿✿✿✿

mark
✿✿✿

the
✿✿✿✿

years
✿✿✿✿✿

2000
✿✿✿✿

(burst
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

dot-com

✿✿✿✿✿

bubble)
✿✿✿✿

and
✿✿✿✿

2008
✿✿✿✿✿✿✿

(mortgage
✿✿✿✿✿✿

crisis).

recession after the German unification
✿✿✿✿✿✿✿✿✿✿

reunification. Again, economic events such as the burst of the dot-com bubble (early

2000s) and the mortgage crisis (2008) have influence on the RBT.390

The RBT at Cologne does not seem to be strongly influenced by the recession connected to the German reunification, but after

1999 the RBT follows the up and down trends of the GDP.

For all monitoring stations, we added a red dashed line between 1995 and 1999. This dashed line indicates the production

rate of German oil refineries (MWV, 2003). From 1995 to 1999 German refineries ran at full capacity level (100%). Usually

the capacity levels do not exceed 90%. The increase in production is clearly visible in the RBT of Cologne, where a large oil395
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name time-lag
✿✿✿✿✿

ACC*w+weigh
✿✿

∆t time-lagsignificance

Worms 0.42
✿✿✿

0.48 0.47p<0.05

Koblenz 0.52
✿✿✿

0.53 0.44p<0.05

Cologne 0.44 0.39p<0.05

Table 7. Spearman’s rank correlations between RBT and GDP-Change for two scenarios
✿✿✿✿✿✿✿✿✿

ACC*w+∆t. The last column shows the significance
✿

.

refinery is located 19 km upstream at km 671 (Rheinland refinery). RBT at Worms and Koblenz could be influenced by the

output of the
✿

a refinery next to Karlsruhe at km 367 (Mineraloelraffinierie Karlsruhe
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Mineraloelraffinerie
✿✿✿✿✿✿✿✿✿

Oberrhein).

Correlation

We correlate the GDP-change to the filtered RBT signal. It is noticeable that we shifted
✿✿✿

must
✿✿✿✿

shift
✿

the GDP-change 480 days to

the past to get matching trends. This means that a change in RBT or anthropogenic heat input appears 480 days earlier than in400

the GDP calculation. The shift could be caused by two reasons: [1] We are using the GDP difference of two consecutive years,

which has a significance at a point of time within these two years. [2] The GDP could be lagging behind the real economic

situation, in this case the industrial production. (Yamarone, 2012)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Yamarone (2012) claims that GDP is a coincident economic

indicator similar to industrial production. However, he uses quarterly GDP calculations vs our annual data. The quaterly data-

set could be reacting faster to changes. A second thought is that he compares industrial production calculations, which is an405

economic index, to GDP (another economic index). We have basically real time data from the industrial heat input into the

river. This shift was
✿✿

is not done in Sec. 3.3
✿✿✿

Fig.
✿✿✿

(7) because a shift of 1.5 y on a 40-year time scale is negligible.

Tab. 7
✿✿✿✿

Table
✿✿✿

(7)
✿

shows the Spearman’s rank correlation coefficients of Worms, Koblenz and Cologne for the time-lag and the

time-lag
✿✿

fo
✿✿✿✿✿✿✿✿

rACC*w+weight scenarios
✿✿✿

∆t
✿✿✿✿✿✿✿✿✿

calculation
✿✿✿✿✿✿✿

method,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

produces
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿✿✿✿✿

RMSE
✿✿

in
✿✿✿✿✿✿✿

Koblenz. All correlations

are positive and significant (p<0.05). The correlation of the RBT data-set with weighing is slightly higher (except for Worms)410

than those from equally weighted Ta. The correlation in Koblenz is the highest. Fig. 9 shows the filtered RBT signal vs the

GDP-change at the three monitoring stations.
✿✿✿

The
✿✿✿✿✿

RBT
✿✿✿✿✿✿✿✿✿

time-series
✿✿

is
✿✿✿✿✿✿✿✿✿

detrended
✿✿✿

and
✿✿✿✿✿✿✿

filtered.
✿✿✿✿

This
✿✿✿✿✿

graph
✿✿✿✿✿✿

depicts
✿✿✿

in
✿✿✿✿✿

detail
✿✿✿

the

✿✿✿✿✿✿✿✿✿

correlation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

GDP-change
✿✿✿

and
✿✿✿✿✿

RBT. Most of the time the change in filtered and shifted RBT is coincident,
✿✿✿✿

after
✿✿✿✿✿✿✿✿

shifting) with

the GDP-change. The RBT peak from 1995-1998 is not very well represented by the GDP-change, which has already been

discussed in context of Fig. 8.415

4 Conclusions

We introduce a new catchment-wide air temperature Tc, which decreases the RMSE (Tab. ?? and ??
✿

5) in a Ta → Tw
✿✿✿✿✿✿✿✿

Tc → Tw

regression. Tc is an
✿

a
✿✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿✿✿

(ACC*w) average of all Ta across the catchment including the improvement by using a the

time lag
✿✿✿

area
✿✿✿✿✿✿✿✿

including
✿✿✿

the
✿✿✿✿

use
✿✿

of
✿✿✿

∆t for each grid point according to the hydrological distance and flow speed. This time lag

is an indicator when a measured water droplet was at a certain grid cell in the catchment area. As a result, one can get a better420

estimate which Ta a water droplet experienced on its way to a monitoring station and better linear Ta → Tw estimates. An
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Figure 9. The three panels show the
✿✿✿✿✿✿✿

detrended
✿✿✿

and
✿

filtered RBT signal (black solid) and the GDP change (blue dashed) at the Cologne,

Koblenz and Worms.

✿✿✿✿✿✿✿

Tc → Tw
✿✿✿✿✿✿✿✿✿

estimates.
✿✿✿✿

This improvement in the Ta → Tw relationship makes
✿✿✿✿✿✿✿

Tc → Tw
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿

supports
✿✿✿

the
✿

analysis, reanal-

ysis and forecast of Tweasier as
✿

.
✿✿✿✿✿✿✿

Usually Ta data is readily available
✿✿

and
✿✿✿✿

can
✿✿✿✿✿

easily
✿✿✿

be
✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿

Q
✿✿✿✿

data
✿✿✿

for
✿

a
✿✿✿✿✿✿✿✿

multiple

✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

regression. Still a sufficient
✿✿✿

long
✿

time-series of Tw is required. The
✿✿✿✿✿✿✿✿✿✿

Nevertheless
✿✿

a linear relationship is simpler than a

full physical model which needs
✿✿✿✿✿✿✿

requires all meteorological fluxes as parameters.425

This a case study for the Rhine catchment area but the model can be
✿✿✿✿✿✿✿✿✿✿

theoretically used in any river system around the globe.

Catchment area data and reanalysis Ta data are globally available. Morrill et al. (2005) show a linear Ta → Tw relation-

ship for 43 rivers with various catchment areas in the subtropics. This could indicated that this case study of the Rhine can

be applied globally. There is a lack of studies on the Ta → Tw relationship in the tropics, where precipitation and extreme

evens
✿✿✿✿✿✿

events, such as monsoon, could complicate this relationship. Future calculations could be coupled with catchment wide430

✿✿✿✿✿✿✿✿✿✿✿✿✿

catchment-wide hydrological models to improve the accuracy of the time lag.

Using Tc we regress four Tw time series (Basel, Worms, Koblenz and Cologne) along the Rhine. The offset in the this regres-

sion a1, which we call RBT
✿

, and its change over time is an indicator for anthropogenic heat input. The RBT can be correlated

with long term economic changes such as the decrease of nuclear power production as well as short term economic events. We

showed
✿✿✿✿

show that change in production rates (oil refineries ),
✿

or
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿✿

industry)
✿✿

as
✿✿✿✿

well
✿✿

as
✿

a change in GDP can influence435

the RBT and therefore the Rhine water temperature. Also a statistical correlation
✿✿✿✿✿✿✿✿✿✿

Adsitionally,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

Spearman’s
✿✿✿✿✿

Rank
✿✿✿✿✿✿✿✿✿

correlation

✿

is
✿✿✿✿✿✿✿

positive
✿✿✿✿

and
✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿

which supports the connection between RBT and GDP. This case study could be on one hand a tool

for understanding the long term consequences of industrial water use and on the other hand a verification tool for reported heat

input. Germany has a rigorous reporting system on cooling water use. However, other countries could check if industrial heat

input is in accordance with legislative guidelines.440

(Hardenbicker et al., 2016)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Hardenbicker et al. (2016) estimate, using a physical model (QSim), that between the reference pe-
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riod of 1961-1990 and the near future 2021-2050 the mean annual Tw of the Rhine could increase by 0.6 oC-1.4 oC. This

trend can be supported by our historical data, however they use a constant anthropogenic heat input. Differences
✿✿✿✿✿✿✿✿

Different

✿✿✿✿✿✿✿

warming
✿✿✿✿

rates
✿

along the Rhine might be introduced
✿✿✿✿

could
✿✿✿✿✿

occur
✿

by a change in anthropogenic heat input. The difference of

the Tw warming rate between Basel and the other monitoring stations
✿

in
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿

time-series
✿✿✿✿

data can be explained by the change445

in nuclear power production and the influence of general industrial production. This could mean that with rising Ta and the

linear correlation between Ta → Tw, industrial production and power production have to be more closely connected with river

water temperature management. For the Rhine river we find a decreasing, except for Basel, RBT,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

indicates
✿✿

a
✿✿✿✿✿✿✿✿✿

decreasing

✿✿✿✿✿✿✿✿✿✿✿

anthropogenic
✿✿✿✿

heat
✿✿✿✿✿

input. However, other river catchment areas with growing energy intensive industries could experience a

larger warming rate than it is caused by the general increase of Ta experiencing all consequences for the physical, chemical450

and biological processes.

5 Regression coefficients

In Sec. ?? regression coefficients a1−3 were calculated by regressing Tw by Tc and Q. The regression was done on a two-year

window with a step size of one month. Fig. ?? shows the evolution of the regression coefficients at all four monitoring stations

for the Time-lag+ weight scenario, as an example. Fig. ?? shows a2 (meteorology) in relation to both environmental influences455

a2 + a3. The y-axis percentage gives an indication, how much influence a2 has on the variations of Tw. The remaining

percentage to 100 % can be attributed to a3 (hydrology). The relative contribution of a2 to the variation in Tw at the four

monitoring stations. The relative contribution of a2 to the variation in Tw at the four monitoring stations.

5 Nuclear Power Plants and Output

Following NPPs were included in the heat input calculation(Tab. 2).460

namecountryriverconversion factorconst. heat inputBeznau I+IICHAaare3N/ABiblis I+IIDERhine2N/ACattenom I-IVDEMoselN/A200

MWFessenheim I+IIFRRhine3N/AGoesgenCHAareN/A50 MWGrafenrheinfeldDEMainN/A200 MWLeibstattCHRhineN/A50

MWMuehlebergCHAare3N/ANeckarwestheim I+IIDENeckar1N/AObrigheimDENeckar3N/APhilippsburg I+IIDERhine1N/A

NPPs included in this manuscript. The coversion factor describes the conversion from electrical power generation to heat

input. If cooling towers are installed a constant heat input was used based on Lange (2009). The conversion factor is used to465

convert electrical produced power to heat input. NPPs with an exclusive river water cooling system have a conversion factor

of three, which is based on the power efficiency of electricity generation. Other factors are estimated depending on the used

cooling system.

We acknowledge all data providers for their help. The German Federal Ministry of Transport and Digital Infrastructure for

founding the Federal Institute of Hydrology and therefore making this work possible470
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